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Abstract

This paper presents simple design methods of interval observers for discrete-time linear switched
systems in the presence of output noise and system perturbation. The interval observers are
designed using the internal positivity of the system without need to a coordinate transformation.
This approach is proposed for arbitrary switching signals and it can be generalized to dwell-time
switching rules. The observation gain that guarantees both stability and positivity of the interval
estimate errors is synthesized by solving a Linear Matrix Inequality (LMI) feasibility problem.
The theoretical result is supported by numerical simulations.
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1. Introduction

In many engineering areas, state estimation for dynamical systems in the presence of system
uncertainties (modeling error, state disturbance and measurement noise) is a fundamental and
challenging problem. Theoretically, from the available data of the systems’ inputs and outputs,
observers have the ability to reconstruct the unknown internal state of these systems. However,5

in practice, the accuracy of the estimated state depends mainly on the quality of the models used
to design state observers and the precision of the available data. In the case of linear systems,
under some statistical assumptions on the uncertain parts of the systems, numerous approaches
have been proposed in the literature to solve efficiently this problem. For instance, the classical
Kalman filter [1], [2] for discrete-time linear systems and Linear Quadratic Optimal Luenberger10

observer [3], [4] for continuous-time linear systems. However, usually in practice, systems uncer-
tainties are poorly-known and no probability density functions could describe them accurately.
To overcome this problem, the concept of interval observer is introduced in [5], [6], [7], [8],
[9] for biological systems, where the objective is to estimate trajectory tubes that contain, in a
guaranteed way, the actual state variables of the system. After these seminal works, the inter-15

val observers design problem has witnessed increasing interest. Many approaches have been
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proposed to deal with different classes of continuous/discrete-time dynamical systems such that
linear systems [10], [11], [12], [13], [14], LTV/LPV systems [15], [16], [17], [18], and nonlinear
systems [19], [10], [20], [21].

Recently, the concept of interval observer has been extended to classes of Linear switched20

systems [22], [23], [24], [25], [26], [27], [28], where the proposed approaches are mainly relied
on the properties of positive systems [29], [30]. The fundamental idea applied is to combine
constant/time-varying similarity transformations with the observer gains design method to en-
sure both positivity and practical-stability of the switched dynamics of the estimation errors. For
instance, in [22], [23], [24], [25] the case of continuous-time switched systems is considered25

while in [26], [27], [28] authors have treated the case of discrete-time switched systems. More-
over, some proposed methods solve the interval observers design problem by including others
performance criteria. For instance, to obtain tight estimates of the exact state enclosure, an H∞

synthesis method is used in [28] to computed the best observers gains that on one hand, sat-
isfy the positivity and the stability of the estimation error, and on the other hand, minimize the30

distance between the upper and lower estimated state trajectory.
In this work, we propose new interval observer design methods for discrete-time linear

switched systems, where the similarity transformation constraints are avoided. More precisely,
we introduce new LMI-based conditions whose solutions allow to compute directly the upper
and lower state trajectories of the actual state trajectory of the switched system without using35

any kind of similarity transformation. This feature represents the main difference of the pro-
posed approach with respect to the aforementioned works and is the main contribution of this
paper.

The paper is organized as follows. Some preliminaries are given in Section 2. The interval
observer structure for a class of discrete-time linear switched systems is proposed in Section 3.40

The BMI-based and the LMI-based synthesis procedure of the interval observer gain matrices is
detailed in Section 4. Numerical results are presented in Section 5 to show the effectiveness of
the proposed approach and to compare its performance with that obtained by an optimal interval
observer selected from the literature for its good performance.

2. Preliminaries45

2.1. Notations

The set R, R≥0 and N are the set of real scalars, positive real scalars and positive integers
including zero, respectively. The induced matrix norm for a matrix A ∈ Rn×n will be denoted as
|| · ||. Any p×m matrix whose elements are all zeros are simply denoted by 0, respectively. Ip
denotes the identity matrix in Rp×p.50

