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Interval impulsive observer for linear systems

with aperiodic discrete measurements

Djahid Rabehi, Nacim Meslem, Adnen El Amraoui, and Nacim

Ramdani, Member, IEEE

Abstract

This paper addresses the modeling and the design of an interval state observer for a linear time-

invariant plant in presence of sporadically available measurements corrupted by unknown-but-bounded

errors and noise. The interval observer is modelled as an impulsive system where an impulsive correction

is made whenever a measurement is available. The nonnegativity of the observation error between two

successive measurements is preserved by applying the internal positivity based on the Müller’s existence

theorem, while at measurement times a linear programming constraint is added. A new methodology for

designing the discrete-time observer gain is proposed that guarantees both nonnegativity and stability of

the estimation error. The synthesis is performed by solving a set of Bilinear Matrix Inequalities (BMIs).

The theoretical result is supported by numerical simulation.

Index Terms

Interval observers, LTI systems, sparse output measurements, hybrid system.

I. INTRODUCTION

The study of aperiodic sampled-data systems constitutes nowadays a very popular research

topic in control. This is a consequence of the huge development of embedded and Networked
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Control Systems (NCS), where sensor and control data are transmitted over digital commu-

nication channels. To reduce the communication load on these limited bandwidth channels,

it is tempting to exchange data in an aperiodic manner. Besides, the presence of sampling

jitters, packet dropouts and fluctuations in network accessibility further emphasize the interest

in time-varying and aperiodic sampling [1, 2]. In the context of state estimation, estimators for

continuous-time systems with aperiodically sampled outputs have been studied under several

frameworks; for instance, under the hybrid system framework [3] where the whole system is

represented as an impulsive system [4], or under the time-delay system framework as a sampled-

data system [5] where the system’s output is held in between measurements.

This paper addresses the modeling and the design of an interval state observer, in a sense to be

defined later, for a linear time-invariant plant in presence of sporadically available measurements

perturbed by unknown-but-bounded errors and noise.

Interval observers are guaranteed state estimators in the sense that the existence of a solution

can be verified and no solution can be lost. These observers have been introduced in [6]

for continuous-time systems and extended to several classes of systems under the bounded-

error framework (see the survey [7]), whereas those for continuous-time systems with discrete

measurements were firstly proposed in [8]. Basically, Interval observers compute trajectory tubes

that are proven to contain the plant state trajectory while taking into account all uncertainties

and disturbances acting on the plant and the measurements. The design of interval observers

must ensure by construction the nonnegativity of the estimation error and its stability as well.

Besides, the advantage of these observers compared to other guaranteed estimators, such as

prediction-correction approaches [9, 10] for instance, is that the observer gain can be computed

offline and the convergence of the estimation error can be proved a priori.

To be able to reconstruct a guaranteed state enclosure of the actual state for continuous-

time linear systems in presence of sporadic discrete-time measurement, we propose an interval

impulsive observer. The impulsive behavior is the result of the discrete nature of the measure-

ments. In between two measurement time instants, the observer behaves as a continuous-time

predictor based only on the evolution model. Then, at the measurement time instant, an impulsive

correction adjusts the estimate state enclosure. Here, we consider that the inter-measurement time

is unknown but belongs to an interval of time, contrariwise to [11] where it is chosen constant.

The lower bound of the time interval is chosen in a way to avoid Zeno phenomenon (infinite

number of samples in finite time). Both lower and upper bounds of the inter-measurement time
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are chosen a priori by the user, then our synthesis procedure tunes the observation gain to ensure

both positivity and stability of the estimation error. The stability analysis of the bounds estimate

is inspired by the work [4] while the positivity of the estimation error is ensured based on the

internal positivity for dynamical systems as in [12], [13].

In the literature, the study of continuous interval observer with discrete measurements has

been addressed in [5, 8, 11]. In [8], a continuous-discrete interval observer has been applied to a

specific microalgae-based bioprocess. In [11], an analysis of an interval observer for continuous-

time systems with discrete measurements has been proposed, where the measurement period is

assumed constant. To the best of the authors’ knowledge, there is no work dealing with the

observation gain design in the context of continuous-discrete interval observation with sporadic

discrete output.

The novelty of this paper resides in a new methodology for the design of the observer

gain in presence of aperiodic measurements, that guarantees both positivity and stability of

the interval estimation error. Moreover, the studied system includes both system perturbation

and measurement noise while in [4] only output noise has been considered. The synthesis

problem is formulated as a set of BMIs and Linear Programming (LP) constraints. An exponential

convergence of the estimation error bounds is proved.

