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Abstract 

Magnesium hydride owns the largest share of publications on solid materials for hydrogen 

storage. The “Magnesium group” of international experts contributing to IEA Task 32 

“Hydrogen Based Energy Storage” recently published two review papers presenting the 

activities of the group focused on magnesium hydride based materials and on Mg based 

compounds for hydrogen and energy storage. This review article not only overviews the latest 

activities on both fundamental aspects of Mg-based hydrides and their applications, but also 

presents a historic overview on the topic and outlines projected future developments. 

Particular attention is paid to the theoretical and experimental studies of Mg-H system at 

extreme pressures, kinetics and thermodynamics of the systems based on MgH2, 

nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg 

based H storage systems. Finally, thermal energy storage and upscaled H storage systems 

accommodating MgH2 are presented. 

 

Keywords: Magnesium-based hydrides, nanostructuring, catalysis, kinetics, high pressures, 

applications, hydrogen storage, energy storage 
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INTRODUCTION AND BACKGROUND 
The hydrogen economy is an alternative to the current energy landscape based on fossil fuel 

consumption that creates enormous economic and environmental problems. In this context, the 

development of a safe, effective and economical way to store hydrogen is a necessary step to become 

more competitive with respect to other fuels. Besides gas and liquid storage, the storing of hydrogen 

into a solid has been considered a viable alternative since it is possible to contain more hydrogen per 

unit volume than liquid or high pressure hydrogen gas [1]. This was previously proposed by Hofman 

et al. in the early 70’s [2] and since then, a zoo of materials has been deeply developed as summarised 

in numerous reviews [3-5]. However, as Table 1 shows, these compounds are only partially able to 

fulfil the different requirements (capacity, reversibility, and price) required for most applications. 

Magnesium started to be investigated as a means to store hydrogen around 50 years ago, since it has 

the advantage of fulfilling the “natural” targets of (i) high abundance [6] (2% of earth surface 

composition and virtually unlimited in sea water), (ii) non toxicity and (iii) relative safety of operation 

as compared to other light elements and their hydrides that quickly and exothermically oxidize in air. 

Moreover, magnesium is produced by a well-established technology and its raw materials cost is 

relatively low. This, as well as its high volumetric (0.11 kg H/l) and gravimetric (7.6 mass% H) 

capacities, places magnesium as a feasible material to store hydrogen and it has attracted huge 

attention during recent years, as Figure 1 shows.  

Magnesium and magnesium alloys have been intensively studied as hydrogen storage materials since 

the late 1960s. A rather comprehensive, although not complete, review of the related works published 

before 1985 was presented in [7]. A brief review covering a period up to 1997 was given in [8]. 

During the first decade of 2000s, several reviews on Mg-based hydrogen storage materials were 

published [9-14].  
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Table 1. Qualitative analysis of main criteria of solid hydrogen storage families according to DOE 2020 targets for on-

board applications. (Color code: Red = deficient ; Yellow = Fair ; Green =  Good) 

 

The latter review articles were focused on specific aspects of magnesium-based hydrogen storage 

materials including rare earth–Mg–Ni-based hydrogen storage alloys for electrochemical applications 

(2011 [15]); catalyst/additive-enhanced MgH2 (2015 [16]; 2017 [17]); nanostructuring and size effects 

(2015 [18]; 2017 [19]); interrelations between composition, structure, morphology and properties of 

the Mg-based hydrides (IEA Task 32 report, 2016 [20]); optimisation of MgH2 through the use of 

catalytic additives, incorporation of defects and an understanding of the rate-limiting processes during 

absorption and desorption (IEA Task 32 report, 2016 [21]).   
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Figure 1. Number of articles published during the last years 2000-2017 having “hydrogen storage” and the “name” of the 

respective compound in the title, abstract and keyword fields of the publication. Source: Scopus. 

Clearly, the progress achieved on magnesium as a hydrogen storage material over the last 20 years has 

been enormous. This is due to the use of a variety of synthesis methods, from high energy milling to 

Compound 

families 

Gravimetric 

capacity 

Volumetric 

capacity 

Minimum and maximum 

delivery temperature 

Absorption / 

desorption rates 

Toxicity , 

abundancy 

Metallic hydrides 

(AB2, AB5..)      
Magnesium hydride 

and alloys      
Complex hydrides 

(alanates, 

borohydrides) 
     

Chemical hydrides 

(amides, 

aminoboranes..) 
     

Adsorbent 

materials 

(nanocarbon, 

MOFS) 
     



5 
 

magnesium cluster intercalation, which are able to tune the different kinetic and thermodynamic 

properties of MgH2 via alloying, doping, nanosizing and nanoconfinement, strain-effects, etc.  

The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based 

Energy Storage” recently published two review papers presenting the activities of the group focused 

on Mg based compounds for hydrogen and energy storage [20] and on magnesium hydride based 

materials [21]. In the present review, the group gives an overview of the most recent developments in 

synthesis and hydrogenation properties of Mg-based hydrogen storage systems, highlighting the 

importance of magnesium based research on hydrogen storage materials for the future.  

The first chapter (by V.A. Yartys, M.V. Lototskyy, J.R. Ares and C.J. Webb) gives a general review 

of R&D activities in the field of magnesium-based hydrogen storage materials including main 

properties and features of the hydrides, as well as a historical overview. It is followed by four chapters 

that deal with preparation routes and properties of nanostructured hydrogen storage materials based on 

Mg, associated with the most promising directions in the field which dynamically developed during 

the last decade. This part starts with analysis of the effects of nanostructuring of Mg-based materials 

as related to their hydrogen storage performance (L. Pasquini and P.E. de Jongh), followed by 

consideration of Mg-based nanomaterials prepared by mechanical alloying and reactive ball milling 

(M.V. Lototskyy, R.V. Denys and V.A. Yartys), and in-depth consideration of the mechanochemistry 

of magnesium during ball milling in H2 gas (F. Cuevas, M. Latroche). The next chapter (M. Zhu, H. 

Wang, M.V. Lototskyy, V.A. Yartys, L. Popilevsky, V.M. Skripnyuk and E. Rabkin) presents 

overview of various catalysts, which improve hydrogen sorption / desorption performance of 

nanostructured materials on the basis of Mg.  

Furthermore, this review considers important fundamental aspects including hydrogen sorption 

kinetics (M. Baricco), experimental (V.E. Antonov and M.A. Kuzovnikov) and theoretical (N. 

Bourgeois, J.-C. Crivello and J.-M. Joubert) studies of H–Mg system under high pressures and 

structural features of mixed transition metal – Mg complex hydrides (B.C. Hauback) and new ternary 

intermetallic hydride (I.Jacob, R.V. Denys and V.A. Yartys). 

Finally, the review considers aspects related to the application of magnesium-based hydrides, 

including non-direct thermal desorption methods (J. Ares), the effects observed during the cycling of 

H–Mg system at high temperatures (A. Stuart, D. Grant, and G. Walker), as well as the analysis of 

application potential of hydride forming magnesium compounds for thermal energy storage (T.D. 

Humphries, M.V. Sofianos, M. Paskevicius, C.E. Buckley, R. Albert and M. Felderhoff) and an 

overview of developments of Mg-based hydrogen and heat storage systems (J.M. Bellosta von Colbe, 

M. Dornheim, M.V. Lototskyy and V.A. Yartys). 

Future prospects of research and development in the field of magnesium based materials for hydrogen 

based energy storage are outlined in the final chapter of this review with contributions from all co-

authors.  

Mg-Based Hydrides: Main Properties and Features 
-magnesium dihydride (MgH2) can be synthesized directly from magnesium metal and hydrogen gas 

as a product of reversible interaction: 

 Mg + H2 

    MgH2 (1) 

and by chemical methods, starting from magnesium-organic compounds.  

In contrast to the chemically synthesized MgH2 being a very active material which self-ignites when 

exposed to air and intensively reacts with water, magnesium hydride obtained by interaction of 

metallic Mg with H2 gas is relatively inert and safe during handling [22]. MgH2 is a stoichiometric 

hydride having a mixed ionic-covalent type of chemical bond [23]. It has a tetragonal, rutile-type 

crystal structure (space group #136; a=4.517Å, c=3.020 Å) [24,25]. The transformation of hexagonal 

magnesium (space group #194; a= 3.209 Å, c= 5.211 Å; bulk density 1.74 g/cm
3
) to tetragonal MgH2 

(bulk density of 1.45 g/cm
3
) is accompanied by a 20% increase in volume, while the volumetric 

hydrogen density in magnesium hydride is high, about 0.11 g/cm
3
, more than 50 % greater than that 

of liquid hydrogen.  
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Under pressures up to 8 GPa and temperatures up to 900 °C, -MgH2 transforms to -MgH2 with an 

orthorhombic -PbO2 type structure and octahedral H-coordination for the Mg atoms. The reverse 

transformation -MgH2  -MgH2 begins at T~350 °C at atmospheric pressure [26] and at T~250 °C 

in vacuum [27]. At pressures higher than ~8 GPa, -MgH2 transforms to denser polymorphs: pyrite-

type cubic β-MgH2 with the Pa    space group [28]; orthorhombic HP1 with the Pbc21 space group 

[29] (previously identified as δ’ with the Pbca space group [28]) and cotunnite-type orthorhombic 

HP2, space group Pnma [29].  

The crystal and electronic structures of the , β  and  allotropic modifications of MgH2 will be 

considered in this review later; in the chapter “Modelling the MgH2 hydride within high pressure 

model”. 

We note that occasionally the  modification of MgH2 is called -MgH2, while the letter “” is 

reserved for the primary solid solutions of hydrogen in hcp Mg. For convenience, from here on, we 

shall keep the notation from the original publications. However, the above-mentioned classification 

should be taken into account to avoid misunderstanding. 

The hydrogenation of Mg-containing intermetallic compounds was first studied in 1967 [30], and the 

reaction of Mg2Cu with hydrogen gas proceeded according to the following scheme: 

 2Mg2Cu + 3H2 

    3MgH2 + MgCu2 (2) 

Reaction (2) proceeds rapidly at T ~300 °C and P(H2) ~20 bar. It results in a hydride 

disproportionation of the starting intermetallic compound Mg2Cu, but unlike the majority of the 

reactions of this class being irreversible processes, reaction (2) allows reversible absorption of up to 

2.6 wt% H at temperatures lower than for the Mg–H systems (Reaction (1)). 

Later, Reilly and Wiswall [31] showed that interaction of hydrogen with another Mg-based 

intermetallic compound, Mg2Ni, results in the reversible formation of the ternary hydride, Mg2NiH4: 

 Mg2Ni + 2 H2 

    Mg2NiH4 (3) 

Reaction (3) proceeds rapidly at T ~325 °C and P(H2) ~20 bar allowing reversible absorption of up to 

3.7 wt% H. In contrast with conventional intermetallic hydrides, such as AB5Hx, AB2Hx, etc., the 

formation of Mg2NiH4 is accompanied by essential changes in the crystal structure (see, for example, 

[32]). In Mg2NiH4, hydrogen atoms are placed in the vertices of [NiH4]
4–

 tetrahedra forming strong 

bounds with the central nickel atom. Therefore, Mg2NiH4 is considered as a complex hydride, rather 

than an interstitial intermetallic hydride. 

Some magnesium-based complex hydrides (Mg2FeH6, Mg2CoH5, Mg3MnH7) similar to Mg2NiH4 

were synthesized from parent metals and H2 gas using special synthesis procedures (ball milling, 

sintering in hydrogen atmosphere under increased H2 pressure, or under GPa-level hydrostatic 

pressure) [32–34]. The hydrogen-richest compound Mg2FeH6 can reversibly desorb / absorb up to 5.4 

wt% of hydrogen at T=370–500 °C [33]. 

Among Mg-containing intermetallic compounds, the numerous group of magnesium-rich 

intermetallics with rare-earth metals, RE (e.g. REMg2, RE2Mg17, RE5Mg41, etc), are of practical 

importance. Independent of their composition and structure, these intermetallics disproportionate 

during their interaction with hydrogen gas to yield a homogeneous mixture of magnesium hydride and 

rare-earth hydrides [35]: 

 RExMgy + (1.5x + y)H2  yMgH2 + xREH3 (4) 

The products of Reaction (4) are able to reversibly desorb up to 5.5–6 wt% H (depending on the 

amount of the rare-earth metal), according to the scheme [36]: 

 y MgH2 + x REH3 

    y Mg + x REHz + [y+ x (3–z) /2] H2, z=2.6–2.8 




    LaMg12  + H2    

(5) 

When starting from LaMg11Ni, the following processes take place depending on conditions [37,38]: 

 LaMg11Ni  y MgH2 + x LaH3  + z Mg2NiH4

    LaMg12 / La2Mg17 / La2-xMg17 Nix   (6) 
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With the exception of Mg-containing intermetallic compounds with rare-earth and transition metals 

(e.g. REMg2Ni9 [20]), the products of hydrogenation of Mg-based H storage materials mainly contain 

either magnesium dihydride, MgH2, and/or ternary complex hydrides, such as Mg2NiH4. The material 

composition is limited to elemental Mg, single-phase solid solution alloys and intermetallics, as well 

as Mg-based multiphase alloys and compositions. Consequently, there exists only a limited possibility 

for variation of the thermodynamic properties of these materials in systems with hydrogen gas.  

Normally, MgH2 adopts the rutile-type tetragonal phase following around a 20% expansion of the 

lattice of the initial magnesium metal. It exhibits a high absolute value for the enthalpy of 

decomposition (75 kJ/molH2) [39], which is attributed to the ionic-covalent nature of the Mg–H bond 

[40]. Therefore, the plateau pressure of Mg/MgH2 at room temperature is very low and subsequently, 

temperatures above 275 ºC are required to release hydrogen from MgH2 under standard conditions of 

pressure, which is incompatible with most practical applications [14].  

Figure 2 shows typical hydrogen desorption isotherms for Mg (Mg alloy) – hydrogen systems in 

comparison with a conventional “low-temperature” AB5-type hydrogen storage intermetallic 

compound (compiled from the data published in [41,42]). It can be seen that although the hydrogen 

weight capacity of MgH2 is more than 5 times greater than for the AB5-based hydride, its dissociation 

requires a much higher temperature (~300 °C to provide a hydrogen pressure of 1 bar), than for the 

“low-temperature” interstitial type metal hydrides (<20–100 °C at P(H2) = 1 bar). At the same 

temperature, dissociation of hydrides of Mg-containing intermetallics (e.g. Mg2Ni) takes place at 

higher hydrogen pressures than for MgH2. Unfortunately, this rather modest hydride destabilisation is 

associated with a notable decrease in gravimetric hydrogen storage capacity by a factor of ~2. 
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Figure 2. Pressure – composition isotherms (H desorption) for systems of H2 gas with: 1 – Mg-based nanocomposite, T=300 

°C [41]; 2 – Mg2Ni, T=300 °C [41]; 3 – Mg – Ni – Mm eutectic alloy , T=300 °C [42];  4 – MmNi4.9Sn0.1, T=22 °C [41]. 

Mm is lanthanum rich mischmetal. 

Another disadvantage of magnesium as a hydrogen storage material is the low rate of its interaction 

with hydrogen gas, particularly during the first hydrogenation reaction. According to the data 

collected by different authors, reviewed in [43], the first hydrogenation of Mg at T=340–350 °C and 

H2 pressure up to 30 bar can be completed within 6 to 336 hours. Such great discrepancies are caused 

by the high sensitivity of the reaction rate induced by the purity, particle size and surface state of the 

parent metal, activation conditions, purity of hydrogen gas, etc. The reaction can be accelerated by 

increasing the temperature to 400–450 °C and the hydrogen pressure to 100–200 bar, in combination 

with some gas-phase catalysts, such as iodine vapours, CCl4, etc.  

 

Mechanical treatment (ball milling) of the charge during hydrogenation also improves hydrogen 

absorption performance [44]. Historically, the ball milling of Mg powders was the first method shown 
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to accelerate their hydrogenation kinetics [44,45]. Later, some other methods of plastic deformation of 

Mg and its alloys were also shown to have a beneficial effect on the hydrogenation kinetics. 

Particularly, the equal channel angular pressing (ECAP) of bulk Mg alloys with their subsequent 

dispersion into powder turned out to be as efficient as the prolonged ball milling in accelerating the 

kinetics of hydrogenation [46-50]. The positive effect of high pressure torsion (HPT) on both the 

kinetics of hydrogenation and the decrease in the temperature of the onset of hydrogenation has also 

been demonstrated [50]. The problem with the ECAP and HPT methods is their relatively high cost 

and up-scalability. Applying the low-cost plastic deformation methods such as cold rolling and 

forging the powders leads to a significant refinement of the microstructure and an improvement in the 

hydrogenation kinetics, comparable to those caused by the high energy ball milling, with better 

oxidation stability [51,52]. 

Typical results of early studies of hydrogen absorption kinetics by several magnesium-based materials 

are presented in Figure 3 and accelerated by introduction of conventional gas-phase catalysts, like 

CCl4 (curve 2), into the hydrogen gas. However, hydrogen absorption remains too slow for practical 

hydrogen storage purposes. The rate of hydrogen absorption can also be increased when some 

elements (Al, Ga, In) are alloyed with Mg within the limits of diluted solid solution (curve 3). It was 

noted that when the concentration of the alloying element in such a solution is increased, the effect of 

improving the kinetics of hydrogen sorption by magnesium disappears [53]. This behaviour was 

explained by assuming that the improvement of hydrogen sorption properties of Mg is caused by 

facilitation of internal H diffusion due to the increased concentration of lattice defects within the 

solid. For oversaturated Mg-based solid solutions containing hydride-forming components, 

improvement of the hydrogen sorption kinetics appears again, in an even more pronounced form 

(curve 4). The presence of easily hydrogenated intermetallics results in further improvement of 

hydrogenation kinetics of Mg. This is illustrated by curve 5 which corresponds to a compacted 

mixture of Mg powder with 20 wt% LaNi5; in such a composition practically complete hydrogenation 

of Mg in 30–60 minutes was observed [54,55]. The most probable mechanism of improvement of 

hydrogen sorption kinetics in this case was attributed to presence of the atomic hydrogen on the 

surface of LaNi5 – a similar mechanism was supposed for hydrogenation of Mg – Mg2Cu alloys [56]. 

This mechanism is illustrated in [22] which describes the synthesis of MgH2 from a charging of pure 

metal, when active hydrogen was generated by the interaction of zinc with hydrochloric acid. In this 

case the hydrogenation takes place even at room temperature and atmospheric pressure. The best 

hydrogen sorption performance is observed for multiphase Mg alloys containing rare-earth metals 

(RE). The alloys are represented by magnesium-rich intermetallics (REMg2, RE2Mg17, REMg12, etc.) 

which disproportionate yielding MgH2 and REH3 in the course of their interaction with hydrogen gas 

(Reaction (4)) [57]. Curve 6 in Figure 2 represents H sorption by REMg12 intermetallics. In other 

cases, this group can be represented by alloys containing, apart from magnesium-based solid solution 

(or above-mentioned Mg-rich intermetallics), the hydride-forming intermetallic phases (e.g. Mg2Ni). 

Such compositions have the best dynamics of hydrogen sorption (curve 7) which takes place even at 

room temperature. Kinetics and mechanism of the hydrogen absorption-desorption processes were 

characterised by in situ SR XRD (synchrotron radiation X-ray diffraction) [38].  
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Figure 3. Hydrogen absorption by magnesium and magnesium-based alloys / composites. The legend describing 

compositions and hydrogenation conditions of the samples is presented in Table 2. 

 

Table 2. Sample compositions and hydrogenation conditions for hydrogen absorption curves presented in Figure 3 

Curve 

#  

Sample composition Hydrogenation 

conditions 

Notes 

Components Phases T, °C P, bar 

1 Mg Mg 410 40 

2 Mg Mg 410 40 H2 with the 

admixture of CCl4 

(~2%) 

3 Mg0.99In0.01 Mg (solid solution) 270 80 Alloy 

4 Mg 94.11 

Zn 4.01 

La 1.24 

Cd 0.52 

Zr 0.12 

(wt%) 

Mg (solid solution) 

Traces of intermetallic phases 

340 30 Industrial Mg alloy 

5 Mg 80 

LaNi5 20 

(wt%) 

Mg + LaNi5 345 30 Compacted mixture 

of powdered Mg and 

LaNi5 

6 REMg12 

(RE = La, Ce) 

REMg12 (starting alloy and product of 

vacuum heating at T>450 °C) 

MgH2+REH3 (hydride) 

Mg + REH2 (dehydrogenated sample) 

325 30 Alloys 

7 Mg75Y6Ni19 Mg+Mg2Ni+YNi2 (starting alloy) 

MgH2+Mg2NiH4+YH2 (hydride) 

200 30 

 

Since the reaction of hydrogen with magnesium is a hetero-phase transformation which includes 

several stages, viz. transport of H2 molecule to the surface of magnesium, chemisorption of H2 

molecule to H atoms, migration of the H atoms from the surface into the bulk, hydrogen diffusion in 

the solid and formation and growth of the hydride phase [57], a number of factors may limit the 

hydrogenation kinetics. These factors include (i) formation of surface oxide which inhibits hydrogen 

penetration into the material [45], (ii) slow dissociation of hydrogen molecules on the Mg surface 

[59], (iii) low rate of movement of the MgH2 / Mg interface [60], and (iv) slow diffusion of hydrogen 

through magnesium hydride [60,61]. Most of these obstacles can be overcome by nanostructuring Mg 

by several methods including mechanical alloying (MA) and reactive ball milling (RBM) in the 

presence of catalytic additives. 
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Apart from the practical necessity to improve the kinetics of hydrogenation and dehydrogenation in 

Mg-based hydrogen storage materials, poor stability of hydrogen sorption performance during cyclic 

dehydrogenation / re-hydrogenation at high temperatures is another important problem for 

establishing applications. Though literature data concerning cycle stability of Mg-based hydrides are 

quite contradictory (most probably due to different experimental conditions applied by different 

authors), it has been shown that the observed degradation effects during cycling are related to (i) 

partially irreversible loss of hydrogen storage capacity [62] and (ii) deterioration of hydrogen 

absorption and desorption kinetics, particularly at lower temperatures [63]. The origin of the first 

effect is related to a passivation of Mg(H2) surface due to a chemical reaction with gas impurities in 

H2 [64,65]; while the second effect, taking place during the operation in pure H2 at T350 °C
1
 and 

mostly pronounced for nanostructured Mg-based composites, is associated with re-crystallisation of 

Mg(H2) particles which result in the decrease of specific surface area and longer H diffusion pathways 

[66,67].  

Analysing the data presented above, it can be concluded that the most significant problem in the 

development of efficient magnesium based H storage materials is in improvement of the 

hydrogenation / dehydrogenation kinetics. 

The second problem is to reduce the high operational temperature required for dehydrogenation of 

Mg-based H storage materials, due to the thermodynamic limitations. The solution of this problem is 

much more difficult than for the hydrides of intermetallic compounds of transition metals, which 

allow a significant variation of their thermodynamic properties by variation of the component 

composition of starting alloy. It requires either radical revision of the pathways of hydrogenation / 

dehydrogenation reaction, or creation of thermodynamically metastable materials, by application of 

special physical methods. 

