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ON THE DETERMINATION OF PLANE AND AXIAL SYMMETRIES

IN LINEAR ELASTICITY AND PIEZO-ELECTRICITY

M. OLIVE, B. DESMORAT, B. KOLEV, AND R. DESMORAT

Abstract. We formulate necessary and sufficient conditions for a unit vector ννν to generate
a plane or axial symmetry of a constitutive tensor. For the elasticity tensor, these conditions
consist of two polynomial equations of degree lower than four in the components of ννν. Compared
to Cowin–Mehrabadi conditions, this is an improvement, since these equations involve only the
normal vector ννν to the plane symmetry (and no vector perpendicular to ννν). Similar reduced
algebraic conditions are obtained for linear piezo-electricity and for totally symmetric tensors
up to order 6.

1. Introduction

In 1996, Forte and Vianello [8] properly defined the eight symmetry classes of Elasticity. Later,
Chadwick et al [3], and then Ting [22], proved that the determination of these symmetry classes
could be recovered by the calculation of the plane symmetries of elasticity tensors (indeed, these
reflections always generate their symmetry groups). This result is partially due to the fact that
an elasticity tensor is invariant under a second-order rotation r(ννν, π), i.e. a rotation of angle π
around the unit vector ννν, if and only if it is invariant under the plane symmetry s(ννν) = −r(ννν, π)
across the orthogonal plane to ννν. However, it has been pointed out by the same authors that the
determination of the symmetry group of an odd-order tensor by the plane symmetry approach
does not hold in general. This applies, in particular, to the piezo-electricity tensor and to higher
order tensors. In these cases, determination of symmetry axes are necessary.

The natural polynomial equations which characterize vectors ννν which are normal to a sym-
metry plane of a given tensor of order n are of degree 2n in the components of ννν. For a totally
symmetric tensor of order n, this algebraic system consists into (n + 1)(n + 2)/2 polynomial
equations. For an elasticity tensor, it consists into 21 polynomial equations of degree 8 ranked
in a fourth-order tensor (a tensor used to define the pole figures as introduced in [9]). For a
piezo-electricity tensor, we get 18 polynomial equations of degree 6 and for a symmetric second-
order tensor a, 6 polynomial equations of degree 4. In this last case, however, it is well known
that this algebraic system can be reduced to the simpler equation (a · ννν) × ννν = 0 (where ννν is
an eigenvector of a). This last condition is polynomial of degree n in ννν, instead of 2n, and will
thus be referred to as a reduced algebraic condition. The question that we address in this paper
is the following:

Q: Can we find algebraic equations of lower order/degree that determine the
plane/axial symmetries of a given constitutive tensor (and more generally of
linear constitutive equations)?

In other words, how the usual conditions (a ·ννν)×ννν = 0 can be extended to higher order tensors?
For an elasticity tensor E, partial answers have been provided in [5, 4, 15]. The study of

longitudinal waves in anisotropic media [21, 14, 7] has indeed allowed Cowin and Mehrabadi to
derive reduced necessary and sufficient conditions for the existence of a plane symmetry for E.
These conditions were first expressed in theorem 1.1, using the two independent traces of E, the
dilatation tensor d and the Voigt tensor v:

(1.1) d = tr12 E, v = tr13 E,
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which are symmetric second-order covariants of E [17] (in components, dij = Ekkij and vij =
Ekikj).

Theorem 1.1 (Cowin–Mehrabadi (1987)). Let ννν be a unit vector. Then, ννν is a normal to a
symmetry plane of an elasticity tensor E, if and only if,







[(ννν · E · ννν) · ννν] × ννν = 0,

[(τττ · E · τττ) · ννν] × ννν = 0,

(d · ννν) × ννν = 0,

(v · ννν) × ννν = 0,

for all unit vectors τττ ⊥ ννν.

When non trivially satisfied, condition (d · ννν) × ννν = (v · ννν) × ννν = 0 provides, as solution, the
common eigenvectors of d and v. It was observed in [15] that the third and fourth conditions
are in fact consequences of the first two ones.

Theorem 1.2 (Cowin (1989)). Let ννν be a unit vector. Then ννν is a normal to a symmetry plane
of an elasticity tensor E if and only if

{

[(ννν · E · ννν) · ννν] × ννν = 0,

[(τττ · E · τττ) · ννν] × ννν = 0,

for all unit vectors τττ ⊥ ννν.

The Cowin–Mehrabadi conditions are indeed reduced conditions in the sense that the first
one is a polynomial equation of degree n = 4 in ννν, instead of degree 2n = 8 for the genuine
algebraic conditions. Note, however that the second condition is not very constructive as it
requires to check all unit vectors τττ perpendicular to ννν. This drawback is also present in the
equivalent forms used by Jaric [12] and in the generalized Cowin-Mehrabadi theorems [22]. In
the present paper, we provide a positive answer to question Q for elasticity tensors, piezo-
electricity tensors and totaly symmetric tensors of order 3 up to 6. General but more abstract
results, for totally symmetric tensors of any order n, have been obtained in [16]. Their proof
uses deeply the isomorphism between totally symmetric tensors and homogeneous polynomials
in three variables. Except for lemma 2.7, the proofs provided in this paper involve only tensorial
operations and are probably more accessible to the mechanical community.

