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Abstract

For decades, fuzzy spatial relations have demonstrated
their utility and effectiveness for visual reasoning, includ-
ing semantic annotation and object recognition. However,
a major issue is that they often involve fuzzy morpholog-
ical operators that are compute-intensive leading to long
latency in the relation evaluation. As a result, approxi-
mate methods have been proposed to compute some re-
lations in an acceptable time, but they are not as generic
as the fuzzy dilation or do not make the most of mod-
ern computing architectures. In this paper, we introduce
the Reverse and the Parallel Reverse (PR) algorithms. Re-
verse is an exact and efficient algorithm for the fuzzy dila-
tion operator and PR combines the Reverse algorithm ex-
actness with efficient usage of modern-processor multiple
cores using OpenMP. Using SIMD extensions to enhance
Parallel Reverse, PR128 (AVX), PR256 (AVX2), and PR512
(AVX512) are faster than the state-of-the-art approximate
methods while remaining generic and exact. To demon-
strate the performance of PR and highlight the contribu-
tion of the SIMD instructions, an extensive benchmark
was carried out on two datasets of natural and artificial
images.

1 Introduction
Spatial knowledge plays an important role in many com-
puter vision systems since it is essential to scene un-
derstanding [11, 2].With the explainable artificial intel-
ligence (XAI) advent, the need for interpretability and
explainability [14, 13, 10] in such systems has been re-
inforced. The goal of these XAIs is to solve a task and
provide an explanation to the result, as shown in figure 1a
where the left lung detection is explained by its relations
with the other known anatomical objects.

The fuzzy logic framework [24] provides efficient tools
to represent and process such spatial information[5, 22].
Indeed, fuzzy logic enables to represent in a unified way
a large variety of spatial relations [5] by taking into ac-
count their vagueness and their double nature (quantita-
tive and qualitative). Several of these relations rely on
a fuzzy morphological dilation (directional relations [3],
distances [4] and more complex relationships like paral-
lelism or alignment [21]). However, the standard fuzzy
morphological dilation is computationally expensive and
thus only approximate methods have been proposed [3,
23] to compute it efficiently. Besides, force-fields meth-
ods have been proposed for directional relations [16, 12]
but they do not have the same properties and are not as
generic as fuzzy-dilation-based methods.

In this paper, we focus on efficient fuzzy dilation com-
putation for assessing fuzzy spatial relations based on
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(a) Example of an explained an-
notation for the annotated organs
in the figure: organ 1 is the left
lung because it is to the left of
the right lung (organ 2), it is sym-
metrical to the right lung and it is
above the spleen (organ 3).

(b) Evaluation of the rela-
tion left lung to the left of
right lung. It is assessed by
computing the fuzzy degree
of intersection between the
left lung (in blue) and the
fuzzy landscape (gray lev-
els) generated as the dila-
tion of the right lung (ref-
erence object in red).

Figure 1: Example of explainable organ annotation [18].
Given a set of objects (7 in figure 1a) and a set of spa-
tial relations, annotation generation is based on the eval-
uation of a set of relations between all the objects in the
image. The caption of Fig. 1a gives an example of anno-
tation explanation and Fig. 1b represents how a specific
relation between two objects is evaluated. The original
image comes from [9].

multi-core and SIMD properties of modern processors.
The fuzzy dilation generates a fuzzy landscape [3] (also
known as directional map [16] or spatial template [23]).
In a fuzzy landscape, the value of each pixel represents to
what extent it verifies the relation under study, as shown
in Fig. 1b for the relation to the left of the right lung. For
a given reference object, this fuzzy landscape is gener-
ated once and then used to evaluate all the relations of the
type x to the left of the right lung with all other objects. To
generate explanations as in Fig. 1a [18] on a set of images,
the most relevant relations between objects are extracted
from a training set of images by computing one landscape
per image, per object and per investigated relation. For
reference, with 7 objects like in Fig. 1a and considering
5 relations (left, right, above, under, close to), 35 fuzzy
landscapes are necessary for one image. With the com-
plexity of the scene and the size of the training set, the
number of landscapes to compute can then easily escalate
hence the importance of computing them faster.