  

Historical Overview 
Magnesium hydride (MgH2) was first synthesised by pyrolysis of ethyl magnesium halides in 1912 

[68]. Further study of the synthesis of MgH2 using the pyrolysis of di-alkyls of Mg was undertaken by 

Wiberg and Bauer [69] in 1950. Two solvent-based synthesis methods were demonstrated to produce 

magnesium hydride, the pyrolysis of magnesium dialkylene and hydrogenation of magnesium 

dialkylene with diborane. At a similar time, the hydrides of beryllium, lithium and magnesium were 

prepared using lithium aluminium hydride in ethyl ether or diethyl ether solution [70], with a yielded 

purity of about 75 % with respect to magnesium hydride production. Subsequently, synthesis methods 

involving the thermal decomposition of magnesium diethyl at 200 °C in high vacuum [71], the 

hydrogenolysis of Grignard reagents (2RMgX + 2H2 2RH + MgX2 + MgH2) [72], catalytic 

magnesium hydrogenation with anthracene in THF via anthracene-magnesium as an intermediate [73] 

and the reaction of phenylsilane and dibutylmagnesium [74] were employed. 

The first direct hydrogenation of magnesium was performed in 1951 by heating elemental magnesium 

in an atmosphere of hydrogen gas [25]. At a temperature of 570 °C and a hydrogen pressure of 200 

bar, the reaction yielded 60 % MgH2 - provided a catalyst (MgI2) was used. Later, Ellinger et al [24] 

measured the desorption pressures for MgH2 for a range of temperatures and showed that the catalyst 

was only required because the desorption pressure at 570 °C was higher than the applied pressure of 

200 bar. They also determined reaction rates at 68 bar H2 for various temperatures and calculated the 

heat of formation and activation energy. Stampfer et al [75] synthesised magnesium hydride and 

magnesium deuteride at 300 bar and 500 °C in order to measure desorption isotherms and determine 

the enthalpy and entropy. 

Despite the success of direct hydrogenation and the elimination of the problem of residual solvent 

material, reaction times were typically slow and quite low yields were observed [75]. An initial 

                                                           
1
 As pronounced sintering / re-crystallisation of a metal takes place at the temperature above 2/3 of its melting 

point (in K), for Mg having the melting point at 923 K = 650 °C, its calculated sintering temperature is  2/3 * 

923 = 615 K (342 °C).   
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problem with magnesium is its strong affinity to oxygen, resulting in a formation of a thin oxide layer 

on the surface of the Mg particles which limits the hydrogen diffusion [76]. Similarly, a small 

presence of water leads to the surface formation of Mg(OH)2. Annealing the material can create 

cracks in the oxide layer (above 400 °C) [77] as well as decompose Mg(OH)2 [45]. Alternatively, 

ball-milling can break the oxide layer and provide fresh metal surfaces [44]. Regardless of the initial 

material, once the magnesium starts to hydride, the layer of MgH2 impedes the diffusion of hydrogen 

to the remaining unreacted metal [21]. 

Reactive ball-milling or mechanical milling is a more recent technique for the synthesis of metal 

hydrides. In 1961, Dymova et al. [44] applied ball milling of Mg under hydrogen pressure (200 bar) at 

T = 350–400 °C. The yield of MgH2 after 5–6 hours long ball milling was about 75%. Addition of 

small amounts of catalysts (I2, CCl4, Mg2Cu; 0.5–3 wt%) allowed the milling process to reach a yield 

of MgH2 above 97% at the same conditions. Chen and Williams [78] ball-milled magnesium powder 

under 3.4 bar of hydrogen for 23.5 h. They reported full absorption at room temperature, but 

subsequent studies found the need for additives or catalysts such as transition metals, including Ni 

[79], V, Zr [45] or carbon [66], or allyl-iodide or multi-ring aromatic compounds of transition metals 

[44,73,80] to significantly soften conditions of Mg hydrogenation from the gas phase and to increase 

the yield of MgH2. 

Zhao et al [81] proposed a combination of ball-milling and direct hydrogenation termed the second 

hydrogenation method. In this technique, magnesium powder was hydrogenated for 6 h at 350 °C 

under 60 bar of hydrogen. This was then milled under argon for 9 h before returning to the reactor for 

further hydrogenation under pressure and temperature, with best results at 45 bars and 380 °C for 6 h.  

Other techniques for the synthesis of magnesium hydride including hydriding chemical vapour 

deposition (HCVD) [82], laser ablation [83] and hydrogen plasma metal reaction (HPMR) [84] can 

produce high purity nanostructured magnesium hydride, but these techniques are difficult to scale up 

to large production quantities.  

The first detailed study of the phase equilibria during interaction of Mg metal with gaseous hydrogen 

and deuterium (PCT diagrams were built in the temperature range T=314–576 °C, at gaseous 

pressures of up to 250 bar) was performed by Stampfer et al. in 1960 [75]. This study showed that 

Mg–H system has a number of distinct features, including its very small incline in the two-phase 

region (Figure 4). 

Early studies of hydrogenation – dehydrogenation kinetics in H2 – Mg system without catalysts were 

reported by Ellinger et al. [24], Kennelley et al. [86], Stander [87] and Vigeholm et al. [88]. 

Hydrogenation / dehydrogenation kinetics of Mg-rich alloys was also studied by Douglass [89], Mintz 

et al. [53,90], Karty et al. [91], Luz et al. [61] and other authors. It was found that at T~250 °C the 

formation of MgH2 virtually stops when reaching reacted fraction about 75% [87] due to very slow H 

diffusion through growing MgH2 layer which was found to be the rate-limiting step of the reaction 

[61,87]. However, at the higher temperatures (~400 °C) the hydrogenation becomes reasonably fast 

achieving almost complete transformation of Mg to MgH2 in 2.5 hours for the first hydrogenation 

(Mg powder, ≤75µ in the particle size) and in less than one hour for the subsequent hydrogenations 

[88]. 
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Figure 4. Phase equilibria in H – Mg system: Top (a) – pressure – composition isotherms [75]; Bottom: phase diagrams at 1 

bar (b) and 250 bar (c) [85]. 

Since the 1960s, many researchers have attempted to improve the hydrogen sorption properties of 

magnesium, by alloying with other metals. Mikheeva et al have shown the possibility of gas phase 

hydrogenation for magnesium at room temperature and atmospheric pressure, using Ce–Mg and Ce–

Mg–Al alloys [92,93]. Later, the works by Reilly and Wiswall demonstrated an improvement in 

hydrogenation kinetics of magnesium by hydride-forming intermetallics (Mg2Cu and Mg2Ni) [30,31] 

and have stimulated research in this field.  

An important milestone achieved at the end of the 1970s – beginning of 1980s was a discovery of 

catalytic effect of easily-hydrogenated additives which significantly accelerate hydrogenation of Mg. 

The additives can be introduced either by alloying with Mg (rare-earth and transition metals), or by 

mixing of Mg powder with hydride-forming intermetallic alloy (e.g. LaNi5) followed by compacting 

of the mixture [54,57]. 

An enormous variety of chemical and physical preparation techniques (chemical reaction of a 

precursor [94], thermolysis [95], gas phase growth [96], reactive mechanical milling [97], etc.) has 

been undertaken to synthesize a wide arrange of Mg/MgH2 micro and nanostructured morphologies to 

overcome the main drawbacks related to the thermodynamic and kinetic limitations which prevent its 

use as a solid hydrogen storage material. 

Since end 1980s – 1990s, significant progress was achieved in the improvement of hydrogenation / 

dehydrogenation kinetics of nanostructured Mg and Mg-based composites employing various 
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catalytic additives [45,98,99]. Nanostructuring, particularly via mechanical alloying and reactive ball 

milling, is still of a great interest and will be considered in more detail in the following sections of this 

review. 

During recent years, much effort has been focused at reducing the thermodynamic stability of MgH2. 

One strategy was in reducing the high absolute value of hydrogenation enthalpy by alloying Mg with 

other elements to form less stable hydrides. Among the different investigated additives (Co, Fe, Mn) 

the archetypal one is Ni [100] that alloys with Mg to form Mg2Ni with an absorption enthalpy of 60 

kJ/molH2 to become Mg2NiH4 i.e. thus lowering the value exhibited by MgH2. A similar pathway is 

achieved by adding a reactive element (Si, Ge) to MgH2 to form a stable Mg-based compound and, 

therefore to reduce the enthalpy of the hydrogenation reaction. As an example, when adding silicon 

[101] the reaction enthalpy decreases by more than 30 kJ/molH2, and this effect can become even 

more pronounced when using other hydrides i.e. LiBH4 because of the formation of reactive hydride 

composites and changing the hydrogen release pathway [102]. However, such a scenario faces 

drawbacks related to the reduction of hydrogen capacity as well as slowing down the hydrogenation-

dehydrogenation kinetics mainly due to the segregation processes. Currently, the efforts to solve the 

kinetic problems show that the most promising results are achieved by utilising nanostructuring and 

by catalyst additions. 

More recently, reduction of the particle size to the nanoscale has been considered an alternative 

approach to modify the enthalpy due to the non-negligible contribution of the surface free energy 

caused by the high surface area to volume ratios. Theoretical calculations [103,104] predict a drastic 

reduction of enthalpy for particle sizes smaller than 2 nm and, subsequently, a wide variety of 

preparation techniques have been employed to achieve this size reduction. These are classified by two 

approaches, a top-down (divide the matter to the nanoscale) and bottom-top (assemble the atoms to 

form clusters or nanolayers). Whereas the first approach is mainly based on mechanical milling [105], 

the second one includes the methods of gas-phase growth [106], scaffold infiltration [106], colloidal 

methods [108] and intercalation into 2D-materials [109].  

Even though a broad range of techniques was applied, giving a variety of studied nanomaterials, the 

studies failed to show a clear correlation between the particle size and the formation/decomposition 

enthalpy of MgH2. Nevertheless when in a range below 10 nm, Mg nanoparticles show lowering of 

the decomposition temperature of magnesium dihydride [21]. Discrepancies between the results of 

theoretical calculations and experimental data are usually attributed to the complexity of the small 

nanoparticles where several parameters such as surface state of the studied material [110] strongly 

affect thermodynamic properties. Furthermore, enthalpy-entropy correlation affects H value, similar 

to the situation in other metal-hydrogen systems [111] and in various studies related to the effect of 

nanosizing [112]. Thus, because of the mentioned correlation, as the temperature of decomposition is 

derived as T=H/S, there are challenges in reaching the goal of a decrease in desorption temperature. 

Efforts to decouple enthalpy and entropy are required in order for nanosizing to become a viable 

mechanism to reduce the reactions temperature. 

Concerning the kinetic constraints, the formation of MgH2 involves several reactions (H2 

physisorption, H2 dissociation, chemisorption, H-diffusion) and a successive chain of kinetic barriers 

has to be overcome. As a consequence, the H-absorption and desorption rates are too low for most 

applications even at moderate temperatures i.e. at 250-300 ºC [45]. To resolve the problem, a huge 

effort has been invested to uncover the mechanism and to determine activation energies that control 

the H-absorption/desorption process for MgH2. Different theoretical approaches have been utilized. 

Although the obtained results are not completely conclusive, due to a huge diversity in experimental 

conditions and different types of studied materials and their morphologies, the rate limiting steps are 

generally considered to be nucleation and growth processes (NG) controlled by H-diffusion in the 

MgH2 phase for absorption and interface reaction for desorption. Activation energies of 170±20 and 

220±20 have been respectively reported [58,113] for these two processes. These energies decreased 

following reduction of the grain size, nanostructuring and removal of oxides/hydroxides from the 

surface of MgH2 by mechanical milling [45]. Further enhancement was achieved using 

nanocomposites as in the MgH2-TiH2 system. The latter composite exhibits outstanding kinetic 

properties (H-absorption is around 20 times faster than for a pure nanometric MgH2 powder) by 
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combining effect of grain growth inhibition and H-gateway mechanism provided by TiH2 [114] 

revealing the possibilities to explore the acceleration of the kinetic process. 

Kinetic improvements can also be achieved by adding catalysts without affecting the 

thermodynamics. Pd, as an excellent catalyst to dissociate the molecular hydrogen improved the 

hydrogenation by the spillover effect [115] but finding less expensive but still efficient compounds as 

catalysts remains a challenge. Transition metals have been habitually considered as the archetypal 

catalyst elements and, in particular, several elements (Ti, V, Mn, Fe and Ni) have been shown to 

reduce the activation energy of hydrogen absorption/desorption [116] (Figure 5). A similar diminution 

of the activation energy of hydrogen desorption was obtained using transition metal oxides [117], 

metal halides [118], etc. However the mechanism of the catalyst’s influence could be very different, 

since they may involve the formation of intermediate phases (that act as an H-pathways) [119], the 

refinement of the nanostructure and prevention of agglomeration [120]. Therefore, identifying novel 

catalyst compositions and processes of their use is crucial to increase the hydrogenation/desorption 

rates. During the recent years, nanosizing of magnesium has also promoted the overall kinetic 

improvements of processes of hydrogen exchange by enhancing individual steps such as H-diffusion 

and also H2-dissociation by the increased effect of the surfaces via reactive role of steps, corner and 

edge atoms as compared to the bulk [121] and, also, because of achieving a more accurate control of 

the catalysis such as exploring chemistry of core-shell nanostructures [122]. Thus, importantly, issues 

related to the reactivity of the surfaces need to be solved. 

The cycling behaviour of magnesium hydride is also very important to allow its efficient performance 

on a reversible hydrogen storage system. It is commonly accepted that cycling negatively affects the 

H-kinetics due to the degradation of the nanostructures and catalysts redistribution [123]. Hydride 

confinement [124] and prevention of recrystallization [67,125], are promising pathways that are 

currently being explored.  
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Figure 5. Influence of different micro-nanostructures and additives on H-desorption activation energy of MgH2 

[45,116,117]. 

The permanence of MgH2 as an interesting hydrogen related materials is not just related to H-storage 

properties but also with the changes in electronic state via a metal-isolator transition which takes place 

during the hydrogenation of magnesium films [126,127]. This opens the possibilities for use of thin 

films of Mg-rich hydrides as optical/electrical sensors. Moreover, control over the morphology can 

offer novel ways to destabilize the hydrides. As an example, strain effects able to reduce the stability 

of the hydride [128] could be tuned by the control over the interface between the different layers in 

magnesium films. Other applications of magnesium hydride include use of MgH2 in thermal storage 

[129] or as anodes in lithium ion batteries [130]. 
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NANOSTRUCTURED MAGNESIUM HYDRIDE 
A distinctive feature of nanoobjects such as nanoparticles, nanowires and thin films is the high ratio 

    between the total interface area and volume. Surfaces contribute to A as special solid-vapour 

interfaces. This scenario can change the thermodynamics of hydride formation if the specific interface 

free energy per unit area  of the metallic state differs from that of the hydride. For a nanoobject 

surrounded by different interfaces identified by the index  , the free energy change for the Reaction 

(1) compared to bulk Mg is given by [121,131,132]:  

                        
    

 
                                            .  

 

(7) 

In the first term           that describes the effect of interface area,      is the molar volume of Mg 

and the sums extend over all interfaces.         and         denote the area and specific free energy 

of the  -th interface in the hydride phase, respectively (with corresponding notation for the metal). 

 The second term          describes the effect of the elastic strain   (it is negative during 

compression). B is the bulk modulus of Mg and     the partial molar volume of hydrogen in MgH2.  

          takes on a very simple form whenever, upon hydride formation, the total interface area A 

does not vary and the change of the specific free energy is the same for all interfaces, i.e.         

            . In this case, one has:                                    , where the 

separation into enthalpic    and entropic    contributions has been made explicit. Moreover, 

          vanishes at the so-called compensation temperature            , where the 

equilibrium pressure for hydride formation/decomposition in the nano-object equals the bulk value. 

Experimental studies on Mg/MgH2 thin films of varying thickness sandwiched between TiH2 layers 

gave         J/m
2
 at 393 K [131]. This result was in fair agreement with the outcome of Density 

Functional Theory (DFT) calculations for selected Mg|TiH2 and MgH2|TiH2 interfaces, which yielded 

   between 0.58 and 0.69 J/m
2
 [133]. Notably, there is a real missing knowledge about the interface 

entropy term   , which has neither been experimentally measured nor determined by model 

calculations.  

 
Figure 6. Compilation of van ‘t Hoff plots calculated from     and     data for Mg-based nanomaterials confronted to 

bulk Mg (curve a from [75]). The black dash-dotted line is the low temperature extrapolation of bulk Mg data. The data in 

the legend denote the corresponding absolute values of     (left, in kJ/mol H2) and     (right, in J/K mol H2). The number 

of symbols represent how many points were actually measured and the temperatures of the measurements. Empty symbols 

denote absorption pressures     , filled symbols equilibrium pressures    . b: 2-7 nm Mg nanocrystallites in LiCl matrix 

[136]. c: < 3 nm Mg NPs in carbon scaffold [134]. d: 15 nm Mg NPs by electroless reduction [135]. e: MgH2-TiH2 

composite NPs, 10-20 nm in diameter (6-30 at.% Ti) [125]. f: MgH2-TiH2 ball-milled nanocomposite (30 at.% Ti) [114]. g: 

Mg/Ti/Pd nanodots on silica, diameter 60 nm: here,      and      are also plotted separately using empty and crossed 

symbols, respectively, to highlight the strong pressure hysteresis; the reported enthalpy-entropy values were calculated from 

    data [137]. h: Mg-Ti-H NPs, 12 nm in diameter (30 at.% Ti) [140]. i: Magnesium-naphtalocyanine nanocomposite with 

Mg NPs of about 4 nm supported on TTBNc [138]. j: ultra-thin (2 nm) Mg film sandwiched between TiH2 layers [131]. The 

inset represents a zoomed view of the high-temperature region using the same symbols and units as for the main plot. 
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Relatively few studies of the equilibrium thermodynamics have been published [131,134-138]. A 

collection of van ‘t Hoff plots taken from the literature is presented in Figure 6 and the obtained 

enthalpy (     and entropy (     data are reported in the legend. Empty symbols indicate absorption 

pressures     , whereas filled symbols denote equilibrium pressures                
    where 

     is the desorption pressure. It is clear that    , which is the real indicator of thermodynamic 

stability, exhibits only small changes compared to bulk Mg. The enthalpies     obtained from the fit 

of     data are also quite close to the bulk value     kJ/mol H2. This scenario is consistent with the 

predictions that can be cast using Equation (7) and with theoretical calculations [103,139] showing 

that enthalpy variations are very small in the nanoparticles (NPs) size range explored by the 

experiments, and that particles of less than 1.3 nm would be needed to have considerable shifts in the 

equilibrium temperature. On the other hand, the fit of      data suggest significantly reduced 

enthalpies and entropies (see legend of Figure 6). This could be an artefact caused by hysteresis, as 

low-temperature experiments on encapsulated Mg nanodots (green diamonds in Figure 6) 

demonstrated very clearly that only by measuring both absorption and desorption branches it is 

possible to determine the thermodynamic parameters correctly [137]. Other possible sources of errors 

are the limited temperature range spanned by many investigations, the slow kinetics, particularly at 

lower temperatures, and the fact that, at temperatures around 600 K, coarsening and sintering lead to 

microstructural instability.  

A few new studies on the preparation of small particles have appeared in recent years. Particles of a 

size of about 4 nm have been produced in magnesium-naphtalocyanine composites [141]. Very small 

particles, a series from 3.0 nm down to 1.3 nm in size, were made by Zlotea et al., using solution 

impregnation of a carbon support [142]. The particles of only 1.3 nm in the carbon support started 

desorbing hydrogen at 50-75 ºC. Of fundamental interest is also the synthesis of magnesium hydride 

clusters by an organometallic approach using ligands. The largest clusters of this type reported until 

today contain 12 Mg atoms and are synthesized using phosphor and nitrogen containing ligands [143]. 

They are also very interesting systems for fundamental studies on cluster size, because the 

experimental cluster size is small enough to allow DFT calculations and therefore is suitable for a 

direct experiment-theory comparison. At the same time, all these sophisticated methods to prepare 

small and stable clusters and particles inevitably imply low interface-energy systems, hence one 

would not expect a large impact on the equilibrium conditions, while at the same time they are very 

susceptible to oxidation.  

Other studies looking at ways to destabilize MgH2 include investigations of the less 

thermodynamically stable phase γ-MgH2. Interestingly Shen et al. [144] produced MgH2 particles (60-

100 nm) with 5 nm Ni as catalyst by electrochemical reduction of Mg(BH4)2 using Ni as a sacrificial 

electrode, which contained almost 30 % γ-MgH2. The enthalpy determined seemed very low (57.5  

5.3 kJ/mol), but a concomitant decrease in entropy was reported causing no large shift in equilibrium. 

Very fast kinetics were observed, possibly related to the presence of the additional γ-MgH2. phase. 

However, this metastable phase was converted into -MgH2 within 5 cycles. 

Another strategy that has been proposed to destabilize MgH2 is through elastic constraints, i.e. by 

exploiting the second term          in Equation (7) [145,146]. However, this has not yet been 

successful, even though simple calculations suggest that a significant hydride destabilization should 

occur, for instance, in a Mg nanoparticle of 30 nm diameter surrounded by a MgO shell [146]. The 

main reason behind the failure lies in the strong plastic deformation that develops in constrained 

systems due to the volume expansion upon hydrogen absorption. Plastic deformation strongly 

increases the pressure hysteresis and may even lower the desorption plateau pressure below the bulk 

Mg value [137]. Zhang et al [147] took a different approach by forming a native MgO shell around 

Mg2NiH4 hydride nanoparticles encapsulated on the surface of graphene sheets. The transformation to 

the metallic state shrinks the inner volume while the MgO shell remains intact, also serving as a 

natural microencapsulation method that prevents coarsening and sintering of the nanoparticles. To 

summarize, currently the experimentally observed     values in nanostructured Mg phases are very 

close to those of macrocrystalline Mg. This is also due to the experimentally observed enthalpy-

entropy correlation, which could be better understood by measuring     down to sufficiently low 



17 
 

temperatures where    overwhelms      (<275 ºC)  Furthermore a systematic study on a series of 

well-defined feature sizes would contribute greatly to a more thorough understanding of the effect of 

particle size on thermodynamic parameters.  

However, most studies nowadays focus on another important beneficial effect of nanostructuring 

namely enhancing the kinetics. Clearly, nanosizing increases the rates of hydrogen desorption and 

absorption, whether this is related to enhanced surface limited reactions or decreased diffusion 

distances [148]. Only very few fundamental studies exists in which kinetics is studied systematically 

as a function of particle size with all other factors equal, one of the few is the study by Yuen et al 

[149], who investigated carbon-supported magnesium particles of 6 to 20 nm. However, many 

fundamental questions remain, such as what is the rate limiting step during hydrogen absorption and 

desorption.  

The overall diffusion coefficient obtained for hydride formation in a thin Mg film is very low, of the 

order of 1·10
-20

 m
2
 s

-1
 at T ~300 °C [150-152]. More recently, Uchida et al. determined in more detail 

the diffusion coefficients of hydrogen in thin films. They found that the diffusion of hydrogen as a 

solute in the metallic Mg phase is relatively fast, i.e.   
  

 7·10
-11

 m
2
 s

-1
 [153]. However, at higher 

hydrogen concentrations when the hydride MgH2 phase forms, the diffusivity decreases to   
    10

-

18
 m

2
 s

-1
. This value is about two orders of magnitude larger than in bulk MgH2, probably due to the 

contribution from a fast diffusion along the grain boundaries.  

The diffusivity drop in macrocrystalline MgH2 leads to the so called “blocking layer effect” where, 

upon hydrogenation of Mg, first a surface layer of MgH2 is formed, which acts as a diffusion barrier 

for hydrogenation of inner parts of the material. In a beautiful TEM study, Nogita et al [154] 

visualized the desorption of hydrogen from macrocrystalline MgH2, and identified the mechanism to 

be related to the growth of different pre-existing cores/nuclei of Mg in the MgH2, which had not been 

fully converted upon hydrogenation. On the other hand for nanostructured MgH2 (samples thinned to a 

few tens of nanometres), they found no blocking layer effect, instead hydrogenation occurred from an 

outside layer moving to the inside of the material. Indeed, in general, one might expect nanostructures 

to be too small to support a blocking MgH2 layer. However, many open questions remain, such as 

why in nanostructures the desorption of hydrogen is generally so much slower than the absorption 

process at a given temperature [155]. 