The outline of the paper is the following. In section 2, we recall general notions about tensor
spaces, such as covariant operations on totally symmetric tensors and basic concepts on plane
and axial symmetries. All these materials are required to write the proofs of our main results.
The special case of symmetric second-order tensors is recalled in section 3, where these specific
tensorial operations are highlighted. Totally symmetric tensors of order 3 to 6 are studied
in section 4 , the elasticity tensor in section 5 and the piezo-electricity tensor, in section 6.

2. Tensors and plane/axial symmetries

In this section, we recall basic material on tensors and their symmetries. We introduce, fur-
thermore, three basic tensorial operations on tensors; some are well-known in the mathematical
community, such as the total symmetrization or the contraction and others are not, like the
generalized cross product. Finally, we formulate conditions, involving these tensorial operations,
which characterize existence of plane/axial symmetries of tensors.

An nth-order tensor T ∈ T
n(R3) is an n-linear form

(xxx1, . . . ,xxxn) ∈ R
3 × . . . × R

3 7→ T(xxx1, . . . ,xxxn) ∈ R.

In any orthonormal basis (eee1, eee2, eee3), its components write Ti1i2...in = T(eeei1
, eeei2

, . . . , eeein), since

T(xxx1,xxx2, . . . ,xxxn) := Ti1i2...in(xxx1)i1
(xxx2)i2

. . . (xxxn)in .

The natural action of an orthogonal transformation g ∈ O(3) on T ∈ T
n(R3) is given by

(2.1) (g ⋆ T)(xxx1, . . . ,xxxn) := T(g−1xxx1, . . . , g−1xxxn),
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or, in components in any orthonormal basis, as

(g ⋆ T)i1...in = gi1j1
· · · ginjnTj1...jn .

In the following, g will be either the plane symmetry

(2.2) s(ννν) := Id − 2ννν ⊗ ννν, ‖ννν‖ = 1,

where ννν is a unit normal to the considered plane of symmetry and Id is the identity transfor-
mation, or the order-two rotation around the axis 〈ννν〉,

r(ννν, π) := −s(ννν) ∈ SO(3).

It follows that a unit vector ννν is a normal to a symmetry plane of a given tensor T if and
only if

s(ννν) ⋆ T = T,

and that ννν spans the symmetry axis of T if and only if

r(ννν, π) ⋆ T = T,

both condition being equivalent for even order tensors.
Let ννν be a unit vector, g ∈ O(3) such that gννν = eee3, then,

s(ννν) = s(g−1eee3) = g−1s(eee3)g,

and thus, if T ∈ T
n(R3) is an n-th order tensor, we have

s(ννν) ⋆ T =
(

g−1s(eee3)g
)

⋆ T = g−1 ⋆ (s(eee3) ⋆ (g ⋆ T)) .

One has therefore the equivalence

(2.3) s(ννν) ⋆ T = T ⇐⇒ s(eee3) ⋆ (g ⋆ T) = g ⋆ T,

which means that s(ννν) is a plane symmetry of T if and only if s(eee3) is a plane symmetry of
g ⋆ T.

Remark 2.1. As it is well known in Elasticity, one can recast the conditions that ννν = eee3 is a
normal of a symmetry plane, or 〈ννν〉 = 〈eee3〉 is a symmetry axis, using the components Ti1...in of
T ∈ Tn(R3) in an orthonormal basis (eee1, eee2, eee3). More precisely:

(1) s(eee3) ⋆ T = T if and only if
Ti1...in = 0,

whenever the occurrences of 3 in the set {i1, . . . , in} is odd.
(2) For order n odd, then r(eee3, π) ⋆ T = T if and only if

Ti1...in = 0,

whenever the occurrences of 3 in the set {i1, . . . , in} is even.

The space S
n(R3), of nth-order totally symmetric tensors, is defined as the space of tensors

S ∈ T
n(R3) such that S = Ss with

Ts(xxx1, . . . ,xxxn) :=
1

n!

∑

σ∈Sn

T(xxxσ(1), . . . ,xxxσ(n)),

Sn being the permutation group of n elements.

Remark 2.2. There is a covariant isomorphism

S ∈ S
n(R3) 7→ p(xxx) := S(xxx, . . . ,xxx),

which associates to each nth-order totally symmetric tensor S, an homogeneous polynomial p of
degree n in xxx = (x, y, z) ∈ R

3. The inverse mapping is obtained by polarization (see [11, p. 35]
or [18, Section 2.1] for more details). Given an homogeneous polynomial p(xxx) in xxx = (x, y, z),
one gets

S(xxx1, . . . ,xxxn) =
1

n!

∂n

∂t1 · · · ∂tn

∣
∣
∣
∣
t1=···=tn=0

p(t1xxx1 + · · · + tnxxxn).
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Next, we introduce several tensorial operations between totally symmetric tensors.

Definition 2.3 (Symmetric tensor product). The symmetric tensor product between two totally
symmetric tensors S1 ∈ S

p(R3) and S2 ∈ S
q(R3) is defined as

S1 ⊙ S2 := (S1 ⊗ S2)s ∈ S
p+q(R3).

Given a vector www ∈ R
3, we will write (as in [19])

wwwk := www ⊗ www ⊗ · · · ⊗ www
︸ ︷︷ ︸

k times

,

with components wwwk
i1i2...ik

= wi1
wi2

. . . wik
. Of course, www ⊗ www ⊗ · · · ⊗ www = www ⊙ www ⊙ · · · ⊙ www.