Unlike Bloch’s algorithm [3] that does not make the

most of modern CPU architectures and Wang’s algo-
rithm [23] whose main parameter value depends on the
size of images to approximate the fuzzy dilation well, our
proposition returns an exact and optimized implementa-
tion of the fuzzy dilation operator. To reduce the compu-
tation time, our implementation relies on two ideas: first,
only the pixels belonging to the reference object in the in-
put image (for example the red object in Fig. 1b) should
be taken into account (Reverse) and, second, the algo-
rithms have to be build with modern CPU architecture
features in mind like multiple core programming and vec-
tor extensions (AVX/AVX2/AVX512) (Parallel Reverse,
PR128, PR256, and PR512). The remainder of the paper is
organized as follows. In Section 2, we present the fuzzy
dilation operator. In Section 3 we present the related al-
gorithms. Our propositions are detailed in Section 4 fol-
lowed by the benchmark description and the results dis-
cussion in Section 5. We conclude in Section 6.

2 Fuzzy Dilation Operator
Like the dilation operator in mathematical morphol-
ogy [19], the fuzzy dilation operator is the result of set-
theoretic operations between an input image (representing
the reference object on which the dilation is performed)
and a structuring element (specifying the nature of the di-
lation). The result of the fuzzy dilation is represented by
a fuzzy landscape, which is a fuzzy set whose member-
ship function represents to which extent each pixel be-
longs to the dilation. Objects can also be represented as
fuzzy landscapes. For instance, Fig. 2c displays the fuzzy
landscape corresponding to the dilation of membership
function Dν(µ) (dilation of µ by ν). The membership
functions µ and ν associated respectively to the reference
object and the structuring element are displayed in Fig. 2a
and Fig. 2b respectively.

Let S be the space of the image. The fuzzy dilation of
µ by ν , called Dν(µ), can then be defined as [3]

∀x ∈ S,Dν(µ)(x) = sup
y∈S

[
t
(
ν(x− y),µ(y)

)]
(1)

with µ and ν crisp or fuzzy objects and t a t-norm. Sev-
eral t-norms are defined in the fuzzy logic literature. In
this paper, we use the most common one, the Zadeh t-
norm, which is the minimum. Besides, since we work on
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(a) Fuzzy
landscape
correspond-
ing to the
membership
function
µ associ-
ated to the
reference
object.

(b) Fuzzy landscape cor-
responding to the struc-
turing element associated
to the relation close to
and represented by the
membership function ν .

(c) Fuzzy
landscape
correspond-
ing to the
dilation of µ

by ν associ-
ated to the
membership
function
Dν (µ) (µ in
red).

Figure 2: Fuzzy dilation Dν(µ) (Fig. 2c) of the reference
object µ (Fig. 2a) by the structuring element ν (Fig. 2b).
The spatial relation represented here is close to. The in-
tensity of each pixel of Dν(µ) represents to which extent
it satisfies the relation. The structuring element needs to
be 4 times as big as other images.

images, S is a finite set so the supremum is equivalent to
the maximum. Thus, the expression we actually imple-
mented is the following

∀x ∈ S,Dν(µ)(x) = max
y∈S

[
min

(
ν(x− y),µ(y)

)]
(2)

The main advantage of the fuzzy dilation is that various
spatial relations, such as distances and directional relative
positions between objects, can be computed with the same
dilation operator by using different structuring elements.
For example, in the case of directional relations, a com-
monly used structuring element is

∀x ∈ S,ν(x) = max
(

0,1− 2
π

arccos
−→x ×−→uα

||−→x ||

)
(3)

with −→uα a unit vector in the direction α and −→x the vector
from the origin (the center of the structuring element) to
x. In Fig. 2, another type of relation is expressed: close
to µ . To assess if another object of membership function
λ is close to µ , a fuzzy pattern matching approach is per-
formed [7]. For instance, in Fig. 1b, for a reference object
µ (in red) and another object λ (in blue), the relation λ to
the left of µ can be evaluated as the fuzzy degree of inter-
section between λ and Dν(µ). This degree of intersection

is defined in [5] such as

µint(Dν(µ),λ ) =

∑
x∈S

t
(

Dν(µ)(x),λ (x)
)

min
(

∑
x∈S

Dν(µ)(x), ∑
x∈S

λ (x)
) (4)