The paper is organized as follows. Some preliminaries are given in Section II. The stability

verification of the interval observer for linear systems with aperiodic discrete measurements is

performed in Section III. The proposed method for observer gain synthesis is detailed in Section

IV. A numerical simulation is presented in Section V.

II. PRELIMINARIES

A. Notations

The set R, R≥ and N are the set of real scalars, positive real scalars and nonnegative integers

including zero, respectively. The induced matrix norm for a matrix A ∈Rn×n will be denoted as

|| · ||. Any p×m matrix whose elements are all ones or zeros are simply denoted by 1p,m or 0,

respectively. Ip denotes the identity matrix in Rp×p. Throughout this paper the inequality A≥ B

must be understood element-wise, for matrices as well as for vectors. M = max{A,B} is the

matrix where each entry is mi, j = max{ai, j,bi, j}. Let us define A+ = max{A,0}, A− = A+−A;

thus, |A| = A++A− denotes the element-wise absolute value. A matrix M ∈ Rn×n is said to

be Metzler if all its off-diagonal entries are nonnegative. A symmetric matrix P ∈ Rn×n is said
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to be negative (positive) definite if υ>Pυ < 0(> 0) ∀υ ∈ Rn \ {0} and it will be denoted by

P≺ 0(� 0). The Euclidean distance of x ∈Rn to the closed set A ⊂Rn is denoted as |x|A and

is defined by |x|A := infy∈A ‖x− y‖. The symbol ⊗ refers to the Kronecker product.

B. Definitions

A scalar continuous function α(x), defined for x ∈ [0,a) belongs to class K if it is strictly

increasing and α(0) = 0. A function β (s, t), defined for s∈ [0,a) and t ∈ [0,∞), is said to belong

to class K L if, (i) for each fixed t ≥ 0, the mapping β (s, t) belongs to class K with respect to

s, (ii) for each fixed s, the mapping β (s, t) is decreasing with respect to t and limt→∞ β (s, t)→ 0.

In this paper we model the impulsive behaviour of the estimation error as a hybrid system.

We consider the following formalism of hybrid systems introduced in [3] ẋ = F (x) x ∈ C ,

x+ = G (x) x ∈D ,
(1)

where x ∈ Rn is the state. F , C , G and D are the flow map, the flow set, the jump map and

the jump set, respectively. F and C are supposed to be continuous, G and D are closed sets.

The solutions to system (1) are defined on so-called hybrid time domains. A subset E ∈R≥×N

is a compact hybrid time domain if E =
J−1⋃
j=0

([t j, t j+1], j) for some finite sequence of times

0= t0≤ t1≤ ·· · ≤ tJ . It is a hybrid time domains if for all (T,J)∈ E , E ∩([0,T ]×{0,1, . . . ,J})

is a compact hybrid domain. A function φ : E →Rn is a hybrid arc if E is a hybrid time domain

and if for each j ∈ N, the function t 7→ φ(t, j) is locally absolutely continuous on the interval

I j = {t : (t, j) ∈ E }. In the sequel, the hybrid time domain E of the hybrid arc φ will be noted

by domφ . A hybrid arc φ is a solution to the hybrid system (1) if: (i) φ(0,0) ∈ C ∪D ; (ii) for

all j ∈ N, φ(t, j) ∈ C and φ̇(t, j) = F (φ(t, j)) for almost all t ∈ I j; (iii) for all (t, j) ∈ domφ ,

such that (t, j+1) ∈ domφ , φ(t, j) ∈D and φ(t, j+1) = G (φ(t, j)). A solution φ to system (1)

is maximal if it cannot be extended, complete if its domain, domφ , is unbounded. Also, it is

Zeno if it is complete and supt domφ < ∞.

Definition 1 (Cooperative dynamics, [14]). A continuous-time linear system ẋ(t)=Ax(t) (discrete-

time linear system x(t+1) = Ax(t)), with the state x∈Rn and A∈Rn×n, is said to be cooperative

if A is a Metzler (Nonnegative) matrix.
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The solutions of cooperative autonomous systems, initiated at x(t0) ≥ 0, stay nonnegative:

x(t)≥ 0 for all t ≥ t0.

III. INTERVAL IMPULSIVE OBSERVER ANALYSIS

Let us consider the linear time invariant system of the form

ẋ(t) = Ax(t)+Bu(t)+d(t), ∀t ∈ R (2)

where x ∈ Rn and u ∈ Rm are the state variables and the input of the system, and d ∈ Rn is

system disturbance.

Let us consider the following discrete-time measurement equation

y(tk) =Cx(tk)+ v(tk), ∀k ∈ N (3)

where y ∈ Rp is the output of the system, and v ∈ Rp is the noise acting on the output

measurement. It is assumed that there exist a minimal and maximal time between two consecutive

measurement instants as follows.

Assumption 1. Let τmax ≥ τmin be two given real scalars that satisfy: tk+1− tk ∈ [τmin,τmax] ∀k ∈

N.

Based on the aperiodic discrete-time measurements, the goal here is to estimate an upper and

a lower bound for the system state while ensuring the convergence of the estimation error. To

do so, let us first introduce assumptions on the boundedness of the measurement noise and the

system disturbance.

Assumption 2. Let a constant vector v ∈ Rp
≥0 be given such that |v(t)| ≤ v ∀t ∈ R≥.