Definition 2.4 (r–contraction). The r-contraction between an nth-order symmetric tensor S ∈
S

n(R3) and wwwr (where r ≤ n) is defined by

(S
(r)
· wwwr)i1i2...in−r

= Si1i2...in−rj1...jrwj1
· · · wjr , S

(r)
· wwwr ∈ S

n−r,

where Einstein’s convention on repeated indices has been adopted.

Definition 2.5 (Generalized cross product [6]). The generalized cross product between two
totally symmetric tensors S1 ∈ S

p(R3) and S2 ∈ S
q(R3) is defined as

(2.4) S1 × S2 :=
(

S2 · εεε · S1
)s

∈ S
p+q−1(R3),

where εεε is the Levi-Civita symbol in R
3.

In any direct orthonormal basis (eeei), it writes as

(2.5) (S1 × S2)i1···ip+q−1
:= (εi1jkS1

ji2···ip
S2

kip+1···ip+q−1
)s, εijk = det(eeei, eeej, eeej).

Remark 2.6. Let www be a vector and wwwk = www ⊗ www ⊗ · · · ⊗ www be the tensor product of k copies of
www, then,

wwwk × www = 0.

We come now to some properties which relate tensorial symmetries with these tensorial op-
erations.

Lemma 2.7. Let S be any totally symmetric nth-order tensor. Then,

(2.6) s(ννν) ⋆ S =
n∑

k=0

(

n

k

)

(−2)kνννk ⊙

(

S
(k)
· νννk

)

,

and

(2.7) r(ννν, π) ⋆ S = (−1)ns(ννν) ⋆ S.

Proof. Taking account of remark 2.2, it is sufficient to prove the lemma for the homogeneous
polynomial,

p(xxx) := (s(ννν) ⋆ S) (xxx, . . . ,xxx) = S(xxx − 2〈ννν,xxx〉ννν, . . . ,xxx − 2〈ννν,xxx〉ννν),

where 〈xxx,ννν〉 = xxx · ννν is the standard inner product on R
3, rather than for the totally symmetric

tensor s(ννν) ⋆ S itself. The tensor S being totally symmetric, we get

p(xxx) =
n∑

k=0

(

n

k

)

(−2)k〈ννν,xxx〉kS(ννν, . . . , ννν
︸ ︷︷ ︸

ktimes

,xxx, . . . ,xxx),

where

〈ννν,xxx〉kS(ννν, . . . , ννν,xxx, . . . ,xxx) =

(

νννk ⊙
(

S
(k)
· νννk

))

(xxx, . . . ,xxx).

This leads to (2.6), and (2.7) follows from r(ννν, π) = −s(ννν), which achieves the proof. �
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We now use the fact that the r–contraction (see definition 2.4) is a covariant operation, which
means that for any unit vector ννν, and for any S ∈ S

n(R3), g ∈ O(3):

g ⋆

(

S
(k)
· νννk

)

= (g ⋆ S)
(k)
· (gννν)k,

where (gννν)k = gννν ⊗ . . . ⊗ gννν. Applying this property to g = s(ννν) leads to the following result.

Lemma 2.8. Let S ∈ S
n(R3) and ννν be a unit vector.

(1) If s(ννν) ⋆ S = S (i.e. ννν defines a plane symmetry of S), then for any non–zero integer k

s(ννν) ⋆
(
S

(k)
· νννk

)
= (−1)k S

(k)
· νννk,

(2) If r(ννν, π) ⋆ S = S (i.e. ννν defines an axis symmetry of S), then then for any non–zero
integer k

r(ννν, π) ⋆
(
S

(k)
· νννk

)
= S

(k)
· νννk.

We have furthermore the property that

s(ννν) ⋆ S = S =⇒ ννν · (s(ννν) ⋆ S) = ννν · S.

Now, one way to rewrite the expanded formula for ννν · (s(ννν) ⋆ S) in lemma 2.7 in a more explicit
form is to use the following contraction formula

(2.8) ννν ·

(

νννk ⊙
(

S
(k)
· νννk

))

=
1

n

(

k νννk−1 ⊙
(

S
(k)
· νννk

)

+ (n − k)νννk ⊙
(

S
(k+1)

· νννk+1
))

.

where S is a totally symmetric nth-order tensor and k ≤ n − 1. A consequence of lemma 2.8 is
the following.

Corollary 2.9. Let S ∈ S
n(R3) and ννν be a unit vector.

(1) For any even integer k = 2p ≤ n, if ννν is a normal to a plane symmetry of S, then, it is

also a normal to a plane symmetry of S
(2p)
· ννν2p ∈ S

n−2p(R3).
(2) For any odd order totally symmetric tensor S ∈ S

2p+1(R3),

s(ννν) ⋆ S = S =⇒ S(ννν, . . . , ννν) = S
(2p+1)

· ννν2p+1 = 0.

(3) For any even order totally symmetric tensor S ∈ S
2p(R3),

s(ννν) ⋆ S = −S =⇒ S(ννν, . . . , ννν) = S
(2p)

· ννν2p = 0.