The two main advantages of this fuzzy-landscape-
based approach are its ability to manage any relation that
can be generated with a fuzzy dilation and the fact that
only one landscape has to be generated for a given rela-
tion and a given reference object. Thus, in Fig. 1, the
relation x to the left of the right lung (reference object in
red) can be computed for all x in the set of 7 objects in
Fig. 1a with a single landscape generation (corresponding
to to the left of the right lung).

3 Related Algorithms

3.1 Forward Algorithm
The Forward algorithm (Alg.1) is the direct application
of Eq. 2 as described in the original paper on fuzzy di-
rectional dilations [3]. Three data structures representing
2D images (Fig. 2) are involved: D(N×M) which holds the
resulting dilated image (fuzzy landscape), µ(N×M) the in-
put image containing the reference object and ν(2N×2M)
the structuring element which is 4 times larger than D and
µ to generate all configurations of dilated pixels and input
pixels. The computation of each pixel of D leads to apply-
ing the structuring element to all pixels of µ , regardless
of whether they belong to the contributing object or not.
Thus, (NM)2 max/min operations have to be performed
leading to a high computation time. Furthermore, while
D is scanned forward (from up-left to down-right), µ is

Algorithm 1 Forward algorithm
Require: µ , D, ν

Ensure: D
1: for i← 0 to N−1 do
2: for j← 0 to M−1 do
3: for k← 0 to N−1 do
4: for m← 0 to M−1 do
5: val← µ[k][m]
6: se← ν [N + i− k][M+ j−m]
7: D[i][ j]← max(min(val,se),D[i][ j])
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also scanned forward but ν is scanned backward leading
to an inefficient CPU cache usage and an inefficient vec-
torization.

3.2 Bloch’s Algorithm

Bloch proposed an algorithm [3] based on a propagation
technique inspired by the chamfer method [6]. It returns
an approximation of the fuzzy dilation. This algorithm is
displayed in Alg. 2 and consists in three main steps:

1. Initializing an array O which stores for each pixel the
position of the pixel that led to its update,

2. Performing a forward scan on the image to update
Dν(µ) by looping over each pixel’s neighbourhood,

3. Performing a backward scan on the image to update
Dν(µ) by looping over each pixel’s neighbourhood.

The details of the forward and backward scans are rep-
resented in Fig. 3. We can see in this figure that we need
the neighbourhood of the pixel under study (i-th row and
j-th column) to update the value of D[i][ j]. This is ac-
tually the advantage of this method, since looping over a
8-connected neighbourhood (V (i, j) at lines 10-11-15-16)
is much faster than looping over the structuring element
in the Forward algorithm. To get a better approximation
of D, the part composed by step 2 (forward scan) and step
3 (backward scan) can be repeated k-times with a propor-
tional cost in execution time. As describe in the original
article, the approximation given by k = 1 provides the best
trade-off between quality and execution time. As we want
to fairly compare algorithms, k = 1 is used in all Bloch’s
benchmarks.

Here, f (lines 10-11-15-16) has the same role as the
structuring element in the fuzzy dilation and enables to
specify the nature of the relation. The time complexity
of this method is O

(
(1+ 2V )NM

)
with V the size of the

neighbourhood (V = 8 for a 8-connected neighbourhood
in 2D, V = 26 in 3D). However, this algorithm cannot
be efficiently parallelized since it relies on a propagation
method. Indeed, the propagation is gradually spread over
the arrays D and O to update each pixel, which makes it
unsuited to a multithreaded or a direct SIMD-based ap-
proach.

