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Université du Maine, France

Email: pascal.picart@univ-lemans.fr

Mayssa Karray
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Abstract—This paper addresses the problem of the reduction
of speckle noise corrupting phase images from laser digital
holography technique. It present an iterative denoising algorithm
based on the 2-D windowed Fourier Transform. The algorithm is
a new approach based on the SOS procedure recently proposed
by Y. Romano and M. Elad adapted to phase processing. The
approach is proposed in the case of the 2-D windowed Fourier
Transform algorithm applied to phase maps which constitutes
the state of the art in the field of digital holography. The
reason is that the sum and difference operations used in the
SOS procedure cannot be computed directly on phase maps
but using a sine and cosine representation in order to avoid
2π phase jumps. Results on simulated phase maps including
realistic noise conditions encountered in digital holography show
the advantage of the proposed iterative approach. The paper
proposes the application of the method to denoising of phase
images from digital three color holography applied to cracks
characterization of a composite materiel under mechanical
strength test.
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I. INTRODUCTION

The digital holography technique is a laser based optical

process. It allows measurements of displacement fields and

surface shape. Due to contactless measurements, rough sur-

faces characterization of objects can be obtained with very

good accuracy.

Digital holography technique is based on a coherent mixing

of a reference wave and an object wave which results from

light diffraction of any object supposed having opaque and

rough surface. An image sensor (CMOS or CCD) records

fringe patterns delivered by the coherent mixing. Figure 1

exhibits the digital holography principle. If the hologram

is recorded [1] in accordance with the Shannon conditions,

we obtain an image of the object wave-front from digital

reconstruction of the hologram. The complex field of the

object is computed by Single Fast Fourier Transform (S-FFT)

or Double Fast Fourier Transform (D-FFT) algorithms using

adjustable magnification [2]. The numerical calculation of the

diffracted field yields a complex amplitude O0(x, y) sampled

on a grid corresponding to the number of reconstruction points

of the algorithm. The amplitude image (modulus), Ar, and

phase image, ψr (argument of the field) are derived from the

complex amplitude, namely:

Ar(x, y) =| O0(x, y) |, (1)

ψr(x, y) = atan2{ℑm[O0(x, y)]

ℜe[O0(x, y)]
} mod(2π). (2)

Consequently to computation by the means of the arctangent

function, ψr is wrapped in the interval [−π,+π], modulo

2π. In most cases the randomness of the phase is due to

the roughness of the object. The reconstructed object is then

subject to the phenomenon of speckle noise. Phase estimation

of the reconstructed optical field is the key for a large number

of applications of digital holography. In our laboratory, we

focus especially on the study of acoustic phenomena using a

technique of ultra-fast digital holography with a sampling rate

up to 100kHz [3]. The reconstructed amplitude is amplitude

modulated by a speckle pattern due to the coherent light and

consequently, speckle acts as a multiplicative noise. Metrology

applications require only optical phase so we focus on phase

changes over time. The quantity of interest is a phase differ-

ence between two instants, allowing to follow-up the evolution

of a phenomenon over time. Taking into account Doppler

effect, the phase difference is proportional to the displacement

field of the object between the two instants. As the optical

phase is calculated from the arctangent function, then it is

wrapped. Phase must be unwrapped in order to access physical

kinematic quantities on the object [4].

II. SPECKLE NOISE IN DOPPLER PHASE

Usually, a speckle decorrelation phenomenon appears [5]

when the object is distorted under the effect of any applied

constraint, which may be mechanical, acoustic, thermal, etc...

It adds a high spatial frequency noise to the useful signal.

Spatial correlation width of this noise is related to the size

of the observable speckle grain in the amplitude image.

Consequently, the phase image needs a filtering process in

order to be correctly exploited for a confrontation with a

physical model of the studied object. The speckle decorrelation



Fig. 1. Holography principle.

has been studied by some authors [6]–[9]. Decorrelation can

be highlighted from differences of two phases measured at

two different instants. The second order probability density

function of the phase [10] is of interest. The computation of

the joint probability density function of two speckle phases

ψr1 and ψr2 has been given in [11], [12]. Given ε the noise

induced by speckle decorrelation between two extracted phases

at two different instants and ∆ϕ the phases variation due to

structure modification, then it comes ψr2 = ψr1 + ε + ∆ϕ.

∆ϕ is considered as a deterministic variable. The probability

density function of ε depends on the modulus of the complex

coherence factor between two speckle fields (noted µ). Con-

sidering β = |µ| cos(ε), the probability density function of

phase noise ε is given by:

p(β) =
1− |µ|2

2π
(1−β2)−3/2(β arcsinβ+

πβ

2
+
√

(1− β2)).

(3)

Equation 3 describes the probability of noise ε in the difference

between two instants. Generally, to preserve 2π phase jumps

in the wrapped phase map, the processing is applied on sine

and cosine of the phase variations.