Throughout this paper the inequalities must be understood component-wise, for matrices as well
as for vectors, i.e. A = (ai, j) ∈ Rp×m and B = (bi, j) ∈ Rp×m such that A ≥ B if and only if,
ai, j ≥ bi, j for all i ∈ {1, . . . , p}, j ∈ {1, . . . ,m}. M = max{A,B} is the matrix where each entry
is mi, j = max{ai, j,bi, j}. Let us define A+ = max{A,0}, A− = A+−A; thus, the element-wise
absolute value will be denoted as |A| = A++A−. A matrix M ∈ Rn×n is said to be M-matrix if55

it has nonpositive off-diagonal and nonnegative diagonal entries. A matrix P ∈ Rn×n is said to
be negative definite if υT Pυ < 0 for all non-zero real vectors υ ∈ Rn and it will be denoted by
P≺ 0. Similarly, P� 0 means semi-negative definite matrix. L∞ denotes the set of measurable
and locally essentially bounded signal u : R≥0→ R, whose L∞-norm is bounded.
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2.2. Definitions60

Definition 1. [31] Any matrix M ∈ Rn×n of the form

M = αIn−N,

N ≥ 0, α > 0,

for which α > ρ(N), the spectral radius of N, is called an M-matrix.

Theorem 1. [31] Let M ∈ Rn×n. Then each of the following conditions is equivalent to the
statement: ”M is non-singular M-matrix.”

(i) M+D is inverse-positive for each nonnegative diagonal matrix D.
(ii) M+ sIn is inverse-positive for each scalar s≥ 0.65

In statement (ii) of Theorem 1, it is shown that any non-singular M-matrix has a nonnegative
inverse matrix.

Definition 2. A symmetric nonsingular M-matrix is called a Stieltjes matrix.

The set of Stieltjes matrices of dimension n×n will be denoted by S n×n

Definition 3 (Schur complement, [32]). Suppose Q and R are square and symmetric. If the
matrix R is invertible, then the condition [

Q S
S> R

]
� 0

is equivalent to
R� 0, Q−SR−1S> � 0.

Definition 4 (Positive dynamics, [29]). A discrete-time linear system x(k+ 1) = Ax(k)+φ(k),70

with the state x ∈ Rn and the state matrix A ∈ Rn×n, is said to be positive systems if A is a
nonnegative matrix and φ(k) is a nonnegative vector.

The solutions of positive systems, initiated at x(k0) ≥ 0, stay nonnegative: x(k) ≥ 0 for all
k ≥ k0.

3. Interval observer for discrete-time switched linear systems75

Consider discrete-time switched linear systems of the form{
x(k+1) = Aσ x(k)+Bσ u(k)+w(k),

y(k) =Cσ x(k)+ v(k),
k ∈ N,σ ∈I (1)

where x ∈Rn, u ∈Rn, and y ∈Rp are respectively the state variables, the input, and the output of
the system. σ : R≥0→I is a right-continuous, piece-wise constant switching signal where I
is a finite index set for subsystems. w ∈ Rn and v ∈ Rp represent the perturbation and the output
uncertainty, respectively.80

The goal here is to estimate an upper bound and a lower bound, that enclose the set of admis-
sible values of the state variables of system (1) while ensuring the convergence of the estimation
errors. To do so, let first introduce an assumption on the boundedness of the measurement un-
certainty and perturbation.
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Assumption 1. Let v(k) ∈L p
∞ be a given vector such that

∀k ∈ N |v(k)| ≤v(k). (2)

Let two vectors w(k),w(k) ∈L n
∞ be given such that

∀k ∈ N w(k)≤ w(k)≤ w(k). (3)

Assumption 2. The initial state vector x(k0) satisfies

x(k0) ≤ x(k0)≤ x(k0),

where x(k0), x(k0) ∈ Rn are given constant vectors.85

The interval observer that we propose in the present work has the following form:

x(k+1) =A+
σ x(k)−A−σ x(k)+Bσ u(k)

+w(k)−|Lσ |v(k)−Lσ y(k),

x(k+1) =A+
σ x(k)−A−σ x(k)+Bσ u(k)

+w(k)+ |Lσ |v(k)−Lσ y(k),

x(k0) ∈ [x(k0),x(k0)].

k ∈ N,σ ∈I (4)

where

Aσ = (Aσ +LσCσ )

Aσ = (Aσ +LσCσ )
(5)

with Lσ , Lσ ∈ Rn×p are the observer gains to be designed corresponding to the lower and the
upper estimate, respectively.