3. Plane/axial symmetries for second-order symmetric tensors

We will start our investigation by the case of second-order tensors, for which reduced equations
for plane and axial symmetries are easy to understand. Let a ∈ S

2(R3) be a second order
symmetric tensor. The action of on orthogonal transformation g ∈ O(3) on a writes

g ⋆ a = gagt, (g ⋆ a)ij = gikgjlakl,

where (·)t stands for the transpose. Then, by lemma 2.7, we get

(3.1) s(ννν) ⋆ a = a − 4ννν ⊙ (a · ννν) + 4(ννν · a · ννν)ννν ⊗ ννν,

where ννν · a · ννν = a
(2)
· (ννν ⊙ ννν). Since a is of even order, note that

s(ννν) ⋆ a = r(ννν, π) ⋆ a.

Hence, any axial symmetry is a plane symmetry of a, and vice–versa. This observation is
moreover still true for any even order tensor. A direct application of (2.6) leads to

(3.2) s(ννν) ⋆ a = r(ννν, π) ⋆ a = a ⇐⇒ (a · ννν) ⊙ ννν − (ννν · a · ννν)ννν ⊗ ννν = 0,

which is a condition for ννν to be a normal/axis of a plane/axial symmetry of a. The standard
action (3.1) on a gives thus 6 polynomial equations of degree 4 in the coordinates of ννν =



6 M. OLIVE, B. DESMORAT, B. KOLEV, AND R. DESMORAT

(x, y, z) ∈ R
3. We shall see now that one can reduce them to 3 polynomial equations of degree

2 in ννν. Note that a distinction is made between tensors, for which condition (3.3) applies, and
pseudo-tensors, for which condition (3.4) applies. This distinction will arise naturally in the
harmonic decomposition of piezo-electricity tensor [13, 10], in section 6.

Proposition 3.1. Let a ∈ S
2(R3) and ννν be a unit vector. Then

(1) s(ννν) ⋆ a = a, i.e s(ννν) is a plane symmetry (and r(ννν, π) is an axial symmetry) of a if and
only if

(3.3) (a · ννν) × ννν = 0,

where × is the cross product.
(2) s(ννν) ⋆ a = −a, i.e s(ννν) is a plane symmetry of the pseudo-tensor a, if and only if

(3.4) a − 2ννν ⊙ (a · ννν) = 0.

Remark 3.2. Condition (3.3) is well known. However, since its proof highlights the one for higher
order tensors, we provide it anyway.

Proof. (1) Assume first that s(ννν) ⋆ a = a. Hence, by corollary 2.9 and the definition of s(ννν), we
have

s(ννν) ⋆ (a · ννν) = −a · ννν = a · ννν − 2(ννν ⊗ ννν) · (a · ννν) = a · ννν − 2(ννν · a · ννν)ννν,

and thus

a · ννν − (ννν · a · ννν)ννν = 0.

Taking the cross product of this expression with ννν leads to (3.3). Conversely, if (a · ννν) × ννν = 0,
then ννν is an eigenvector of a, but any eigenvector of a is normal to a plane symmetry of a,
meaning that s(ννν) ⋆ a = a.

(2) Assume now that s(ννν) ⋆ a = −a so that (3.1) leads to

a − 2(a · ννν) ⊙ ννν − 2 (ννν · a · ννν))ννν ⊗ ννν = 0.

Using point (3) of corollary 2.9, we deduce that ννν · a · ννν = 0 and thus, we deduce (3.4). Con-
versely, suppose that (3.4) holds. Contracting two times both sides of this equation with ννν and
using (3.1), we get

s(ννν) ⋆ a = a − 4ννν ⊙ (a · ννν) + 4(ννν · a · ννν)ννν ⊗ ννν = −a,

since ννν · a · ννν = 0 (by contraction formula 2.8). This concludes the proof. �

4. The case of totally symmetric tensors of order three to six

Let S ∈ S
n(R3) be a totally symmetric tensor of order n. A necessary and sufficient condition

for ννν (‖ννν‖ = 1) to be a normal to a plane symmetry of S is

s(ννν) ⋆ S = S,

where s(ννν) = Id − 2ννν ⊗ ννν. A necessary and sufficient condition for ννν, to be the axis of an axial
symmetry for an odd order tensor S is

s(ννν) ⋆ S = −r(ννν, π) ⋆ S = −S,

where r(ννν, π) = −s(ννν). For even order tensors both conditions are equivalent. These equations
are polynomial and of degree 2n in ννν. They can be ranked into a totally symmetric tensor of
order n (leading to (n + 1)(n + 2)/2 scalar equations).

In order to formulate reduced algebraic equations, of lower degree in ννν, determining plane and
axial symmetries of S, we will use tensorial operations defined in section 2 and, in particular,
the generalized cross product (2.4) between two totally symmetric tensors. For higher order
tensors, see [16]. These reduced equations are obtained using similar ideas as the ones used in
the proof of proposition 3.1 for second-order tensors.
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Theorem 4.1. Let S be a totally symmetric tensor of order 3 and ννν be a unit vector, then
s(ννν) ⋆ S = S (i.e. ννν defines a plane symmetry of S) if and only if

(4.1) S · ννν − 2ννν ⊙ (ννν · S · ννν) = 0.

Proof. Suppose first that s(ννν) ⋆ S = S. Then, by corollary 2.9 we get

s(ννν) ⋆ (S · ννν) = −(S · ννν), and S
(3)
· ννν3 = 0.