III. THE 2-D WINDOWED FOURIER TRANSFORM

The 2-D windowed Fourier transform filter (WFT2F)

method is based on a local Fourier transform (FT) which

can take into account the non-stationary characteristic of the

speckle noise [13], [14]. So, frequency components of a fringe

pattern could be extracted from noise with more accurate

efficiency than with a Fourier transform (FT) computed overall

phase maps as acts for example the Wiener filter method. In a

same way as wavelet transforms but adapted to a complex

representation, the filtering process consists in applying a

threshold on the modulus of the 2-D Fourier coefficients,

letting phase unchanged. Finally, an inverse 2-D windowed

Fourier transform (IWFT2F) of the filtered frequency domain

signal is computed to get the modulo 2π phase of the fringe

pattern. The WFT2F can be seen as a projection of phase

map onto 2-D oscillatory functions Gµ,ν,ξ,η(x, y) which are

localized both in the spatial and the frequency domain. Let

s(x, y) the input phase map, it follows:

WFTs(µ, ν, ξ, η) =

∫ ∫

s(x, y)G∗

µ,ν,ξ,η(x, y)dxdy. (4)

In the above equation, the symbol ∗ denotes the complex con-

jugate operation. WFTs denotes the WFT2F applied to image

s. G functions constitutes the atoms of the transformation and

are obtained with translations and modulation in the spatial

domain of a window function g(x, y):

Gµ,ν,ξ,η(x, y) = g(x− µ, y − ν) exp(j(ξx + ηy)), (5)

which is a normalized Gaussian function given as:

g(x, y) =
1

√
πσxσy

exp(−(
x2

2σ2
x

+
y2

2σ2
y

)). (6)

Variables σx and σy are standard deviations of the Gaussian

function in x and y directions. The filtering process is achieved

with a hard thresholding applied onto WFT2F coefficients. De-

note W = WFTs(µ, ν, ξ, η), the transformation coefficients

and W the thresholded coefficients we get:

W =

{

W if | W |≥ T

W = 0 if | W |< T
(7)

T is the threshold which value is set in order to suppress

noise components. The overbar of WFT2F coefficients denotes

the filtering process which modifies input coefficients. Finally

an IWFT2F is applied on filtered coefficients W in order to

get the denoised image,

d(x, y) =

∫ ∫ ∫ ∫

WGµ,ν,ξ,η(x, y)dµdνdξdη. (8)

The phase φ(x, y) can be extracted from the output image

d(x, y) with:

φ(x, y) = atan2{ℑm[d(x, y)]

ℜe[d(x, y)] } mod(2π). (9)

The discrete version of this algorithm leads to the setting of

an amount of eight parameters which define the window size,

the threshold value and six parameters for discretization of

the frequency axis. For the evaluation, it has been kept values

proposed by the author [13] which seem to be well adapted

to the processing of fringe patterns.

IV. THE SOS PROCEDURE

The SOS procedure recently proposed [15] is a generic

recursive function that processes denoising method as a black-

box and has the ability to push it forward to improve its perfor-

mance. The SOS procedure allows to improve performances

of some families of denoising algorithms like NLmeans [16],

K-SVD [17] or BM3D [18]. Unlike the above methods, instead

of adding the residual which mostly contains noise [19]

back to the noisy image, or filtering the previous estimate

over and over again which could lead to oversmoothing, the

authors suggest strengthening the signal by leveraging on the

availability of the denoised image. More precisely, given an

initial estimation of the cleaned image, improved results can be

achieved by iteratively repeating the following SOS procedure:

• Strengthen the signal by adding the previous denoised

image to the noisy input image ;

• Operate the denoising on the strengthened image ;



• Subtract the previous denoised image from the restored

signal-strengthened outcome.

The equation that describes this procedure is written in the

following form:

xk+1 = F (y + xk)− xk, (10)

with x0 = 0. In the above equation y is the initial observation

(noisy image), xk terms represent the iterated estimations

of the noisy free image and F is an operator representing

a denoising algorithm. A performance improvement is then

achieved since the signal-strengthened image can be denoised

more effectively compared to the noisy input image, due

to the improved signal-to-noise ratio (SNR). The underlying

hypothesis on the observation is the classical additive noise

model, with the statistical independence between the clean

image and the noise. In [15], the authors introduce a ρ

parameter in order to control signal emphasis, so iterated

signal estimates become:

xk+1 = F (y + ρxk)− ρxk. (11)

This control parameter improves the convergence property of

the SOS procedure.

A. Adaptation to WFT2F algorithm

In order to use WFT2F algorithm as a black box of the SOS

procedure, some precautions have to be taken to avoid artificial

phase jumps at −π and +π angles that could arise in the

summation operation needed to compute strengthened signal,

and in the difference operation which compute the final iterate

estimate. First of all, output phase map resulting from WFT2F

algorithm is transformed in cosine and sine components. Then

an arithmetic weighted mean is computed on cosine and sine

components in order to get strengthened components, resulting

phase map is obtained from angle computed with strengthened

components:

φstrength = atan2{
1

1+ρ(cos(φy) + ρ cos(φk))
1

1+ρ (sin(φy) + ρ sin(φk))
} mod(2π).