Using the output model in (1), the state equation of this system can be re-written for all k ∈N
and σ ∈I as follows:90

x(k+1) =Aσ x(k)+Bσ u(k)+w(k)+L•σ [Cσ x(k)+ v(k)− y(k)]

=(Aσ +L•σCσ )x(k)+Bσ u(k)+w(k)+L•σ [v(k)− y(k)]

=[(Aσ +L•σCσ )
+− (Aσ +L•σCσ )

−]x(k)+Bσ u(k)+w(k)+L•σ [v(k)− y(k)]

(6)

where L•σ ∈ {Lσ , Lσ}.
The dynamics of both estimation error bounds e(k) = x(k)− x(k) and e(k) = x(k)− x(k) can

be described by the following dynamical system:
e(k+1) =A+

σ e(k)+A−σ e(k)+(w(k)−w(k))

+(Lσ v(k)+ |Lσ |v(k))

e(k+1) =A+
σ e(k)+A−σ e(k)+(w(k)−w(k))

+(|Lσ |v(k)−Lσ v(k))

k ∈ N,σ ∈I (7)

Due to the coupling between the upper and the lower estimate errors, we define the aug-
mented error of the interval estimation as ξ = [e>,e>]>, then the estimation errors dynamics (7)
can be written as a discrete-time system of the following form

ξ (k+1) = Λσ ξ (k)+Ψσ (k), ∀σ ∈I (8)
4



where

Λσ =

[
A+

σ A−σ
A−σ A+

σ

]
; Ψσ (k) =

[
w(k)−w(k)
w(k)−w(k)

]
+

[
Lσ v(k)−|Lσ |v
|Lσ |v−Lσ v(k)

]
. (9)

Theorem 2. Let Assumptions 1 and 2 hold. For given gains matrices Lσ , Lσ ∈ Rn×p and
a positive scalar δ , if there exist a symmetric positive semi-definite matrix P ∈ R2n×2n and a
positive scalar β such that [

−P+β I2n Λ>σ P
? − P

(1+δ )

]
� 0 ∀σ ∈I (10)

are satisfied, then the system (4) is an interval observer for the discrete-time switched linear
system (1).95

Proof. Positivity of the estimation errors:
Based on inequalities (2) and (3) of Assumption 1, we have that the vectors Ψσ (k) are non-

negative for all k ∈ N and σ ∈ I . The matrices Λσ are nonnegative by construction. From
the augmented error equation (8)-(9), the positivity property of matrices Ψσ (k) and Λσ implies
the nonnegativity of the augmented error ξ (k) provided that ξ (k0) is nonnegative, which in turn100

implies the nonnegativity of the upper and the lower estimation errors e(k) and e(k), respec-
tively. Consequently, the interval observer (4) with the system (1) preserve the order relation
x(k)≤ x(k)≤ x(k) for all k ≥ k0.

Stability of the estimation errors:
For studying the stability, we propose the following quadratic Lyapunov function for the

augmented estimation error
V (ξ ) = ξ

>Pξ (11)

The variation of V (ξ ) is given as follows

∆V (ξ ) = ξ
>

Λ
>
σ PΛσ ξ +2ξ

>
Λ
>
σ PΨσ −ξ

>Pξ

For any positive scalar δ , by using the Young’s inequality 2a>xb≤ δa>xa+ 1
δ

b>xb, one gets

∆V (ξ )≤ ξ
>[(1+δ )Λ>σ PΛσ −P

]
ξ +(1+

1
δ
)Ψ>σ PΨσ

By the Schur complement, the inequality (10) is equivalent to105

(1+δ )Λ>σ PΛσ −P�−β I2n

P� 0
(12)

Consequently, the variation of the Lyapunov function is upper bounded as follows:

∆V (ξ )≤−βξ
>

ξ +(1+
1
δ
)Ψ>σ PΨσ (13)

So, by similar argument of [33, Definition 4.4], the estimation errors are Input-to-State Stable ISS
relatively to the perturbation w and the noise v. Moreover, the estimation errors are exponentially
stable in the case where the system (1) is free from state disturbances and measurement noises.

So far, a verification method has been given. In the following section we propose a method110

to design the interval observer gain matrices.
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4. Design methodology

In this section we will present the design of the interval observer gain matrices based on the
internal positivity of the estimation error.

4.1. BMI-based design115

Proposition 1. Let Ad ∈ Rn×n be a nonnegative matrix. If there exist two nonnegative (positive)
matrices Aa,E ∈ Rn×n such that Ad = Aa +E, then the solution χd(k) of the system χd(k+1) =
Ad χd(k) and the solution χ(k) of the system χ(k+ 1) = Aaχ(k) satisfy χd(k) ≥ χ(k) (χd(k) >
χ(k)) ∀k ∈ N provided that χd(0)≥ χ(0)≥ 0.