Finally, applying (2.7) to the second-order tensor S · ννν leads to

S · ννν − 2ννν ⊙ (S
(2)
· ννν2) + 2ννν2 ⊙ (S

(3)
· ννν3) = S · ννν − 2ννν ⊙ (S

(2)
· ννν2) = 0,

and hence we deduce (4.1). Conversely, suppose (4.1) holds. Contacting twice this equation
with ννν and using contraction formula 2.8) gives (ννν · S · ννν) · ννν = 0. Finally, by (2.6), we obtain

s(ννν) ⋆ S = S − 6ννν ⊙ (S · ννν) + 12ννν ⊙ ννν ⊙ (ννν · S · ννν) − 8[(ννν · S · ννν) · ννν]ννν ⊗ ννν ⊗ ννν,

= S − 6ννν ⊙ (S · ννν) + 12ννν ⊙ ννν ⊙ (ννν · S · ννν),

= S.

�

The proofs of the remaining results follow the same lines: the reduced equations are obtained
using corollary 2.9 (sometimes several times) together with formula (2.6) or (2.7) and remark 2.6
for www = ννν. Besides, choosing ννν = eee3 in the reduced equation, leads to simple equations when
using the components of S, so that we can conclude using remark 2.1. Next, we formulate these
ideas for the axial symmetry of a totally symmetric third-order tensor.

Theorem 4.2. Let S be a totally symmetric tensor of order 3 and ννν be a unit vector, then
r(ννν, π) ⋆ S = S ( i.e ννν defines an axis of symmetry of S) if and only if

[

S − 3ννν ⊙ (S · ννν)
]

× ννν = 0.

Proof. Suppose first that r(ννν, π) ⋆ S = −s(ννν) ⋆ S = S, so (2.7) leads to

(4.2) S − 3ννν ⊙ (S · ννν) + 6ννν ⊙
(

ννν ⊙ (ννν · S · ννν) − 4[(ννν · S · ννν) · ννν]ννν ⊗ ννν
)

= 0.

Now by lemma 2.8 and (3.1), one has

s(ννν) ⋆ (S · ννν) = S · ννν = S · ννν − 4ννν ⊙ ((S · ννν) · ννν) + 4(ννν · (S · ννν) · ννν)ννν ⊗ ννν,

and S being totally symmetric, we deduce that

ννν ⊙ (ννν · S · ννν) = [(ννν · S · ννν) · ννν]ννν ⊗ ννν.

Hence, (4.2) recasts as

S − 3ννν ⊙ (S · ννν) + 2[(ννν · S · ννν) · ννν]ννν ⊗ ννν ⊗ ννν = 0.

Finally, by remark 2.6, the fact that (ννν · S · ννν) · ννν ∈ R, and taking the generalized cross-product
with ννν, we get

[
S − 3ννν ⊙ (S · ννν)

]
× ννν = 0.

Conversely, suppose that ννν = eee3 and that the third-order tensor

B =
[

S − 3eee3 ⊙ (S · eee3)
]

× eee3

vanishes. Then, using (2.5), we have

B111 = S112 = 0, B112 =
1

3
(2S122 − S111) = 0, B122 =

1

3
(S222 − 2S112) = 0,

B133 = −
1

3
S233 = 0, B222 = −S122 = 0, B233 =

1

3
S133 = 0.

Hence, Si1i2i3
= 0, whenever the occurrence of 3 in the set {i1, i2, i3} is even, and thus eee3 defines

an axis of symmetry of S (by remark 2.1). We conclude using (2.3). �



8 M. OLIVE, B. DESMORAT, B. KOLEV, AND R. DESMORAT

For totally symmetric tensors of order four, five and six, we have the following results.

Theorem 4.3. Let ννν be a unit vector.

(1) For any S ∈ S
4(R3), then, ννν defines a plane symmetry — or an axial symmetry — of S

if and only if
[

S · ννν − 3ννν ⊙ (ννν · S · ννν)
]

× ννν = 0.

(2) For any S ∈ S
5(R3), then, ννν defines a plane symmetry of S if and only if

S · ννν − 4ννν ⊙ (ννν · S · ννν) + 4ννν ⊙ ννν ⊙
(

(ννν · S · ννν) · ννν
)

= 0.

(3) For any S ∈ S
5(R3), then, ννν defines an axial symmetry of S if and only if

[

S − 5ννν ⊙ (S · ννν) +
20

3
ννν ⊙ ννν ⊙ (ννν · S · ννν)

]

× ννν = 0.

(4) For any S ∈ S
6(R3), then, ννν defines a plane symmetry — or an axial symmetry — of S

if and only if

[

S · ννν − 5ννν ⊙ (ννν · S · ννν) +
20

3
ννν ⊙ ννν ⊙

(

(ννν · S · ννν) · ννν
)]

× ννν = 0.