Algorithm 2 Bloch’s propagation algorithm
Require: µ , D, ν

Ensure: D
1: O← empty2DArray() . same size as µ

2: for i← 0 to N−1 do
3: for j← 0 to M−1 do
4: if µ[i][ j]> 0 then
5: O[i][ j] = pair(i, j)
6: else
7: O[i][ j] = null

8: for i← 0 to N−1 do . forward pass
9: for j← 0 to M−1 do

10: D[i][ j]← max
(iv, jv) in V (i, j)

min(D[O[iv][ jv]], f (i, j,O[iv][ jv]))

11: (i∗, j∗)= argmax
(iv, jv) in V (i, j)

min(D[O[iv][ jv]], f (i, j,O[iv][ jv]))

12: O[i][ j]← O[i∗][ j∗]
13: for i← N−1 to 0 do . backward pass
14: for j←M−1 to 0 do
15: D[i][ j]← max

(iv, jv) in V (i, j)
min(D[O[iv][ jv]], f (i, j,O[iv][ jv]))

16: (i∗, j∗)= argmax
(iv, jv) in V (i, j)

min(D[O[iv][ jv]], f (i, j,O[iv][ jv]))

17: O[i][ j]← O[i∗][ j∗]

(a) Forward pass (b) Backward pass

Figure 3: Bloch’s algorithm relies on the chamfer
method [6]. Each pixel of the input image is looped over
twice: one forward pass (Fig. 3a) from left to right and top
to bottom, and one backward pass (Fig. 3b) from right to
left and bottom to top. Updating a pixel (in red on the two
images) requires to perform operations on its neighbour-
hood (8-connected neighbourhood), which is represented
by the yellow grid.
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3.3 Wang’s Algorithm

Wang proposed an algorithm based on F-templates [23,
17] that provides an approximation of the fuzzy dilation.
The main idea is to only take into account the contribution
of pixels in a set of k reference directions. Thus, for each
pixel p, only the pixels on straight lines going through p
in one of the reference directions contribute to the final
result.

While this method is faster than Bloch’s algorithm for
small images (100×100) and when k is low (90), Gondra
and Cabria showed that k must actually be proportional to√

MN to keep a good approximation [12]. So k must be
greater for bigger images to have a correct approximation
(for k = 90, the approximation is far from the exact result
for a 400 × 400 image [12]). This tradeoff between accu-
racy and speed quickly turns to the advantage of Bloch.
Besides, maintaining the same accuracy requires to set
a new value of k each time the size of the input image
changes, which regularly happens in the medical images
we worked on (cf. Section 5.1). Thus, we discarded this
algorithm from our experiments.

4 Proposed Algorithms
Our contribution consists in 2 algorithms: the Reverse al-
gorithm that reduces the amount of computations, and PR
that enhances Reverse using OpenMP and that is declined
in PR128, PR256, and PR512, based respectively on AVX,
AVX2 and AVX512 extensions.

4.1 Reverse Algorithm

The idea of the Reverse algorithm (Alg. 3) is to re-
order the operations to eliminate unnecessary process-
ing: a pixel with a zero value in the input image (val =
µ(y) = 0) does not contribute (cf. Eq. 2) to Dν(µ) as
min
(
ν(y−x),µ(y)

)
= 0, unlike in the Forward algorithm

where those pixels cannot be separated from the contribut-
ing (active pixels) ones. By processing the computation
based on the input image (µ) rather than the dilated im-
age D, one can detect and drop all computations related to
these non-contributing pixels (lines 3 and 4 in Alg. 3). So,
based on the same equation (Eq. 2), val is evaluated once
per pixel. Then, its contribution to the dilation is evalu-

Algorithm 3 Reverse algorithm
Require: µ , D, ν

Ensure: D
1: for i← 0 to N−1 do
2: for j← 0 to M−1 do
3: val← µ[i][ j]
4: if val > 0 then
5: posx← N− i
6: posy←M− j
7: for k← 0 to N−1 do
8: for m← 0 to M−1 do
9: se← ν [posx+ k][posy+m]

