
HAL Id: hal-02516947
https://hal.science/hal-02516947

Submitted on 24 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the scalability of CFD tool for supersonic jet flow
configurations

Carlos Junqueira-Junior, João Luiz F. Azevedo, Jairo Panetta, William R.
Wolf, Sami Yamouni

To cite this version:
Carlos Junqueira-Junior, João Luiz F. Azevedo, Jairo Panetta, William R. Wolf, Sami Yamouni. On
the scalability of CFD tool for supersonic jet flow configurations. Parallel Computing, 2020, 93,
pp.1-13. �10.1016/j.parco.2020.102620�. �hal-02516947�

https://hal.science/hal-02516947
https://hal.archives-ouvertes.fr


On the Scalability of CFD Tool for Supersonic Jet Flow Configurations

Carlos Junqueira-Juniora, João Luiz F. Azevedob, Jairo Panettac, William R. Wolfd, Sami Yamounie

aArts et Métiers Institute of Technology, DynFluid, CNAM, HESAM University, Paris, France
bInstituto de Aeronáutica e Espaço, São José dos Campos, Brazil

cInstituto Tecnológico de Aeronáutica, São José dos Campos, Brazil
dUniversidade Estadual de Campinas, Campinas, Brazil

eDataLab Serasa Experian, São Paulo, Brazil

Abstract

New regulations are imposing noise emissions limitations for the aviation industry which are pushing researchers and engineers
to invest efforts in studying the aeroacoustics phenomena. Following this trend, an in-house computational fluid dynamics tool is
build to reproduce high fidelity results of supersonic jet flows for aeroacoustic analogy applications. The solver is written using the
large eddy simulation formulation that is discretized using a finite difference approach and an explicit time integration. Numerical
simulations of supersonic jet flows are very expensive and demand efficient high-performance computing. Therefore, non-blocking
message passage interface protocols and parallel Input/Output features are implemented into the code in order to perform simu-
lations which demand up to one billion grid points. The present work addresses the evaluation of code improvements along with
the computational performance of the solver running on a computer with maximum theoretical peak of 2.727 PFlops. Different
mesh configurations, whose size varies from a few hundred thousand to approximately one billion grid points, are evaluated in the
present paper. Calculations are performed using different workloads in order to assess the strong and weak scalability of the parallel
computational tool. Moreover, validation results of a realistic flow condition are also presented in the current work.

Keywords:
Computational Fluid Dynamics, Large Eddy Simulation, Scalability, Supersonic Jet Flow

1. Introduction oped a numerical tool, JAZzY [5], based on the large eddy
simulation (LES) formulation [6] in order to perform time-
dependent simulations of supersonic compressible jet flows.
The large eddy simulation approach has been successfully used
by the scientific community and can provide high fidelity nu-
merical data for aeroacoustic applications [7, 8, 9, 10, 11].
The numerical tool is written in the Fortran 90 standards cou-
pled with Message Passing Interface (MPI) features [12]. The
HDF5 [13, 14] and CGNS libraries [15, 16, 17, 18] are included
into the numerical solver in order to implement a hierarchical
data format (HDF) and to perform Input/Output operations ef-
ficiently.

Large eddy simulations of supersonic flows require efficient
use of significant amount of computational resources in order
to provide trustworthy results at an acceptable cost. Hence,
the LES tool is continually improved. The latest code re-
lease includes modifications in MPI data exchanges and read-
ing/writing routines. Classical blocking communicators are
replaced by asynchronous protocols and the sequential mesh
reading is re-written in a parallel fashion. Moreover, the parti-
tioning routine is optimized regarding the optimal workload.
The present work addresses the computational performance
evaluation of the in-house numerical tool on a Brazilian scien-
tific computer named as Santos Dumont [19]. The HPC system
was cited on the top 500 list [20, 21] from 2015 to 2017 with
a maximal LINPACK [22, 23] performance achieved of 456.8
TFlops and a theoretical peak performance of 657.5 TFlops. A

Exposure to noise can have a huge impact on health and in-
duce a range of physiological reactions such as an increase in 
blood pressure, heart rate and breathing. Even sudden noise 
levels commonly experienced in every day, such as busy streets, 
can cause damage to the health [1]. High level of noise emis-
sions on residents near airports has forced governments to cre-
ate laws, regulations and guidelines for the certification of 
noise-emitting airplanes [2, 3]. According to the new con-
straints, airplanes which do not respect the noise emissions lim-
itations may not be operated from all airports or their operators 
must pay additional fees for noise emission. Moreover, noisy 
aircraft may not be operated during the night. Hence, airlines 
have to consider the noise-related airport fees in their operating 
costs which can increase the price of flights. Such a scenario 
has been pushing the civil aviation industry to invest significant 
efforts in studying aeronautical noise emissions. More specifi-
cally, on the aeroacoustic analogy of supersonic jet flows. Such 
configuration can represent free-jet engine flows that contribute 
significantly to the total sound emissions of an airplane [4].

The authors are interested on the study of unsteady property 
fields of 3-D supersonic jet flow configurations which can pro-
vide important information in order to eventually understand 
the acoustic phenomena. Experimental techniques used to eval-
uate such flow configuration are complex and require consider-
ably expensive apparatus. Therefore, the authors have devel-



recent upgrade brings the supercomputer up to the 193rd posi-
tion on the top 500 list of November 2019. This new version
delivers maximal LINPACK and theoretical peak performances
of 1.849 PFlops and 2.727 PFlops, respectively. Strong and
weak scalability tests are performed in the present work us-
ing the TFlops version of the cluster. Numerical simulations
of a supersonic jet flow configuration are addressed as a test
case in order to evaluate the JAZzY code using up to approxi-
mately three thousand computational cores in parallel for prob-
lems with up to one billion grid points.