Assumption 3. Let two constant vectors d, d ∈ Rn be given such that d ≤ d(t)≤ d is satisfied

∀t ∈ R≥.

Let us first define matrices AM = dA +(A−dA)
+, AN = AM−A, where dA a diagonal matrix

that contains only the diagonal elements of A, and A =

AM AN

AN AM

 .
Assumption 4. Matrix A is non-singular.

Remark 1. In the sequel, we will adopt the notation of hybrid time domains, i.e., ∀(t, j) ∈ E :

x≡ x(t, j) and x+ ≡ x(t j, j).
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The interval observer that we propose for system (2)-(3) has two steps;

First step: The interval observer behaves like an open-loop estimator between two successive

measurement instants, i.e., ∀(t, j) ∈ [t j, t j+1]×{ j}ẋ = AMx−ANx+Bu+d,

ẋ = AMx−ANx+Bu+d,
(4)

In addition, the interval observer initial state at (t, j) = (t0,0) satisfies the inclusion

x(t0,0)≤ x(t0,0)≤ x(t0,0). (5)

The dynamics of the estimation error during the inter-measurement time for both bounds e(t, j) =

x(t, j)− x(t, j) and e(t, j) = x(t, j)− x(t, j) can be obtained from equations (2) and (4) asė

ė

= A

e

e

+
d−d

d−d

 . (6)

Let us denote by Ξ(t, j)=

d(t)−d

d−d(t)

 the second term of (6) (induced by the system disturbance),

and Ξ =

d−d

d−d

 its upper constant bound.

Note that, based on the construction of the matrices AM and AN as Metzler and nonnegative

matrices, respectively, the matrix A is Metzler. In addition, the vector Ξ(t, j) is nonnegative.

Then, the solution to (6) is nonnegative which means that the lower and the upper bounds

are nonnegative in the time interval [t j, t j+1]×{ j} provided that their initial conditions are

nonnegative, that is, the inclusion x(t j, j)≤ x(t j, j)≤ x(t j, j) is satisfied.

Second step: Using the output model (3), the system state at the measurement time instants

can be presented as

x+ = x+L(Cx+ v− y), (7)

introducing a fictitious reset equation that will help analyzing the reset dynamics of the estima-

tion error. In Equation (7), x+ = x(t j, j) is the state vector right after the correction step, whereas

x = x(t j, j− 1) is the state vector right before the correction step. When the measurement

is available, an impulsive correction of the estimated state enclosures will be done using the

following correction equationsx+ = (In +LC)+x− (In +LC)−x−|L|v−Ly

x+ = (In +LC)+x− (In +LC)−x+ |L|v−Ly
(8)
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where L ∈ Rn×p is the observer gain to be designed.

From (7) and (8), the dynamics of the estimation error at measurement instants can be

described by the following dynamical systeme+

e+

= Γ(L)

e

e

+ϒ, (9)

where

Γ(L) =
[
(In +LC)+ (In +LC)−

(In +LC)− (In +LC)+

]
, and ϒ(t j, j) =

|L|v+Lv(t j, j)

|L|v−Lv(t j, j)

.

The matrix Γ(L) is an Internally Positive Realization of the state reset matrix (In +LC). The

positivity property of the reset matrix allows to preserve the order relation x(t, j)≤ x(t, j)≤ x(t, j)

after experiencing the reset (for more details about IPR for linear systems, see [13]).

Let us now consider the augmented error vector of the interval estimation as ξ = [e>,e>]>.

Re-writing the system (6) and upper bounding its right-hand term using the upper bound of

Ξ(t, j), one gets ∀(t, j) ∈ [t j, t j+1]×{ j}

ξ̇ = Aξ +Ξ (10a)

≤ Aξ +Ξ (10b)

Now, using the results of the general comparison theorem [15] [16, Lemma 3.4] [17] , the

solution ξ (t, j) of the system (10a) is upper bounded by the solution of the system

ξ̇u = Aξu +Ξ (11)

provided that ξ (t0,0) ≤ ξu(t0,0), where ξu(t, j) ∈ R2n is an auxiliary variable that represents

an upper bound of ξ (t, j). Since Assumption 4 holds, the equilibrium of the system (11) is

ξueq =−A−1
Ξ. By introducing the shifted error ξ0 = ξu−ξueq, the ξ0−system dynamics is given

as follows

ξ̇0 = A(ξ0 +ξueq)+Ξ = Aξ0 (12)

Remark 2. To simplify the stability analysis of the estimation error defined in (6) and (9), we

will use the dynamics of the ξ0−system. We justify our choice by the following reasons:

• The solution of the ξu−system in (11) is an upper bound of the solution of the ξ−system

in (10a). Shifting the ξu−system by the value of its equilibrium ξueq using the ξ0−system,

the convergence of ξ0(t, j) to 0 means that ξu(t, j) converges to ξueq.
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• In the case of system (2) without state disturbance (d(t) = 0), the trajectories ξ (t, j), ξu(t, j)

and ξ0(t, j) are identical and have the same stability properties. To the contrary, when the

state is under disturbance, then the trajectory ξ (t, j) is upper bounded by the trajectory

ξu(t, j).