10: D[k][m]← max(min(val,se),D[k][m])

ated over D with the structuring element centered around
the input pixel position. Due to the associative properties
of the min and max operators, the final result is exactly the
same as with the Forward algorithm, as shown in Fig 4.
We can also note that the Reverse algorithm processes all
the active pixels of the input image (the non-zero pixels of
the reference object) equally regardless of their fuzziness
and position. Consequently, the processing time of the
fuzzy landscape shall not depends on the object fuzziness,
position and shape. However, the number of pixels of the
reference object directly affects the number of max/min
operations. For an object of size p pixels belonging to a
N×M input image, only p×N×M max/min operations
are executed, providing an acceleration factor based on
the object size. Furthermore, ν and D are both scanned
forward, which induces a better cache usage and a direct
SIMD alignment.

4.2 PR : Parallel Reverse algorithm

High-level code transformations (like Reverse) conju-
gated with the full usage of the multiple cores and the
vector instructions (SIMD) offered by modern CPU ar-
chitectures have proved their efficiency [15]. While Re-
verse processes only the active pixels, it still computes
their contribution pixel by pixel on one core. As seen in
Alg. 3 line 10, with the reverse modification, the contri-
bution of one pixel of value val = µ(i, j) to the output
D consists in applying only separable and aligned oper-
ations based on D (the output fuzzy landscape) and the
structuring element centered on the current active pixel at
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Dilation of by
(384x312)

Reference object Forward Reverse

Row 32

Row 33

Row 113

Row 170

Row 384

Finished

( rst active pixels of 

the reference object)

(last active pixels of 

the reference object)

Figure 4: Comparison of the Forward and Reverse algo-
rithms for computing the fuzzy dilation to the left of the
reference object. The input image has 384 rows. While
Forward computes the dilation pixel by pixel, Reverse
only computes the contributions of non-zero pixels in the
reference object. On row 33, the first non-zero pixels of
the reference object are barely perceptible and have been
surrounded by a red ellipse. Once the reference object has
been completely looped over (row 170), the Reverse algo-
rithm finishes and returns the same result as the Forward
algorithm after row 384.

the i-th row and j-th column. Then, for each pixel where
µ(i, j) > 0 (active pixels), PR uses the OpenMP paral-
lelization framework [8] to dispatch the computations of
D over each core using a strip based spatial decomposi-
tion as shown in Fig 5. The internal loop (from line 7
to line 10 in Alg. 3) is processed in parallel using the
#pragma omp for. By construction, the Reverse algo-
rithm prevents data races as each strip of D is processed

by a different thread and ν is only accessed in read mode.
To avoid recreating the threads for each new active pixel,
which would harm the overall performance, parallel re-
gions are created before the actual parallelization using
the #pragma omp parallel directive over the external
loop (line 1 in Alg. 3).

4.3 SIMD Optimizations: PR128, PR256,
PR512

In addition to the PR algorithm, we propose 3 SIMD im-
plementations using explicit SIMD instructions. PR128,
PR256, and PR512, respectively use the mm ...,
mm256 ... and mm512 ... based intrinsics opera-

tions: broadcast of val ( set1 epi8) to the pack of inte-
ger, unaligned load of se and D ( loadu epi8), unaligned
store ( storeu epi8) of D, unsigned min ( min epu8)
and unsigned max ( max epu8). As the image width is
not necessarily a multiple of the SIMD vector size, the
image is padded with 0 before execution if needed. Then
we propose 4 Parallel Reverse algorithms (Fig. 5): PR
that is an OpenMP-based parallel version of the Reverse
algorithm without explicit SIMD instructions, PR128 is

read 1

read 2

read 3

read 4

Reference object

PR

PR256

PR512

PR128

Figure 5: Contribution to the fuzzy dilation of one ac-
tive pixel (in red) from the reference object (on the left).
For the sake of this illustration, only 4 threads and 128
columns are represented. PR is the multi-threaded version
of Reverse where each thread is responsible for a strip of
rows of the fuzzy dilation Dν(µ). With PR128, PR256 and
PR512, for each thread, columns of Dν(µ) are distributed
using AVX, AVX2 and AVX512 respectively.
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the same as PR but it uses explicit AVX SIMD instruc-
tions (128-bits wide), PR256 is specifically designed for
the de facto standard version AVX2 (256-bits wide in-
structions), and PR512 uses the latest AVX512 extension
(512-bits wide instructions). PR, PR128, PR256, and PR512
can be easily modified to use either 8-bits, 16-bits, 32-bits
integers, float or double. As we work on 8-bits words, we
process respectively 1, 16, 32 and 64 data by instruction
with PR, PR128, PR256, and PR512.