The present article is structured into an introduction followed
by a description of the computer architecture. Then, the numer-
ical formulation used by the JAZzY code and the latest results
of supersonic jet flow simulations achieved by the LES solver
are presented to the reader. In the sequence, a detailed discus-
sion about the parallel implementation and features of the code
is performed followed by the results of the scalability study per-
formed in the Santos Dumont supercomputer. Numerical re-
sults achieved during the validation of the numerical tool are
also presented here. In the end, the reader can find the conclud-
ing remarks section and the acknowledgements.

2. Computer Configuration

Santos Dumont supercomputer was acquired from Atos HPC
systems by [19] in 2015 by the National Laboratory for Scien-
tific Computing (LNCC) [24] in the city of Petrópolis, state of
Rio de Janeiro, Brazil. The main idea of the laboratory, which is
affiliated with the Ministry of Science, Technology, Innovations
and Communications (MCTIC) in Brazil is to provide computa-
tional resources for research from different areas of study such
as Engineering, Astronomy, Biology, Chemistry, Geosciences
and Linguistics.

The full HPC system is in the 193rd position of the top
500 list of November 2019 [20] with a maximal LINPACK
[22, 23] performance achieved of 1.849 PFlops and a theoretical
peak performance of 2.727 PFlops. The scalability of the CFD
solver is evaluated using a section of the supercomputer with
maximal LINPACK performance and theoretical peak perfor-
mance of 456.8 TFlops and 657.5 TFlops, respectively. This
Teraflop partition presents 18,144 computational cores (CPU)
spread among 756 nodes (24 computational cores per node).
Graphic processing units (GPU) and Xeon PHI accelerators are
also coupled to some of the available computing nodes. More-
over, this partition provides a fat-node with 240 computational
cores and 6 TB of rapid access memory. A detailed descrip-
tion of computing nodes configuration is presented in Tab. 1.
The computational resource has a Lustre R© [25] file system with
a storage capacity of approximately 1.7 PBytes. There is also
a secondary archive system with a storage capacity of approx-
imately 640 TBytes. The 756 nodes of the cluster are inter-
connected by a infiniband network. Red Hat Enterprise Linux
[26] is the operating system of the cluster and Slurm [27] is
used as workload manager.

Table 1: Santos Dumont Teraflop partition configuration.
Nodes Processor Memory Nb. Cores
504 2 x CPU IntelR© XeonR© E5-2695v2 64GB 24
198 2 x CPU IntelR© XeonR© E5-2695v2 64GB 24

+ 2 x GPU NvidiaR© K-40 12GB 5760
54 2 x CPU IntelR© XeonR© E5-2695v2 64GB 24

+ 2 x IntelR© Xeon Phi
TM

7120 16GB 122
1 16 x CPU IntelR© Ivy 2.4GHz 6TB 240

3. Large Eddy Simulation Formulation

The numerical simulations of supersonic jet flow configura-
tions are performed based on the large eddy simulation formu-
lation [6]. This set of equations is based on the principle of
scale separation over the governing equations used to represent
the fluid dynamics, the Navier-Stokes formulation. Such scale
separation procedure is addressed as a filtering procedure in a
mathematical formalism. The idea is to filter the small turbulent
structures and to calculate the bigger ones. The Navier-Stokes
equations, using the filtering procedure of Vreman [28], is writ-
ten in the current work as

∂ρ

∂t
+

∂

∂x j

(
ρũ j

)
= 0 ,

∂

∂t
(ρũi) +

∂

∂x j

(
ρũiũ j

)
+

∂

∂x j

(
pδi j

)
−
∂τi j

∂x j
= 0 ,

∂e
∂t

+
∂

∂x j

[
(e + p) ũ j

]
−

∂

∂x j

(
τi jũi

)
+
∂q j

∂x j
= 0 ,

(1)

in which t and xi are independent variables representing time
and spatial coordinates of a Cartesian coordinate system x, re-
spectively. The components of the velocity vector u are written
as ui, and i = 1, 2, 3. Density, pressure and total energy per
mass unit are denoted by ρ, p and e, respectively. The (·) and (·̃)
operators are used in order to represent filtered and Favre aver-
aged properties, respectively. The filtered total energy per mass
unit [28] can be written as

e =
p

γ − 1
+

1
2
ρũiũi . (2)

The heat flux, q j, is written as a function of the static tempera-
ture, T , and the thermal conductivity, κ,

q j = −κ
∂T̃
∂x j

where κ =
µCp

Pr
. (3)

The thermal conductivity is a function of the specific heat at
constant pressure, Cp, of the Prandtl number, Pr, which is equal
to 0.72 for air, and of the dynamic viscosity, µ, that can be cal-
culated using the Sutherland law,

µ
(
T̃
)

= µ∞

 T̃

T̃∞

 3
2 T̃0 + S 1

T̃ + S 1
, (4)

in which µ∞, T̃∞, T̃0 and S 1 are reference values. Density, static
pressure and static temperature are correlated by the equation of
state given by

p = ρ
(
Cp −Cv

)
T̃ , (5)



where Cv is the specific heat at constant volume. The shear-
stress tensor, τi j, is written according to the Stokes hypothesis
as