In the sequel, we will analyze the stability of the estimation error by analyzing the convergence

to a set, that is ensuring that the distance to the set vanishes. Thus, with mild conditions, the

stability analysis is straightforward under the hybrid system framework [3].

From equations (6) and (9) and by using the shifted upper bound of the estimation error (12),

after adding the timer variable τ , the hybrid system modeling the dynamics of the upper bound

of the estimation error is given by

f (z0) =

Aξ0

−1

 ∀z0 ∈ C

g(z0) =

Γ(L)ξ0 +ϒ2

µ

 ∀z0 ∈D

(13)

where ϒ2(t j, j)) = ϒ(t j, j)) + (Γ(L)− I)ξueq, z0 = [ξ>0 ,τ]> is the state variable of the hybrid

system, µ ∈ [τmin,τmax] is the value of the timer τ after jump, and [τmin,τmax] is the set of

admissible values of the timer based on Assumption 1.

The flow and jump sets are defined as

C =
{
(ξ0,τ) ∈ R2n×R≥ | τ ∈ [0,τmax]

}
D =

{
(ξ0,τ) ∈ R2n×R≥ | τ = 0

}
.

(14)

It is worth noting that these sets do not force the system to jump until the timer violates the

zero, then after the jump, the timer τ is reset to a value µ ∈ [τmin,τmax].

Let us define the closed set A that contains all admissible values for the timer when the

ξ0−system state is at the origin

A =
{

z0 = (ξ0,τ) ∈ R2n×R≥ | ξ0 = 0,τ ∈ [0,τmax]
}
. (15)

Remark 3. As discussed in Remark 2, the stability of the ξ0−system is sufficient for the stability

of the ξ−system. Thus, if the ξ0−system is stable relatively to A , this implies that the ξ−system

is practically stable relatively to A .

Remark 4. The hybrid system (13) can be considered for the case without noise nor perturbation

by omitting the term ϒ2(t j, j). That is, if the system has d(t, j) = 0 and v(t j, j) = 0, ∀(t, j) ∈
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domφ , then we can pick d = d = 0 and v = 0 which implies that Ξ = 0, and ϒ(t j, j) = 0 ∀(t, j)∈

domφ . Thus we have ϒ2(t j, j) = 0.

We can now characterize the domain of the solutions of (13) when ϒ2(t j, j) = 0. The variable

τ , acting as a timer, guarantees that for every initial condition φ(0,0) ∈ C ∪D the domain of

every maximal solution φ to (13) when ϒ2(t j, j) = 0 can be written as follows:

domφ =
⋃
j∈N

([t j, t j+1], j)

with τmin ≤ t j+1− t j ≤ τmax, ∀ j ∈ N \ {0}. Furthermore, assuming t0 = 0, the structure of the

above hybrid time domain implies that for each (t, j) ∈ domφ we have

t ≤ ( j+1)τmax. (16)

Equation (16) will play a key role in establishing GES of the set A for hybrid system (13)

when ϒ2(t j, j) = 0.

Let us now recall the definitions of the global exponential stability (GES) and the input-to-state

stability (ISS) of closed sets for a general hybrid system.

Definition 2. ([18], [19]) Let A ⊂ Rnφ be closed. The set A is said to be:

• GES for the hybrid system (13) when ϒ2(t j, j) = 0 if there exist λ ,κ ∈R> such that every

solution φ to (13) when ϒ2(t j, j) = 0 satisfies:

∀(t, j) ∈ domφ , |φ(t, j)|A ≤ κe−λ (t+ j)|φ(0,0)|A . (17)

• ISS for (13) with respect to ϒ2 if there exist β ∈K L and α ∈K such that every solution

φ to (13) satisfies:

∀(t, j) ∈ domφ ,

|φ(t, j)|A ≤max
{

β (|φ(0,0)|A , t + j),α(||ϒ2||(t, j))
}
. (18)

Before setting our first result in the next theorem, let introduce the following lemma.

Lemma 1 ([4]). Let ρ be a strictly negative real number. Choose γ ∈
(

0, |ρ|
1+τmax

]
and ω ∈[

τmax|ρ|
1+τmax

,∞
)
. Let φ be any solution to the hybrid system (13). Then for every (t, j) ∈ domφ , one

has ρ j ≤ ω− γ(t + j).
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The idea behind using Lemma 1 is to allow for the Lyapunov function to increase locally. This

increase is compensated by instantaneous decrease at jumps which renders the overall hybrid

dynamics stable. This stability property is the main result of [3, Proposition 3.29].