(12)

Same procedure with different weightings is used in order to

compute difference between denoised strengthened phase map

φstrength and the kth iterate estimate of the noise free phase

map φy .

V. DATABASE AND EVALUATION

The database for the benchmark consists of simulated fringe

images in which the type of the fringe pattern and the noise

level are controlled while statistics follow 3. As the database

and the principle of simulation have been published in previous

articles [19], [20], only its main characteristics are recalled

here. The use of several fringe pattern permits to consider

a certain ”fringe diversity” so as to establish statistics on

the obtained results. For this purpose, five different fringe

patterns are chosen. In addition, five values for the SNR were

simulated by decreasing the SNR value with adding to the

simulation a wavelength change. It leads to 25 noisy phase

maps with cosine SNR varying from about 3dB to 12dB. This

helps to simulate degraded phase images according to real

experimental conditions for which a lot of limiting factors may

influence the quality of the measurement. The metrics used

for this evaluation are the phase error σφ which represents the

standard deviation of the wrapped phase difference beetween

the denoised and the noisy phase maps [20], and the gain of

SNR between noisy and denoised image. The choice of phase

error metrics is justified by metrological applications underly-

ing with digital holography technique. As the processed phase

maps are about zero mean, this metric is closely link with the

PSNR mostly used in the evaluation algorithms in the image

processing community. In order to compare our new approach

with other denoising methods, algorithms that performances

have been previously published [20] have been selected. Se-

lected methods are: WFT2F, discrete wavelets as Daubechies

wavelets and symlets (Daub4, Daub8, sym4, sym8) [21],

curvelets [22], median filters, BM3D [18], NLmeans [16] and

a sparse approach (Spadedh) [23].

VI. RESULTS AND DISCUSSION
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Fig. 2. Ranking obtained for the average value of σφ . Within each yellow
bar, a green bar corresponds to the standard deviation associated with the
values displayed for the entire database.

Figure 2 exhibits the ranking of denoising algorithms

together with the phase error. The SOS-WFT2F algorithm

(denoted SOS-Wtfr2 in the figures) appears to be the best

one. It can also clearly see that it presents very close results

compared to WFT2F (denoted Wtfr2 in the figures). Looking

to results on the five lowest input SNR images (see Tab.1)

of the database reveals that SOS procedure performs better

when the input SNR is weak. So SOS-WFT2F has to be

applied when acquisition conditions are severe. Concerning

SOS algorithm parameters, we can notice that the best values

of phase errors have been found for few iterations (2 to 4) and

ρ = 1.4 for signal emphasis parameter.
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TABLE I
RESULTS OF WTFR2 AND SOS-WTFR2 METHODS WITH σφ AND OSNR

(OUTPUT SNR) METRICS. ISNR IS THE INPUT SNR.

Method: Wtfr2 SOS-Wtfr2 Wtfr2 SOS-Wtfr2

ISNR (dB) σφ (rad.) σφ (rad.) OSNR (dB) OSNR (dB)

3.10 0.0370 0.0319 28.62 29.91
3.33 0.0375 0.0371 28.56 28.66
3.59 0.0320 0.0292 30.11 30.89
3.65 0.0322 0.0304 29.57 30.10
3.66 0.0349 0.0323 31.05 31.68
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Fig. 4. Application to phase map denoising. (a) Noisy phase extract from
blue laser beam, (b) denoised phase, (c) noise extracted by the algorithm.

VII. APPLICATION

The SOS-WFT2F algorithm has been applied to three-

color holographic interferometry for accurate displacement

measurement. The goal is to achieve detection of precursor

crack in composite materials submitted to a strength test [24],

[25]. The simultaneous recording of three laser wavelengths

using a triple CCD sensor allows the characterization of shear

strains at the lateral surface of the sample. It provides a

pertinent parameter to detect precursor crack in the structure,

long before it becomes visible on the real time stress/strain

curve. Figure 4 shows a phase map obtained with the set-up

that was processed using SOS-WFT2F for the blue laser. The

SOS-WFT2F algorithm allows us to obtain denoised phase

maps which will be used for the detection of crack in an

efficient manner. This last point will be detailed in a next

paper. Time computation of SOS-WFT2F is about 5min for

an 1024x1024 pixels image on a laptop core-5 pc.

VIII. CONCLUSION

This paper presents a new iterative algorithm based on the

2-D windowed Fourier Transform in combinaison with the

SOS procedure. In order to avoid smoothing of 2π phase

jumps, a sine and cosine representation is proposed for the

sum and difference operations of the SOS procedure. Results

on simulated phase maps including realistic noise conditions

encountered in digital holography show the superiority of the

proposed approach compared to a set of denoising algorithms.

In addition, this approach yields performances well beyond

the state of the art constituted by the 2-D windowed Fourier

Transform algorithm. The application or this new method to

denoising of phase images demonstrates it applicability to dig-

ital three color holography for characterization of composite

materials.
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