Proof. Starting from the solution sequence χd(k), we have120

χd(k+1) = Ad χd(k) (14)
= (Aa +E)χd(k) (15)
= Aaχd(k)+Eχd(k), (16)

Based on the nonnegativity (positivity) of the matrices E and Aa and χd(0)≥ χ(0)≥ 0, we can
say that the following system

χd(k+1) = Ad χd(k)

has a nonnegative dynamics and the term ∆χd(k) is nonnegative. Consequently, from equation
(16) we have

χd(k+1) ≥ Aaχd(k) (17)
≥ Aaχ(k) = χ(k+1). (18)

This concludes the proof.

Proposition 2. Let M ∈ Rn×n, for any two nonnegative matrices MP,MN ∈ Rn×n
≥0 satisfy M =

MP −MN , there exits a nonnegative matrix ∆ ∈ Rn×n
≥0 such that MP = (M+ + ∆) and MN =125

(M−+∆).

Proof. For any element Mi j of the matrix M, if Mi j ≤ 0 then M−i j = |Mi j| and M+
i j = 0, and we

have Mi j =MPi j−MNi j = (+∆)−(M−i j +∆), consequently, the condition MPi j ≥ 0 implies ∆≥ 0.
The same property for Mi j ≥ 0.

Theorem 3. Let Assumptions 1 and 2 hold. For a given δ > 0, if there exist symmetric posi-
tive definite matrix P ∈ R2n×2n, nonnegative matrices Hi,σ ∈ Rn×n

≥0 , i = {1, . . . ,4}, two matrices
Lσ , Lσ and a positive scalar β such that[

−P+β I2n H>σ P
? − P

(1+δ )

]
� 0, (19a)

H1,σ −H2,σ = Aσ +LσCσ , (19b)

H4,σ −H3,σ = Aσ +LσCσ , (19c)

with Hσ =

[
H1,σ H2,σ
H3,σ H4,σ

]
, are satisfied ∀σ ∈I , then the system (4) is an interval observer for130

the system (1).
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Proof. From equation (6), one can write

x(k+1) =
(
A•+σ −A•−σ

)
x(k)

+Bσ u(k)+w(k)+L•σ [v(k)− y(k)]

=
(
[A•+σ +∆

•
σ ]− [A•−σ +∆

•
σ ]
)
x(k)

+Bσ u(k)+w(k)+L•σ [v(k)− y(k)]

(20)

where ∆• ∈ {∆, ∆}. Recalling Aσ and Aσ are defined in (5), picking

H1,σ = A+
σ +∆, (21a)

H2,σ = A−σ +∆, (21b)

H3,σ = A−σ +∆, (21c)

H4,σ = A+
σ +∆, (21d)

constraints (19b)-(19c) are satisfied, and using Proposition 2, the nonnegativity of Hσ implies the

nonnegativity of the matrix ∆σ =

[
∆σ ∆σ

∆σ ∆σ

]
. It is worth noting that the matrix Hσ is an internal

positive realization of the matrix Λσ . Thus, using equation (20) the following system135 

x(k+1) =H1,σ x(k)−H2,σ x(k)+Bσ u(k)

+w(k)−|Lσ |v(k)−Lσ y(k)

x(k+1) =H4,σ x(k)−H3,σ x(k)+Bσ u(k)

+w(k)+ |Lσ |v(k)−Lσ y(k)

x(k0)≤ x(k0)≤ x(k0)

(22)

is a interval observer for the systems (1) provided that the constraints (19) are satisfied, for which
the estimation error is given by

ξ (k+1) = Hσ ξ (k)+Ψσ (k)

=
(
Λσ +∆σ

)
ξ (k)+Ψσ (k)

(23)

By argument of Proposition 1, the stability of the dynamics of (23) implies the stability of esti-
mation error (8). Consequently, the system (4), with the gains Lσ , Lσ designed using (19), is an
interval observer for the system (1), and this concludes the proof.