With the combined pressure of the SIMD extensions
and multiple threads on memory bandwidth, it is not pos-
sible to make a direct assumption about the most efficient
algorithm. It is therefore necessary to have a comprehen-
sive benchmark to assess the contribution of the SIMD
extensions.

5 Benchmark, Results and Analysis

5.1 Dataset

To provide reproducible results [20] and analyze perfor-
mance with respect to specific image parameters like im-
age and object size, object shape, fuzziness and posi-
tion, we provide a dedicated structured artificial dataset
of 282 images (Fig. 6). This dataset contains: crisp and
fuzzy images, round, rectangle and ellipsoidal shapes, a
regular distribution of squares, different sizes of images
(256× 256, 512× 512, and 1024× 1024) and different
sizes of reference object (from 1 pixel to 65536 pixels).

The artificial dataset enable us to evaluate algorithms
on specific criteria, but is not representative of real-
world applications. Therefore, we completed the artificial
dataset with a dataset of medical images [9] (Fig. 7) rep-
resentative of visual reasoning applications. This natural
image dataset contains 10 312× 384 images (from 1234
active pixels to 6138 that is 1.0% to 5.1% of the image)
and 8 407×1515 images (from 1096 active pixels to 9112
that is 0.2% to 1.4%). Those images correspond to seg-
mented organs like the ones presented in Fig. 1b. The
resulting dataset is available online [1].

5.2 Benchmark Configuration

Seven algorithms were evaluated: the Forward algorithm,
the Reverse algorithm, PR the parallel version and its

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 6: Artificial dataset samples: a) Rectangle, b)
Disk, c) Ellipse, d) 256× 256 crisp square with 256
active pixels, e) 256× 256 crisp square with 4096 ac-
tive pixels, f) 256× 256 crisp square with 65536 ac-
tive pixels, g) 256× 256 fuzzy square with 256 active
pixels, h) 256× 256 fuzzy square with 4096 active pix-
els, i) 256× 256 fuzzy square with 65536 active pixels,
j) 512× 512 crisp square with 65536 active pixels, k)
1024×1024 crisp square with 65536 active pixels

(a) 5829 pix-
els

(b) 1234 pix-
els

(c) 2200 pix-
els

(d) 1962 pix-
els

Figure 7: Natural dataset samples: 312×384 images from
a medical dataset of segmented organs. The number of
active pixels varies due to the variable sizes of organs.

three SIMD implementations PR128, PR256, and PR512,
and Bloch, which is Bloch’s algorithm presented in [3]
as the fastest acceptable approximate solution (1 forward
scan followed by 1 backward scan). As we saw in Sec-
tion 3.2, Bloch is not parallelizable since the updated val-
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ues of pixels are progressively propagated through the im-
age. So the implementation of Bloch’s algorithm that we
tested is monothreaded.

We evaluated the algorithms efficiency using an exten-
sive benchmark on the proposed datasets. Using the struc-
tured artificial dataset, we evaluate the algorithm depen-
dency on the shape, the fuzziness, the object size and po-
sition in the image, and the image size, while the natural
images dataset provides real-world comparison between
algorithms.

All computations were performed on an Intel Xeon
CPU 6148 (20 cores - fixed 2.4GHz frequency) using ex-
ecutables generated by Intel ICC compiler 2019.3 (with
−O3 flag).