Sketch of proof. As the proof is very similar to the one of theorem 4.2, we only sketch it. We
have only to observe that setting ννν = eee3, we have

C =
[

S · eee3 − 3eee3 ⊙ (eee3 · S · eee3)
]

× eee3,

D = S · eee3 − 4eee3 ⊙ (eee3 · S · eee3) + 4eee3 ⊙ eee3 ⊙
(

(eee3 · S · eee3) · eee3

)

,

E =
[

S − 5eee3 ⊙ (S · eee3) +
20

3
eee3 ⊙ eee3 ⊙ (eee3 · S · eee3)

]

× eee3,

F =
[

S · eee3 − 5eee3 ⊙ (eee3 · S · eee3) +
20

3
eee3 ⊙ eee3 ⊙

(

(eee3 · S · eee3) · eee3

)]

× eee3,

where C, D, E and F are totally symmetric tensors, of respective orders three, four, five and
six. The non-vanishing independent components of C are given by

C111 = S1123, C112 =
1

3
(2S1223 − S1113), C122 =

1

3
(S2223 − 2S1123),

C133 = −
1

3
S2333, C222 = −S1223, C233 =

1

3
S1333.

The non-vanishing independent components of D are given by

D1111 = S11113, D1112 = S11123, D1122 = S11223, D1133 = −
1

3
S11333, D1222 = S12223,

D1233 = −
1

3
S12333, D2222 = S22223, D2233 = −

1

3
S22333, D3333 = S33333.

The non-vanishing independent components of E are given by

E11111 = S11112, E11112 =
1

5
(4S11122 − S11111), E11122 =

1

5
(3S11222 − 2S11112),

E11133 = −
1

5
S11233, E11222 =

1

5
(2S12222 − 3S11122), E11233 =

1

15
(S11133 − 2S12233),

E12222 =
1

5
(S22222 − 4S11222), E12233 =

1

15
(2S11233 − S22233), E13333 =

1

5
S23333,

E22222 = −S12222, E22233 =
1

5
S12233, E23333 = −

1

5
S13333.
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The non-vanishing independent components of F are given by

F11111 = S111123, F11112 =
1

5
(4S111223 − S111113), F11122 =

1

5
(3S112223 − 2S111123),

F11133 = −
1

5
S112333, F11222 =

1

5
(2S122223 − 3S111223), F11233 =

1

15
(S111333 − 2S122333),

F12222 =
1

5
(S222223 − 4S112223), F12233 =

1

15
(2S112333 − S222333), F13333 =

1

5
S233333,

F22222 = −S122223, F22233 =
1

5
S122333, F23333 = −

1

5
S133333.

The proof reduces then to check that if any of these tensors vanishes, then, the initial tensor S

has plane/axial symmetries, and conversely, which is a consequence of remark 2.1 and (2.3). �

5. Plane symmetries of Elasticity tensors

A linear elasticity tensor E ∈ Ela is defined as a fourth-order tensor having the major and the
minor index symmetries, Eijkl = Ejikl = Eklij. Let Es ∈ S

4(R3) be its totally symmetric part
and A be its asymmetric part (in the sense of Backus [1]). Their components write as follows

Es
ijkl =

1

3
(Eijkl + Eikjl + Eiljk) ,

Aijkl =
1

3
(2Eijkl − Eikjl − Eiljk) .

Set

(5.1) a := 2(d′ − v′) +
1

6
(tr d − tr v) 1,

where d′ = d − 1
3(tr d)1 and v′ = v − 1

3(tr v)1 are the deviatoric (i.e. harmonic) parts of the
dilatation and the Voigt tensors defined by (1.1). We get then

A = 1 ⊗2,2 a,

where ⊗2,2 is the Young-symmetrized tensor product defined as in [18], by

y ⊗(2,2)z =
1

3

(
y ⊗ z + z ⊗ y − y ⊗ z − z ⊗ y

)
, (y ⊗ z)ijkl :=

1

2
(yikzjl + yilzjk).

We can write then E ≃ (Es, a), where Es ∈ S
4(R3) and a ∈ S

2(R3) are totally symmetric tensors.
Moreover, this decomposition, related to the harmonic decomposition of Ela, is equivariant,
which means that

g ⋆ E ≃ (g ⋆ Es, g ⋆ a) ∀g ∈ O(3).

Theorem 5.1. Let E be an elasticity tensor, Es be its totally symmetric part and d = tr12 E

be the dilatation tensor. A necessary and sufficient condition for ννν to be the normal to a plane
symmetry — or equivalently to be an axis of symmetry — for E are

(5.2)







[

Es · ννν − 3ννν ⊙ (ννν · Es · ννν)
]

× ννν = 0,

(d · ννν) × ννν = 0.

Proof. From the equivariant decomposition E ≃ (Es, a), we get

s(ννν) ⋆ E ≃ (s(ννν) ⋆ Es, s(ννν) ⋆ a), ∀g ∈ O(3).

Hence, s(ννν) is a plane symmetry of E if and only if s(ννν) is a plane symmetry of both Es and a.
By proposition 3.1 and theorem 4.3, this recasts as

(5.3)







[

Es · ννν − 3ννν ⊙ (ννν · Es · ννν)
]

× ννν = 0,

(a · ννν) × ννν = 0.
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Suppose now that s(ννν) is the normal to a common plane symmetry of Es and a, so that s(ννν) is
also a plane symmetry of

(5.4) tr Es =
1

3
(d + 2v) = d −

1

3
a.

Therefore, by proposition 3.1, we get
((

d −
1

3
a
)

· ννν

)

× ννν = (d · ννν) × ννν −
1

3
(a · ννν) × ννν = 0 ⇒ (d · ννν) × ννν = 0.