Most recent studies have focused on the practical challenge of maximizing the hydrogen (and hence 

magnesium) content in the system, by minimizing the weight of the scaffold and additives [156]. An 

alternative to ball milling, for instance high-pressure torsion, can be used to produce almost pure 

MgH2 systems, leading to stable materials lacking long-range crystallinity by inducing strain and 

grain boundaries in the material as well as well-dispersed additives. For instance, Akiba et al [157] 

used a high-pressure torsion method, proposed 10 years ago, to make ultra-fine grained structures 

(mostly amorphous, with many grain boundaries and lattice defects), but with V, Ni, Sn as additives. 

Enhanced hydrogenation kinetics were found, as with ball milling, but interestingly the resistance 

against deactivation in air was also improved, removing the need to store under protective 

atmosphere. In an alternative approach, filing was used to make very small chips, which did 

deactivate upon air exposure, but could very easily be regenerated. There is often an important role 

for bcc-structured Mg, which is slightly unstable with respect to the hcp structure. It is known that the 

bcc phase can be stabilized by adding transitions metals such as Ti, or Nb and/or by having an 

interface with these particles in nanostructures. The bcc structure generally has much higher hydrogen 

diffusion coefficients than the hcp phase, as confirmed by recent DFT calculations [158]. As argued 

by several authors, high-pressure treatment to create nanocrystalline materials is more suitable for 

fundamental studies than ball-milled materials, as the technique avoids contamination from milling 

balls and vial.  

Some authors explored solution phase reduction to obtain freestanding nanostructures. For example, 

Sun et al. [141] obtained Mg nanofibres of 400-4000 nm length and 40 nm thickness by reduction of 

dibutylmagnesium with Ca. Unfortunately, this also led to the formation of a ternary phase, 

Ca19Mg8H54, which released hydrogen only at much higher temperatures. Extending a more traditional 

approach, Huen et al [124] tried to achieve high loadings in carbon aerogels by multiple impregnation 
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with dibutylmagnesium. However, due to the large volume of this precursor only up to 17-20% of the 

pore volume could be filled. Furthermore, it became very challenging to completely convert the 

dibutylmagnesium, leading to butane being released together with the hydrogen. Capacity loss upon 

cycling was observed due to reaction of Mg with oxygen still contained in the system, which can 

however be prevented by using a purer carbon scaffold, or by treating it to remove the oxygen before 

loading it with magnesium [159].  

One of the most successful strategies followed by several groups, is using very thin sheets of a 

“support” material (wrapping rather than supporting), such as graphene or graphene oxide 

[109,160,161], in combination with a small amount of catalyst for efficient hydrogen dissociation and 

association, such Ni or Pd. In this case the structure of the carbon support, which also determines the 

efficiency of the interaction with the co-catalyst (mostly either Ni or Pd), is very important [162]. 

Nanocomposites were made at once with wet-chemical and reduction techniques, or alternatively first 

the co-catalyst, for instance Ni, was deposited on the graphene, after which a composite with Mg was 

formed by ball milling [160]. Particle sizes varying from 3.0 to 6.0 nm were reported based on TEM 

analysis, but at the same time sharp reflections observed in the X-ray diffraction patterns evidenced 

the heterogeneity of these samples and the fact that larger crystallites were also present. 

 

Figure 7. a) Hydrogenation and b) dehydrogenation of (Ni)-MgH2-graphene nanocomposites at 200 oC, including ball-

milled MgH2 (BM MgH2) and ball-milled MgH2 /GR composite (BM MgH2 /GR) for comparison. c) Hydrogenation and d) 

dehydrogenation of Ni-conMHGH-75 at various temperatures. Hydrogenation was measured under 30 atm hydrogen 

pressure and dehydrogenation under 0.01 atm.[163] 75wt% 5-6 nm (from TEM) MgH2 on graphene. Mind that even at room 

temperature there is appreciable hydrogen absorption. The capacity retention was over 98.4% after 30 full cycles.  

In general, these nanocomposites showed favourable hydrogen storage characteristics. Due to the low 

amount of added graphene (oxide) (typically a few wt%), close to 6 wt% reversible hydrogen storage 

capacity was achieved. Kinetics were very fast; with absorption generally occurring within minutes at 

100 
o
C, and desorption within minutes at 250 

o
C. Figure 7 gives an example of the performance of 

these materials [163]. Additionally, the formation of nanocomposites with graphene or graphene 

oxide was reported to “protect” against oxidation. Without significant capacity loss, tens or hundreds 

of cycles were achieved [109,163], with it being postulated that the graphene (oxide) layer protected 

the active material by being permeable for hydrogen, but much less so for oxygen and nitrogen. Xia et 

al. [161] added also LiBH4, which led to a higher capacity (8.9 wt%), but also to the need for much 
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higher desorption temperatures (e.g. 350 
o
C instead of 250 

o
C). An open question is whether the use of 

complicated synthesis techniques and expensive materials like graphene can ever allow large scale 

practical application, but as a technique to optimize kinetics and capacity this approach seems one of 

the most successful next to the techniques based on ball milling. 

NANOSTRUCTURED Mg-BASED HYDROGEN STORAGE MATERIALS 

PREPARED BY MECHANICAL ALLOYING AND REACTIVE BALL MILLING  
The low melting temperature and high vapour pressure of magnesium have restricted applications of 

the conventional methods of sintering or melting to the preparation of magnesium-based composites 

for hydrogen storage. Mechanical alloying remains the main method of producing magnesium-based 

hydrogen storage materials after two decades of its intensive application. The obtained materials can 

be obtained in nanocrystalline or in amorphous state. This is an efficient way to add other elements to 

magnesium, improving the hydrogenation and dehydrogenation kinetics [45,98,99,164-166]. 

Mechano-chemical methods including mechanical alloying (MA), mechanical grinding (MG) and 

reactive ball milling (RBM) consist of mechanical treatment of metal powders in various types of 

mills which are routinely used both in laboratories and in large-scale synthesis. This treatment results 

mainly in plastic deformation of the material when applying conditions that yield metastable 

materials. During MA, MG and RBM, a combination of a repeated cold welding and fracturing of the 

particles will define the ultimate structure of the powder. These methods can be applied to the 

synthesis of the metastable phases: amorphous phases, supersaturated solid solutions, non-

stoichiometric intermetallic compounds, quasi-crystals, composites with different microstructure and 

composition including those with non-interacting components of the binary or even more complex 

metal system. These phases often exhibit unusual physico-chemical properties and show enhanced 

reactivity. 

The facilities for mechano-chemical treatment of the materials (ball mills) may be classified as 

follows [167]:  

 Low-energy (tumbling) mills contain cylindrically shaped shells, which rotate around a horizontal 

axis. Loads of balls or rods are charged into the mill to act as milling tools. The powder particles 

of the milled materials meet the abrasive and / or impacting forces which reduce the particle size 

and enhance the solid-state reaction between the elemental powders. The tumbling mills are 

simple in design and operation and are easy to upscale. However, this type of low-energy mill 

requires an increased milling time to complete the mechano-chemical process. 

 High-energy ball mills: 

 Attritors (attrition ball mills). The material in this kind of mills is loaded into a stationary 

container / vial and comminuted by free moving balls, which are set in motion by a rotating 

stirrer / impeller. Some attrition mills can operate at a rotation speed up to 2000 rpm. The 

volume of vials used in attrition ball mills can be up to several litres. 

 Shaker / vibration type mills. In shaker mills, a vial oscillates along several axes at high 

frequency, causing intensive vibration agitation the charge and the balls in three mutually 

perpendicular directions at a frequency from 180 to 1200–1800 rpm.  

 Planetary mills. The planetary ball mills are the most frequently used laboratory mills and are 

used for MM, MA and RBM. In this type of mill, the milling tools have a considerably high 

energy, and the effective centrifugal acceleration reaches up to 200–600 m s
–2

 [98,167]. 

Centrifugal forces caused by the rotation of the supporting disc and autonomous turning of 

the vial act on the milling charge (balls and powder). A variety of vials with different 

capacities (12–500 ml) and balls of different diameters (5–40 mm) made of different materials, 

are available for the commercial planetary ball mills characterised by the disc rotation speed 

up to 600–1100 rpm.  

 The uni-ball mill. This is a special type of ball mill where the ball movements can be confined 

to the vertical plane by the cell walls and controlled by an external magnetic field generated 

by adjustable permanent magnet placed close to the vial. Changing the magnet’s position 
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affects the mode of the movement of the ferromagnetic balls from shearing (low-energy) to 

impact (high-energy) mode.  

The use of several alternative modifications of the mechano-chemical treatment results in variation of 

the structure and morphology of the final product as related to a variety of parameters, such as the 

nature of milling machine, materials of balls and vial, the ball to powder weight ratio, the milling 

atmosphere, the milling duration, temperature, and so on [99,166,167]. 

Even without additives, mechano-chemical treatment of Mg-based composites essentially changes the 

morphology, structure and hydrogen absorption / desorption characteristics of the material. It was 

shown that ball milling of MgH2 [168] or Mg in H2 [169,170] at room temperature yields a mixture of 

the usual tetragonal -MgH2 (called in [168,169] as -MgH2) and orthorhombic high pressure 

modification of -MgH2 which is also obtained under GPa-level hydrostatic pressures (see the data 

presented in the review later). The presence of -MgH2 destabilises the MgH2 phase reducing H2 

desorption temperature and improves kinetics of H desorption. 

A variety of additives has been used during the mechano-chemical treatment (mostly, RBM) to 

improve H sorption / desorption kinetics: 3d-transition metals and alloys [45,63,171-177, etc.], oxides 

[117,172,178-180, etc.], halides [181-183], binary and complex hydrides [114,184-188], carbon 

materials [66,67,162,189-192, etc.], and other compounds. A systematic experimental survey of the 

influence of various additives on hydrogen desorption performance of Mg-based nanocomposites 

prepared by high-energy RBM under H2 pressure (HRBM) was published in [193]. More data on the 

influence of catalytic additives on hydrogenation / dehydrogenation performance of Mg-based 

nanocomposites will be presented in the chapter “Catalysis for de/hydriding of Mg based alloys”. 

Preparation and characterisation of Mg-based hydrogen storage composites by MA, MG and RBM 

have been a subject of numerous studies which, until now, represent a major part of the publications 

on the topic of this review. About ~2/3 of these works were published recently, between 2010 and 

2018. 

The following parameters were varied during the course of these studies: 

 Type of the main starting component in the charge: individual Mg [44,45,98,99,175,194-197], Mg 

alloys [175,198-203], or MgH2 [63,184,188,203-206]; 

 Catalytic additives (see present review); 

 Milling medium: inert gas (mostly, argon [45,98,99,187,194,206], less frequently N2 [164,207,208] or 

He [199]), hydrogen [44,175,185,197], or organic liquid [164,209]. Sometimes the milling was carried 

out in vacuum [210] or even in air without any protective atmosphere [211,212].  

 Type of milling machine: mostly planetary [34,98,175,197] and shaker [45,195,196] mills, uni-ball 

mill operating in various modes [199,213], attritor [195], low-energy ball mill (rotating autoclave) 

[44].  

 Other process parameters: rotating speed / vibration frequency, ball-to-powder ratio, pressure of 

reactive medium (H2), etc. 

 Pre- or post-processing of the charge including; rapid solidification [214], heat treatment in inert or 

hydrogen atmosphere [34,194,205,215], pre-milling of the components at different conditions 

[172,196,216, etc.]. 

Depending on the combination of the parameters listed above, various hydrogen storage composites 

with improved performance have been synthesized. As a rule, the improvements relate to 

hydrogenation / dehydrogenation kinetics, though sometimes minor altering of thermodynamic 

characteristics (destabilisation of Mg–H bonding or changing reaction pathway) has been achieved 

[217-221].  

The best kinetic improvements were observed for the materials prepared by HRBM in planetary mills, 

as well as for the composites prepared by RBM in inert atmosphere when MgH2 was taken as a 

starting material. It was noted [222] that the use of MgH2 instead of Mg improves the kinetics of Mg 

interaction with the additives during the ball milling process.  
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Examples of the best composites exhibiting high hydrogen sorption / desorption rates are MgH2+NbF5 

and MgH2 + Nb2O5 ball milled in inert or hydrogen atmosphere [204,205], MgH2 + TiH2 (or Mg+Ti) 

and Mg + bcc-V alloy ball milled in H2 [63,67,175]. 

Selected results on hydrogenation kinetics of Mg during HRBM with and without catalytic additives 

are presented in Figure 8 and Table 3. As it can be seen, the main factors accelerating hydrogenation 

of Mg are (i) introduction of the catalyst, (ii) increase of the rotation speed and ball-to-powder weight 

ratio (BPR), (iii) increase of H2 pressure. 

Catalytic additives exert the strongest influence on the improvement of hydrogenation kinetics of Mg 

during HRBM (compare curves 1a and 1 b, 5a and 5b), as well as on the kinetics of dehydrogenation 

and re-hydrogenation (see the chapter “Catalysis for de/hydriding of Mg based alloys” for the details). 

The second strongest factor seems to be milling energy supplied by the balls to the charge. This 

energy depends on the vial geometry and increases with the increase of rotation speed and BPR 

(compare curves 4a, 4b and 4d), as well as milling time. Quantification of this factor for the process of 

milling graphite in a planetary mill was presented in work [224] and references therein. Influence of 

H2 pressure on the hydrogenation kinetics of Mg during HRBM is the weakest as can be seen from 

comparison of curves 3 and 6, as well as 4b and 4c in Figure 8. 
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Figure 8. Hydrogenation of Mg during its ball milling in H2 

Table 3. Process parameters of hydrogenation of Mg during its ball milling in H2 (Figure 8) 

Curve 

# 

H2 pressure 

[bar] 

Type of ball mill Milling parameters Catalyst Ref 

1a 200 Low-energy (rotating 

autoclave) 

150 rpm, BPR~20:1 

Heating to 350–400°C 

None [44] 

1b I2 (0.7%) 

2 30 Planetary 500 rpm, BPR=80:1 None [170] 

3 300 Planetary 400 rpm; BPR=50:1 TiH2 (10 mol%) [185] 

4a 5 Planetary 300 rpm, BPR=60:1 5.5–6 wt%Zn, 

0.4–0.5 wt%Zr 

(commercial Mg 

alloy) 

[223] 

4b 5 400 rpm, BPR=60:1 

4c 10 400 rpm, BPR=60:1 

4d 5 400 rpm, BPR=120:1 

5a 80 Planetary 400-800 rpm, BPR=60:1 None [114] 

5b Ti (30 mol%) 

6 20 Planetary 500 rpm, BPR=40:1 Ti (25 mol%) [67] 

 

More details about interaction of Mg with H2 under HRBM conditions will be given in the next 

chapter 
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MECHANOCHEMISTRY OF MAGNESIUM UNDER HYDROGEN GAS 
Hydrogen sorption kinetics in bulk coarse-grain Mg are extremely slow. This results from kinetic 

limitations on both dissociation of hydrogen molecules at the Mg surface and diffusion of hydrogen 

atoms in bulk Mg [14,16, 45,225]. Surface limitations can be overcome by decoration of the metal 

surface with catalysts. The use of Nb2O5 as additive is a paradigmatic example of this approach 

[16,226,227]. Bulk limitations are attributed to the formation of a blocking hydride shell over the Mg 

metal. Indeed, the diffusion coefficient of hydrogen in magnesium hydride is very low: 10
–18

 m
2
/s at 

300 °C [150,152]. Thus, full hydrogenation of 90 m in diameter of Mg particles requires about 1 day 

at 400 °C and P(H2) = 2 MPa [60]. Slow bulk kinetics can be faced by Mg nanostructuring. The idea 

is to shorten the bulk diffusion lengths (i.e. the grain size) and to take advantage of the fast hydrogen 

diffusivity along Mg grain boundaries [228-230]. To achieve Mg nanostructuring at a large scale, 

mechanical milling is a very attractive method. However, milling of Mg metal under inert gas (usually 

argon) is problematic. Ductility as well as significant atomic mobility of magnesium lead, 

respectively, to powder agglomeration induced by cold welding and limited grain size reduction (~ 40 

nm) resulting from enhanced recovery rate [231]. Therefore, to get loose powders of low crystallinity 

(~ 10 nm), ball milling of brittle magnesium hydride is preferred to that of the pure metal [168,232]. 

As a step forward, mechanochemistry under hydrogen gas can be used as a one-pot synthesis method 

to get surface-catalyzed Mg in nanocrystalline form [233]. To this aim, Mg powder is milled under 

hydrogen atmosphere with possible addition of one or several catalytic species (metal oxides, carbon, 

early or last transition metals TM…) [114,229,235,236]. As indicated in the previous section, this 

technique is also denoted as reactive ball milling under hydrogen atmosphere (HRBM). The proof-of-

concept was given by Chen and Williams [78] motivating further studies on MgH2 synthesis 

[169,233,237]. In the pioneering studies, formation of MgH2 was generally not completed as a result 

of insufficient hydrogen supply in the vials. In 2007, Doppiu et al. were able to completely transform 

Mg into MgH2 in less than 10 hours of milling using a large milling vial, V = 0.22 l, operated at high 

pressure, P(H2)  9 MPa [234]. Moreover, the vial was equipped with pressure and temperature 

sensors and a telemetric system for data acquisition. By a proper calibration of this device, which is 

commercialized by Evico Magnetics (Germany), in-situ hydrogenation kinetics can be analysed [97]. 

This provides sound information on the mechanism and hydrogenation kinetics of MgH2 formation as 

well as on the influence of milling additives. 

Figure 9a displays the sorption curve of Mg under hydrogen gas (P(H2) = 8 MPa). Milling was 

performed in an Evico Magnetics vial using a Fritsch P4 planetary mill [114]. Disk and vial rotation 

speeds were 400 and -800 rpm, respectively with a ball to powder mass ratio fixed to 60. Hydrogen 

uptake follows a sigmoidal shape, which is characteristic of Avrami‘s nucleation and growth 

equations [238], with a complete formation of MgH2 in 2 hours of milling time tm. The obtained 

product consists of two phases: the rutile-type -MgH2 phase (S.G.: P42/mnm, 76 wt%) and the 

metastable high-pressure -MgH2 phase (S.G. : Pbcn, 24 wt%). Both phases are nanocrystalline with 

grain size of ~ 6 nm. 

The same synthetic procedure was conducted under deuterium gas [239]. The sorption curve follows a 

similar trend (Figure 9a) with slower kinetics. This can be better visualized by plotting the time-

evolution of the in-situ absorption rate, showing a maximum at tm = 150 min for D2 absorption as 

compared to tm = 60 min for H2 one (Figure 9b). Such a high difference evidences that MgH2 

formation by mechanochemistry under hydrogen gas is controlled by the diffusion of hydrogen atoms 

through the freshly formed magnesium hydride over-layer [239]. According to the classical rate 

theory, deuterium diffusion is expected to be slower than hydrogen one due to its higher atomic mass, 

                  . Indeed, it has been observed that absorption kinetics in Mg deuteride 

are slower than in Mg hydride [240]. 
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Figure 9. Mechanochemistry of Mg powder under hydrogen and deuterium gas. a) In-situ hydrogen uptake curves as a 

function of milling time tm, b) In-situ absorption rate (derivative curves of Figure 9a) 

MgH2 formation kinetics during mechanochemical synthesis can be accelerated by addition of TMs 

(Figure 10). By using last transition metal (LTM) additives such as Fe, Co and Ni, the time needed to 

achieve the maximum absorption rate decreases by a factor of two, from tm = 60 down to tm = 30 min 

(Figure 10a) [97]. It is claimed that decoration of the Mg surface with LTM particles facilitates 

hydrogen dissociation and that LTM/Mg interfaces may act as active nucleation sites for the hydride 

formation. It should be noted that, by prolonged milling, LTMs react with MgH2 through a solid-solid 

reaction leading to the formation of ternary (e.g. Mg2NiH4) and quaternary (e.g. 

Mg2(FeH6)0.5(CoH5)0.5) Mg-based complex hydrides [97,241-243]. 
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Figure 10. Mechanochemistry of Mg under hydrogen gas using several transition metals TM as additives. a) In-situ 

absorption rate with LTM = Fe, Co and Ni (atomic ratio Mg/LTM = 2), b) In-situ absorption rate with ETM = Ti for 

different titanium contents y. 

Early transition metals (ETMs) can be also used as milling additives with the peculiarity to form 

stable hydride phases at the starting of the milling process. Reaction kinetics for ETM = Ti with 10  

Ti (at.%)  30 at.% are displayed in Figure 10b [114]. Titanium hydride is formed at short milling 

time (tm  15 min) and it helps to accelerate MgH2 formation rate by a factor of three, from tm = 60 

min to tm = 23 min. This effect is mainly attributed to the abrasive properties of TiH2 that during 

milling scrapes off the surfaces of pristine Mg and freshly formed MgH2 [239]. In addition, it has 

been suggested that TiH2 hydride phase may also act as a gateway for hydrogen chemisorption and 

diffusion toward the Mg phase [114]. In contrast to Mg-LTMs systems, prolonged milling of Mg-Ti 

under hydrogen gas results in the formation of composite materials, and not ternary hydrides, 

consisting of MgH2 (mixture of  and  polymorphs) and TiH2 phases. Those are nanostructured 

materials with grain size around 5 nm for MgH2 and 10 nm for TiH2 [244]. These materials are 

characterized by fast hydrogenation kinetics, even for hydrogen absorption at room temperature, with 

synergetic kinetic effects between both phases. They are of high interest both for hydrogen storage at 

moderate temperatures [114,245] and as negative electrodes of Li-ion batteries [246-249]. 
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CATALYSIS FOR DE/HYDRIDING OF Mg BASED ALLOYS 
The dehydrogenation of Mg based hydrides requires rather high temperature, even above 300 C, 

which must be overcome for practical applications. To enhance the hydrogen absorption/desorption 

rate and reduce the reaction temperature of Mg based hydrogen storage alloys, different improving 

strategies, such as alloying, nanosizing, nanoconfinement, catalyzing and compositing, have been 

applied to tune the dehydriding/hydriding thermodynamics and kinetics [14,18,21,156,251-253]. It 

should, however, be noted that the beneficial effect of tuning a certain characteristic of the hydrogen 

storage material can be accompanied by a deterioration in its other service characteristics. Thus, 

tailoring is usually aimed at improving one specific property without destroying other features 

relevant for hydrogen storage. 

A large variety of different types of metals and compounds, including carbon materials, metals and 

intermetallics, transition-metal compounds (oxides, halides, hydrides, carbides, nitrides, and fluorides) 

have been added as catalytic additives by different material preparation processes. Some of them 

exhibit excellent catalytic activity on the de-/hydrogenation behaviour of MgH2, leading to faster 

hydrogen sorption rate and lower reaction temperature. In general, the catalytic effect is determined 

by several key factors: (1) The type of additives with specific catalytic mechanism; (2) size and 

distribution of catalysts, which is related with the preparation process; and (3) the structural stability 

of catalyst in the de/hydrogenation cycles.  

In this part of the review, the earlier performed catalysis work on the de/hydrogenation reactions of 

Mg-based alloys has been summarized with the emphasis on the effect of different type of catalysts 

and their catalyzing mechanism. The preparation processes to obtain catalyzed Mg-based composites 

are also discussed in view point of the catalyzing effect and the convenience for large scale 

fabrication. 