5.3 Results
The benchmark confirms that the fuzziness, the shape and
the position of the reference object in the input image has
no effect on the execution time (< 1% of execution time
variation). Consequently, the detailed results are not pro-
duced as they are identical to the results presented for
fuzzy centered squares. As expected, image size, refer-
ence object size and algorithm are the three relevant pa-
rameters. Tab. 1 and Tab. 2 present the execution time
of the seven algorithms for three image sizes and two
reference object sizes: 4096 (referred as small objects)
and 65536 (referred as large objects) respectively. Tab. 3
presents the acceleration ratio of each algorithm using Re-
verse as a reference. Indeed, Forward is too slow and not
usable in real-world applications and thus the comparison
of the meaningful algorithms is easier.

Sequential algorithms

In this part we focus on the Forward, Reverse, and Bloch
algorithms. In every test configuration, the Forward al-
gorithm is the slowest one. The computation time of one
landscape is ≈12s for 256× 256 images to ≈51 minutes
for 1024×1024 images. This algorithm is not suitable for
time-realistic object relationship evaluation. As expected,
due to its construction, the execution time is mainly re-
lated to the image size and not to the reference object
size. The Reverse algorithm is faster than the Forward
algorithm in every configuration. When the reference ob-
ject size increases, the execution time of Reverse increases

Table 1: Execution time in ms for one fuzzy landscape
computation with variable image sizes for a 4096-pixel
centered fuzzy square.

Algorithm 256×256 512×512 1024×1024

Forward 11.9×103 191×103 3075× 103

Reverse 354.1 1.4×103 5.6×103

PR 55.2 82.4 297.7
PR128 9.8 12.6 27.1
PR256 9.0 10.7 22.2
PR512 8.4 9.8 19.5
Bloch 33.0 130.9 523.1

Table 2: Execution time in ms for one fuzzy landscape
computation with variable image sizes for a 65536-pixel
centered fuzzy square.

Algorithm 256×256 512×512 1024×1024

Forward 11.8×103 189×103 3040× 103

Reverse 5.6×103 22.5×103 89.7×103

PR 454.1 1307.3 4720.7
PR128 144.8 183.9 407.9
PR256 137.8 162.4 319.5
PR512 124.5 147.4 277.5
Bloch 35.4 134.6 530.9

Table 3: Acceleration ratio with the Reverse algorithm as
reference with variable image and reference object sizes.

Algorithm 256×256 512×512 1024×1024
4096-pixels centered object

Forward 3.0×10−2 7.4×10−3 1.8×10−3

Reverse 1 1 1
PR 6.4×100 1.7×101 1.9×101

PR128 3.6×101 1.1×102 2.1×102

PR256 3.9×101 1.3×102 2.5×102

PR512 4.2×101 1.4×102 2.9×102

Bloch 1.1×101 1.1×101 1.1×101

65536-pixels centered object
Forward 4.8×10−1 1.2×10−1 3.0×10−2

Reverse 1 1 1
PR 1.2×101 1.7×101 1.9×101

PR128 3.9×101 1.2×102 2.2×102

PR256 4.1×101 1.4×102 2.8×102

PR512 4.5×101 1.5×102 3.2×102

Bloch 1.6×102 1.7×102 1.7×102
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but still remains faster than Forward as it provides an ad-
ditional acceleration factor (xs) compared to the expected
active vs total pixel ratio. This additional factor is under-
scored in Tab. 2 for a 256× 256 image where xs = 2.1.
Indeed, in this configuration, all pixels are active and both
Forward and Reverse compute the exact same number of
pixels. The fact that Reverse uses both D and the structur-
ing element in a cache-friendly way is beneficial.

In every configuration, Bloch’s algorithm is faster than
Reverse with a speedup of ×11 for small objects and
×170 for large objects.

Unlike Reverse, Bloch’s algorithm computation time
does not depend on the reference object size but like
Reverse linearly increase along the image size. This is
due to their complexity: O

(
(1+ 2V )NM

)
for Bloch and

O
(

pNM
)

for Reverse.

SIMD multi-threads algorithms

For small objects (Tab. 1), PR512 is the fastest in every
configuration. For large objects (Tab. 2) Bloch is the
fastest for smaller images, while PR512 is the fastest for
1024× 1024 images. This is explained by the fact that
the execution time of PR and its derivatives do not fol-
low the image size progression like Reverse and Bloch as
they are significantly more efficient for large images than
small ones (Tab. 3). PR512 is then competitive with the ap-
proximate Bloch algorithm despite the fact it is an exact
dilation algorithm.