τi j = µ

(
∂ũi

∂x j
+
∂ũ j

∂xi
−

2
3
δi j
∂ũk

∂xk

)
(6)

The large eddy simulation set of equations can be written in
a more compact form as

∂Q
∂t

= −RHS , (7)

where Q stands for the convervative properties vector and RHS
represents the right hand side of Eq. 1, given by

Q =
[
ρ , ρũi , e

]T and RHS i =
∂Ei

∂x j
−
∂Fi

∂x j
. (8)

The components of inviscid and viscous flux vectors are respec-
tively denoted by Ei and Fi, and written as

E =


ρũ j

ρũiũ j + pδi j[
(e + p) ũ j

]
 and F =

 0
τi j

τi jũi − q j

 . (9)

Spatial derivatives are calculated in a structured finite differ-
ence context and the formulation is re-written for general curvi-
linear coordinate system [5]. The numerical flux is computed
through a second-order central difference scheme with the ex-
plicit addition of anisotropic scalar artificial dissipation [29].
The time marching method is an explicit 5-stage Runge-Kutta
scheme [30, 31].

Boundary conditions for the LES formulation are imposed
in order to represent a supersonic jet flow into a 3-D compu-
tational domain with cylindrical shape. Figures 1(a) and 1(b)
indicate the boundary conditions used in the current work on
lateral and frontal 2-D cuts of the domain. A supersonic flow is
implemented at the entrance of the domain, also known by the
aeroacoustic community as the jet exit of the nozzle, and Rie-
mann invariants [32] are used to calculate the far field boundary
conditions. The centerline of the computational domain is a sin-
gularity and it requires special treatment. Therefore, conserved
properties are extrapolated from the adjacent longitudinal plane
and they are averaged in the azimuthal direction in order to de-
fine the updated properties at the centerline of the jet. For the
periodic plane, superposed points are used in the first and last
points in the azimuthal direction in order to close the 3-D com-
putational since it is a inner surface. The reader can find further
details about the formulation in the work of Junqueira-Junior
et. al. [11].

4. Implementation Aspects

The current section presents details of the LES solver and
discusses the high performance computing implementations in-
troduced into the code. JAZzY is developed using the Fortran
90 standard and the parallel I/O concept. Recent improvements
of the code include the implementation of asynchronous inter-
partition communications and the development of a preprocess-
ing tool that performs an optimized partitioning and creates

(a) Lateral view of boundary conditions.

(b) Frontal view of boundary conditions.

Figure 1: 2-D Lateral and frontal cuts of the computational domain indicating
the position of boundary conditions.

multiple input grid files using a binary tree data structure. Each
MPI rank reads its own input file when using the new prepro-
cessing routine. The I/O modifications are also a first effort to
bypass the original serial mesh allocation implemented in the
code.

4.1. Preprocessing Mesh Partitioner

The LES solver presents a parallel I/O feature in which
each MPI partition reads its correspondent portion of the mesh.
Therefore, a 3-D grid partitioner is developed in order to pro-
vide partitioned mesh files to the solver. This preprocessing
code can also generate grid files for simple geometric configu-
rations. The mesh partitions are written using the CGNS stan-
dard [15, 16, 17, 18] which is built on the HDF5 library [13, 14].
This library is a general scientific format adaptable to virtually
any scientific or engineering application. It provides tools to
efficiently read and write data structured in a binary tree fash-
ion. This data structure can handle many types of queries very
efficiently [33, 34], such as time-dependent CFD solutions.

Figure 2 presents the flow chart of the mesh partitioner code.
The preprocessing code can read a 2-D mesh file from a com-
mercial grid generator or create a 2-D geometric configuration
along with a grid point distribution using parameters provided
by the user. Once the mesh is read by the preprocessing code,
the 2-D domain is partitioned in the axial direction. After this



procedure, the partitioned mesh is extruded in the azimuthal di-
rection, respecting the positioning of the MPI partitions. Each
portion of the mesh is written using the CGNS standard.

BEGIN Read input

Read
mesh?

Read input
mesh file

Create
Mesh

Part. ξ
direction

Part. ζ
direction

Rotate Part.
ζ direction

Write
CGNS

partition
END

yes

no

Figure 2: Preprocessing flow chart.

The partitioning of the domain is performed in a matrix fash-
ion in order to create structured blocks which can be mapped
and easily accessed through the use of message protocols. Fig-
ure 3(a) illustrates the segmentation of the domain into the axial
and azimuthal directions while Fig. 3(b) presents the mapping
of the domain. The index of each partition, indicated in Fig.
3(b), is based on a matrix index system in which the rows rep-
resent the position in the axial direction and the columns repre-
sent the position in the azimuthal direction. The partition index
starts at zero to be consistent with the message passing interface
standard. NPX and NPZ denote the number of partitions in the
axial and azimuthal directions, respectively.

An optimized partitioning is necessary in order to have a well
balanced distribution of tasks for all resources requested. The
number of points within a given mesh can be a measure of com-
putational costs for CFD applications using the finite difference
spatial discretization. Therefore, the division of the mesh in the
axial and azimuthal directions is performed towards a well bal-
anced distribution of points. Firstly, the total number of grid
points in one direction is divided by the number of domains
in the same direction. The remaining points are spread among
the partitions when the division is not exact. The same proce-
dure is performed in the other directions. Figure 4 illustrates
the balancing procedure performed in each direction during the

(a) 2-D partitioning in the axial and azimuthal directions.