Non-metal additives 
Carbon-based materials, including graphite (G), carbon nanofibers (CNFs), carbon nanotubes (CNTs), 

and graphene (GN), are the most effective non-metal additives to show prominent catalytic effect on 

the de-/hydrogenation of Mg/MgH2 system. Imamura et al. first demonstrated the greatly enhanced 

hydrogen storage properties of Mg/G composites [254], which were prepared by mechanical milling 

of Mg and G with different organic additives such as benzene, cyclohexane or tetrahydrofuran. They 

suggested that mechanical milling in liquid organic additives resulted in highly dispersed cleaved 

lamellae of graphite and the generation of large amounts of dangling carbon bonds in graphite, which 

could act as active sites for hydrogen absorption. The hydrogen uptake of the Mg/G nanocomposites 

is in the form of C–H bonds and hydrides in the graphite and magnesium, respectively. The hydrogen 

absorption amount by the graphite was estimated to be ~1.4 wt% of H2 per gram of carbon. Wu et al. 

found various carbon additives exhibited advantage over the non-carbon additives [255], such as BN 

nanotubes or asbestos, in improving the hydrogen storage capacity and kinetics of Mg. The hydrogen 

storage capacities of all mechanically-milled Mg/C composites at 300 C exceeded 6.2 wt% within 10 

min, about 1.5 wt% higher than that of pure MgH2 at the identical operation conditions. The 

remarkable improvement in the hydrogen capacity and absorption/desorption kinetics of Mg is 

attributed to the incorporation of carbon that increases the area of phase boundaries and hydrogen 

diffusion driving force. The milling results in many carbon fragments with sp and sp
2
 hybridizations 

and unhybridized electrons delocalized, which may have strong interaction with hydrogen molecules. 

Physically adsorbed hydrogen molecules can be concentrated around the carbon fragments and act as 

hydrogen source for the further chemical dissociation on Mg. In addition, the specific nanostructure of 

single-walled carbon nanotubes (SWNTs) may facilitate the diffusion of hydrogen into Mg grains, 

and thus exhibited the most prominent “catalytic” effect over other carbon materials such as graphite, 

activated carbon, carbon black and fullerene. The onset dehydrogenation temperature of MgH2 with 

the addition of SWNTs could be reduced by 60 C in comparison with non-carbon additives.  
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Figure 11. Schematic of hydriding/dehydriding reaction in MgH2–GNS composite, and hydrogen desorption curves of the 

sample at 300 C: (a) MgH2–5GNS-20 h, (b) MgH2–5GNS-15 h, (c) MgH2–5GNS-10 h, (d) MgH2–5GNS-5 h, (e) MgH2–

5GNS-1 h, and (f) MgH2–20 h [256]. 

Recently, a two-dimensional carbon material, graphene, has also been found to significantly improve 

the hydrogenation/dehydrogenation of MgH2. Y.J. Wang et al. synthesized highly crumpled graphene 

nanosheets (GNS) with a BET surface area as high as 1159 m
2
 g

–1
 by a thermal exfoliation method 

[256], and further composited graphene nanosheets with Mg by ball milling. As schematically shown 

in Figure 11, the smaller GNS dispersed in an irregular and disordered manner in the composite after 

milling, providing more edge sites and hydrogen diffusion channels, preventing the nano-grain (5–10 

nm) of MgH2 sintering and agglomeration, thus leading to enhanced hydrogen storage properties. The 

20 h-milled composite MgH2–5%GNS can absorb 6.3 wt% H within 40 min at 200 °C and 6.6 wt% H 

within 1 min at 300 °C, even at 150 °C, it can also absorb 6.0 wt% H within 180 min. It was also 

shown in Figure 11 that 6.1 wt% H at 300 °C within 40 min could be released from MgH2–GNS 

composite. The mechanism investigation found that the GNS served as both dispersion matrix and 

catalyst for hydrogen diffusion.  

In addition, graphene nanosheets are a good support for nanoscale catalysts and Mg nanoparticles. Yu 

et al. reported a bottom-up self-assembly of MgH2 from the organic solution of dibutylmagnesium 

[163], obtaining a large number of monodispersed MgH2 nanoparticles (~5 nm) distributed uniformly 

on the graphene nanosheets (Figure 12a). Moreover, the loading percentage of MgH2 nanoparticles on 

graphene could be increased up to 7.5 wt%, and the maximum hydrogen capacity of Mg/GNS system 

is 5.7 wt%, both of which are much higher than the nanoconfinement method for the preparation of 

Mg nanoparticles [257]. By further incorporation of Ni catalyst into the Mg/GNS composite, the Ni-

catalyzed MgH2/GNS system exhibited superior hydrogen storage properties and cycling 

performances. A complete hydrogenation could be achieved within 60 min at 50 °C, and 2.3 wt% 

hydrogen uptake even at ambient temperature within 60 min. Moreover, the hydrogenation capacity at 

room temperature reached up to ~5.1 wt% within 300 min. In the dehydrogenation, the Ni-catalyzed 

MgH2/GNS system can completely desorb 5.4 wt% H within 30 min (Figure 12b). It was also shown 

that the apparent activation energy (Ea) for hydrogenation and dehydrogenation, which is based on the 

isothermal kinetic curves at different temperature and Arrhenius equation, was calculated to be 22.7 

kJ mol
–1

 and 64.7 kJ mol
–1

, respectively, which are drastically lower than the corresponding values 

(99.0 kJ mol
–1

 for hydrogenation and 158.5 kJ mol
–1

 for dehydrogenation) for the bulk Mg. More 

importantly, there is almost no capacity retention for the Ni-catalyzed MgH2/GNS system after 100 

hydrogenation/dehydrogenation cycles (Figure 12c), with no loss in kinetic performance. This is 

attributed to the nature of graphene that could act not only as a structural support for loading MgH2 

nanoparticles, but also as a space barrier to prevent the sintering and growth of MgH2 nanoparticles 

during hydrogenation/dehydrogenation cycles. 
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Figure 12. TEM image, dehydrogenation kinetic curves, and reversible H2 absorption (under 3 MPa H2) and desorption 

(under 0.001 MPa H2) of Ni catalyzed 75 wt% MgH2 [163]. 

The introduction of carbon additives was shown to result in the improvement of hydrogen sorption / 

desorption performance of Mg-based nanocomposites including a significant increase of their stability 

during H absorption-desorption cycling at high temperatures. This effect was associated with 

distribution of carbon in between nanoparticles of Mg(H2) during RBM preventing their coalescence 

and surface oxidation [258,259], although a study of the kinetics of MgH2 with C60 buckyballs as an 

additive showed little or no improvement [260]. 

Recently, Lototskyy et al [66] suggested that the effect of sp
2
-hybridized carbon additives to Mg is 

related to the formation of graphene layers during their RBM in H2 (HRBM) which then encapsulated 

the MgH2 nanoparticles and prevented the grain growth on cycling. This results in an increase of 

absorption–desorption cycle stability and in a decrease in the MgH2 crystallite size in the re-

hydrogenated Mg–C materials as compared to Mg alone. Recent experimental studies of composite 

materials containing MgH2 with graphene / graphene derivatives and exhibiting improved and stable 

dehydrogenation kinetics [224,261,262] confirmed the correctness of this hypothesis. 

In [67] it has been shown that introduction of 5 wt% of graphite into the MgH2 – TiH2 composite 

system prepared by HRBM results in outstanding improvement of the hydrogen storage performance 

when hydrogen absorption and desorption characteristics remained stable through the 100 hydrogen 

absorption / desorption cycles and were related to an effect of the added graphite. A TEM study 

showed that carbon is uniformly distributed between the MgH2 grains covering segregated TiH2, 

preventing the grain growth and thus keeping unchanged the reversible storage capacity and the rates 

of hydrogen charge and discharge (Figure 13). 

c 

a  b 
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Figure 13. Reversible hydrogen storage capacity of HRBM MgH2–TiH2 at T=350 °C. The values in brackets specify the 

capacity losses throughout the cycling. The insets show elemental maps of Mg in the cycled composites clearly indicating its 

grain refinement in the graphite-modified material [67]. 

It has to be noted that kinetic improvements in the formation / decomposition of MgH2 in the carbon-

containing materials are more pronounced when minor amounts (5-10 wt%) of the carbon additives 

were introduced together with catalytic additives of transition metals or oxides [66,67,263-267]. This 

synergetic effect was explained by the facilitation of hydrogen dissociation / recombination on the 

surface of the catalyst while the carbon species played the role of an efficient mediator of the H atoms 

between the catalyst and Mg(H2) [66,265]. In addition, carbon may also inhibit oxidation of Mg(H2) 

during cyclic H absorption / desorption thus preventing the deterioration of the reversible hydrogen 

storage capacity of the material [180]. 

 

The effect of microstructure on the hydrogenation properties of Mg-
carbonaceous additives composites 
Initial reports on the super-high gravimetric hydrogen storage capacity of the single wall carbon 

nanotubes (CNTs) created a wave of enthusiasm and initiated a number of studies on the subject. 

However, it soon became clear that early estimates of hydrogen storage capacity of CNTs were highly 

exaggerated [268]. It was shown that various structural modifications of carbon store hydrogen 

primarily by physisorption, and that the maximum hydrogen storage capacity scales with the specific 

surface area of the material, similarly to the other nanoporous materials storing hydrogen at low 

temperatures [268]. Yet it is now universally accepted that the single- and multiwall CNTs, as well as 

other carbonaceous nanomaterials are very efficient catalytic agents enhancing the hydrogenation 

kinetics of Mg and its hydride-forming alloys. In spite of a high number of works already published 

on this subject and continuing flow of new publications, presenting a self-consistent picture of the 
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effect of carbonaceous nanomaterials on hydrogenation of Mg-based alloys is hardly possible, mainly 

because of the differences in the processing methods employed by different groups and resulting 

differences in the microstructures of the Mg-carbonaceous material composites. In this respect, the 

recent work of Ruse et al. [269] should be particularly mentioned. They performed a systematic study 

of the effect of various carbon allotropes on the hydrogenation behaviour of Mg-carbonaceous 

material composites. It was found that hydrogen absorption and desorption are both accelerated in 

presence of carbon allotropes, with the allotropes of lower dimensionality exhibiting stronger catalytic 

effect (i.e. one-dimensional CNTs exhibited the strongest catalytic effect, followed by the 2-D 

graphene nano-platelets and activated carbon) [269]). Moreover, the catalytic effect increased with 

decreasing density of defects in carbon allotropes, as determined by the ratio of intensities of the 

disorder-related D-band and G-band in Raman spectra [269]. These results of Ruse et al. [269] are in a 

good agreement with the earlier findings of Skripnyuk et al. [270] that severe plastic deformation and 

concomitant increase of defect density in the multiwall CNTs (MWCNTs) cancels their beneficial 

effect on the increase of the equilibrium hydrogen plateau pressure observed in the as-processed Mg - 

2 wt% MWCNTs composite [270].  

The mechanisms of the catalytic effect of carbon allotropes on hydrogen interaction with Mg remain 

poorly understood. One of the possible mechanisms is the spillover effect reducing the role of carbon 

allotropes to that of efficient transport paths for dissociated hydrogen atoms [162,269]. However, the 

role of most anisotropic carbon allotropes in modifying the microstructure of the two-phase Mg-MgH2 

composite material during hydrogen absorption/desorption remains largely ignored. Surprisingly, 

there are very few metallographic studies of the morphology of a two-phase Mg- MgH2 mixture, in 

spite of the fact that it plays a crucial role in kinetics of Mg interaction with hydrogen [271]. For 

example, high nucleation rate of MgH2 during hydrogenation leads to accelerated formation of the 

continuous hydride shell on the surface of Mg particles, inhibiting further hydrogenation due to the 

sluggish diffusion of hydrogen through MgH2. The well-known beneficial effect of nanostructuring on 

hydrogenation kinetics of Mg and its alloy can be interpreted in terms of transition from core-shell 

metal-hydride morphology in coarse grained powders to the Janus-type morphology in nanopowders.  

 

Figure 14. Scanning Transmission Electron Microscopy (STEM) High Angle Annular Dark Field (HAADF) micrographs of 

MWCNTs segments/carbon nanoparticles (marked by the circles) located in close proximity to each other and forming a 

"chain" within Mg grains. Arrows point on grain boundary in Mg, indicating that carbon nanoparticles are located inside 

the Mg grains rather than along the grain boundaries. The sample was prepared by co-milling of Mg powder with 2 wt% 

MWCNTs in the Pulverisette - 7 planetary micro mill in hexane  for 4 h at 800 rpm using the stainless steel balls of 10 mm in 

diameter. BTP ratio was 20:1 [273]. 

Recent works [272, 273] have uncovered the role played by MWCNTs and the products formed after 

prolonged ball milling in modifying the morphology of two-phase Mg-MgH2 mixture. It was found 
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that high-energy co-milling of Mg powder with 2 wt% of MWCNTs results in partial destruction of 

MWCNTs which transform into anisotropic chains of carbon nanoparticles (see Figure 14). These 

nanoparticles, and their interface with Mg matrix serve as preferential nucleation sites of hydride 

phase during hydrogenation of the composite. As a result, the two-phase Mg-MgH2 mixture exhibits 

highly anisotropic morphology, with the bicontinuous intertwined networks of the metallic and 

hydride phases (see Figure 15). This morphology results in high thermal conductivity of the partially 

hydrogenated samples [273], and ensures continuous supply of hydrogen to the metal-hydride 

interface due to the fast diffusion of former through the continuous metallic phase. The porous pellets 

with such bi-continuous microstructure exhibited thermal conductivity approx. 50% higher than those 

made from pure Mg powder and were hydrogenated to achieve a comparable fraction of their 

maximum hydrogen storage capacity. These examples demonstrate that optimising  the microstructure 

of the two-phase Mg- MgH2 mixture with the aid of anisotropic additives (such as MWCNTs 

[272,273]  and nanoplatelets [224]) represent a promising path to improving hydrogenation properties 

of Mg and its alloys.  

 

Figure 15. Backscattered electrons (BSE) scanning electron microscopy micrographs of the pellets hydrogenated to 80-90% 

of maximum theoretical hydrogen storage capacity (a,b- Mg pellet;  c,d- Mg-2wt% MWCNTs, and e,f- Mg-2wt% Fe). The 

view plane is perpendicular to the compression axis. (a)-Circles mark individual unimpinged isotropic MgH2 nuclei. Arrows 

point on impinged MgH2 nuclei forming wavy Mg/MgH2 interface. (b) Lower magnification micrograph showing the isolated 

pockets of unreacted Mg surrounded by the MgH2 phase. (c) Elongated anisotropic MgH2 nuclei (marked by the circle), (d) 

Micrograph showing the developed Mg network along the sample. (e) Symmetrical MgH2 nucleus formed next to the Fe 

particle. (f) Increased number of hydride nucleation sites results in smaller size of metallic Mg islands in comparison with 

the reference Mg pellet [273]. 
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Transition metals and their compounds 
Among various additives, the transition metals and their compounds showed superior catalytic 

performances on MgH2 [16]. For example, Liang et al. first reported different catalytic effects of 3d-

TMs (TM=transitional metal Ti, V, Mn, Fe, Ni, etc.) on the reaction kinetics of Mg-H system [116]. 

The ball-milled Mg-Ti composite exhibited the most rapid hydrogen absorption rate, followed by the 

Mg-V, Mg-Fe, Mg-Mn and Mg-Ni composites, while the most hydrogen desorption rate was 

attributed to the MgH2-V composite, followed by the MgH2-Ti, MgH2-Fe, MgH2-Ni and MgH2-Mn 

composites. By reactive milling under H2 atmosphere, the Mg-M (M=Co, Ni and Fe) systems showed 

better hydrogen storage properties due to the dual effects of catalyzing and particle refining.  

The transitional metal oxides are also extensively studied as effective catalysts for hydrogen storage 

in MgH2. Bormann et al. prepared the MgH2/MexOy nanocomposites (MxOy=Sc2O3, TiO2, V2O5, 

Cr2O3, Mn2O3, Fe3O4, CuO, Al2O3 and SiO2) powders via ball milling, and found that the catalytic 

effect of TiO2, V2O5, Cr2O3, Mn2O3, Fe3O4, and CuO on the hydrogenation of Mg are similar [274]. 

The Fe3O4 showed the best effect in the dehydrogenation reaction, which was followed by V2O5, 

Mn2O3, Cr2O3 and TiO2. Especially, Barkhordarian et al. reported the superior catalytic effect of 

Nb2O5 and the fast hydrogen sorption kinetics of 0.2 mol.% Nb2O5-doped Mg with nanocrystalline 

structure [226]. The absorption of 7 wt% H at 300 C was reached within 60 s and the desorption was 

completed within 130 s. The hydrogen absorption at 250 C was almost as fast as at 300C, while the 

desorption required only 10 min. The authors also investigated the effect of Nb2O5 concentration 

(0.05, 0.1, 0.2, 0.5, and 1 mol.% Nb2O5) on the kinetics of the magnesium [117], and found that 

fastest kinetics were obtained using 0.5 mol.% Nb2O5. At 250 °C, more than 6 wt% hydrogen were 

absorbed in 60 s and desorbed again in 500 s. The apparent activation energy for dehydrogenation 

varied with the Nb2O5 concentration and reached the minimum value of 61 kJ mol
–1

 H2 at 1 mol.% 

Nb2O5. The Nb2O5 catalyst may act also as nucleation sites for H2 on Mg, since it was also 

demonstrated that the unusual catalytic effectiveness of Nb2O5 for the recombination of hydrogen 

molecule on the Mg surface [275]. To further reveal the catalytic mechanism of Nb2O5, Jensen et al. 

performed in situ real time synchrotron radiation X-ray diffraction experiments under dynamic 

hydrogenation and dehydrogenation reactions of MgH2 ball milled with 8 mol.% Nb2O5 [276], and the 

results indicated that the Nb2O5 reacted with Mg forming ternary solid solution MgxNb1-xO with a 

composition in the range 0.2~0.6 in the heating, which facilitated the surface reaction and 

chemisorption or the recombination of hydrogen molecule.   

In addition to oxides, the transition metal-hydrides are also proven to be effective catalysts. Pelletier 

et al. performed the time-resolved X-ray scattering measurement on the hydrogen desorption in the 

milled MgH2-Nb system [277], and revealed an intermediate niobium hydride phase with an 

approximate composition of NbH0.6 and a small crystallite size of ~8-10 nm formed during 

dehydrogenation (Figure 16). The intensity of metastable niobium hydride increased simultaneously 

with the intensity of metallic magnesium and only after the magnesium was fully dehydrided. This 

short-lived metastable niobium-hydride phase may be the real catalytic species, and this is direct 

evidence of the hydrogenation mechanism in such composite metal hydrides. The authors proposed a 

model in which the niobium nanoparticles act as gateway for hydrogen flowing out of the magnesium 

reservoir.  
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Figure 16. Time-resolved X-ray scattering data for MgH2-Nb heated to 310 °C. (a) Gray-scale contour plot of the X-ray 

scattering where intensity increases with lighter tones, (b) temperature profile [277]. 

Obviously, these catalysts could effectively overcome the reaction kinetic barriers related to different 

steps of hydrogenation and dehydrogenation reactions, including the hydrogen physisorption, 

hydrogen chemisorption, hydrogen diffusion, or the recombination of hydrogen molecules, hydride 

formation and decomposition. The extremely slow hydrogen diffusion rate in MgH2 at ambient 

temperature [153] will dramatically slow down the hydrogenation rate upon the formation of 

magnesium hydride layer around the Mg particles. Therefore, the hydrogen diffusion in the MgH2 is 

the rate-limiting step for both the hydrogenation and dehydrogenation reactions. Especially, the 

reaction rate for the dehydrogenation of MgH2 is generally slower than that for the hydrogenation of 

Mg, and the apparent activation energy for the dehydrogenation is estimated to be ~160 kJ mol
–1

, 

much higher than ~120 kJ mol
–1

 for the hydrogenation. 

As a generally adopted catalyst doping process, the simple ball-milling of the additives with Mg 

brings beneficial structural modifications, including the particle and grain refinement of the Mg and 

additives, the breaking of any surface oxide layer (MgO), the introduction of a large number of 

structural defects on the surface of Mg, and the homogeneous distribution of active sites for the 

hydrogenation reaction. The reduction of particle/grain size in MgH2 leads to a pronounced kinetic 

enhancement due to the increased surface area of the interfaces and shortened diffusion paths, while 

the surface structural modifications caused by milling are necessary for the gas-solid reaction between 

Mg and hydrogen gas because of increased rates of the processes at the surface. Even though 

tremendous efforts have been devoted to improving the hydrogen storage properties of Mg by ball 

milling with a large variety of additives, however, it is still difficult to obtain a very homogeneous 

distribution and to obtain greatly refined catalysts, even when using very long milling times. 

Unfortunately, this may cause severe contamination and negatively affect hydrogen storage 

performance. One solution to this problem is to use a liquid additive which disperses through the 

magnesium hydride more readily. Alsabawi et al. [278] used a titanium-based organic liquid and 

found it to be just as effective as Nb2O5. Some other methods have been developed for the preparation 

of nanocomposites of hydrides and rare-earth metal or transition metal catalysts, including the 

chemical solution [183,279], the in situ decomposition of Mg-based multi-component alloys 

[280,281], and the crystallization of amorphous Mg-based alloys [114,282,284]. Excellent hydrogen 

storage properties especially hydrogen sorption kinetics have been achieved. 
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One problem to overcome is that the passivated MgO layer covering magnesium metal is considered 

almost impermeable to hydrogen and decreases the kinetics significantly. Recently, it was found that 

the transition metal catalysts could greatly enhance hydrogen absorption/desorption of MgH2. By the 

reaction of Mg powder in THF solution with TMClx (TM: Ti, Nb, V, Co, Mo, or Ni), micro-sized Mg 

particles were coated by different transition metals, forming a continuous TM shell with a thickness of 

less than 10 nm [183]. All composites released hydrogen at a low temperature of 225 C. It was noted 

that the nano-coating of a TM around the micro-sized MgH2 particles is much more effective than 

milling Mg with the corresponding TMs. The catalytic effect on the dehydrogenation is in the 

sequence Mg–Ti, Mg–Nb, Mg–Ni, Mg–V, Mg–Co and Mg–Mo. This may be due to the decrease in 

electro-negativity (c) from Ti to Mo. The nano-composite of Mg with a nano-coating of Ti-based 

catalysts can release 5 wt% H2 within 15 min at 250 C. However, Ni is a special case with a high 

catalytic effect in spite of the electro-negativity. It was supposed that the formation of the Mg2Ni 

compound may play an important role in enhancing the hydrogen de/hydrogenation of the Mg–Ni 

system. It was also found that the larger the formation enthalpy, the worse the dehydrogenation 

kinetics. 

In addition, Cui et al. also coated different Ti-based nanoscale catalysts [279], including Ti, TiH2, 

TiCl3 and TiO2, on the surface of ball-milled Mg powders. Firstly, the mixed powders of Mg and 

MgH2 with a weight ratio of 9:1 were pre-milled on a vibratory milling apparatus for 6 h, and then the 

pre-milled powder were reacted with TiCl3 in THF solution under electromagnetic stirring for 5 h. 