4.2. LMI-based design
Corollary 4. Let Assumptions 1 and 2 hold. For a given δ > 0, if there exist two Stieltjes matrices
P1,P2 ∈S n×n, nonnegative matrices Ωi,σ , i = {1, . . . ,4}, two matrices Uσ , Uσ and a positive
scalar β such that [

−P+β I2n Ω>σ
? − P

(1+δ )

]
� 0, (24a)

Ω1,σ −Ω2,σ = P1Aσ +UσCσ , (24b)

Ω4,σ −Ω3,σ = P2Aσ +UσCσ , (24c)
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where Ωσ =

[
Ω1,σ Ω2,σ
Ω3,σ Ω4,σ

]
,P =

[
P1 0
0 P2

]
, are satisfied ∀σ ∈ I , then the system (4) with the140

gains matrices Lσ = P−1
1 Uσ , Lσ = P−1

2 Uσ is an interval observer for the system (1).

Proof. To relax the BMI design problem (19) to an LMI one, we consider the Lyapunov function

(11) where P =

[
P1 0
0 P2

]
such that P1 and P2 are Stieltjes matrices. Based on the property of

the inverse of Stieltjes matrix given in Theorem 1, we have that P−1
1 and P−1

2 are nonnegative
matrices.
By writing Ωσ = PHσ , we have that the set of BMI (19a) are equivalent to the set of LMIs (24a).
Thus, one can write

Hσ =

[
H1,σ H2,σ
H3,σ H4,σ

]
=

[
P−1

1 Ω1,σ P−1
1 Ω2,σ

P−1
2 Ω3,σ P−1

2 Ω4,σ

]
So, the nonnegativity of Ωσ and the Stieltjes property of the matrix P imply the nonnegativity of
the matrix Hσ .
Pre-multiplying both sides of equality (24b) and (24c) by P−1

1 and P−1
2 , respectively, we get

P−1
1 Ω1,σ −P−1

1 Ω2,σ = Aσ +LσCσ ,

P−1
2 Ω4,σ −P−1

2 Ω3,σ = Aσ +LσCσ ,
(25)

Consequently, equations (25) are equivalent to constraints (19b)-(19c), and this concludes the
proof.

5. Illustrative examples

In order to illustrate the efficiency of the proposed design methods of interval observers, we145

consider the following examples.

5.1. Example 1
Consider the discrete-time linear switched system given in [28], of the form (1) without

output noise (v(k) = 0 ∀k ∈ N) where

A1 =

[
−2.5 1
−2 −1.1

]
, A2 =

[
0.3 −2
0 0.6

]
,

A3 =

[
−2.5 1
−2 −1.1

]
,

B1 =

[
2
−1

]
, B2 =

[
6
1

]
, B3 =

[
−2
2

]
,

C1 =
[
0.2 0.8

]
, C2 =

[
1 0

]
, C3 =

[
0.1 1

]
In this example, we compare our design methods of Theorem 3 and Corollary 4 to the design

methodology proposed in [28].
The interval observer gains designed in Theorem 3 are found by solving the BMI-based150

problem (19) using the YALMIP toolbox [34] based on Penlab 1.04 solver. The feasible solution
is obtained as follows
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L1 = L1 =

[
0.6104
−0.2353

]
, L2 = L2 =

[
−0.7357
0.1239

]
,

L3 = L3 =

[
1.6435
−0.0379

]
.

The interval observer gains designed in Corollary 4 are found by solving the LMI-based problem
(24) using the YALMIP toolbox [34] based on SeDuMi 1.3 solver. The feasible solution is
obtained as follows155

L1 = L1 =

[
0.0645
−0.1975

]
, L2 = L2 =

[
−0.2967
−0.0012

]
,

L3 = L3 =

[
0.6974
−0.1512

]
.

The design approach in [28] minimizes the upper bound of the H∞ norm of the operator
ρ → e, where e = x− x and ρ = w−w are the width of the estimated interval and the width of
perturbation uncertainty, respectively. Their solution is given as follows

L1 =

[
0.026
0.0914

]
, L2 =

[
0.5416
0.0758

]
, L3 =

[
0.857

0.1028

]
,

and the similarity transformation matrices Tσ that make Tσ (Aσ −LσCσ )T−1
σ nonnegative ∀σ ∈

I are given as

T1 =

[
0.0901 0.6930
0.0901 0.3070

]
, T2 =

[
0.2372 0.8173
0.2372 1.8173

]
,

T3 =

[
0.0191 0.9913
0.0191 0.0087

]
.

In order to compare our results to the result of Dinh et al., in [28], we use the same known con-
ditions of their simulation: the initial conditions x0 = [1,2]>, x0 = [1.5, 2.5]>, x0 = [0.5,1.5]>,
the system perturbation and its bounds

w(k) =−
[

0.1
0.1

]
≤ w(k) =

[
0.1sin(0.5k)
0.1cos(0.5k)

]
≤ w(k) =

[
0.1
0.1

]
and the switching signal is given in Figure 1. The system input is chosen here as u= 0.5sin(0.1k).