0 NPZ 2*NPZ

1 NPZ+1 (2*NPZ)+1

(...) (...) (...)

NPZ-2 NPZ+NPZ-2 2*NPZ+NPZ-2 j*(NPZ)+i

NPZ-1 NPZ+NPZ-1 2*NPZ+NPZ-1 (...) (NPX*NPZ)-1

(b) Mapping of the 2-D partitioning.

Figure 3: 2-D partitioning and mapping.

partitioning of the computational grid, in which n stands for
the integer part of the division and m represents the number of
points in the unbalanced partition.

Figure 4: Balancing procedure performed during the patitioning of the mesh.

4.2. Large Eddy Simulation Code
JAZzY is the LES solver used in the current work. A brief

overview of the code is presented as a flow chart illustrated in
Fig. 5. Initially, every MPI partition reads the same ASCII file
which provides input data such as flow configurations and sim-
ulation settings. In the sequence, each MPI partition reads its
corresponding CGNS mesh file. The Jacobian and the metric
terms are calculated after the I/O procedure. Then, each MPI
rank sets the initial conditions defined in the input data. The



Runge-Kutta time integration is the first routine to be called
into the interaction loop.

At the beginning of the time marching scheme, for each sub-
step, asynchronous communications of the conservative prop-
erty vector are performed, in both, azimuthal and axial direc-
tions, followed by an update of boundary conditions and dy-
namic viscosity coefficient. Viscous terms are communicated
before the computation of artificial dissipation operators and
viscous flux vectors. MPI waiting functions are carefully added
along the code to avoid out-dated information and to enforce the
preservation of the numerical method accuracy. Finally, when
the requested number of time steps is achieved, each MPI par-
tition appends the solution to the output CGNS file.

BEGINRead InputRead
Mesh Part.

Calc.
Jacob.
terms

Calc.
Metric
Terms

Set Init.
Cond.

Update IT.

Update RK.

Async.
Comm.Inv. Flux

Async.
Comm.

Art. Dissip. Visc. Flux End RK.

Update Sol.Async.
Comm.End IT.

END

no

yes

no

yes

Figure 5: JAZzY solver flow chart.

4.3. Inter-Partition Data Exchange

In the present work, data exchanges are performed using
ghost points which are added to the boundaries of local mesh
partitions at the main flow direction and at the azimuthal direc-
tion in order to carry information of the neighboring points. The
artificial dissipation scheme implemented in the code [30] uses
a five-point stencil which demands information of two neigh-
bors, in each side, of a given mesh point. Hence, a two-layer
ghost point fringe is created at the beginning and at the end of
each partition. Figure 6 illustrates the ghost points of a partition

domain. The yellow and black layers represent the axial and az-
imuthal ghost points, respectively, while the green region is the
partition mesh.

Figure 6: Ghost points creation procedure. The green volume indicates one
given partition of the domain, while the yellow and black layers represent the
axial and azimuthal ghost points layers, respectively.

The solver was originally developed using a four-step block-
ing communication for both axial and azimuthal directions.
Figures 7(a) and 7(b) demonstrate the data exchange approach
for a given direction. Initially, the communication is performed
in the forward direction where even partitions send information
of their two last local layers to the ghost points at the left of
odd partitions. If the last partition is even, it does not share
information in this step. In the sequence, odd partitions send
information of their two last local layers to the ghost points at
the left of even partitions. If the last partition is odd, it does not
share information in this step. The third and fourth steps are
backward communications which are adjusted to work in the
same fashion as the forward communication does.

The four-step blocking communications are replaced by
asynchronous MPI protocols in order to improve the perfor-
mance of the solver. Waiting functions are carefully added
along the Runge-Kutta calculations in order to avoid the pres-
ence of outdated information into the ghost cells and to preserve
the accuracy of the time integration method.

The meshes used in the current research have a singularity
at the centerline. It is necessary to correctly treat this region
for the sake of data consistency. Therefore, properties are ex-
trapolated to the singularity in the radial direction and, in the
sequence, the master partition collects all data from the parti-
tions that share the same singularity point and allocates such
information into one single vector. After the allocation, the
properties are averaged in a sequential fashion and the result
is scattered to the neighbors in the azimuthal direction. Such
procedure does not use collective communications and it is per-
formed in a blocking communication fashion in order to pre-
serve the commutative property during the averaging. This
blocking communication is very important in order to achieve
the binary reproducibility of the computational tool [35]. This
approach assures that parallel computations treat the centerline
singularity in the exactly same fashion sequential calculations
do. The use of such communication is motivated by the work
of Arteage et. al. [36]. Moreover, such approach can help de-



(a) Forward blocking communication.

(b) Backward blocking communication.

Figure 7: Forward and backward communication approaches originally imple-
mented in the code in order to exchange information between neighboring par-
titions.

velopers verify whether new parallel features implemented into
the code present the same behavior when running sequentially.
The singularity treatment is the only blocking data exchange
present into the LES solver after the last upgrades.

5. Computational Performance Study

Large eddy simulations require a significant amount of com-
putational resources in order to produce high-quality results.
Therefore, it is very important to evaluate the parallel tool to
be sure that it is capable of using parallel resources efficiently.
Data exchange between partitions is not free and it can affect
the parallel computational performance.