This resulted in dehydrogenation properties much better than those of the conventionally ball-milled 

sample. Hydrogen release started at about 175 C and reached 5 wt% H2 within 15 min at 250 C, 

with the dehydrogenation Ea reduced to 30.8 kJ mol
–1

. It was suggested that the multiple valence Ti 

sites facilitated electron transfer among them, and thus acted as the intermediate for electron transfer 

between Mg
2+

 and H
–
. Figure 17 illustrates the catalytic mechanism of multi-valence Ti-compounds 

on the dehydrogenation of MgH2. Because the electronegativity of Ti (1.54) is between Mg (1.31) and 

H (2.2), it facilitates the weakening the Mg–H bond. Also, a splitting of the 3d state of Ti ions can 

induce the Ti ions to gain electrons (e
-
) easier than Mg ions and lose e

-
 easier than H

-
 ions. As shown 

in Figure 17, there exist a large number of interfaces among MgH2, high valence and low valence Ti 

compounds in the hydrogenated composite. The electron transfer between Mg
2+

 and H
-
 is proposed in 

the following steps: (1) H
-
 at the interface of MgH2/Ti-compounds donates e

-
 to high valence Ti 

(Ti
3+

/
4+

) which transforms into low valence Ti (Ti
2+

) simultaneously; (2) with the breakage of the 

weakened Mg–H bond, the dissociative H is produced and dehydrogenation reaction occurs; (3) H 

atoms are recombined into H2; and (4) Mg nucleates and grows coupled with H2 recombination. Thus, 

the dehydrogenation of MgH2 is promoted due to the lowered barrier in the above inferred catalytic 

process.  

 

Figure 17. Schematic for the catalytic mechanism of muti-valence Ti doped MgH2 [279] 



33 
 

To obtain a stable and pronounced catalytic effect in long-term de-/hydrogenation cycling, it is very 

important to maintain the nanocrystalline structure of MgH2 composite containing homodispersed 

nanosized catalysts, namely keeping the particle/grain of Mg-based nanocomposite from growing in 

repeated dehydrogenation/hydrogenation cycles. Cuevas et al. reported that the 0.7MgH2–0.3TiH2 

composite, which was obtained by reactive ball milling of elemental powder under 8 MPa hydrogen 

pressure [114], exhibited outstanding kinetic properties and cycling stability. At 300 C, hydrogen 

uptake took place in less than 100 s, which is 20 times faster than for a pure nanosized MgH2 powder 

by milling. Further, it was demonstrated that the TiH2 phase inhibited the grain coarsening of Mg, 

which allows extended nucleation of the MgH2 phase in Mg nanoparticles prior to the formation of a 

continuous and blocking MgH2 hydride layer. The hydrogenation process of 0.7MgH2–0.3TiH2 

composite also follows a gateway mechanism for hydrogen transfer from the gas phase to Mg.  

It is thus suggested that in situ formed catalyst would show higher catalytic activity and superior 

stability than those of the externally added catalyst due to the better homogeneity and finer particle 

size. Gross et al. observed that the hydrogen absorption/desorption of La2Mg17 was far more rapid 

than Mg due to the catalytic effect of in situ formed LaH3–x phase upon hydrogenation [285]. It has 

been widely accepted that 3d transition metal Ni could significantly lower the dissociation barrier. For 

that, Ouyang et al. synthesized the MgH2-based composites containing CeH2.73 and Ni catalysts [286], 

which were in situ formed from a Mg3Ce structured Mg80Ce18Ni2 alloy in the hydrogenation process. 

This nanocomposite exhibited excellent hydrogen absorption/desorption performance and cycling 

stability, absorbing hydrogen at room temperature and desorbing hydrogen at 232 C with a high 

capacity of ∼4 wt% and fast kinetics. The apparent activation energy (Ea) is only 63 kJ mol
–1

 H2, 

which is far below that of milled MgH2 (∼158 kJ mol
–1

 H2) or that of Mg3Ce alloy (∼104 kJ mol
–1

 

H2). The existence of Ni is a key role for refining the microstructure of CeH2.73-MgH2 composites, the 

Ni not only demonstrated good catalytic effect on the hydrogen desorption of MgH2 but also 

promoted the transformation of CeH2.73 to CeH2, increasing the practical hydrogen storage capacity. 

Transmission electron microscopy analysis revealed the combinational catalytic effect of in situ 

formed extremely fine CeH2/CeH2.73 and Ni to Mg/MgH2. As shown in Figure 18, the grain size of 

CeH2.73 and MgH2 phases is much smaller in the hydrogenated Mg80Ce18Ni2 alloy compared to that for 

the hydrogenated Mg3Ce alloy. The very fine CeH2.73 and Ni nanophases could effectively inhibit the 

growth of Mg. In the hydrogenation process, the Mg80Ce18Ni2 alloy initially transformed into Mg-

CeH2.73-Ni composite, the Mg then reacted with hydrogen to form MgH2, and the MgH2-CeH2.73-Ni 

nanocomposite was finally obtained. The great improvement in the hydrogenation kinetics for the 

MgH2-CeH2.73-Ni nanocomposite is due to the presence of Ni nanoparticles, high-density interfaces 

between CeH2.73 and MgH2, and plenty of grain boundaries in nanocrystalline MgH2. A large amount 

of interfaces and boundaries act as hydrogen diffusion channels and nucleation sites of hydrides. In 

addition, the in situ formed Ni and CeH2.73/CeH2 nanophases act as dual catalysts for the 

hydriding/dehydriding reactions of Mg. It is noted that pure Ni instead of Mg2Ni existed in the MgH2-

CeH2.73-Ni composites, which is totally different from the findings of other in situ hydrogenated Mg-

RE-Ni alloys. In the dehydrogenation process, it is assumed that Mg nuclei preferentially nucleate 

along the surface of CeH2.73/CeH2 and Ni phase at the starting transition stage of MgH2 to Mg. More 

importantly, this nanocomposite structure can effectively suppress Mg/MgH2 grain growth and enable 

the material to maintain its high performance for more than 500 hydrogenation / dehydrogenation 

cycles. As shown in Figure 18, the capacity retention exceeds 80% after 500 cycles, and the main 

reason for the capacity loss is by slight oxidation. In summary, the enhanced hydrogen storage 

kinetics and stability of MgH2 is attributed to the synergetic effect of in situ formed CeH2.73 and Ni. 
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Figure 18. Left: TEM images of the microstructure of the partially dehydrogenated MgH2-CeH2.73-Ni nanocomposites 

demonstrate the catalyst effect of CeH2.73 and Ni on MgH2 dehydrogenation process. (a) Bright field image and (b) selected 

area diffraction patterns of MgH2   one a is      ]).  Right: Evolution of the maximum hydrogen sorption capacities versus 

cycle times of MgH2-CeH2.73-Ni composite. [286] 

To achieve the synergetic role of different catalysts, Lin et al developed a simple method to induce a 

novel symbiotic CeH2.73/CeO2 catalyst into Mg-based hydrides, which was prepared via controllable 

hydrogenation and oxidation treatments of as-spun Mg80Ce10Ni10 amorphous ribbons [287]. Namely, 

crushed Mg80Ce10Ni10 amorphous powder was first activated under 10 MPa hydrogen pressure at 300 

°C for 3 h and then treated by 15 cycles of dehydrogenation/hydrogenation at 300 °C. Then, the 

sample was controllably oxidized under specific condition. The obtained sample has a nanocomposite 

microstructure of MgH2–Mg2NiH4–CeH2.73/CeO2 and displays remarkable reduction in the 

dehydrogenation temperature. Maximum hydrogen desorption temperature reduction of MgH2 could 

be reduced down to ~210 °C for the composite with the molar ratio of CeH2.73 to CeO2 being 1:1. The 

dynamic boundary evolution during hydrogen desorption was observed in the symbiotic CeH2.73/CeO2 

at atomic resolution using in situ high-resolution transmission electron microscope, as shown in 

Figure 19. Combining the ab-initio calculation, which shows significant reduction in the formation 

energy of hydrogen vacancy at the CeH2.73/CeO2 interface boundary in comparison to those for the 

bulk MgH2 and CeH2.73, it was proposed that the outstanding catalytic activity can be attributed to the 

spontaneous hydrogen release effect at the CeH2.73/CeO2 interface as efficient “hydrogen pump”. 

 

Figure 19. Schematic illustration and TEM image showing the enhanced hydrogen release at the interface of CeH2.73/CeO2 

[287]. 

Metal halides and fluorides  
The catalytic role of the anion in metal additives on the hydrogenation of Mg was also investigated. 

Suda et al. first claimed that the fluorination treatment in an aqueous solution containing F
-
 could 

provide a highly reactive and protective fluorinated surface for hydrogen uptake on different alloys 
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[288,289]. Therefore, as a large variety of additives containing both transition metal and fluorine 

anion, transition metal fluorides such as TiF3, TiF4, NbF5, ZrF4 etc. have been widely used to designed 

catalysed Mg-based hydrogen storage system. Xie et al. milled MgH2 nanoparticles with 5 wt% TiF3 

under hydrogen atmosphere, and obtained the composite of MgH2, TiH2, and MgF2 [290]. The 

resultant composite desorbed 4.5 wt% H within 6 min at 300 C and absorbed 4.2 wt% H in 1 min at 

room temperature. The authors suggested that decrease of particle size was beneficial for enhancing 

absorption capacity at low temperature, but has no effect on desorption. Moreover, the hydrogen 

storage properties of MgH2-TiF3 composite are superior over the MgH2-TiH2 composite. Here, the 

TiF3 helps to dissociate the hydrogen molecule at low temperature as the Ti species is introduced into 

magnesium. Wang et al. investigated the influence of NbF5 as an additive on the H-sorption kinetics 

of MgH2 [291], and found that fast kinetics were obtained in the 5h-milled MgH2 + 2 mol.% NbF5 

composite. At 300 C, the MgH2 + 2 mol.% NbF5 could absorb 5 wt% hydrogen in 12 s and 6 wt% in 

60 min, and desorb 4.4 wt% in 10 min and 5 wt% in 60 min. The structural analysis indicated that 

MgH2 reacted with NbF5 to form MgF2 and Nb
x+
–containing compounds. It was suggested that in situ 

formed MgF2 has a highly reactive and protective effect for hydrogen uptake (later confirmed by the 

observation of improvement of hydrogen desorption kinetics in ball milled MgH2–MgF2 composites 

[292]), which may further combine with the catalytic function of Nb species to produce a synergetic 

effect. Alternatively, F
–
 anion may also directly participate in the generation of the catalytically active 

species.  

Another origin of the improvement of H sorption performance of MgH2 by fluorine substitution can 

be in the formation of Mg(HxF1–x)2 solid solutions, isostructural to rutile-type MgH2. These solid 

solutions have been shown to absorb hydrogen with a practical hydrogen capacity of 4.6 wt% H for x 

= 0.85 and 5.5 wt% H when x = 0.9 [293,294]. Additionally, with the formation of Mg(HxF1–x)2 solid 

solutions, stabilization is found to occur with respect to MgH2. The thermodynamics for 

Mg(H0.85F0.15)2 were determined, with an enthalpy of decomposition of 73.6 ± 0.2 kJ mol
−1 

H2 and 

entropy of 131.2 ± 0.2 J K
−1

 mol
−1

 H2 [294]. These values are decreased in comparison with MgH2 

from 74.06 kJ mol
−1

 H2 and 133.4 J K
−1

 mol
−1

 H2 [136].  

The effects of typical titanium compounds (TiF3, TiCl3, TiO2, TiN and TiH2) on hydrogen sorption 

kinetics of MgH2 were also compared by Wang et al. [182]. Among them, adding TiF3 resulted in the 

most pronounced improvement of both hydrogen absorption and desorption kinetics. At 150 °C, 3.8 

wt% H can be absorbed within 30 s for the milled MgH2 + 4 mol.% TiF3 composite, leading to the 

absorption rate at least 10 times higher than others. Further, the favourable kinetic performances 

persisted well in the absorption/desorption cycles, and the cyclic capacity loss is <10% after 15 

cycles. Comparative studies indicate that the TiH2 and MgF2 phases in situ introduced by TiF3 were 

not responsible for the superior catalytic activity. For other titanium compounds, the catalytic activity 

follows the order of TiO2 > TiN > TiH2, which may be understandable from the electron transfer 

associated with multi-valence of Ti cation. 

Further comparison between TiF3 and TiCl3 additives indicated that TiF3 showed superior catalytic 

effect over TiCl3 in improving the hydrogen sorption kinetics of MgH2 (Figure 20), this result 

suggested the specific catalytic role of F anion [295]. It was shown that both titanium halide and 

fluoride reacted with MgH2 in a similar way during milling or hydrogen cycling processes, forming 

TiH2 and MgCl2 or MgF2. It was thus assumed that the F
–
 anion may result in catalytically active 

species, while the chlorine anion may not. This assumption was confirmed by X-ray photoelectron 

spectroscopy studies. It was revealed in Figure 21 that the incorporated fluorine (F) showed 

significantly different chemical bonding state from its analogue chlorine (Cl). The asymmetry of F 1s 

spectra and the sputtering-induced peak shift suggested that a new and localized Ti–F–Mg bonding 

was formed in the TiF3-doped MgH2. In contrast, the stable binding state of Cl was assigned to the 

MgCl2 for the TiCl3-doped MgH2. Therefore, the generation of active F-containing species well 

explains the advantage of TiF3 over TiCl3 in improving the hydrogen sorption kinetics of MgH2. The 

functionality of F anion in tuning the activity of compound catalyst was also found in other hydrogen 

storage materials [296]. 
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Figure 20. Hydrogen absorption kinetics of (a) MgH2 + 4 mol.% TiF3; (b) MgH2 + 4 mol.% TiCl3. [295]. 

 

Figure 21. Left: Evolution of Ti 2p and F 1s photoelectron lines for the dehydrogenated MgH2 + 4 mol.% TiF3 sample as a 

function of sputtering time; Right: Evolution of Cl 2s and Cl 2p photoelectron lines for the dehydrogenated MgH2 + 4 mol.% 

TiCl3 sample as a function of sputtering time. [295] 

Recent experimental and computational studies of the reactivity of bulk and ball-milled TiCl3 and 

TiF3 with hydrogen gas [297] showed that these compounds themselves cannot accelerate H exchange 

reactions (by promoting H2 dissociation) due to the endergonic thermodynamic driving forces. 

However, these additives can potentially promote H2 dissociation at interfaces where structural and 

compositional varieties or chemical transformations are expected that probably take place in 

Mg/MgH2 doped by Ti halides and fluorides. 

Summary 
The search for and identification of effective catalysts is a subject of great importance for the 

development of Mg-based hydrogen storage system. Numerous efforts in the catalysts optimization 

have brought remarkable improvement on hydrogen absorption/desorption kinetics of MgH2. The 

multi-valence transition metal Ti, Nb and their oxides, hydrides and halides have been proven to show 

superior catalytic effect over other additives. The combination of different types of catalysts may 

improve the overall kinetics [16], and especially combined with the light carbon materials, could offer 

multiple advantages with regard to kinetics, capacity as well as cyclability owing to their roles of 

supporting and confining catalysts. Regarding the catalyst doping, the incorporation of catalytic 

species by in situ generation chemical reaction are strongly recommended. Despite the great 

achievements by catalysing, the thermodynamic properties of MgH2 do not change with additives. 
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This explains that the dehydrogenation kinetics of catalysed Mg-based materials is always inferior to 

the hydrogenation kinetics. Thus, the combination of thermodynamic tuning strategies, such as 

nanoconfinement and destabilization by reactive compositing, and catalysing should be given key 

consideration in the future study of Mg-based hydrogen storage materials. 

ROLE OF DRIVING FORCE ON KINETICS OF HYDROGEN SORPTION REACTIONS 
The reaction rate in H2 absorption-desorption experiments is often described on the basis of the 

Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, which has been developed for phase 

transformations based on nucleation and growth mechanism. Several papers showing a JMAK kinetic 

analysis are available in the literature, providing a wide range of values for the activation energy for 

hydrogen sorption reactions. Nevertheless, in order to determine the effect of additives or particle size 

reduction on kinetic parameters for hydrogen absorption and desorption reactions in MgH2, the 

thermodynamics of phase transformations has to be considered in detail. 

Nucleation and growth model for phase transformations include both thermodynamic and kinetic 

parameters. In particular, for the determination of the homogeneous nucleation barrier (ΔG
*
) in the 

classical nucleation theory [298] (ClNT), interfacial energy and driving force are necessary. In case of 

heterogeneous nucleation, the reduction of ΔG
*
 is defined on the basis of catalytic effects of 

nucleants, which act on the interfacial energy, promoting nucleation. In the frame of ClNT, the 

nucleation frequency can be obtained from ΔG
*
 via a diffusion coefficient. On the other hand, the 

diffusion coefficient, which is also related to the growth rate, is composed of a kinetic contribution 

(i.e. mobility) and a thermodynamic factor, related to the first derivative of the chemical potential 

with respect to composition. So, it is clear that a careful kinetic analysis of hydrogen sorption 

reactions requires a deep knowledge of corresponding thermodynamics. 

According to the van ’t Hoff equation, the relationship between the equilibrium temperature (Teq) and 

pressure (Peq) is given by Teq=ΔH/(RlnPeq+ ΔS), where ΔH and ΔS are, respectively, the enthalpy and 

entropy of the hydrogen sorption reactions and R is the gas constant. From the pressure dependence of 

the Gibbs free energy, the driving force for the phase transformation at temperature T and pressure P 

can be obtained from ΔG= ΔH - T ΔS + RTln(P/P0), where P0 is a reference pressure, often taken as 1 

bar.   

The driving forces for hydrogen absorption and desorption in Mg, according to the Mg + H2 ↔ MgH2 

reaction, can be calculated from available thermodynamic databases [299]. Considering [21] ΔH = -

74.5 kJ/molH2 and ΔS = -135 J/molH2/K, lines connecting constant values of free energy difference for 

hydrogen sorption reactions have been calculated as a function of pressure and temperature and the 

results are shown in Figure 22. Negative values of driving force correspond to a spontaneous 

hydrogenation reaction of magnesium to form magnesium hydride. A more accurate description of 

driving forces for hydrogen sorption in Mg can be developed by the CALPHAD method [85], where 

the temperature dependence of thermodynamic properties of solid phases is taken into account. 

 

Figure 22. Calculated driving forces for hydrogen absorption/desorption in Mg as a function of temperature and pressure. 

Lines connect constant values, as indicated in kJ mol−1
H2. Thick continuous line corresponds to equilibrium conditions. 
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Experiments aimed at determining the kinetic parameters for hydrogen sorption reactions are often 

performed following the phase transformation as a function of time at different temperatures. This 

approach requires a constant driving force for nucleation, which implies a change of H2 backpressure 

at the various temperatures. From Figure 22, it turns out that, in order to maintain a constant driving 

force for hydrogenation of magnesium equal to –5 kJ molH2
–1

 in a temperature range of 20 K (i.e. from 

600 K to 620 K), a corresponding change in pressure of about 5 bar is necessary. On the basis of a 

careful analysis of possible rate determining steps of the hydrogen sorption mechanism, a relationship 

between the temperature of experiments and backpressure of hydrogen has been obtained [300], 

suggesting to maintain, during experiments, a constant value proportional to T[1-(Peq/P)
1/2

] and T[1-

(P/Peq)
1/2

] for absorption and desorption experiments, respectively. This approach has been applied to 

determine kinetic parameters for hydrogen sorption reactions in Mg nanoparticles [301].  

 

Figure 23. Critical radius for various values of P.  Continuous line: 1 bar; dotted line: 5 bar; dashed line: 10 bar; dot-

dashed line: 20 bar. 

Applying the ClNT to hydrogen sorption reactions [153], the critical radius for nucleation (rc) can be 

estimated according to rc=-2γ/ΔGv, where γ is the interfacial energy between the metal and hydride 

phases and ΔGv is the driving force per unit volume. Because of the pressure and temperature 

dependence of the driving force, the value of rc can be estimated for the Mg/MgH2 system as a 

function of T for different values of P. ΔGv has been obtained from ΔG*Vm, where Vm is the molar 

volume of the nucleating phase, which has been considered as the average between VMg = 

1.38×10
−5

m
3
∙mol

−1
 and VMgH2= 1.81 ×10

−5
m

3
∙mol

−1
 [300]. An experimental or calculated value of γ for 

the Mg/MgH2 interface is not available, but it can be estimated considering the difference between the 

free energy of Mg/TiH2 and the MgH2/TiH2 interfaces. So, it has been taken equal to 0.33 J∙m
−2

, as 

obtained experimentally from thin film experiments [131]. As an example, the values of rc obtained as 

a function of temperature for various values of P are reported in Figure 23. It turns out that, as 

expected, an increase in P and a reduction in T decreases the value of the critical radius, which is in 

the range of 1-10 nm. Of course, constant values of driving force in kinetics experiments will 

maintain a constant value for the critical radius, allowing kinetic information from isothermal 

experiments to be obtained.  

As a conclusion, from simple thermodynamic arguments, it turns out that the backpressure of 

hydrogen is a key parameter for kinetic experiments, because it drives the selection of temperatures 

for isothermal measurements. If experiments are performed at various temperatures maintaining a 

constant pressure, the driving force is changed and, as a consequence, the rc value turns out to be 

different. In case of the presence of nanoparticles or stress, interface and/or strain contributions to the 

free energy should be also considered, as described previously in the section concerning 

nanostructured magnesium hydride.     
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Mg-H SYSTEM AT HIGH PRESSURES 
Magnesium dihydride powder supplied by Sigma–Aldrich consisting of 92 wt% α-MgH2, 7 wt% 

Mg(OH)2 and 1 wt% Mg metal according to X-Ray diffraction, was used to investigate the Mg-H 

reaction at high H2 gas pressures. 

In order to determine the equilibrium pressure of the α↔γ transformation in the range of a smaller 

baric hysteresis, the high-pressure experiments were carried out at temperatures as high as 700 °C 

(973 K). 

Each powder sample was enclosed in a Cu container with an inner diameter of 5 mm, a height of 4 

mm and the walls 0.5 mm thick. The container was filled with 90 mg of compacted MgH2 and tightly 

plugged with a copper lid in an Ar glove box. The container was then placed into a lens-type high 

pressure chamber [302]; compressed to a pre-selected pressure up to 6 GPa, and heated to 973 K 

using a graphite heater electrically insulated from the copper container by a layer of mica. The 

pressure was measured with an accuracy of ±0.2 GPa, the temperature ±50 K. After exposure to these 

conditions for 1 hour the sample was quickly cooled (quenched) to room temperature and restored to 

ambient pressure. The sample was removed from the container under an Ar atmosphere, crushed, 

placed on an X-ray sample holder, hermetically sealed with a Mylar film on a grease ring to further 

protect it from contact with air and examined by X-ray diffraction at room temperature with a 

Siemens D500 powder diffractometer using Cu Kα radiation. Along with MgH2, all quenched samples 

contained about 25 wt% MgO. No signs of any reaction between the MgH2 and copper container were 

observed at 973 K. 

Results of the X-ray investigation of the quenched MgH2 samples are presented in Figure 24. There 

were two series of experiments. 

 

Figure 24. Phase diagram of MgH2 near the α↔γ equilibrium line.   – α transformed to γ; 2 – α did not transform to γ; 3 – γ 

transformed to α; 4 – γ did not transform to α. The other symbols show literature data  Bastide  26], Bortz [303], Morivaki 

[29], Vajeeston [28], Moser [304]). 

To determine the starting pressure of the α→γ transition, the initial α-MgH2 was compressed. As 

shown by the filled circles in Figure 24, the formation of γ-MgH2 started at P = 2 GPa. This gives the 

upper limit Peq < 2 GPa for the pressure of the α↔γ equilibrium at 973 K. 