Conversely, if equations (5.2) holds, we deduce from theorem 4.3 that s(ννν) is a plane symmetry
of Es, and thus a plane symmetry of tr Es. Using proposition 3.1 applied to tr Es and by (5.4),
we deduce that (a · ννν) × ννν = 0. Hence, s(ννν) is also a plane symmetry of a, which ends the
proof. �

The first condition in theorem 5.1 is polynomial of degree n = 4 in ννν (instead of degree 2n = 8
for the genuine algebraic condition s(ννν)⋆E = E). It is ranked in a totally symmetric third-order
tensor (instead of fourth-order tensor for the genuine algebraic condition). The second condition
is polynomial of degree two in ννν and is ranked in a vector.

Theorem 5.1 determines the normals to all the plane symmetries of an elasticity tensor in an
arbitrary orthonormal basis (and this for any symmetry class and/or any particular relationship
between material parameters). It is a real improvement compared to Cowin–Mehrabadi theo-
rems, since it does not involve anymore unit vectors τττ perpendicular to ννν. For instance in the
particular case d′ = v′ = a′ = 0 of an elasticity tensor with spherical dilatation and Voigt’s ten-
sors, the solutions of the first equation in theorem 5.1 are the normals to all the plane symmetries
of E, whereas the solutions of the first condition [(ννν · E · ννν) · ννν] × ννν = 0 in Cowin-Mehrabadi’s
theorem, the condition on ννν only, gives extra vectors ννν that are not necessary normals to plane
symmetries of E.

6. Plane and axial symmetries of Piezo-electricity tensors

Consider now the linear piezo-electricity constitutive equations

(6.1)

{

ǫǫǫ = E−1 : σσσ + P · EEE

DDD = σσσ : P + εεεσ · EEE
,

{

ǫij = (E−1)ijklσkl + PijkEk

Di = Pkliσkl + εσ
ikEk

between the electric field EEE, the (symmetric) second-order stress tensor σσσ, the electric displace-
ment DDD and the (symmetric) second-order strain tensor ǫǫǫ, where

• E−1 ∈ Ela is the compliance fourth-order tensor (the inverse of the elasticity tensor,
with the same index symmetries),

• P ∈ Piez is the piezo-electricity third-order tensor,
• εεεσ ∈ Perm is the (symmetric) second-order dielectric permittivity tensor.

Each piezo-electricity tensor P has the index symmetry Pijk = Pjik, i.e. it is such as tP = P,
where the notation tT means here the transpose relatively to the left two subscripts of a third-
order tensor T,

(6.2) (tT)ijk := Tjik.

One can study independently the plane/axial symmetries of each constitutive tensor E (fourth-
order), P (third-order) and εεεσ (second-order) or may look for the plane/axial symmetries of the
whole set (E, P, εεεσ). The latest problem comes down to finding unit vectors ννν such that

(s(ννν) ⋆ E, s(ννν) ⋆ P, s(ννν) ⋆ εεεσ) = (E, P, εεεσ) for plane symmetries,

or
(r(ννν, π) ⋆ E, r(ννν, π) ⋆ P, r(ννν, π) ⋆ εεεσ) = (E, P, εεεσ) for axial symmetries.

As in the case of elasticity tensors, we will use here some equivariant decomposition. Recall
first the explicit equivariant decomposition of E

E = Es + 1 ⊗2,2 a,
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where Es is a totally symmetric fourth-order tensor and a is a symmetric second-order tensor
(see section 5). We have a similar decomposition for P (related to its harmonic decomposition,
see [10])

(6.3) P ∈ Piez 7→ (Ps, h,www)

{

www := 3
4 (tr12 P − tr(Ps)) ∈ H

1(R3),

h := 1
3 (P : εεε)s ∈ H

2(R3),

where εεε is the third-order Levi-Civita symbol (with components εijk = det(eeei, eeej , eeek) in any
orthonormal basis (eeei)), not to be confused with dielectric permittivity tensor εεεσ ∈ S

2(R3),
nor with the strain tensor ǫǫǫ ∈ S

2(R3). Here, Hk(R3) stands for the vector space of harmonic
tensors of order k, harmonic meaning totally symmetric and traceless. In this decomposition,
the component Ps ∈ S

3(R3) is the totally symmetric part of P

(Ps)ijk =
1

3
(Pijk + Pikj + Pkji).

As detailed in [20, 13, 10], the explicit decomposition of P writes as

P = Ps + 1 ⊗ www − 1 ⊙ www + h · εεε + t(h · εεε),

where t(h·εεε)ijk = (h·εεε)jik = hjlεlik (see (6.2)). This decomposition (6.3) is equivariant relatively
to the action of the orthogonal group given by

g ⋆ P ≃ (g ⋆ Ps, g ⋆̂ h, g ⋆ www) g ∈ O(3),

where g ⋆̂ h := (det g)g ⋆ h. In other words, Ps is a third-order tensor, www is a vector but h

is a second-order pseudo-tensor (this is due to the contraction with Levi-Civita tensor in its
definition). In these formulas, ⋆̂ = det() ⋆ is so-called twisted action, the one to be considered
for pseudo-tensors of any order.