5.1. Scalability Setup
Isothermal perfectly expanded jet flow simulations are per-

formed using different grid sizes and different partition config-

urations. The Reynolds number of the jet is 1.5744×106 for the
present simulations and a flat-hat profile with Mach number of
1.4 is imposed at the jet exit of the nozzle. Isothermal and zero-
velocity conditions, along with a zero-pressure-gradient state,
consistent with the freestream condition, are used as initial con-
ditions for the simulations. The JAZzY solver has already been
validated and presented good results using such flow configu-
ration [11]. The reader can find more details about this flow
configuration in the Compressible Jet Flow Simulation section.
In the present work, each simulation performs 1000 iterations or
24 hours of computation, whatever is shorter in terms of compu-
tational time. An average of the CPU time per iteration through
the simulations is measured in order to evaluate the weak and
strong scalability of the solver using the Santos Dumont super-
computer.

One geometry is created for the computational evaluation,
where the 2-D surface of this computational domain, as pre-
sented in Fig. 1(a), is 30 dimensionless units in length and 10
dimensionless units in height. The diameter of the jet exit is the
length reference unit. In the present work, 13 grids of different
sizes are created, starting with the coarsest mesh with 370,000
points up to the finest mesh, with approximately 1 billion grid
points, as indicated in Tab. 2. The mesh size growth of the first
12 grids follows a geometric progression with ratio 2.

Table 2: Mesh configurations used for the scalability study.

Mesh Nb. Pt. ξ Nb. Pt. η Nb. Pt. ζ Nb. Pt.

1 32 32 361 ≈ 370k
2 64 32 361 ≈ 740k
3 64 64 361 ≈ 1.5M
4 128 64 361 ≈ 3.0M
5 128 128 361 ≈ 6.0M
6 256 128 361 ≈ 11.8M
7 256 256 361 ≈ 23.7M
8 512 256 361 ≈ 47.3M
9 512 512 361 ≈ 94.6M

10 1024 512 361 ≈ 190M
11 1024 1024 361 ≈ 380M
12 2048 1024 361 ≈ 760M
13 1700 1700 361 ≈ 1.0B

Simulations performed in the present study are run using up
to 3072 computational cores. Different partitioning configura-
tions are evaluated for a given number of processors. Table
3 presents the number of partitions in the azimuthal direction,
NPZ, for a given number of computational cores. The partition-
ing configurations which provided the fastest calculation are
used to evaluate the scalability of the solver. Table 4 presents
the number of ghost points as a percentage of the number of
grid points, from the optimal partitioning configuration, for all
mesh configurations and computational cores used in the strong
scaling study. One can understand the ghost point per total grid
point ratio as the communication cost for a parallel calculation
using MPI. In the present work, such cost is, for most of the par-
titioning configurations, less than 1% and approximately 7% in
the worst case scenario.



Table 3: Grid partitioning configurations for different number of cores.

Nb. Cores NPZ

2 1 2
4 1 2 4
8 1 2 4 8

16 1 2 4 8 16
32 1 2 4 8 16 32
64 2 4 8 16 32

128 2 4 8 16 32
256 4 8 16 32
512 4 8 16 32

1024 8 16 32
2048 8 16 32
3072 24 48 96

5.2. Strong Scaling

The speedup is one of the most common figures of metric for
the performance evaluation of parallel algorithms and architec-
tures [37] and it is used in the present work in order to measure
the strong scaling of the solver and compare it with the ideal
case. Different approaches are used by the scientific commu-
nity in order to calculate the speedup [38, 39]. In the present
work the speedup, S p(m,N), is given by

S p(m,N) =
T (m, s)
T (m,N)

. (10)

In this expression, T stands for the time spent by m-th mesh to
perform one thousand time steps, N represents the number of
computational cores and s is the starting point of the scalability
study. The strong scaling efficiency of a given mesh config-
uration, as a function of the number of processors, is written
considering the law of Amdahl [40] as

ηst(m,N) =
S p(m,N)

N
. (11)

Ideally, the sequential computation is the starting point for a
strong scalability study. However, quite often, the computa-
tional problem is too big to fit in one single cluster node due to
hardware limitations of the computer node. Hence, it is neces-
sary to shift the starting point to a minimum number of proces-
sors in which the code can be run. For such cases, where N = s,
speedup and strong scaling efficiency are assumed as

S p(m, s) = s and ηst(m, s) = 1 . (12)

Table 5 presents the minimum and maximum number of com-
putational cores used for each mesh configuration in the strong
scaling study.

5.2.1. Evaluation of Code Improvements
An initial evaluation of the improvements brought to the

code is performed in a smaller supercomputer before study-
ing the scalability of the new version of the solver in the San-
tos Dumont supercomputer. Optimal workload distribution and
non-blocking communications are the main modifications de-
livered to the LES solver. A strong scalability comparison is

fulfilled using the Euler supercomputer which is included into
a national project known as CEPID-CeMEAI [41]. The cluster
is an Hewlett Packard Enterprise (HPE) machine. It presents
104 computational nodes and each one has two deca-core 2.8
GHz Intel Xeon R© E52680v2 processors and 128 Gb DDR3
1866MHz random access memory. The entire cluster has 2080
computational cores available for the project members.