The quenched MgH2 samples produced at 2.0 and 2.8 GPa (solid circles in Figure 24) were composed 

of a mixture of the α and γ phases and contained, respectively, 25 and 40 wt. % γ- MgH2, the rest 

being α-MgH2 and MgO. These samples were used in the second series of experiments aimed at 

determining the starting pressure of the reverse γ→α transition. As the experiments showed, the 

relative content of the α and γ phases did not change in the sample exposed to 1.6 GPa (open triangle 

in Figure 24) whereas the γ phase disappeared in the samples exposed to P ≤ 1.1 GPa (solid triangles 

in Figure 24). This sets the lower limit Peq > 1.1 GPa. 
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Estimating from the obtained measurements, we arrive at Peq = 1.5±0.5 GPa at T = 973 K. The 

literature data [303] are consistent with this estimate. 

Raman scattering study of the γ-MgH2 to HP1-MgH2 and reverse phase transformations at room 

temperature in diamond anvil cell were performed, both without pressure transmitting medium and in 

helium. The pressures of the phase transformations were found to be 8.7(10) GPa and 7.4(3) GPa 

respectively with no pressure transmitting medium, and 10.3(3) GPa and 8.0(10) GPa respectively in 

helium. No traces of pyrite-type MgH2 were found in both cases, in contrast to the data of Vajeeston 

et al [28]. Compression of the HP1 phase to higher pressures in helium revealed transformation to the 

HP2 phase at 17.2(3) GPa and a reverse phase transformation at 10.0(10) GPa, in accordance with the 

data of Moriwaki et al. [29]. 

MODELLING THE MgH2 HYDRIDE WITHIN HIGH PRESSURE MODEL 

 
Methodology 
DFT calculations [305,306] were carried out using the Vienna ab initio simulation package (VASP) 

[307,308]. The exchange and correlation (XC) functional was considered within the generalized 

gradient approximation (GGA) in the frame of Perdew-Burke-Ernzerhof (GGA-PBE) [309,310]. An 

energy cut-off of 800 eV was used for the projector augmented-plane wave basis set (PAW) [311], 

and a dense grid of k-points in the irreducible wedge of the Brillouin zone (k-points spacing less than 

20.05 Å
–1

) was used with the sampling generated by the Monkhorst-Pack procedure [312]. Both the 

internal atomic coordinates and the lattice parameters were fully relaxed so that the convergence of 

Hellmann-Feynman forces was better than 10
–6

 eV/Å in order to eliminate any residual strain. 

Electron Localization Function (ELF) was plotted using VESTA software [313]. 

The zero-point energy (ZPE) and finite-temperature properties, arising from vibrational displacements 

around equilibrium positions were determined in the frame of the theory of lattice dynamics, with 

phonon calculations using the frozen phonon (supercell) method [314]. The vibrational modes of the 

different compounds were computed using the phonopy code [315,316] coupled with VASP 

calculations by using the quasi-harmonic approximation (QHA), i.e. repeating the harmonic 

calculation at several volumes V to get the minimum of F(V,T), the heat capacity at constant pressure, 

thermal expansion and bulk modulus. 

Using the same methodology as in previous work on Ni-H [317], the thermodynamic high pressure 

model of Lu [318] was applied. The temperature T and pressure P dependencies of the molar volume 

of solid phases are described on the basis of an empirical relationship between molar volume Vm and 

bulk modulus      
  

  
 
   

: 

               
 

    
  (8) 

with x and y functions of temperature, characteristic of the considered material. Knowing values of Vm 

and B at Pref=10
5
 Pa, the previous equation of state could be written in the following way: 

                   
      

  
  (9) 

where we defined 4 values such as           , the compressibility         ,          ) 

and            . These parameters are fitted using the data obtained by the QHA phonon 

calculations (      at    ,       at    ,      at     and thermal expansion at    ). After 

integration, the Gibbs energy derived from this equation of state (Equation (9)) can be written as: 

           d 
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The equilibrium is calculated by a Gibbs energy minimization for each pressure and temperature 

using the Thermo-Calc software [319].  

Crystal and electronic structures 
We defined   and polymorphic phases of magnesium dihydride as TiO2, FeS2 and PbO2, 

respectively, as described in Table 4. The δ and ε phases reported in other works have not been 

calculated [320,321]. The rutile TiO2 is known to be stable under ambient condition. The FeS2 

form (sometimes called PdF2) is derived from the fluorite CaF2-type by a displacement of the 

hydrogen atoms from the tetrahedral sites of a fcc host structure to triangular interstitial positions 

along the [111] direction. Indeed, H is located in the triangular position in all polymorphic phases of 

MgH2, with a small deviation from the centre in PbO2. 

It is possible to describe the structures as a network of Mg-centred H-octahedra. Depending on the 

polymorphic form, the arrangement and density of the corner-linked octahedra is slightly different as 

shown in Figure 25. 

Table 4. Crystallographic description and calculated heat of formation of the 3 polymorphic forms of MgH2. 

Prototype Space group Pearson 

symbol 
Hfor (kJ/mol-

fu) 

ZPE Hfor
corrected 

(kJ/mol-fu) 

TiO2 P42/mnm (136) tP6 -52.1 9.8 -42.3 

PbO2 Pbcn (60) oP12 -52.0 9.8 -42.1 

FeS2 Pa-3 (205) cP12 -43.1 9.4 -33.7 

 

 

Figure 25. Crystal structure of the 3 polymorphic forms of MgH2: TiO2, PbO2 and FeS2. Mg and H atoms are in grey 

and blue respectively. 

The electronic structure of MgH2 has been published in length [243,320,322], with a calculated band 

gap underestimated with classical GGA around 3.7 and 4.2 eV for the  and forms. Only 

calculations using PAW in GW approximation (Green's Function) are able to predict indirect band 

gap values of 5.5 and 5.2 eV respectively [322], in agreement with experiments [323]. The form 

presents a smaller gap between 2.7 and 3.9 eV depending on the choice of the XC functional.  

The GGA Bader calculations give almost equivalent charge transfer of 0.8 e- to the hydrogen atom, 

and, as discussed in the review [21], the bonding character is not fully of ionic type. A representation 

of the ELF surface is given in Figure 26, where the electrons localized around H form a high density 

area inside a regular triangle for TiO2. The case of PbO2 is different since H is not exactly in the 

plane formed by the 3 Mg atoms. Because of the remarkable compactness of the fcc host structure in 

(111) plane, the electron localized areas are denser for the FeS2. 
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Figure 26. Electron Localization Function (ELF) of MgH2 in TiO2, PbO2 and FeS2 forms in the plane containing the 

triangular H interstitial site. Warm colours indicate a localized valence electron region (high probability), whereas the cold 

colours shows electron-gas like region (low probability). 

High pressure modelling 
The enthalpies of formation of TiO2 and PbO2-types are very similar (less than 0.1 kJ/mol 

difference). This relates to the close nature of the crystallographic structures and the same octahedral 

coordination for the metal atom. The calculated cell volumes are also very close as indicated in Figure 

27. Experimentally, a density increase of 1.6% is observed at the →transition. The calculations 

predict a slightly larger increase of 2.7 %.  

  

Figure 27. Cell volume as a function of pressure (a) and temperature (b). 

The difference between enthalpies of formation of PbO2 and FeS2 types is clearly more important, 

reaching 8.4 kJ/mol according to the DFT calculations corrected with the ZPE contribution. This 

relates to the very big differences in crystal structures with the latter structure derived from the CaF2 

type. The calculations as already reported in Ref. [324] actually predict FeS2 to be more stable than 

CaF2 by 13.2 kJ/mol, without the ZPE corrections: the ideal CaF2 structure is showing large imaginary 

frequencies in phonon bands. This shows an energetic and mechanical stabilization of the structure by 

the displacement of hydrogen atoms from the ideal tetrahedral to triangular positions. The increase of 

the Mg atom density in the fcc structure compared to TiO2 and PbO2 is associated with the decrease of 

the molar volume as shown in Figure 27. This increase is calculated to be 4.9% at 650 K according to 

our calculations, in agreement with the calculations of Cui et al. [325], see Table 5. 

The results described above refer to ambient conditions. Figure 27 shows the calculated volume as a function of pressure in 

excellent agreement with experimental data. A good agreement is obviously observed, too, for the bulk modulus as shown in 

Table 6. The pressure tends to stabilize the phases with lower cell volumes.  
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Figure 28 plots the Gibbs energies as a function of pressure and shows two phase transitions at 650 K.  

At room temperature, the transitions TiO2/PbO2 and PbO2/FeS2 are calculated at pressures of 1.0x10
9
 

Pa and 1.5x10
10

 Pa. These values, reported in Table 5, are in agreement with the data calculated by 

Cui et al. [325] and Vajeeston et al. [28].  

 

Table 5. Calculated phase transition pressure at ambient temperature. 

Phases transition P (Pa) present work Other calculations 

TiO2 / PbO2 2.1 109 0.39 109 [320] 

1.2 109 [325] 

6.1 109 [304] 

2.4 109 [321] 

PbO2 / FeS2 1.6 1010 3.9 109 [320] 

9.7 109 [325] 

7.1 109 [304] 

 

Table 6. Bulk modulus at room temperature and pressure calculated from our model and measured experimentally. 

Prototype B (Pa) present work B (Pa) experimental Ref 

TiO2 4.31010 4.30.21010 [325] 

 4.91010 (MgD2) [326] 

PbO2 4.31010 4.40.21010 [325] 

FeS2 4.71010 4.70.41010 [325] 
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Figure 28. Gibbs energy as a function of pressure at 650 K. The phase transitions are shown with vertical dotted lines. 

Finally, the complete P-T phase diagram could be obtained from our approach. It is presented in 

Figure 29 in comparison with experimental data and calculations by Moser et al. [304] and AlMatrouk 

et al. [321] who employed a similar approach and the quasi-harmonic approximations. While a good 

agreement between Moser and our model is observed for the PbO2-FeS2 transition, the results differ 

considerably for the TiO2-PbO2 transition at high temperatures. This latter transition is however well 

described by AlMatrouk et al. who did not predict a transition to the FeS2 type because they took into 

account the δ and ε phases, which we did not. Figure 29 also compares the calculations with the 

available experimental data at room temperature (shown as bars) and at high temperature including 

the experimental data from the present work (see previous Section). The presence of PbO2 at 450 K 

and 4.3x10
9
 Pa [327] is in agreement with the three models. However, our calculations are in a closer 

agreement with the experimental value P ≈ 1.5 GPa for the TiO2/PbO2 equilibrium at T = 973 K (open 

green right-triangle in Figure 29). 
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Figure 29. P-T phase diagram of MgH2 according to model (continuous lines), compared with literature data (Bor99 [303], 

Vaj06 [28], Mos10 [327], Mos11 [304], AlM18 [321]). 

FeS2 has not been evidenced in our high pressure/high temperature experiments although our 

calculation predicts it to be stable (however, close to the limit of the studied pressure interval). Work 

is still in progress to identify the reasons for this discrepancy. In particular, anharmonic contributions 

could be responsible for a slight modification of the phase diagram. 

 

MIXED TRANSITION-METAL COMPLEX Mg-BASED HYDRIDES 
In Mg-based transition-metal (TM) complex hydrides, the TM is covalently bonded to hydride 

ligands, H
–
, forming a complex anion [TMHx]

–-
 that obeys the 18-electron rule [328-330]. Mg

2+
 

stabilizes the anion by electron transfer. Mg2NiH4, Mg2CoH5 and Mg2FeH6 have been investigated 

extensively. One question was whether different TM complex anions can coexist in the same crystal 

structure?  

Samples of mixed TM complex Mg-based hydrides have been synthesized from the elemental powder 

mixtures by HRBM at P(H2) = 50 bar using a Fritsch P6 planetary ball mill using the Evico Magnetics 

high-pressure vial [234]. Neutron diffraction has been used for structural characterization, and a 

number of samples was then prepared in a deuterium atmosphere. 

A mixture with nominal composition Mg2Fe0.5Co0.5 has been prepared by reactive ball milling at 50 

bar D2 atmosphere [242]. During milling the temperature steeply increased from room temperature to 

about 320 K, and consequently the pressure increased at the very beginning, but then after some time, 

decreased because of hydrogen absorption. The formation of the hydride proceeds in two steps, with 
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the highest hydrogen absorption rate for the first step. It has been proposed that MgH2 is an 

intermediate reaction product associated with the first reaction step, followed by the slower reaction 

with the formation of the complex hydride [241]. However, in [242] it is also suggested that a direct 

formation of the complex hydride from the elements is possible via H-absorption at the Mg/Fe-Co 

interfaces. 

From powder neutron and X-ray diffraction studies it was found that Mg2(FeH6)0.5(CoH5)0.5 takes the 

K2PtCl6-type structure (space groupFm-3m) with a = 6.426 Å, and is consequently similar to 

Mg2FeH6 with [FeH6]
4–

 anions exhibiting octahedral geometry and the high-temperature modification 

of Mg2CoH5 with disordered distribution of H atoms Co atoms in a square-pyramidal [CoH5]
4-

 

arrangement [242]. This results in coexistence of [FeH6]
4–

 and [CoH5]
4–

 ions in the formed complex 

hydride (Figure 30). The presence of both types of ions in Mg2(FeH6)0.5(CoH5)0.5 has been also 

confirmed by IR spectroscopy [331]. Synchrotron powder X-ray diffraction (SR-PXD) showed that 

hydrogen is desorbed in one step at temperatures between 500 and 600 K with Mg and a FeCo solid 

solution as desorption products. The thermal stability is similar for Mg2FeH6, Mg2CoH5 and the mixed 

complex hydride. DFT calculations and inelastic neutron scattering have been performed in order to 

better understand the properties of Mg2(FeH6)0.5(CoH5)0.5 [332,333].  

Reactive milling of Mg, Co and Ni gives the Mg2Ni0.5Co0.5H4.4 hydride [243]. This compound takes a 

tetragonal P4/nmm structure that is isostructural with Mg2CoH5 at room temperature. 

Recently obtained data on the formation and hydrogen desorption properties of Mg2FexCo1-xHy shows 

that the cubic K2PtCl6 structure-type is formed for samples with increased amount of Fe, but for 

smaller x the data indicates a tetragonal distortion. Recent results show that Mg2(FeH6)0.5(CoH5)0.5 is 

partly reversible at 30 bar H2 [Barale J, Deledda S, Dematteis EM, Sørby MH, Baricco M, Hauback 

BC, to be submitted].  

 
Figure 30. The crystal structure of Mg2(FeH6)0.5(CoH5)0.5 determined from Rietveld refinements of powder neutron and X-

ray diffraction data. Mg yellow, Fe/Co green and H/D atoms  - red dots  in corners of the octahedra (D used for neutron 

diffraction). 
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NON DIRECT THERMAL DESORPTION METHODS 
In most research work, to overcome the thermodynamic and kinetics barriers, thermal energy is used 

to drive the absorption/desorption hydrogenation processes in magnesium. The use of non-direct 

thermal energy sources is starting to be considered to open new pathways to destabilize magnesium 

hydride. Albeit a systematic study of all possible non-direct thermal heating methods has not been 

performed yet, the following non-direct thermal energy sources have been attempted:  

(i) electrochemical sources,  

(ii) electromagnetic (microwave and light driven) and ultrasonic radiation and  

(iii) mechanical bias. 

Electrochemical charging/discharging of hydrogen in metals is the most common alternative to the 

direct gas-solid hydrogenation driven by heat. This method is widely used in Ni-metal hydrides 

batteries [334] and its utilization in magnesium and alkaline metals.  

Using electromagnetic waves to replace the heat source has been performed by using different ranges 

in the spectrum i.e. microwave, visible and ultraviolet radiation. Concerning microwave radiation, 

some works [335,336] show the effectiveness of this radiation in decomposition on different types of 

hydrides such as metal and complex hydrides (LiH, NaH, LiBH4) using microwave irradiation at 2.45 

GHz and 500 W for 30-60min. In the particular case of MgH2, only a small amount of hydrogen 

(<1%) is released [335] because of the non-metallic character of the hydride as well as low 

microwave penetration depth compared to metallic hydrides such as TiH2, the latter exhibits rapid 

heating (T  600 K) due to the conductive losses. Improvements have been obtained by the inclusion 

of MgH2 particles into metallic supports such as Ni acting as heating media [336]. 

A similar approach has been recently proposed in [337] but using visible radiation. In this case, the 

plasmonic effect is used to promote light to heat conversion allowing the decomposition of different 

hydrides with visible light. To this aim, Au-nanoparticles were added to MgH2 nanoparticles and 

exposed under illumination at the Au-resonance frequency. Desorption and absorption process are 

enhanced due to the local increase of temperature (100 K) by plasmonic effect and partial 

decomposition of MgH2 is observed. Further improvements are needed to extend this effect for larger 

particles. 

Investigations of the effect of UV-radiation on MgH2 were performed by [338,339]. Unlike lower 

energy radiation, no light to thermal conversion is observed. Those works show the formation of 

MgH2 by applying UV-light on matrix-isolated Mg atoms under H2 atmosphere at low T (< 30K). 

Decomposition of magnesium hydride was also investigated using UV-light (0.3 W/cm
2
) onto MgH2 

powder at RT detecting a very small amount of hydrogen released (<0.1 %) because the effect is 

essentially circumscribed to the surface (creation of excited sites at the surface which energy transfer). 

A more extensive investigation is needed to overcome those problems. 
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Figure 31. MSGE from MgH2. (A) Emission rate (nanomol H2/s.) under different loads (0.21 N, 0.42 N, and 0.63 N).  

The inset shows slow desorption decay after the end of deformation. Lines are linear fit of the experimental data. (B) 

Evolution of the emission rate (H2 eq.) for 50 sliding cycles. Normal load 0.42 N [341]. 

 

Finally, mechanical bias is a technique that has been habitually applied to drive different reactions 

[340] i.e. tribochemistry. In particular, it was recently reported that H2 desorption was associated with 

tribochemical decomposition under mechanical micro-deformation of MgH2 [341]. The phenomenon 

was characterized in situ and in real time during deformation of MgH2 on the micrometric scale using 

a novel technique of Mechanical Stimulated Gas Emission (MSGE) spectrometry [341]. Results 

shows that MgH2 decomposition occurs by an instantaneous (t  s) non-thermal H-release at RT 

during mechanical treatment (Figure 31A and B). This process must provide a huge increase in the 

driving force to explain the release of hydrogen at such low temperatures, resembling thermal 

decomposition mediated by catalyst. Although some explanations have been offered to describe this 

non-thermal decomposition (triboelectric effects, hydrogen directly released in the molecular state), a 

full concept of the tribodesorption mechanism is challenging and is still under development.  

In summary, a wide variety of non-direct thermal desorption methods are starting to be investigated. 

All of them provide different formation/decomposition paths than usually tested by thermal methods 

and are worthy of investigation in the quest to overcome the well-known drawbacks for the use of Mg 

in hydrogen storage applications. 

CYCLING Mg AT ELEVATED TEMPERATURES 
Although the behaviour of Mg under elevated temperatures is well documented, the true nature of the 

dominant elementary processes occurring during cycling are not fully understood [342-344]. It is 

possible that the relatively low melting point of Mg, 650 
o
C, is an important contributing factor to the 

complex behaviour of Mg as sintering between individual particles has been observed to occur at 

elevated temperatures [345,346]. Past investigations have noted the occurrence of sintering as a 

barrier to its utilisation as a thermal storage medium as it leads to the formation of an expanding 

structure that may place additional stresses on the walls of reactors and impede the material kinetics 

[347,348], e.g., in Figure 32 a Mg structure formed during cycling through sintering has continued to 

grow out through 0.5 mm diameter holes in the Cu gaskets and expand up the 1/4” gas transfer 
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connection. Alternatively, it was speculated that a porous structure of this kind could potentially 

deliver a more stable thermal storage medium with enhanced kinetic and thermal properties. 

Consequently steps were taken to 1) optimise an activation process through which the highly porous 

structure could be reliably fabricated, 2) test the structure’s resilience to various cycling conditions 

and 3) characterise the structure’s thermal performance. 

 

Figure 32. Following 150 rapid cycles at 400 °C the Mg powder has sintered into porous structure growing through 0.5 mm 

diameter holes in a Cu gasket and e panding up the ¼” gas transfer tube. 

Optimisation of the activation process 
Initial fabrication of a continuous porous structure was achieved by 280 successive 30 min 

hydrogenations and dehydrogenations of a 0.2 g sample of ball milled MgH2 powder. The result of 

this rapid cycling process is shown in Figure 33 (a), where it can be seen that significant sintering has 

occurred and there is no loose powder remaining. Micrographs of a cross-section taken from the 

cylindrical sample reveal that there appears to be a high degree of porosity resulting in a continuous 

sponge like structure, Figure 33 (b).  Following a process of optimisation, it was found that, at a 

temperature of 400 °C and starting pressures of 40 bar and 0.1 bar, the number of successive cycles 

required to form the porous structure could be reduced to ca. 50. 
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Figure 33. a) Mg Powder activated and then fabricated into the continuous porous structure. b) A micrograph of a cross-

section of the cylindrical shaped sample shows that the porous structure at the surface continues through the sintered 

sample. 

Testing of the Storage Materials Resilience – Exposure to Air 
In order to investigate the effects of exposure to air, a sample of the fabricated porous structure was 

passivated in air for several weeks. Following re-activation at 400 °C and 40 bar H2, the maximum 

capacity of the sample after three hours of cycling was found to be 7.4 wt% H2, which is comparable 

to pre-passivation capacity of 7.5 wt% H. 

Characterisation of the Structures Thermal Performance 
The thermal conductivity under ambient conditions in air was measured for both ball milled powder 

and the fabricated porous structure as 0.1 and 0.6 Wm
–1

K
–1

 respectively. This improvement in thermal 

conductivity is due to the presence of the continuous structure formed by the sintering process, which 

significantly reduces the number of boundaries that heat encounters whilst passing through the 

material. The lower value of thermal conductivity obtained for the ball milled powder is due to the 

fact that it comprises numerous individual particles which leads to a higher degree of contact 

resistance and a lower rate of heat transfer. 

In conclusion, a method by which a continuous porous storage medium can be fabricated from 

inexpensive Mg powder without additional costly processing has been discovered and optimised. 

Through experimentation the continuous porous structure has been demonstrated to have a degree of 

handleability (can be exposed to air and the capacity does not degrade when stored in the metallic 

state for prolonged periods at elevated temperatures), and increased thermal conductivity (increased 

from ca. 0.1 to ca. 0.6 W m
–1

K
–1

). In the context of large scale thermal energy storage the 

improvements in handle-ability and thermal performance in comparison to other MH powders are 

valuable characteristics. 

MAGNESIUM COMPOUNDS FOR THERMAL ENERGY STORAGE 
Magnesium based hydrides have been under consideration as high temperature metal hydrides for 

energy storage applications since at least 1967 when Brookhaven National Laboratory suggested the 

use of Mg, Mg-5%Ni, or Mg2Ni in automotive applications [349]. The heat required to release 

hydrogen from these compounds is sequestered from the exhaust gas of the vehicle. Since this time, 

the use of these materials has been proposed for a number of applications including hydrogen storage, 

waste heat recovery and thermal batteries for concentrating solar thermal power (CSP) stations 

[20,349-352]. For application as thermal battery for CSP applications, the metal hydride must have a 

thermal efficiency greater than that of the molten salts currently employed in CSP plants. Currently 

molten salts are limited to a maximum operating temperature of 565 °C, at which point they 

decompose [350]. In addition, this technology uses sensible heat storage, which is 153 kJ kg
−1 

K
–1

 

[353]. Current targets for implementing metal hydrides as thermal batteries would require these 

thermo-chemical storage materials to operate at temperatures of > 600 °C. 