Finally one can recapitulate all these decompositions into the following decomposition of the
triplet (E, P, εεεσ) ∈ Ela ⊕ Piez ⊕ Perm

(E, P, εεεσ) ≃ (Es, Ps, εεεσ, a, h,www),

i.e. as a decomposition into a totally symmetric tensors Es (of order 4), Ps (of order 3), εεεσ and
a (of order 2), an harmonic pseudo-tensor h (of order 2) and a vector www, such that

g ⋆ (S, Ps, εεεσ, a, h,www) = (g ⋆ S, g ⋆ Ps, g ⋆ εεεσ, g ⋆ a, g ⋆̂ h, g ⋆ www) ∀g ∈ O(3).

Following the same proof as for theorem 5.1 with the use of reduced equations for totally
symmetric tensor (and using point (2) of proposition 3.1 for second-order pseudo-tensor h),
we obtain reduced equations for the existence of plane/axial symmetries for the linear piezo-
electricity constitutive equations (6.1).

Theorem 6.1. Let (E, P, εεεσ) ∈ Ela ⊕ Piez ⊕ Perm be the triplet of elasticity, piezo-electricity
and dielectric permittivity tensors, where Es and Ps are the totally symmetric part of E and P,

d = tr12 E, h =
1

3
(P : εεε)s , www =

3

4
(tr12 P − tr Ps) ,

and εεε is the third-order Levi-Civita symbol. Let ννν be a unit vector, then:

(1) s(ννν) is a plane symmetry of (E, P, εεεσ) if and only if

(6.4)







[Es · ννν − 3ννν ⊙ (ννν · Es · ννν)] × ννν = 0,

Ps · ννν − 2ννν ⊙ (ννν · Ps · ννν) = 0,

(εεεσ · ννν) × ννν = 0,

(d · ννν) × ννν = 0,

h − 2ννν ⊙ (h · ννν) = 0,

www · ννν = 0.
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(2) r(ννν, π) is an axis symmetry axis of (E, P, εεεσ) if and only if

(6.5)







[Es · ννν − 3ννν ⊙ (ννν · Es · ννν)] × ννν = 0,

[Ps − 3ννν ⊙ (Ps · ννν)] × ννν = 0,

(εεεσ · ννν) × ννν = 0,

(d · ννν) × ννν = 0,

(h · ννν) × ννν = 0,

www × ννν = 0.

Theorem 6.1 is constructive, with no equation involving vectors τττ perpendicular to the nor-
mal/axis ννν. The sets of equations (6.4) and (6.5) determine all plane/axial symmetries of a
triplet (E, P, εεεσ), independently of their symmetry class. Compared to the standard action of
an orthogonal transformation, the degree of the polynomials in ννν are again reduced by a factor
2.

7. Conclusion

We have established necessary and sufficient conditions for a unit vector ννν to be the normal to
a symmetry plane or the axis of a rotational symmetry of a constitutive tensor for main problems
in continuum mechanics. These conditions are reduced since they are of degree n in ννν, rather
than 2n as it is the case for the genuine equations. They are coordinate free and constructive:
one can use them to compute explicitly the vectors ννν by solving some algebraic equations. These
conditions have been summarized as theorems 4.1, 4.2 and 4.3 for totally symmetric tensors of
order three up to six. They have been extended to the elasticity tensor, as theorem 5.1, and to
the linear piezo-electricity, as theorem 6.1, using the harmonic decomposition.

Finally, these equations are related to the attempt to generalize the concept of eigenvectors
to higher order tensors [19, 2] and we will conclude this paper by a discussion on this topic. For
a second-order symmetric tensor a, a vector ννν is an eigenvector of a if and only if (a ·ννν)×ννν = 0.
In that case, it defines clearly an axis of symmetry of a. For a tensor S of order n ≥ 3, Qi,
in [19], has defined a unit vector ννν to be a Z-eigenvector if it is a solution of

S
(n−1)

· νννn−1 = λννν ⇐⇒

(

S
(n−1)

· νννn−1
)

× ννν = 0.

By point (2) of lemma 2.8, each unit vector ννν defining an axial symmetry of S is necessary a
Z-eigenvector but the converse is false in general. Therefore, one could weaken Qi’s definition
of a generalized eigenvector and simply define it a generator a symmetry axis of S. We will call
such a ννν as an A-eigenvector of S.

The characteristic equations for a vector xxx to be an A-eigenvector of S, are thus deduced from
this paper because our equations are homogeneous. For instance for totally symmetric tensors
of order n = 3 up to order 6 (setting xxx = ‖xxx‖ννν in Theorems 4.2 and 4.3 ), we get

S of order 3:
[

‖xxx‖2
S − 3xxx ⊙ (S · xxx)

]

× xxx = 0,

S of order 4:
[

‖xxx‖2
S · xxx − 3xxx ⊙ (xxx · S · xxx)

]

× xxx = 0,

S of order 5:
[

‖xxx‖4 S − 5‖xxx‖2 xxx ⊙ (S · xxx) +
20

3
xxx ⊙ xxx ⊙ (xxx · S · xxx)

]

× xxx = 0,

S of order 6:
[
‖xxx‖4

S · xxx − 5 ‖xxx‖2 xxx ⊙ (xxx · S · xxx) +
20

3
xxx ⊙ xxx ⊙

(
(xxx · S · xxx) · xxx

)]
× xxx = 0.

Similar results for totally symmetric tensors of any order are available in [16].
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