Simulations are run using mesh 8 configuration, which has
≈ 50 million grid points, as indicated in Tab. 2. The study is
performed allocating up to 400 computational cores in parallel.
Figure 8 presents a comparison between the strong scalability
from both versions of the code. One can observe that the strong
efficiency curve is shifted up approximately by 20% with the
improvements implemented in the code for the grid configura-
tion evaluated. The results enhance the importance of the latest
upgrades brought to the JAZzY solver.

Figure 8: Comparison of speedup (–) and strong scaling efficiency (- -) curves
from both versions of the JAZzY solver over approximately 50 million grid
points, i.e., mesh 8.

5.2.2. Strong Scalability on Santos Dumont Supercomputer
After the evaluation of recent modifications, a more detailed

scalability study is done using the Teraflop branch from the
Santos Dumont supercomputer. The LES solver, used in the
present study, can run up to ≈ 50 Million grid points, i.e., mesh
8 configuration, in one single node of the Santos Dumont ma-
chine, which has 64GB of RAM. The standard maximum num-
ber of computational cores allowed to be used for scalability
tests in the Brazilian computer is 3072. More than 400 simula-
tions are run in order to perform the scalability study, consider-
ing all mesh configurations and different partitioning arrange-
ments.

Figures 9, 10 and 11 present the speedup, in solid line, and
the strong efficiency, in dashed line, for the 13 mesh configura-
tions. One can notice that the speedup and strong efficiency of
all numerical test cases present similar trends. The speedup



Table 4: Number of ghost points as a percentage of the total number of grid points for every grid and amount of computational resources used in the strong
scaling study.

Mesh Nb. Cores

2 4 8 16 32 64 128 256 512 1024 2048 3072

1 0.81% 0.52% 0.66% 0.93% 1.46% 1.82% 2.53% 3.96% 6.80%

2 0.26% 0.33% 0.47% 0.74% 0.93% 1.46% 1.82% 2.53% 3.96%

3 0.21% 0.17% 0.23% 0.37% 0.64% 0.73% 0.91% 1.27% 1.98%

4 0.08% 0.13% 0.17% 0.23% 0.60% 0.64% 0.73% 0.91% 1.27%

5 0.04% 0.07% 0.08% 0.16% 0.16% 0.32% 0.33% 1.58% 1.60% 1.63%

6 0.03% 0.04% 0.06% 0.08% 0.13% 0.30% 0.23% 0.45% 1.58% 1.60%

7 0.02% 0.02% 0.04% 0.08% 0.06% 0.08% 0.12% 0.18% 0.23% 0.80%

8 0.01% 0.02% 0.03% 0.04% 0.05% 0.06% 0.08% 0.13% 0.23% 0.42%

9 0.02% 0.03% 0.05% 0.11% 0.09% 0.21% 0.40% 0.16%

10 0.02% 0.04% 0.05% 0.04% 0.09% 0.21% 0.13%

11 0.02% 0.02% 0.04% 0.05% 0.06% 0.07%

12 0.02% 0.01% 0.04% 0.05% 0.06%

13 0.01% 0.02% 0.02% 0.03% 0.03%

Table 5: Starting point, s, and maximum number of computational cores,
Nmax, used by each grid configuration.

Mesh s Nmax Mesh s Nmax

1 1 512 8 1 1024
2 1 512 9 32 3072
3 1 512 10 64 3072
4 1 512 11 128 3072
5 1 1024 12 256 3072
6 1 1024 13 256 3072
7 1 1024

Figure 9: Speedup (–) and strong efficiency (- -) of meshes 1, 2, 3 and 4.

proportionally increases with the number of processors until
it reaches a saturation point, which indicates that MPI data
exchange is becoming as time consuming as the calculations
themselves. This fact is reinforced by the value of the strong
scalability efficiency of approximately 50% at the vicinity of

the speedup peak, for all meshes evaluated.

Figure 10: Speedup (–) and strong efficiency (- -) of meshes 5, 6, 7 and 8.

The two smallest problems evaluated in the present paper
present similar strong scaling behavior. In both cases, the scal-
ability curves follow the ideal case for N ≤ 8 and they reach
a maximum speedup of approximately 60 using 128 compu-
tational cores. The results with Meshes 3 and 4 indicate a
higher value of speedup peak, which is approximately 100 for
N = 256, when compared to the two smallest problems. More-
over, they present super-scalability when running with less than
16 partitions in parallel and ηst ≈ 1 for 32 < N < 64.

A similar shape for the speedup curves, as observed in Fig.
9, can also be seen in Fig. 10. However, the speedup satura-
tion point is shifted upwards with the increase in the size of the
computational problem. Mesh 5 configuration presents a max-
imum speedup of ≈ 100 for N = 256, while Mesh 6 test case
has a speedup peak of ≈ 200 when running on 512 cores in



Figure 11: Speedup (–) and strong efficiency (- -) of meshes 9, 10, 11, 12 and
13.

parallel. Both cases have super-linear scaling for N ≤ 32 and
strong efficiency of 100% when running on 64 MPI partitions.
Meshes 7 and 8 present the speedup apex of ≈ 250 and ≈ 500,
respectively, for N = 512. The former case indicates ηst ≥ 1 for
N < 256, while the latter presents super-scaling for N ≤ 512.