In the late 80’s, Bogdanović et al. began investigating MgH2 and Ni-doped Mg to determine their 

application as heat energy storage systems [352,354]. In 1995 a process steam generator was 

subsequently built containing 14.5 kg of MgH2 + 1 - 2 wt% Ni and cycled 1000 times [345]. Since 

then other Mg-based hydrides have been investigated as heat storage materials including Mg2NiH4, 
Mg2CoH5 and Mg2FeH6 of which have been shown to cycle in excess of 1000 times between a 

temperature range of 250 and 350 °C for Mg2NiH4 and up to 550 °C for the Fe and Co analogues 

[352,355,356].  

Recently, the Na2Mg2NiH6 hydride related to Mg2NiH4 has been studied as a thermal energy storage 

material with 10 cycles being conducted between 315 and 395 °C without any loss in capacity [357]. 

This material decomposes in two steps (Reactions (11),(12)) with only the first step being of use due 

to the evaporation of Na if NaH were to be decomposed. As a result, the practical reaction enthalpy 

ΔHdes of this material is 83 kJ/mol. H2, which is higher as compared to Mg2NiH4 (64 kJ/mol. H2) and 
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Mg2FeH6 (77 kJ/mol. H2) [31,358,328]. The main drawback towards technological application of 

Na2Mg2NiH6 (and Mg2NiH4) is the cost of the Ni constituting component and having to inhibit the 

decomposition of NaH by strict control of temperature and pressure during absorption and desorption 

of hydrogen [357]. This material has a theoretical operating temperature range of 318 - 568 °C (1 - 

150 bar H2) with a thermal storage capacity of 1042 kJ/kg. 

 Na2Mg2NiH6 ⟶Mg2NiHx + 2NaH + (2 - x)H2  (x < 0.3, > 2.15 wt% H2) (11) 

 2NaH ⟶ 2Na + H2    (1.27 wt% H2) (12) 

Besides the aforementioned materials, there is also a number of other Mg-based complex transition 

metal hydrides containing [NiH4]
4–

, [CoH5]
4–

 and [FeH6]
4–

 anions including LaMg2NiH7, Na2Mg2FeH8 

and Ca4Mg4Co3H19 [328]. To date, the decomposition temperature of most of these compounds has 

been determined although only a few have had their thermodynamic properties measured. These 

include LaMg2NiH7 (ΔHdes = 94 kJ/mol H2), YbMgNiH4 (ΔHdes = 111 kJ/mol H2), CaMgNiH4 (ΔHdes = 

129 kJ/mol H2), Na2Mg2FeH8 (ΔHdes = 95 kJ/mol H2), Ca4Mg4Fe3H22 (ΔHdes = 122 kJ/mol H2) and 

Ca4Mg4Fe3H22 (ΔHdes = 137 kJ/mol H2) [328]. There have also been a variety of theoretical studies 

carried out on this class of complex hydrides to determine their thermodynamic properties [359-361]. 

The large ΔHdes of these compounds would potentially allow them to be ideal thermal energy storage 

materials with operating temperatures well above the 565 °C maximum of molten salts currently 

employed in CSP plants [350]. Important requirements for metal hydrides in CSP plants are low costs 

of the materials, long-term cycle stability, a high reaction enthalpy and good heat conductivity for 

solar heat in- and output. Many of the thermodynamic properties of these compounds are still yet to 

be determined although cost of raw materials and the potential for multiple decomposition steps may 

hinder their technological application. A cheaper magnesium-based complex hydride is Mg(BH4)2, 

that releases hydrogen near 300 ºC [362-365] However, re-hydrogenation requires extreme pressure 

[366,367] or much lower temperatures so that it does not fully decompose to MgB2 [368,369]. As 

such, the re-hydrogenation pressure should be decreased and kinetics of Mg(BH4)2 must be improved 

if it is to be considered for technological applications. 

Despite sintering at above 450 °C [62], MgH2 (ΔHdes = –74 kJ/mol) [136] has continued to be of 

interest as a thermal energy storage material with a host of theoretical modelling studies being 

compiled towards the optimisation of containment vessels and conditions [370]. As discussed earlier 

in the paper, sintering results in the grain and particle growth, decreasing surface area and restricting 

the pathway for hydrogen to unreacted Mg. It is possible to reduce the effect of sintering by including 

a small quantity (a few wt%) of an impurity phase, such as Ni, Nb2O5 or TiB2 [354,371], which act to 

separate Mg grains from one another and restrict sintering. MgH2 mixed with exfoliated natural 

graphite (ENG) has been trialled as a thermal energy storage (TES) material in two laboratory 

prototype TES systems towards integration into CSP systems [129,372]. Super-critical H2O was 

employed as the heat transfer fluid which would bring heat to the system from the solar concentrators 

and also remove the heat from the system at low periods of solar irradiation in order to produce 

electricity [350]. A volumetric hydrogen source was used to store the hydrogen during the day cycle, 

whereas optimally and if cost effective, a low temperature hydride such as NaAlH4 would be used on 

a larger scale due to the greater volumetric hydrogen storage density of the metal hydride compared to 

high pressure gas storage [350,373-376]. These prototypes have shown the feasibility of using 

hydrogen in a large scale CSP plant although thermal management was shown to be difficult to 

manage on a small scale system (40 g of material) primarily due to radiative heat loss [129,372]. 

In contrast to MgH2 the ternary hydride Mg2FeH6 shows no sintering process also at temperatures up 

to 550 °C. One reason for this unusual behaviour might be a complete phase separation of Mg- and 

Fe-metal after the decomposition (13). 

 Mg2FeH6 ⇌ 2Mg + Fe + 3H2   (5.5 wt% H2) (13) 

Both metals are completely immiscible and produce no alloys at these temperatures. During the 

hydrogen uptake and release a complete reconstruction of the complex structure is carried out which 

prevents particle growth. This results in superior stable cycling properties also after 1000 cycles of re- 

and dehydrogenation. 
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The macroscopic description of the formation of this ternary hydride was discovered with an electron 

microscopy study [377]. MgH2 is formed initially with enhanced kinetics, because of the presence of 

Fe. This is followed by nucleation of Mg2FeH6 between MgH2 and Fe, which grows with columnar 

morphology. As the Mg2FeH6 columns grew, both the capping Fe-particles and the MgH2 are 

consumed. Even though this describes the production of Mg2FeH6 on a macroscopic scale, the 

processes on an atomic scale producing an octahedral [FeH6]
4–

 complex anion are still unclear.  

Recently, the use of Mg2FeH6 for heat storage at temperatures around 500 °C was demonstrated 

[355,356]. Heat transfer for the heat storage (dehydrogenation) and heat release process 

(hydrogenation) was done with molten salts. Thermal oils cannot be used at these high temperatures 

because of decomposition processes. The heat storage unit was performed using a tube bundle reactor 

with 13 tubes for the heat storage material. Molten salt flows around the tubes and supplies heat 

during the decomposition (heat storage) or takes up heat during the hydrogenation (heat release). The 

heat storage material was easily prepared by mixing Mg- and Fe-metal powder in a 2:1 stoichiometric 

ratio. Practically, the material can absorb up to 5 wt% of hydrogen with an equilibrium pressure of 30 

- 77 bar in a temperature range of 450 - 510 °C. An overall amount of 5 kg of Mg2FeH6 was used as 

the heat storage material. The storable heat is 2.7 kWh if a gravimetric hydrogen storage density of 5 

wt% H2 can be reached. In the original experiments only 1.5 to 1.6 kWh could be stored, because of 

heat losses and the non-optimal flow of the heat transfer fluid. The overall performance of the system 

should be optimized in a forthcoming project. 

NaMgH3 is another promising Mg-based material for high temperature thermal energy storage 

applications due to its ΔHdes of 87 kJ/mol H2 [378]. Its thermodynamic properties allow for an 

impressive theoretical operating temperature range of 382 - 683 °C (1 - 150 bar H2), with a theoretical 

thermal storage capacity of 1721 kJ/kg. The decomposition of this material occurs over 2 steps 

(Reactions (14),(15)) and as such the first step is only useful due to the evaporation of Na if the 

second step were to occur [379].   

 NaMgH3 ⟶ NaH + Mg + H2    (4 wt% H2) (14) 

 NaH ⟶ Na +1/2H2                 (2 wt% H2) (15) 

Recently, partial substitution of fluorine for hydrogen has been investigated to stabilise metal hydride 

compounds [373,380-381]. This is in contrast to using F
‒
 based compounds as an additive to 

destabilise metal hydride compounds [381-382]. Due to the comparable ionic size of the hydride and 

fluoride ions and the structural similarity of their compounds new metal hydrides based on known 

fluoride structures and hydride – fluoride solid solution systems have been explored 

[379,380,383,384]. The thermodynamics and cycling capabilities of NaMgH2F have shown a ΔHdes = 

97 kJ/mol H2, a significant increase when compared to pure NaMgH3 (87 kJ/mol H2) providing a 

theoretical thermal storage capacity of 1416 kJ/kg [373]. The decomposition pathway of this material 

is interesting, as below 478 °C a two-step pathway is observed, whereas a one-step pathway occurs 

above this temperature. Over 10 hydrogenation cycles of this material at 500 °C (1 bar desorption, 45 

bar absorption), there was a marked decrease in hydrogen capacity from 2.6 wt% H2 to ~0.8 wt% H2 

[376]. This is due to the formation of some Na and Mg rather than NaMgF3 as would be expected.  

The concept of producing hydride-fluoride solid solutions has also been extended to MgH2 with the 

formation of Mg(Hx-1Fx)2 (x = 0.95, 0.85, 0.7, 0.5) compounds [294]. Ball milling and annealing 

produces single phase solid-solutions and are shown to be thermodynamically stabilised by increasing 

F content, a result that is in accord with the analogous Na-H-F system [379]. In contrast, previous 

studies where MgF2 has been ball-milled and used as an additive have shown a destabilisation and 

increased kinetics [385]. The thermodynamics of the Mg(H0.85F0.15)2 system was determined by PCI 

measurements to be 73.6 ± 0.2 kJ/mol H2 and an entropy of 131.2 ± 0.2 J/K.mol H2 [294]. In 

comparison with MgH2, these values are decreased from 74.06 kJ/mol H2 (enthalpy) and an entropy of 

133.4 J/K.mol H2 [136]. The decrease in entropy is the key factor in the increased stability of the 

system. Cycling of this system has shown that this material can operate at ~80 °C higher than bulk 

MgH2.   
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Other Mg-based systems 
Porous Mg scaffolds have been synthesised to simultaneously act both as a confining framework and 

a reactive destabilizing agent for infiltrated metal hydrides [386]. The scaffolds were synthesised by 

sintering a pellet of NaMgH3 under dynamic vacuum. The pores were created by the removal of H2 

and Na vapour from the body of the pellet during sintering. The majority of the pores are in the range 

of macropores (> 50 nm) with only a small number of mesopores (2 – 50 nm) (Figure 34). LiBH4 was 

melt-infiltrated into the scaffold allowing for the formation of a small quantity of MgH2. Temperature 

Programmed Desorption (TPD) experiments, showed a H2 desorption onset temperature (Tdes) at 

100°C, which is 250 °C lower than bulk LiBH4 and 330 °C lower than the bulk 2LiBH4/MgH2 

composite. LiH that was formed during the decomposition of the LiBH4 was fully decomposed at 550 

°C. These novel Mg scaffolds formed from sintered NaMgH3 are a promising reactive containment 

vessel for metal hydrides for stationary or mobile applications.   

The potential in finding new multicomponent Mg containing intermetallic hydrides is far from being 

exhausted. One example is thermodynamically stable ternary LaMgPdH5 hydride formed at high, 66.7 

at % content of La+Mg [387] with high H content of 1.67 at.H/Me. Absorption-desorption isotherms, 

measured at 400 – 600 
o
C, show two distinct single plateau regions. Estimated enthalpy of hydride 

formation are around −130 kJ mol H2
–1

, significantly smaller than the corresponding value of about 

−208 kJ mol H2
–1

 for LaH2 formation. Vacuum Thermal Desorption Spectroscopy (TDS) of 

LaMgPdH5 shows presence of two major H release events with the peaks at 233 and at 510 
o
C (see 

Figure 35), both located at significantly lower temperatures than the desorption peaks of MgH2 (300 

°C) and LaH2 (800 
o
C) thus clearly showing a destabilization effect of Pd.  

 

     

 

Figure 34.  SEM micrographs of the as-prepared porous Mg scaffold with two different magnifications (a) low and (b) high 

magnification. 

 



54 
 

 
 

Figure 35. Vacuum Thermal Desorption Spectra of hydrogen from LaMgPdH5 measured at a heating rate of  2 °C/min 

SYSTEM DEVELOPMENT 
Magnesium based materials, as has been mentioned earlier, present an ideal combination of high 

capacity, straightforward reaction pathways and fast kinetics, provided the synthesis and the heat 

transfer necessary for their use are adequately carried out. It is this combination, as well as the long 

time over which the materials have been known and studied, that makes them excellent candidates for 

use in hydrogen or, in general, energy storage systems. 

In the past decades, several systems using Mg or its alloys/compounds have been developed. 

Importantly, they were technically very successful. The fact that they were not widely accepted for 

usage in their chosen fields was due more to economic factors than any deficiencies that could be said 

to be attached to the technology of these systems. 

As early as in the nineteen seventies, Mg was tried out as one of the hydrogen storage materials in a 

binary system to supply hydrogen to a vehicle [388]. In this case, a room temperature hydride was 

used to supply hydrogen to an internal combustion engine. However, the exhaust gases were not hot 

enough to achieve desorption in the magnesium hydride at lower power settings. This changed for the 

full-power operation, where the magnesium hydride provided the hydrogen to operate the vehicle. 

This concept was shown to work in practice; however, the lowering of oil prices during the late 

seventies and early eighties seemingly led the company in question to abandon development of 

hydrogen-powered vehicles as a viable alternative to petrol- and diesel-powered ones. Only years 

later, with the resurgence of fuel cells, was hydrogen as a power source for vehicles considered in 

earnest again. 

Despite intensive activity in the development of metal hydride hydrogen storage systems, most of 

them use “low-temperature” AB5 and AB2 intermetallic hydrides [389] with much lower storage 

capacities than MgH2. Only a few publications considered development of H storage systems where 

“high-temperature” Mg-based H storage materials were used. The reason for that is the high operating 

temperatures (≥300 °C) which, together with high amount of heat required for H2 desorption from 

MgH2, cause a high energy consumption for the operation of Mg-based hydrogen storage units. In 
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addition, the high operating temperatures pose certain limitations on the material of containment 

(usually, only steels can withstand so high temperatures) that, in turn, results in the decrease of 

gravimetric hydrogen storage density at the system level [390], as well as increased cost. 

Nevertheless, magnesium hydride was the candidate of choice for a number of other applications, 

mostly related to “medium”-temperature (300–450 °C) heat management including thermal energy 

storage (see previous chapter). A solar power station with thermochemical Mg / MgH2 energy store 

was developed by Groll et al in 1994 [391]. In 1995, Bogdanović et al. designed and built a process 

steam generator based on MgH2 [345]. Both units used the Mg / MgH2 H storage material: Ni-doped 

Mg hydrogenated in THF in the presence of MgCl2 as a co-catalyst; the material’s H storage capacity 

reached up to 7 wt% [80].  

The schematic layout of the MgH2 tank for the steam generator reported in [345] is presented in 

Figure 36 (left). The unit (19.4 dm
3
 in the volume, empty weight 26 kg, MH load 14.5 kg, ~1 kg H / 

10 kWh hydrogen / heat storage capacity) had the weight hydrogen storage efficiency (the ratio of 

weight H storage capacity of the material to the one for the system as a whole) of ~35%, which is 

lower than the typical values for H storage units using heavier “low-temperature” MH (50–60% 

[392]). The operation cycle of the unit coupled with a “low-temperature” MH container included H2 

charge and discharge at P=20–40 bar and T=350–450 
o
C during ~2 hours. The unit successfully 

operated for 1.5 years, and then it was opened for inspection, see Figure 36 (right). As it can be seen, 

during operation, the H storage material had sintered forming a ductile, porous, chalk-like mass. 

Although it was reported that the sintering had no influence on the H storage capacity of MH bed and 

its reaction kinetics, the practical usage of Mg-based H storage materials can nevertheless be 

challenging, as it requires careful temperature control to avoid overheating. On the other hand, as it 

was noted in [345], the sintering improved heat transfer performance of the MH bed. 

  

Figure 36. Left: layout of MgH2 tank for a process steam generator. Right: The tank opened after 1.5 years of operation 

[345]. 

Considering the examples presented above, we can conclude that magnesium hydride and its related 

compounds seem to be promising for heat storage and heat management applications. Recently, the 

authors (ML, VAY) presented a concept of combined cooling, heating and power system utilising 

solar power and based on reversible solid oxide fuel cell (R-SOFC) and metal hydrides [393]. The 

work considered utilisation of waste heat losses (T~600 °C) released during the operation of R-SOFC 

using three types of metal hydride based system components: (i) MH hydrogen and heat storage 

system (MHHS) on the basis of magnesium hydride; (ii) MH hydrogen compressor (MHHC) on the 

basis of AB5-type hydrogen storage intermetallic compound; and (iii) compressor-driven MH heat 
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pump (MHHP) on the basis of multi-component AB2-type hydrogen storage alloy. The MH-assisted 

production of the useful heating and cooling leads to an improvement of 36% in round-trip energy 

efficiency as compared to that of a stand-alone R-SOFC. 

The quest for a magnesium hydride-based system to be used in vehicular (and other) applications is, 

however, still ongoing. One creative approach in this area is presented in [348,394,395], with a tank 

based on magnesium hydride operating together with a starter tank based on room temperature 

hydrides. Later, a similar system was proposed where a lithium amide and magnesium hydride were 

used in the main storage system instead of MgH2 alone. In the latter case, the realized double-hydride 

concept allows the operation of a high-temperature hydride starting from room temperature [396,397].  

Large scale hydrogen storage systems based on the use of magnesium hydride have been developed 

by the company McPhy and have a potential to be commercially deployed as offering a mature 

operation [398]. In these systems, large diameter tank tubes are filled with the H storage material 

assembled as a stack of a mechanically stable (on cycling) pellets used instead of the powder as in 

most of the metal hydride tanks. The scientific foundation for this approach was laid at CNRS [399-

403]. 

The MH material used in the McPhy’s hydrogen storage tanks (storage capacity 8 kg H2 in the 

standard configuration [398]) is a composite containing MgH2 powder ball-milled with 4 at% of Ti–

V–Cr alloy and further compacted with ~5 wt% of expanded natural graphite (ENG) at a pressure ~ 

200 MPa [399]. Apart from an increase in the filling density of the MH material in the containment 

resulting in an increase of hydrogen storage efficiency and improvement of effective thermal 

conductivity of the MH bed, the MgH2–ENG compacts are not flammable when exposed to open air 

(see Figure 37) thus providing exceptional safety during assembling the MH tanks and eliminating a 

possibility of the accidents (rupture of the containment) during their operation. 

A complementary feature of the McPhy’s hydrogen storage tanks based on MgH2 is in the storage of 

the heat of hydrogenation / dehydrogenation reaction by using a phase-change material (PCM) based 

on Mg–Zn eutectic alloy as a heat transfer medium [403]. The use of latent heat of solidification of 

the PCM allows mitigation of the problem of too high energy consumption for H2 release from MgH2 

(more than 30% of the lower heating value of hydrogen).  

 

 

Figure 37. Fire testing of McPhy’s MgH2 composite. No explosion or fire propagation observed during one minute long test. 

The video is available at https://www.youtube.com/watch?v=RohMt2-UKQI  

In conclusion, the large variety of Mg-based materials that have been explored as thermal energy 

storage materials indicate that sintering of the Mg is unavoidable at high temperatures. The use of 

https://www.youtube.com/watch?v=RohMt2-UKQI
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additives including TiB2, which act as particle reducing agents, are effective but do not eradicate the 

problem [371], although this problem has not appeared to have inhibited Mg2FeH6, which has been 

shown to operate effectively at ~550 °C for at least 1000 cycles [352]. This generally limits Mg-based 

compounds to operate at a maximum operating temperature of ~450 °C in order to prolong the life 

time of these compounds. In terms of industrial application as thermal energy storage materials, Mg-

based compounds are likely to find a market in the medium temperature range (230 – 650 °C) [404]. 

This would provide application potential for thermally regenerative electrochemical systems, 

industrial waste heat recovery or preheating applications. 

While a great deal of research has been published on Mg-based compounds, many materials have yet 

to be characterised, such as complexes containing [NiH4]
4–

, [CoH5]
4–

 and [FeH6]
4–

 anions [328,359]. 

For the few that have been identified by practical and theoretical studies, their cycling and 

thermodynamic properties are still largely unknown.  

The story told by the developments described above shows that, while magnesium-based materials 

have a long and technically successful history in the field of hydrogen (and energy) storage, it has 

been also a challenging one, especially when seen from the perspective of a fruitful commercialization 

into the products required by the consumers. It seems that in the future, these materials will play an 

increasingly important role, first in applications like heat storage, but hopefully also in transportation. 

SUMMARY, OUTLOOK AND FUTURE PROSPECTS 
The present review article summarises the work done in the recent years by the participants of the IEA 

Task 32 “Hydrogen Based Energy Storage” and their collaborating institutions. 19 research units from 

Australia, China, Denmark, France, Germany, Japan, Italy, Israel, Netherlands, Norway, Russia, 

South Africa, Spain and United Kingdom shared their expertise and results in the topic Magnesium 

hydride based materials for hydrogen based energy storage. Significant if not all the activities are 

based on collaborations between two and more research groups on a particular topic. This resulted in a 

high impact of the group on the work in the area of solid state hydrogen storage in total. 

The present paper covers a broad variety of topics of fundamental and applied studies of Mg-H based 

systems, covering fundamental properties of MgH2-based systems, historical overview of the 

activities, and a review of the ongoing experimental and theoretical studies. The latter include 

nanostructured MgH2, kinetics, thermodynamics and catalysis of the Mg based hydrides, 

mechanochemistry, reactive ball milling, metallurgy, composite materials, further to the novel 

experimental characterisation techniques, novel procession techniques to influence and tailor 

properties of the hydride systems and theoretical and experimental studies of Mg-H system at high 

pressures. Finally, applied oriented properties, including cycling of hydrogen charge and discharge, 

storage of thermal energy are considered and reviewed aimed at large scale applications of MgH2. 

The research field remains very dynamic with prospects of wide-scale future implementation subject 

to developments in key areas. These key areas guide current and future research towards solving 

specific issues. 

The main problem of applied oriented work on magnesium hydride remains in addressing three main 

problems;  

(a) How to decrease thermodynamic stability of MgH2; 

(b) How to achieve fast kinetics of hydrogen absorption and desorption; 

(c) How to extend the cycle life and life time to build and utilise efficient systems for 

hydrogen and thermal storage. 

Various complementary approaches can be used and the proposals and expectations of their use are 

summarized below. 

Fundamenal studies: thermodynamics, kinetics, properties under special conditions (high pressures, 

when influenced by interfaces): 
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Future activities may be focused on the determination of the free energy difference    for the 

interfaces between Mg-based nanoparticles and porous scaffolds or carbon-based materials, on the 

modelling of the interface entropy     and on the experimental / theoretical identification of other 

phases, beyond TiH2, able to maximize    and   . In addition, there is a need for synthetic 

methodologies able to enhance the     ratio while keeping a high Mg weight fraction in the material. 