Theorem 1. Let Assumptions 1, 2, 3, and 4 hold. For a given gain matrix L ∈ Rn×p, if there

exist a symmetric positive definite matrix P ∈ R2n×2n such that

Γ(L)>eA>µPeAµ
Γ(L)−P≺ 0 ∀µ ∈ [τmin,τmax] (19)

is satisfied, then the hybrid system (13)-(14) is Input-to-State-Stable (ISS) with respect to the set

A defined in (15). Thus, the system (4), (8) is an interval observer for the system (2)-(3) with ISS

estimation error relatively to A provided that x(t0,0)≤ x(t0,0)≤ x(t0,0). Moreover, if d(t, j) = 0

∀(t, j) ∈ domφ in (2) and v(t j, j) = 0 ∀(t, j) ∈ domφ in (3), then the interval observer (4), (8)

for the system (2)-(3) has a globally exponentially stable (GES) estimation error relatively to

A .

The proof of stability in Theorem 1 follows the main lines of the proof of [4, Theorem 1] with

appropriate modifications due to the fact that we study the stability of an upper-bound of the

interval estimation error. These modifications have a double role. First, they have to guarantee

the order preserving property for the estimation error. Then, they manage the effect of the state

disturbance.

Proof of Theorem 1. The proof is split into two parts; studying the nonnegativity of the esti-

mation error, then the stability of the upper bound of the estimation error.

The cooperativity of the estimate error: Based on Assumption 3 and due to the Metzler prop-

erty of the matrix A of (6), the flow dynamics (6) is nonnegative. On the other hand, the

observer updates the estimates at measurement times by means of (8), where its estimation error

is represented by the jump dynamics (9). The matrix Γ(L) is structurally nonnegative while

Assumption 2 ensures the nonnegativity of the vector ϒ(tk). Consequently, the estimation error

preserves the order relation x(t j, j)≤ x(t j, j)≤ x(t j, j) after experiencing the reset. Finally, with

the initial condition given as x(t0,0)≤ x(t0, ,0)≤ x(t0,0), the errors e(t, j) and e(t, j) of (13) are

nonnegative for all (t, j) ∈ domφ .

The stability of the estimation error upper-bound: Instead of studying the stability of z= [ξ>,τ]>,

we use its shifted upper bound trajectory z0 = [ξ>0 ,τ]> as discussed in Remark 2. Let us consider
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the Lyapunov function candidate for the hybrid system (13)-(14) defined ∀z0 ∈ R2n×R≥

V (z0) = ξ
>
0 eA>τPeAτ

ξ0. (20)

Note that there exist two positive scalars l1, l2 such that

l1|z0|2A ≤V (z0)≤ l2|z0|2A ∀z0 ∈ C ∪D ∪G (D). (21)

Due to the positive definiteness of P and the non-singularity of the matrix eA for every τ , by

continuity arguments, one can set

l1 = min
τ∈[0,τmax]

λmin
(
eA>τPeAτ

)
, l2 = max

τ∈[0,τmax]
λmax

(
eA>τPeAτ

)
(22)

where λmin(·) and λmax(·) denote the smallest and the largest eigenvalue of their matrix argument,

respectively. From (20) we can find

∇V (z0) =
(

2eA>τPeAτ
ξ0, ξ

>
0 A>eA>τPeAτ

ξ0 +ξ
>
0 eA>τPAeAτ

ξ0

)
(23)

For simplicity, throughout this proof, we write Γ and ϒ2 instead of Γ(L) and ϒ2(t j, j), respectively.

From system (13)-(14), and under the fact that eAµ and A commute, the variation of the Lyapunov

function over the inter-sampling time is then 〈∇V (z0), f (z0)〉 = 0 ∀z0 ∈ C . Thus, the stability

of the upper-bound of the error dynamics can be verified by considering the evolution of the

Lyapunov function for every z0 ∈D . In addition, whenever z0 ∈D , we have τ = 0, which implies

V (g(z0))−V (z0) = (Γξ0 +ϒ2)
>eA>µPeAµ(Γξ0 +ϒ2)−ξ

>
0 Pξ0

= ξ
>
0 (ΓeA>µPeAµ

Γ−P)ξ0 +2ϒ2
>eA>µPeAµ

Γξ0

+ϒ2
>eA>µPeAµ

ϒ2 (24)

GES stability: First, we discuss the case of a system without noise nor perturbation, i.e., when

v(t j, j) = 0 and d(t, j) = 0, which implies ϒ2 = 0. Recall that ξ>0 ξ0= |z0|2A , based on inequality

(19) there exists a small enough η ∈ R> such that (24) becomes

V (g(z0))−V (z0)≤−ηξ
>
0 ξ0=−η |z0|2A ∀z0 ∈D (25)

Without loss of generality, let us assume that l2 in (22) and η in (25) satisfy 1− η

l2
> 0. Define

θ1 = ln
(
1− η

l2

)
and observe that θ1 < 0. Hence

V (g(z0))≤ eθ1V (z0) ∀z0 ∈D . (26)
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Consider that φ is a maximal solution to (13)-(14). As proven in [3, Proposition 3.29 ], and

similarly to [4, Theorem 1], using Lemma 1 one can find that the solution φ satisfies inequality

(17) in Definition 2. Thus, the set A defined in (15) is GES for the hybrid system (13)-(14).