The last five cases, presented in Fig. 11, which have more
than 90 million grid points, indicate better strong scaling when
compared to the previous test cases. For these five cases, the
speedup scales proportionally to the number of available re-
sources. Meshes 9, 10 and 11 present ηst ≥ 1 for N ≤ 256,
although the efficiency curves are reasonably flat and around
ηst ≈ 1 for meshes 10 and 11 all the way up to N ≤ 1024. The
largest grid size analyzed here, i.e., mesh 13, presents ηst ≈ 1
for calculations performed using up to 2048 partitions and high
strong efficiency, ηst ≈ 70%, when using 3072 computational
cores in parallel.

The presence of super-linear scalability, as observed in Figs.
9, 10 and 11, can be explained by fact that cache memory no
longer becomes a bottleneck with the increase of the number of
computational resources. Since more cache memory is avail-
able, when the number of processors is increased, it can be used
more effectively by the workload in each process when com-
pared to the use of cache memory of starting point calculation
of the strong scalability study [42, 43]. The cache memory bot-
tleneck could be related to a non-optimal memory access design
of the code. Furthermore, it could be correlated to the deteriora-
tion of performance when increasing the number of processors
used in a calculation. The code would presumably not deliver
optimal efficiency when using hundreds of thousands of cores
in parallel. The developers are nevertheless investigating the
cause of such issues. Implementing cache blocking [44, 45, 46]
and vectorization [47, 48] techniques could overcome the diffi-
culty simultaneously with an eventual further improvement of
the solver performance in parallel.

It is important to remark that the authors are interested on
simulations of supersonic jet flows. Calculations of this flow
configuration, using the LES formulation, require meshes with
more than 100 million points. The present study indicates that
the JAZzY solver has a good performance for problems of this
size and it is capable of using the Santos Dumont supercom-
puter efficiently. Moreover, the strong scaling evaluation can
be used as a guideline for the selection of the best partitioning
configuration and/or the number of processors to be used in the
Brazilian cluster, for a given mesh size required for the particu-
lar study.

5.3. Weak Scalability on Santos Dumont Supercomputer

Weak scalability can be interpreted as the ability of conserv-
ing the computing time for a fixed workload. In the ideal case,
a parallel code should preserve constant time-to-solution when
the dimension of a problem increases at the same rate as the
number of computational resources. The weak scaling effi-
ciency for a given workload, w, can be written mathematically
as

ηwk(w,N) =
T (w, s)
T (w,N)

. (13)

The weak scaling of the parallel solver is evaluated using 5
different workloads, which are represented in the present paper
by the number of grid points divided by the number compu-
tational cores. Table 6 presents the mesh and the number of
processing units used at the starting point followed by the max-
imum number of computing units and the workload for each
weak scalability study. The computational grids, presented in

Table 6: Description of workloads and starting points used for the weak
scalability study.

Case 1st Mesh s Nmax Workload
[

Nb. Pt.
Core

]
A Mesh 1 2 2048 ≈ 185k
B Mesh 1 1 2048 ≈ 370k
C Mesh 2 1 2048 ≈ 740k
D Mesh 3 1 1024 ≈ 1.5M
E Mesh 4 1 512 ≈ 3.0M

Tab. 2, are created using a total number of mesh points which
is proportional to the power of two in order to be able to keep a
constant workload when the computational resources of a given
test case is doubled. However, due to limitations of the parallel
tool, Mesh 13 configuration is an exception to such trend and
presents ≈ 1.0B points, which is ≈ 1.45 the size of Mesh 12
test case that has ≈ 760M points. Therefore, for this special
grid configuration, a correction is used on the calculation of ηwk

in order to properly compare it with data collected from other
mesh configurations. It is also important to remark here that,
the first case is the only one to use two computational cores as a
starting point, s. The other weak scaling studies are performed
using a sequential computation as a starting point.

Figure 12 presents the weak scalability of the five different
workloads evaluated in the current paper. In the worst case sce-

9



Figure 12: Weak scalability of the JAZzY solver running on the Santos Dumont
supercomputer.

nario, the parallel code can still present a good weak scalabil-
ity with ηwk ≈ 0.7 for the two largest workloads evaluated in
present work, 1.5M and 3.0M grid points per core. Nonetheless,
one can notice the weak scaling efficiency decay when increas-
ing the number of processors used on the calculations. More-
over, the super-linear speedup behavior, previously observed on
the strong scaling study, matches with weak scalability peaks.
One example is the sudden rise of ηwk present on the Case C
scaling illustrated in Fig. 12 for 128 computational cores. Such
event matches the strong super-scalability behavior of Mesh 9
test case for 128 processing units indicated in Fig. 11.

6. Compressible Jet Flow Simulation

This section presents results achieved from the simulation
of a supersonic jet flow configuration. This calculation is per-
formed in order to validate the LES code, and it is included here
simply to demonstrate that the numerical tool is indeed capable
of presenting physically sound results for the problem of inter-
est. Results are compared to numerical [49] and to experimen-
tal data [50]. The reader can find more details of this particular
simulation in the work of Junqueira-Junior et. al. [11].

A geometry is created using a divergent shape whose axis
length is 40 times the diameter of the jet exit, D. The minimum
and maximum heights of the domain are ≈ 16D and 25D, re-
spectively. Figure 13 illustrates a 2-D cut of the geometry and
the grid point distribution used on the validation of the solver.
The mesh created to validate the parallel solver is composed of
343 points in the axial direction, 398 points in the radial direc-
tion and 360 points in the azimuthal direction. This yields a grid
with approximately 50 million points. The distance between
mesh points increases towards the outer region of the domain.
This procedure forces the dissipation of properties far from the
jet exit of the nozzle in order to avoid reflection of waves into

the domain. The grid coarsening can be understood as an im-
plicit damping which can smooth out properties far from the
entrance domain, in the region where the mesh is no longer re-
fined. The calculation is performed using 500 computational
cores.