The simulation results are presented in Figure 2 and Figure 3. The upper and the lower
estimate bounds of the state variables are presented in Figure 2 for the LMI-based design of
Corollary 4 and the BMI-based design of Theorem 3 along with the estimates obtained by the160

approach in [28].
In order to compare those approaches, we have also plotted the 2−norm of the width of the

interval estimate, defined as |e|2 = |x− x|2, for each approach in Figure 3. From Figure 3, one
can see that our approaches provide tighter interval estimate than the one in [28]. Moreover, the
LMI-based design in Corollary 4 provides the tightest interval estimates.165

So far, we have compared our approach to the one in [28], in which the measurement noise
is not considered. With the same simulation conditions of Example 1, we show in Figure 4 the

9
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Figure 1: Switching signal.
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al’19 [28] (dash-dotted).
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of Dinh et al’19 [28] (dash-dotted).

0 5 10 15 20 25 30 35 40 45 50

-4

-2

0

2

4

6

8

x1

x1 : with noise

x1 : with noise

x1 : without noise

x1 : without noise

0 5 10 15 20 25 30 35 40 45 50

-2

-1

0

1

2

3

x2

x2 : with noise

x2 : with noise

x2 : without noise

x2 : without noise

Figure 4: Interval estimates of the approach in Corollary 4 in the presence of measurement noise (dashed) and without
noise (solid).

interval estimate of the approach based on Corollary 4 in the presence of the measurement noise.
This noise is chosen as v(k) = 0.5cos(0.2k). The known upper bound of the noise is given as
v(k) = 0.5. Note that the system perturbation differs from zero for all cases of the simulation170

(with/ without noise).

5.2. Example 2

This example is borrowed from [27] where authors designed an interval observer for discrete-
time linear switched systems without output noise using time-varying similarity transformations.
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The considered system is as follows

A1 =

[
0.34 0.05
0.40 0.27

]
, A2 =

[
0.15 0.24
0.08 0.32

]

B1 =

[
0.3
0.5

]
, B2 =

[
0.6
0.3

]
C1 =

[
0.2 0.1

]
, C2 =

[
0.4 0.3

]
The observer gain matrices are found by solving the LMI-based design (24) in Corollary 4 as
follows

L1 = L1 =

[
−1.2813
2.1448

]
, L2 = L2 =

[
−0.5346
0.2297

]
we use the same known conditions of the simulation of Guo et al., in [27]: the initial conditions
are x0 = [1,4]>, x0 = [5, 10]>, x0 = [−5,0]>, the system input is u = 10sin(5k), the system
perturbation and its bounds are given as follows

w(k) =−
[

0.8
0.6

]
≤ w(k) =

[
0.8cos(k)
0.6cos(k)

]
≤ w(k) =

[
0.8
0.6

]
,

and the switching signal is given in Figure 5. The simulation result of the interval estimates for

0 5 10 15 20 25 30 35 40 45 50

1

1.5

2

σ
(k
)

Figure 5: Switching signal.

the chosen systems is shown in Figure 6. Without reproducing the simulation of the approach in
[27] but only by comparing their graphical results to the curves of our simulation in Figure 6, it175

is possible to say that our approach provides better interval estimates. Further comparisons with
the aforementioned work, that should be pointed out, are as follows:

• Our interval observer has a simple structure and is designed in the original basis, while the
one in [27] uses a time-varying similarity transformation.

• In this example, our approach could design the observer gain matrices for any arbitrary180

switching among systems (due to the use of a common Lyapunov function), while in [27],
the switching among systems is restricted by an average dwell-time (due to the use of
multiple Lyapunov functions).
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Figure 6: Interval estimates for Example 2.

6. CONCLUSIONS

This paper has presented a new simple methodology to design interval observers for a class185

of discrete-time linear switched systems. The interval observer is designed in the original coordi-
nates using the internal positivity representation of the system without introducing any similarity
transformations to satisfy the positivity property. The proposed structure of the interval observer
here is simpler than the structures in [28] and [27]. Moreover, we take into account the presence
of output noise which is not considered in the above-cited works. A numerical example shows190

the efficiency of the proposed interval observer comparing to the recent result in [28].
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