Based on Remark 3, one can conclude that the interval observer (4), (8) with the system (2)-(3)

have a GES estimation error relatively to A .

ISS stability: Returning to the general case where ϒ2 6= 0. We apply Young’s inequality 2a>b≤
η

2 a>a+ 2
η

b>b where a = ξ0 and b> = ϒ2
>eA>µPeAµΓ on the right hand part of equation (24).

Then, we get

V (g(z0))−V (z0)≤−
η

2
ξ
>
0 ξ0

+ϒ2
>
[
eA>µ

( 2
η

PeAµ
ΓΓ
>eA>µ + I

)
PeAµ

]
ϒ2

≤− η

2l2
V (z0)+ϒ2

>
ϒ2

∣∣∣∣∣∣ 2
η

PeAµ
ΓΓ
>eA>µ + I

∣∣∣∣∣∣
×||P|| max

µ∈[τmin,τmax]

(
||eAµ ||2

)
(27)

From (19), we have
∣∣∣∣ 2

η
PeAµΓΓ>eA>µ + I

∣∣∣∣ · ||P|| ≤ ( 2
η
||P||+ 1

)
||P||. In system (13), we have

ϒ2 = ϒ+(Γ− I)ξueq. Using the triangle inequality, one obtain

ϒ
>
2 ϒ2 ≤ 2ϒ

>
ϒ+2||ξueq||2||(Γ− I)||2 (28)

where the uncertain term ϒ is bounded by 2|L|v, provided that v(t j, j) is essentially bounded.

The vector function ϒ2 defined in (9) satisfies ϒ2
>ϒ2 = 2

∣∣∣∣|L|v∣∣∣∣2 + 2||Lv||2 ≤ 4
∣∣∣∣|L|v∣∣∣∣2, and

based on Assumption 3 we thus have ϒ2
>ϒ2 ≤ 4

∣∣∣∣|L|∣∣∣∣2 supt ||v||2(t, j). Consequently, by replacing

these inequalities in (27), the Lyapunov function at jumps satisfies

V (g(z0))≤ eθ2V (z0)+ζ1 sup
t
||v||2 +ζ2 ∀z0 ∈D , v ∈ Rp (29)

where θ2 = ln
(
1− η

2l2

)
is a negative scalar while ζ1 and ζ2 are positive scalars defined as follows

ζ1 = 8
∣∣∣∣|L|∣∣∣∣2( 2

η
||P||+1

)
||P|| max

µ∈[τmin,τmax]

(
||eAµ ||2

)
,

ζ2 = 2
∣∣∣∣|Γ−L|

∣∣∣∣2( 2
η
||P||+1

)
||P|| max

µ∈[τmin,τmax]

(
||eAµ ||2

)
||ξueq||2.

Now, similarly to [3, Proposition 3.29 ], and using Lemma 1, the solution φ verifies the inequality

(18). Thus, the hybrid system (13)-(14) is ISS with respect to v(t, j) relatively to the set A .

Finally, the interval observer (4), (5), (8) for the system (2)-(3) has ISS estimation error w.r.t

v(t, j) relatively to the set A , and this concludes the proof.
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Remark 5. Note that assuming (19) to hold implies that the eigenvalues of eAµΓ(L) are strictly

contained in the unit circle for every µ belonging to [τmin,τmax]. Contrariwise to [4, Remark 3],

it is not straightforward to connect this condition with a detectability property mainly because

of the decomposition of I+LC into matrix Γ(L). However, one may conjecture that at least the

following two necessary conditions are required for the feasibility of inequality (19):

(i) The detectability of the equivalent discrete-time system (DTS) of (2) given as: χk+1 = eAτ χk,

yk =Cχk ∀τ ∈ [τmin,τmax], where χ is the state and yχ is the output. Similar to the criteria

given in [20, Remark 7], [4], [11], the criterion should be the detectability of the pair

(eAτ ,C) for every τ ∈ [τmin,τmax].

(ii) The second condition is due to our use of the IPR. In general, the stability of the above

equivalent DTS does not imply the stability of its IPR. However, we can use the result

of [13] on the relation between the eigenvalues of a system and the stability of its IPR.

In [13], they have showed that the IPR of a system is stable if its eigenvalues remain in

a restricted region of the complex plane defined by P = {z ∈ C : Re(z)+ |Im(z)| < 1}.

This condition should also be satisfied by the equivalent DTS which restricts further the

synthesis feasibility.

The combination of these two conditions deserves further analysis that goes beyond the scope

of the paper. It will be investigated in future work.

So far, a verification method has been given. The synthesis of the observation gain L cannot

be achieved using convex solvers (CS) due to the decomposition of (In +LC). However, using

the positive realization of this matrix, the synthesis is still possible using CS. In the following

section, we propose a synthesis methodology.

IV. SYNTHESIS METHOD

In this section, we propose a new design methodology as second contribution of this paper.