Using all 20 cores of our benchmark processor, PR512
is faster than Reverse by a factor fR ∈ [42;320] and by
fPR ∈ [6;18] compared to PR. But using the maximum
number of core is not always the optimal solution in our
context. As shown in Tab. 4, for a sufficient amount of
data (large object and large image), PR512 with all cores
is the best solution. However, for smaller images and ob-
jects, the best option is to use less cores (8 for a 4096-
pixels object in a 256× 256 image and 16 for a 4096-
pixels object in a 512× 512 image). In all cases, despite
the combined pressure of the SIMD extensions and mul-
tiple threads on memory bandwidth, the SIMD natural or-
der is respected as tPR512 < tPR256 < tPR128 < tPR. PR512 is
the best implementation of the PR algorithm.

Table 4: Execution time in ms for one fuzzy landscape
computation with variable number of active cores and ref-
erence object sizes.

Active cores 2 4 8 16 20
65536-pixels object in a 1024×1024 image

PR128 3933.3 1587.2 833.3 461.2 407.9
PR256 3044.4 1140.4 608.4 354.4 319.5
PR512 2746.9 978.8 509.3 306.0 277.5

4096-pixels object in a 512×512 image
PR128 50.1 27.0 16.4 11.8 12.6
PR256 36.6 20.3 12.9 9.8 10.7
PR512 30.5 17.2 11.8 9.1 9.8

4096-pixels object in a 256×256 image
PR128 14.8 9.9 7.3 7.3 9.8
PR256 10.7 7.6 6.4 6.7 9.0
PR512 9.6 7.2 5.9 6.7 8.4

Table 5: Acceleration ratio with Bloch’s algorithm as ref-
erence with variable image and reference object sizes.

312×384 407×1515
Alg. min mean max min mean max
PR ×1.0 ×2.2 ×4.8 ×0.8 ×3.3 ×6.7

PR128 ×4.1 ×9.4 ×21.5 ×7.7 ×26.6 ×51.0
PR256 ×4.4 ×9.8 ×20.8 ×9.1 ×30.6 ×57.3
PR512 ×5.0 ×10.6 ×21.5 ×10.1 ×33.5 ×61.6

Natural images

Real-world images confirms PR512 as the fastest dilation
operator algorithm. In Fig. 8, the low object size depen-
dency of Bloch is highlighted by close results for each
image category. On these images, even the PR algo-
rithm is competitive with Bloch as the number of active
pixels with respect to the image size is low (Sec. 5.1).
Both the accelerating effect of AVX extensions and their
limitations when data are not sufficient are well illus-
trated. Indeed as shown in Tab. 5, for the 407× 1515
images, the algorithms keeps accelerating along AVX,
AVX2, and AVX512 modifications. This effect is lower
or non-existent for 312×384 images.

6 Conclusion
In this paper, we proposed PR, a new fast and exact algo-
rithm for the fuzzy dilation operator computation based
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Figure 8: Execution time distributions for the natural im-
age dataset.

on SIMD multi-core architectures. We found out that the
new optimized SIMD algorithm is performing better on
real-world images than the state-of-the-art approximate
algorithm and remains competitive in each situation of
our artificial images benchmark. PR512, the AVX512 dec-
lination of PR is in average ×10.6 faster than Bloch on
the proposed real-world image dataset for smaller images
and ×33.5 faster than Bloch for larger images. The use of
SIMD instructions combined with a high-level optimiza-
tion is the key feature that enables us to assess various
fuzzy spatial relations in a short time in order to perform
spatial reasoning. Although this article focuses on the di-
lation operator, other morphological operators such as the
erosion, the opening and the closing can be optimized the
same way. In future work, we plan to develop a GPU-
based dilation algorithm.

Acknowledgements
This work was performed using HPC resources from
the “Mésocentre” computing center of CentraleSupélec
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