Thus, mechano-chemical treatment offers a wide range of different reaction conditions, which 

facilitate different types of chemical reactions and nanostructuring. The future developments within 

this field are expected to provide new experimental options for materials treatment. This will likely 

lead to new materials with a range interesting properties 

Mechanical treatment is a generally accepted strategy for nano structuring hydrogen storage materials. 

This approach is well established, efficient and can be used under a variety of different conditions. 

Traditionally, solid-solid reactions were conducted under ambient pressure and temperatures, 

including frictional heating. Varying ball-to-powder ratio, time and intensity of the mechano-chemical 

treatment have a range of effects, such as reducing particle size, nanostructuring, e.g. grain-boundary 

formation. Chemical reactions may take place, which can produce new stoichiometric compounds or 

solid solutions. The latter is a typical reaction among metals, known as alloying. In all these cases 

mechano-chemical treatment has a significant influence on hydrogen release and uptake properties. 

Reactive mechano-chemistry is conducted in a gas atmosphere with elevated pressure or a using a 

liquid phase. Under such conditions other types of reactions may take place, e.g. solid-gas or solid-

liquid reactions. Hydrogen gas is an efficient one-pot synthesis method to obtain catalyzed 

magnesium hydride in nanostructured state. The screening of catalytic additives for improving 

sorption properties of MgH2 remains of vivid interest for future research. All sort of additives can be 

attempted by this technique. Moreover, this method can be extended to the synthesis of Mg-

containing hydride materials such as novel complex hydrides (e.g. Li3MgN2Hx [250]) and reactive 

hydride composites.  

Catalytic additives can affect the hydrogenation properties of Mg and Mg-based alloys indirectly, by 

changing the locations of hydride nucleation, and the anisotropy of hydride growth. Thus, 

understanding the microstructure evolution of the two-phase Mg-MgH2 alloy in the course of 

hydrogen absorption/desorption is a key to improving the hydrogenation kinetics and thermal 

conductivity of the alloy. Improving the thermodynamic properties of MgH2 turned out to be much 

more difficult task than improving the hydrogenation kinetics of Mg. Most attempts to increase the 

plateau pressure of the Mg – MgH2 equilibrium by nanostructuring and strain engineering did not bear 

practical fruit. In this respect the most promising approach seems to be hydride destabilization by 

formation of intermetallic phases and solid solutions [219]. Since most of the binary and even ternary 

Mg-based alloys have already been tried, the key here is in multicomponent alloying of Mg, in the 

hope to cause a synergetic effect on parameters of two-phase metal-hydride equilibrium. In this 

respect, employing the CALPHAD and DFT approaches for modelling the effect of alloying on the 

thermodynamics of the system, and identifying the most promising combinations of alloying additives 

for further experimental studies is very promising. 

While the effect of various additives or catalysts on MgH2 has been profound, dramatically increasing 

the rates of hydrogen absorption and desorption, far less is known about the mechanisms by which the 

additives work. As described above, Nb2O5, one of the best additives, is believed to form a ternary 

Mg-Nb oxide which facilitates transport of hydrogen. But this mechanism does not work for the 

equally effective results of Titanium Isopropoxide [278], nor does it explain the kinetic enhancement 

of MgO additive [120] which is otherwise expected to reduce hydrogen diffusion. A better 

understanding of the mechanisms by which these kinetic enhancing additives work might guide the 

development of better materials. It has also been found that some additives are more effective for 

desorption than absorption and vice versa, suggesting that combinations of additives may be 

advantageous [16]. 

So far as high-pressure modifications of magnesium dihydride are concerned, the synthesis of massive 

single-phase samples of γ-MgH2 achieved in the present work opens a good perspective of studying 

its lattice dynamics by inelastic neutron scattering. A few years ago [405], an INS investigation of the 
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low-pressure α-MgH2 phase made it possible for the first time to experimentally construct its density 

g(E) of phonon states and further use it to accurately calculate the temperature dependence of the heat 

capacity CP, which nearly coincided with that determined earlier [406] in a wide temperature interval 

from 300 to 2000 K. A similar INS investigation of γ-MgH2 would give its g(E) and CP(T). The 

dependences CP(T) for the α and γ dihydrides would give temperature dependences of their Gibbs free 

energies, and the balance between these energies would determine the line of the α↔γ equilibrium in 

the T–P diagram of MgH2. If the work is a success, this will be the first equilibrium line ever 

determined for two modifications of any substance on the basis of the experimental spectra of phonon 

density of states. 

From the computational point of view, more theoretical developments are still needed, e.g. phonon 

calculations using softer functionals also including the anharmonic contributions. 

Applications: 

Cyclic hydriding and dehydriding at varing pressure, temperature and time can expand magnesium to 

form a porous 3-D structure confined in the space of the vessel. This offers potential to enable good 

thermal contact between the hydride bed and the vessel walls and any internal structure. Good thermal 

conductivity paths are crucial to effective thermal management of Mg hydride beds both for hydrogen 

stores and thermal stores operating at elevated temperatures typically above 300 ˚C, for example 

energy scavenging devices of low grade heat from large plant. The 3-D porous structures also have 

the added benefit of safer handle-ability, such as for maintenance or decommissioning. 

Mg2FeH6 is an ideal Mg based material for heat storage applications in the 500 – 600 C range and 

future work will be done on this material to optimise it for applications in this temperature range. For 

thermal energy storage materials to operate at T > 600 C, it is most likely that materials containing 

Mg will not be used due to the low vaporisation temperature of Mg, and hence loss of Mg at T > 600 

C. If Mg is used at T > 600 C encapsulation is required to inhibit Mg vaporisation. It is therefore 

more likely that for applications requiring T > 600 C Ca based materials will be used as TES 

materials.  

In the near future, it is to be expected that the increase in use of concentrating solar power will bring 

with it the need for massive heat storage. Since Mg-based materials are singularly well suited to this, 

they can be expected to be produced in quantity at low cost for this application. Regarding other uses, 

the acceptability of high operational temperatures will be key in the implementation of these 

materials. Where such high temperatures are no obstacle (mainly in industrial processes such as the 

steel, hydrocarbon and chemical industries, but also other large-scale applications), Mg-based 

materials could be the materials of choice due mainly to their low prices and excellent availability, 

among the other qualities mentioned above. 

Novel characterisation techniques: 

A wide range of well-known characterization techniques (X-ray and neutron diffraction,  Raman and 

visible spectroscopy , scanning and transmision microscopy, thermal gravimetry, differential scanning 

calorimerry, mass spectrometry, Sieverts systems..etc)  are habitually used by the hydrogen 

community to determine the structural, compositional as well as thermodynamic and kinetic 

properties of bulk Mg-based compounds and their respective hydrides. In the next future, those 

techniques will be still used but they will be frequently complemented by those focused on nanoscale 

characterization i.e. high resolution microscopies and “in situ” operando techniques that are able to 

provide direct information about the hydrogenation and dehydrogenation process at moderate 

temperatures and pressures i.e. µ-Raman, environmental TEM and XPS. The increasing spread of 

those techniques will hopefully provide a closer understanding of magnesium hydride phenomenology 

and, therefore, an improvement of their hydrogen related properties. 

 

CONCLUSIONS 
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Here we review an exciting research field of magnesium-based materials, including a great variety of 

alloys, compounds and composites. This is expected to bring inspiration to new important 

developments and excitements for the years ahead resulting in important applications. This review 

contains a broad variety of topics of fundamental and applied studies of magnesium based systems 

and a review of the fronties of both experimental and theoretical research, including nanostructuring, 

kinetics, thermodynamics and catalysis of magnesium and the hydrides. Metallurgy, composite 

materials, advanced experimental characterisation techniques, novel procession techniques to 

influence and tailor properties towards large scale applications of MgH2 are presented. The review 

also includes a historical overview of early developments within the research field mainly driven by 

development of solid state hydrogen storage. Currently, magnesium-based materials attract much 

attention for storage of concentrated solar heat with much higher energy densities than traditional 

phase change materials. The thermodynamic dynamic properties and high abundancy provide a 

potential for development of large scale heat storage systems. In future, novel types of magnesium 

batteries may replace the currently very successful lithium batteries. These Mg-batteries have a 

potential in reaching much higher energy densities as compared to current standards and also become 

safer. This clearly highlights the relevance of continuing research and developments within the area of 

magnesium based materials.  
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Figure 1.  

Number of articles published during the last years 2000-2017 having “hydrogen storage” and the 

“name” of the respective compound in the title, abstract and keyword fields of the publication. 

Source: Scopus. 

Figure 2.  

Pressure – composition isotherms (H desorption) for systems of H2 gas with: 1 – Mg-based 

nanocomposite, T=300 °C [41]; 2 – Mg2Ni, T=300 °C [41]; 3 – Mg – Ni – Mm eutectic alloy , T=300 

°C [42];  4 – MmNi4.9Sn0.1, T=22 °C [41]. Mm is lanthanum rich mischmetal. 

 

Figure 3.  

Hydrogen absorption by magnesium and magnesium-based alloys / composites. The legend 

describing compositions and hydrogenation conditions of the samples is presented in Table 2. 

 

Figure 4.  

Phase equilibria in H – Mg system: Top (a) – pressure – composition isotherms [75]; Bottom: phase 

diagrams at 1 bar (b) and 250 bar (c) [85]. 

Figure 5.  

Influence of different micro-nanostructures and additives on H-desorption activation energy of MgH2 

[45,116,117]. 

Figure 6.  

Compilation of van ‘t Hoff plots calculated from     and     data for Mg-based nanomaterials 

confronted to bulk Mg (curve a from [75]). The black dash-dotted line is the low temperature 

extrapolation of bulk Mg data. The data in the legend denote the corresponding absolute values of 

    (left, in kJ/mol H2) and     (right, in J/K mol H2). The number of symbols represent how many 

points were actually measured and the temperatures of the measurements. Empty symbols denote 

absorption pressures     , filled symbols equilibrium pressures    . b: 2-7 nm Mg nanocrystallites in 
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LiCl matrix [136]. c: < 3 nm Mg NPs in carbon scaffold [134]. d: 15 nm Mg NPs by electroless 

reduction [135]. e: MgH2-TiH2 composite NPs, 10-20 nm in diameter (6-30 at.% Ti) [125]. f: MgH2-

TiH2 ball-milled nanocomposite (30 at.% Ti) [114]. g: Mg/Ti/Pd nanodots on silica, diameter 60 nm: 

here,      and      are also plotted separately using empty and crossed symbols, respectively, to 

highlight the strong pressure hysteresis; the reported enthalpy-entropy values were calculated from 

    data [137]. h: Mg-Ti-H NPs, 12 nm in diameter (30 at.% Ti) [140]. i: Magnesium-

naphtalocyanine nanocomposite with Mg NPs of about 4 nm supported on TTBNc [138]. j: ultra-thin 

(2 nm) Mg film sandwiched between TiH2 layers [131]. The inset represents a zoomed view of the 

high-temperature region using the same symbols and units as for the main plot. 

Figure 7. 

a) Hydrogenation and b) dehydrogenation of (Ni)-MgH2-graphene nanocomposites at 200 
o
C, 

including ball-milled MgH2 (BM MgH2) and ball-milled MgH2 /GR composite (BM MgH2 /GR) for 

comparison. c) Hydrogenation and d) dehydrogenation of Ni-conMHGH-75 at various temperatures. 

Hydrogenation was measured under 30 atm hydrogen pressure and dehydrogenation under 0.01 

atm.[163] 75wt% 5-6 nm (from TEM) MgH2 on graphene. Mind that even at room temperature there 

is appreciable hydrogen absorption. The capacity retention was over 98.4% after 30 full cycles.  

Figure 8.  

Hydrogenation of Mg during its ball milling in H2. 

Figure 9.  

Mechanochemistry of Mg powder under hydrogen and deuterium gas. a) In-situ hydrogen uptake 

curves as a function of milling time tm, b) In-situ absorption rate (derivative curves of Figure 9a) 

Figure 10.  

Mechanochemistry of Mg under hydrogen gas using several transition metals TM as additives. a) In-

situ absorption rate with LTM = Fe, Co and Ni (atomic ratio Mg/LTM = 2), b) In-situ absorption rate 

with ETM = Ti for different titanium contents y. 

Figure 11. 

 Schematic of hydriding/dehydriding reaction in MgH2–GNS composite, and hydrogen desorption 

curves of the sample at 300 C: (a) MgH2–5GNS-20 h, (b) MgH2–5GNS-15 h, (c) MgH2–5GNS-10 h, 

(d) MgH2–5GNS-5 h, (e) MgH2–5GNS-1 h, and (f) MgH2–20 h [256]. 

Figure 12.  

TEM image, dehydrogenation kinetic curves, and reversible H2 absorption (under 3 MPa H2) and 

desorption (under 0.001 MPa H2) of Ni catalyzed 75 wt% MgH2 [163]. 

Figure 13.  

Reversible hydrogen storage capacity of HRBM MgH2–TiH2 at T=350 °C. The values in brackets 

specify the capacity losses throughout the cycling. The insets show elemental maps of Mg in the 

cycled composites clearly indicating its grain refinement in the graphite-modified material [67]. 

Figure 14.  

Scanning Transmission Electron Microscopy (STEM) High Angle Annular Dark Field (HAADF) 

micrographs of MWCNTs segments/carbon nanoparticles (marked by the circles) located in close 

proximity to each other and forming a "chain" within Mg grains. Arrows point on grain boundary in 

Mg, indicating that carbon nanoparticles are located inside the Mg grains rather than along the grain 

boundaries. The sample was prepared by co-milling of Mg powder with 2 wt% MWCNTs in the 
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Pulverisette - 7 planetary micro mill in hexane  for 4 h at 800 rpm using the stainless steel balls of 10 

mm in diameter. BTP ratio was 20:1 [273]. 

Figure 15.  

Backscattered electrons (BSE) scanning electron microscopy micrographs of the pellets hydrogenated 

to 80-90% of maximum theoretical hydrogen storage capacity (a,b- Mg pellet;  c,d- Mg-2wt% 

MWCNTs, and e,f- Mg-2wt% Fe). The view plane is perpendicular to the compression axis. (a)-

Circles mark individual unimpinged isotropic MgH2 nuclei. Arrows point on impinged MgH2 nuclei 

forming wavy Mg/MgH2 interface. (b) Lower magnification micrograph showing the isolated pockets 

of unreacted Mg surrounded by the MgH2 phase. (c) Elongated anisotropic MgH2 nuclei (marked by 

the circle), (d) Micrograph showing the developed Mg network along the sample. (e) Symmetrical 

MgH2 nucleus formed next to the Fe particle. (f) Increased number of hydride nucleation sites results 

in smaller size of metallic Mg islands in comparison with the reference Mg pellet [273]. 

Figure 16.  

Time-resolved X-ray scattering data for MgH2-Nb heated to 310 °C. (a) Gray-scale contour plot of the 

X-ray scattering where intensity increases with lighter tones, (b) temperature profile [277]. 

Figure 17.  

Schematic for the catalytic mechanism of muti-valence Ti doped MgH2 [279] 

Figure 18.  

Left: TEM images of the microstructure of the partially dehydrogenated MgH2-CeH2.73-Ni 

nanocomposites demonstrate the catalyst effect of CeH2.73 and Ni on MgH2 dehydrogenation process. 

(a) Bright field image and (b) selected area diffraction patterns of MgH2 (zone axis [011 ]).  Right: 

Evolution of the maximum hydrogen sorption capacities versus cycle times of MgH2-CeH2.73-Ni 

composite. [286] 

Figure 19.  

Schematic illustration and TEM image showing the enhanced hydrogen release at the interface of 

CeH2.73/CeO2 [287]. 

Figure 20.  

Hydrogen absorption kinetics of (a) MgH2 + 4 mol.% TiF3; (b) MgH2 + 4 mol.% TiCl3. [295]. 

Figure 21.  

Left: Evolution of Ti 2p and F 1s photoelectron lines for the dehydrogenated MgH2 + 4 mol.% TiF3 

sample as a function of sputtering time; Right: Evolution of Cl 2s and Cl 2p photoelectron lines for 

the dehydrogenated MgH2 + 4 mol.% TiCl3 sample as a function of sputtering time. [295] 

Figure 22.  

Calculated driving forces for hydrogen absorption/desorption in Mg as a function of temperature and 

pressure. Lines connect constant values, as indicated in kJ mol
−1

H2. Thick continuous line corresponds 

to equilibrium conditions. 

Figure 23.  

Critical radius for various values of P. Continuous line: 1 bar; dotted line: 5 bar; dashed line: 10 bar; 

dot-dashed line: 20 bar. 
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Figure 24.  

Phase diagram of MgH2 near the α↔γ equilibrium line. 1 – α transformed to γ; 2 – α did not transform 

to γ; 3 – γ transformed to α; 4 – γ did not transform to α. The other symbols show literature data 

(Bastide [26], Bortz [303], Morivaki [29], Vajeeston [28], Moser [304]). 

Figure 25. 

 Crystal structure of the 3 polymorphic forms of MgH2: TiO2, PbO2 and FeS2. Mg and H 

atoms are in grey and blue respectively. 

Figure 26. 

 Electron Localization Function (ELF) of MgH2 in TiO2, PbO2 and FeS2 forms in the plane 

containing the triangular H interstitial site. Warm colours indicate a localized valence electron region 

(high probability), whereas the cold colours shows electron-gas like region (low probability). 

Figure 27.  

Cell volume as a function of pressure (a) and temperature (b). 

Figure 28.  

Gibbs energy as a function of pressure at 650 K. The phase transitions are shown with vertical dotted 

lines. 

Figure 29.  

P-T phase diagram of MgH2 according to model (continuous lines), compared with literature data 

(Bor99 [303], Vaj06 [28], Mos10 [327], Mos11 [304], AlM18 [321]). 

Figure 30.  

The crystal structure of Mg2(FeH6)0.5(CoH5)0.5 determined from Rietveld refinements of powder 

neutron and X-ray diffraction data. Mg yellow, Fe/Co green and H/D atoms  - red dots  in corners of 

the octahedra (D used for neutron diffraction). 

Figure 31.  

 

MSGE from MgH2. (A) Emission rate (nanomol H2/s.) under different loads (0.21 N, 0.42 N, and 0.63 

N). The inset shows slow desorption decay after the end of deformation. Lines are linear fit of the 

experimental data. (B) Evolution of the emission rate (H2 eq.) for 50 sliding cycles. Normal load 0.42 

N [341]. 

 

Figure 32.  

Following 150 rapid cycles at 400 °C the Mg powder has sintered into porous structure growing 

through 0.5 mm diameter holes in a Cu gasket and expanding up the ¼” gas transfer tube. 

Figure 33. 

 a) Mg Powder activated and then fabricated into the continuous porous structure. b) A micrograph of 

a cross-section of the cylindrical shaped sample shows that the porous structure at the surface 

continues through the sintered sample. 
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Figure 34.  

 SEM micrographs of the as-prepared porous Mg scaffold with two different magnifications (a) low 

and (b) high magnification. 

Figure 35.  

Vacuum Thermal Desorption Spectra of hydrogen from LaMgPdH5 measured at a heating rate of  2 

°C/min 

Figure 36.  

Left: layout of MgH2 tank for a process steam generator. Right: The tank opened after 1.5 years of 

operation [345]. 

Figure 37.  

Fire testing of McPhy’s MgH2 composite. No explosion or fire propagation observed during one 

minute long test. The video is available at https://www.youtube.com/watch?v=RohMt2-UKQI  

 

 

 

https://www.youtube.com/watch?v=RohMt2-UKQI


Table 1.  

Qualitative analysis of main criteria of solid hydrogen storage families according to DOE 2020 targets for on-board applications. 

(Color code: Red = deficient ; Yellow = Fair ; Green =  Good) 

 

 

 

Compound 

families 

Gravimetric 

capacity 

Volumetric 

capacity 

Minimum and maximum 

delivery temperature 

Absorption / 

desorption rates 

Toxicity , 

abundancy 

Metallic hydrides 

(AB2, AB5..)      
Magnesium hydride 

and alloys      
Complex hydrides 

(alanates, 

borohydrides) 
     

Chemical hydrides 

(amides, 

aminoboranes..) 
     

Adsorbent 

materials 

(nanocarbon, 

MOFS) 
     

Table1



Table 2.  

Sample compositions and hydrogenation conditions for hydrogen absorption curves presented in Figure 3 

Curve 

#  

Sample composition Hydrogenation 

conditions 

Notes 

Components Phases T, °C P, bar 

1 Mg Mg 410 40 

2 Mg Mg 410 40 H2 with the 

admixture of CCl4 

(~2%) 

3 Mg0.99In0.01 Mg (solid solution) 270 80 Alloy 

4 Mg 94.11 

Zn 4.01 

La 1.24 

Cd 0.52 

Zr 0.12 

(wt%) 

Mg (solid solution) 

Traces of intermetallic phases 

340 30 Industrial Mg alloy 

5 Mg 80 

LaNi5 20 

(wt%) 

Mg + LaNi5 345 30 Compacted mixture 

of powdered Mg and 

LaNi5 

6 REMg12 

(RE = La, Ce) 

REMg12 (starting alloy and product of 

vacuum heating at T>450 °C) 

MgH2+REH3 (hydride) 

Mg + REH2 (dehydrogenated sample) 

325 30 Alloys 

7 Mg75Y6Ni19 Mg+Mg2Ni+YNi2 (starting alloy) 

MgH2+Mg2NiH4+YH2 (hydride) 

200 30 
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Table 3. 

 

Process parameters of hydrogenation of Mg during its ball milling in H2 (Figure 8) 

 

Curve 

# 

H2 pressure 

[bar] 

Type of ball mill Milling parameters Catalyst Ref 

1a 200 Low-energy (rotating 

autoclave) 

150 rpm, BPR~20:1 

Heating to 350–400°C 

None [44] 

1b I2 (0.7%) 

2 30 Planetary 500 rpm, BPR=80:1 None [170] 

3 300 Planetary 400 rpm; BPR=50:1 TiH2 (10 mol%) [185] 

4a 5 Planetary 300 rpm, BPR=60:1 5.5–6 wt%Zn, 

0.4–0.5 wt%Zr 

(commercial Mg 

alloy) 

[223] 

4b 5 400 rpm, BPR=60:1 

4c 10 400 rpm, BPR=60:1 

4d 5 400 rpm, BPR=120:1 

5a 80 Planetary 400-800 rpm, BPR=60:1 None [114] 

5b Ti (30 mol%) 

6 20 Planetary 500 rpm, BPR=40:1 Ti (25 mol%) [67] 
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Table 4. 

 Crystallographic description and calculated heat of formation of the 3 polymorphic forms of MgH2. 

Prototype Space group Pearson 

symbol 
Hfor  

(kJ/mol-fu) 

ZPE Hfor
corrected 

(kJ/mol-fu) 

TiO2 P42/mnm (136) tP6 -52.1 9.8 -42.3 

PbO2 Pbcn (60) oP12 -52.0 9.8 -42.1 

FeS2 Pa-3 (205) cP12 -43.1 9.4 -33.7 
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Table 5. 

 Calculated phase transition pressure at ambient temperature. 

Phases transition P (Pa) present work Other calculations 

TiO2 / PbO2 2.1109 0.39109 [320] 

1.2109 [325] 

6.1109 [304] 

2.4109 [321] 

PbO2 / FeS2 1.61010 3.9109 [320] 

9.7109 [325] 

7.1109 [304] 
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1 
 

Table 6. 

 Bulk modulus at room temperature and pressure calculated from our model and measured experimentally. 

Prototype B (Pa) present work B (Pa) experimental Ref 

TiO2 4.31010 4.30.21010 [325] 

 4.91010 (MgD2) [326] 

PbO2 4.31010 4.40.21010 [325] 

FeS2 4.71010 4.70.41010 [325] 
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