We will show how to design the observer gain based on positive system theory.

A. Positive realization based synthesis

Let us now re-consider the generic impulsive correction step of (7). Let us denote G = I+LC,

and introduce G+ and G−, the positive and the negative part of the matrix G, respectively, i.e.,
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G = G+−G−, equation (7) can be rewritten as

x+ = Gx+L(v− y)

= (G+−G−)x+L(v− y),
(30)

Let us note that for any two positive matrices G1, G2 ∈ Rn×n
≥ that satisfy G = G1−G2 there

exists ∆ ∈ Rn×n
≥ such that

G = (G++∆)− (G−+∆) (31)

That is, matrices G1 and G2 are any positive realization of the matrices G+ and G−, respectively.

Under the positive realization of the reset matrix G, the reset equation of the estimation error

(9) can be generalized by the following difference equatione+

e+

= Γ(G1,G2)

e

e

+ϒ (32)

where

Γ(G1,G2) =

G1 G2

G2 G1

 (33)

Therefore, the idea for the synthesis is to calculate numerically the two positive matrices G1 and

G2 that satisfy the stability conditions. Then, one can compute directly the matrices G+ and G−

as the positive and the negative parts of the matrix G obtained from G = G1−G2. Using (33)

instead of Γ(L) in inequality (19), and introducing

Φ(P,G1,G2,L) = Γ(G1,G2)
>eA>µPeAµ

Γ(G1,G2)−P, (34)

the gain synthesis can now be performed by finding solution {P,G1,G2,L} to the following

feasibility problem

Φ(P,G1,G2,L)≺ 0, ∀µ ∈ [τmin,τmax] , (35a)

In +LC = G1−G2 , (35b)

G1 ≥ 0 , (35c)

G2 ≥ 0 , (35d)

P� 0 (35e)

December 5, 2019 DRAFT



15

From equation (31) and based on the definition of the positive matrices G+ and G− and their

positive realization G1 and G2, respectively, the reset equation (32) can be seen as a positive

reset Γ(L) perturbed by a nonnegative matrix as follows

Γ(G1,G2) = Γ(L)+12×2⊗∆. (36)

Remark 6. Since the matrix ∆ is nonnegative which implies that 12×2⊗∆ is also nonnegative,

it is always possible to enhance the interval observer dynamics at jumps in (32) by reducing the

matrix Γ(G1,G2) in (36) to its optimal realization Γ(L). As a result, the observer gain matrix L in

equations (8) of the interval observer can be synthesized using the intermediate auxiliary matrices

G1 and G2, then the implementation is finally done using matrix Γ(L) instead of Γ(G1,G2).

B. Design procedure

The semi-definite programming (SDP) (35) is subjected to a Nonlinear Matrix inequality,

which is hard to solve. The constraint Φ ≺ 0 can be relaxed to a Bilinear Matrix Inequality

(BMI) using the simplifications below.

The semi-definite constraints to be simplified are as follows

Φ(P,G1,G2,L)≺ 0

−P≺ 0
(37)

these constraints can be combined by using the projection lemma 2.

Lemma 2. (Projection Lemma [21]) Given Z = Z> ∈Rm×m and two matrices U and V of column

dimension m; there exists an unstructured matrix F that satisfies

U>FV +V>F>U +Z ≺ 0, (38)

if and only if the following projection inequalities with respect to F are satisfied

N>U ZNU ≺ 0,

N>V ZNV ≺ 0,
(39)

where NU and NV are arbitrary matrices which columns form a basis of the nullspaces of U

and V , respectively.

Setting

Z =

eA>µPeAµ 0

0 −P

 (40)
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Thus, the equivalence between (39) and (37) is obtained with N>U = [Γ(G1,G2)
> I2n] and

N>V = [0 I2n]. Picking U = [−I2n Γ(G1,G2)] and V = [I2n 0] that have NU and NV as nullspace

basis, respectively, the inequalities (37) can be rewritten in the form (38) as followseA>µPeAµ −F−F> FΓ(G1,G2)

? −P

≺ 0 (41)

Using Schur complement for the inequality (41) we have
−F−F> FΓ(G1,G2) eA>µ

? −P 0

? ? −P−1

≺ 0 (42)

Pre-and-post multiplying (42) by the matrix diag{I2n, I2n,P} on gets
−F−F> FΓ(G1,G2) eA>µP

? −P 0

? ? −P

≺ 0 (43)

In the inequality (43) the time variable µ is in a compact interval defined as µ ∈ [τmin,τmax]. So

the term eAµ can be represented by its polytopic over-approximation. This over-approximation

consists in determining a finite number of constant matrices {M1,M2, . . . ,Mv} ∈R2n×2n such that

eA[τmin,τmax] ∈ conv{M1,M2, . . . ,Mv}. There exist several methods in the literature for determining

the matrices {Mi}i∈{1,...,v} [22]. Here, we use the method based on Taylor’s series developed in

[23].

Finally, to solve the matrix inequalities (37), it is sufficient to solve the set of BMIs given as

follows 
−F−F> FΓ(G1,G2) M>i P

? −P 0

? ? −P

≺ 0 ∀i ∈ {1, . . . ,v} (44)

It is worth pointing that the matrices {P,G1,G2,L} are the decision variables in this set of BMIs.

The second result of this paper is the design of the observer gain, which is summarized in

the following proposition.

Proposition 1. Let Assumptions 1, 2, 3, and 4 hold. If there exist two nonnegative matrices G1,

G2 ∈Rn×n, and a matrix L∈Rn×p such that the set of BMIs (44) and the constraints (35b)–(35d)
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are feasible, then the interval observer of the form (4), (5) and (8) for the system (respectively,

noise-free system) (2)–(3) has an ISS (respectively, a GES) estimation error w.r.t. the set A .

Proof of Proposition 1. The proof is given in the previous lines both by applying the positive

realization and the projection lemma.

V. ILLUSTRATIVE EXAMPLES

In order to illustrate the performance of the proposed observer, we consider a Spring-mass-

damper system.

Let p, κv, and F be the position, the velocity, and the force applied to the object, respectively.

We have

ṗ(t) = κv(t)+d1(t)

msκ̇v(t) =−ks p(t)− csκv(t)+F(t)+d2(t)

where ms, ks and cs stand for the mass of the object, the stiffness constant of the spring, and the

damping ratio, respectively, and d(t) = [d1(t) d2(t)]> is the state disturbance. Defining x1 = p,

x2 = κv, and u = F , with the practical parameters of the system which are given as ms = 1kg,

ks = 1N/m and cs = 1Ns/m, one can introduce its LTI model as

ẋ =

 0 1

−1 −1

x+

0

1

u+d(t)

where d(t) is unknown-but-bounded as −d ≤ d(t) ≤ d such that d = [1 1]>, and the output is

given by y(tk) = 2x1(tk)+v(tk) where v(tk) = 0.4cos(2tk). The system is not cooperative. So the

solution that we have proposed is to use its IPR. Then, the dynamics of the interval estimation

error between two consecutive measurements in (6) is defined by the following matrices AM =0 1

0 −1

 , AN =

0 0

1 0

 . Note that although the plant model is stable, the observer dynamics in

between measurements is unstable. To illustrate the performance of the observer, we fix cs = 1 and

we choose the time interval [τmin, τmax] = [0.04, 0.3], then we solve the feasibility problem given

in Proposition 1. The set of BMIs (44) is solved using the YALMIP toolbox [24] based on the

Penlab (v1.04) solver. The observation gain matrix is obtained as L>= [−0.5004 −0.0494]. The

implementation is made with matrix (I2 +LC) = G1−G2 =

−0.0008 0

−0.0987 1

 . The measurement

times are generated randomly in the time interval [τmin, τmax]. The system input in taken as
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Figure 1. Simulation results for the spring-mass-damper system: the estimate bounds for the position (top), and velocity (bottom).

u(t) = 10[2sin(10t)+ sin(16t)+ sin(24t)]. The simulation results are given in Figure 1 and 2.

In Figure 1, it is noticeable that the jump part of the interval impulsive observer maintains the

estimate bounds from diverging, even though the open-loop dynamics of the interval estimator

error is unstable. In Figure 2, the estimates converge exponentially to the state, and the Lyapunov

function of the error shows a faster convergence at jumps while stays almost constant when

flowing.

In order to show the maximum allowable inter-measurement time on the problem feasibility,

we vary the damping ratio cs which in turn varies the eigenvalues of the flow part. The maximum

inter-measurement time τmax that renders the design problem feasible, for different values of cs, is

given in Table I. One can notice that the feasibility depends on the maximum inter-measurement

Table I

The relation between τmax and the damping ratio.

cs 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

τmax 1.1 1 0.9 0.8 0.5 0.3 0.05 –
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Figure 2. System without perturbations and noises : from top to bottom; state x1, x2, Lyapunov function of the error, and the

inter-measurement times.

time τmax. The correction jumps are made to maintain the prediction from diverging, so the

larger the divergence rate of the prediction error, the smaller the feasible τmax. For damping

ratio cs ≤ 0.3, it was not possible to find a gain L that renders the eigenvalues of the discrete

system equivalent (see Remark 5) in the restricted region of the complex plane given in [13].

Such an issue is the main source of conservatism of the approach proposed in the paper.

VI. CONCLUSIONS

In the paper, a new approach for designing interval impulsive observers for linear systems

with aperiodic discrete measurement has been introduced. Exploring the internal positivity of

the system, a new method has been proposed for the design of the observer gain. The synthesis

of the observation gain is performed using BMIs. Simulation results illustrate the efficiency of

the proposed interval impulsive observer for a class of linear systems. Future works may focus

on; (i) the co-design of the observation gain and the time interval where the measurements can

interfere, (ii) the design of stabilizing control law based on interval impulsive observers.
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