(a) 2-D cut of the geometry colored by velocity magnitude con-
tours.

(b) 2-D cut of the domain superimposed by grid points distribution.

Figure 13: Illustration of geometry and mesh used into the validation of the
LES solver.

An isothermal perfectly expanded jet flow is studied for the
present validation. The Mach number at the exit of the nozzle is
M = 1.4. The pressure ratio, PR = P j/P∞, and the temperature
ratio, TR = T j/T∞, between the entrance of the domain and the
ambient freestream conditions, are equal to one, i.e., PR = 1
and TR = 1. The j subscript identifies the properties at the
jet exit of the nozzle and the ∞ subscript stands for properties
at the farfield region. The Reynolds number of the jet is Re =

1.57 × 106, based on the diameter of the domain entrance, D.



The time increment, ∆t, used for the validation study is 1×10−4

dimensionless time units.
The boundary conditions previously presented in the Large

Eddy Simulation Formulation section are applied in the cur-
rent simulation. Initial conditions of the computation are set
as isothermal and zero-pressure-gradient states, consistent with
to the freestream condition, along with stagnated velocity, i.e.,
zero velocity. The simulation runs a predetermined period of
time until the statistically steady flow condition is achieved.
This first pre-calculation is important in order to assure that the
jet is fully developed and turbulent.

In the present work, the pre-calculation is run for 14 flow
through time (FTT) units before reaching the statistically steady
flow condition. One FTT unit represents the necessary amount
of time for a particle to cross all the domain, in the main flow
direction, considering the inlet velocity at the jet exit of the noz-
zle. After the statistically stationary state is achieved, the simu-
lations are restarted and run for 3.30 FTT more in which data of
the flow are extracted and recorded in a frequency of 50Hz. The
data sampling can be as well represented by a Strouhal number
range of 0.01 . S t . 36. The Strouhal number, S t, is calcu-
lated based on the frequency of extraction, Mach number at the
exit of the nozzle, and the jet diameter.

Figure 14 indicates the positioning of the two surfaces, (A)
and (B), where data are extracted and averaged through time.
Cuts (A) and (B) are radial profiles at 2.5D and 5.0D units
downstream of the domain entrance. Flow quantities are also
averaged in the azimuthal direction when the radial profiles are
calculated. Moreover, Figs. 14(a) and 14(b) present distribu-
tions of time averaged axial component of velocity and root
mean square values of the fluctuating part of the axial com-
ponent of velocity, which are represented in the present work
as 〈U〉 and u∗RMS , respectively. The solid black line indicated
in Fig. 14(a) represents the potential core of the jet, which is
defined as the region where the time averaged axial velocity
component is at least 95% of the velocity of the jet at the inlet.

Dimensionless profiles of 〈U〉 and u∗RMS at the cuts along
the mainstream direction of the computational domain are com-
pared with numerical and experimental results in Figs. 15 and
16, respectively. The solid line stands for results achieved us-
ing the JAZzY code while square and triangular symbols rep-
resent numerical [49] and experimental [50] data, respectively.
The averaged profiles obtained in the present work correlate
well with the reference data at the two positions compared
here. Nevertheless, the results achieved for both the JAZzY
solver and by the numerical reference [49] present difficulties
to correctly predict the peaks of u∗RMS /U j near r/D = 0.5D
at 2.5D when compared with experimental data [50], as indi-
cated in Fig. 16. It is important to remark that the LES tool can
provide good predictions of supersonic jet flow configurations
when using a sufficiently fine grid point distribution. There-
fore, efficient massive parallel computing is mandatory in order
to achieve high-quality results.

Figures 17 and 18 present a lateral view of an instantaneous
visualization of the pressure contours, in gray scale, superim-
posed by 3-D velocity magnitude contours and vorticity magni-
tude contours respectively, in color, calculated by the LES tool

(a) Time averaged axial component of velocity, 〈U〉.

(b) RMS values of the fluctuating part of velocity axial component, u∗RMS .

Figure 14: Lateral view of distributions of 〈U〉 and u∗RMS . The white dashed
lines indicate the positioning of radial cuts where data are extracted and aver-
aged. The solid black line in (a) represents the potential core of the jet.

discussed in the present paper. A detailed visualization of the
entrance domain is shown in Fig. 18(b). The resolution of flow
features obtained from the jet simulation is more evident in this
detailed plot of the jet entrance. One can clearly notice the com-
pression waves generated at the shear layer, and their reflections
at the jet axis. Such resolution is important to observe details
and behavior of such flow configuration in order to understand
the acoustic phenomena which is present in supersonic jet flow
configurations.

7. Concluding Remarks

The present work is concerned with an evaluation of
the performance of a computational fluid dynamics tool for



Figure 15: Profiles of the averaged axial component of velocity, 〈U〉, at 2.5D
and 5.0D from the entrance: (–) JAZzY results; (�) numerical data; (N) exper-
imental data.

Figure 16: Profiles of the RMS of the fluctuation part of axial component of
velocity, u∗RMS , at 2.5D and 5.0D from the entrance: (–) JAZzY results; (�)
numerical data; (N) experimental data.

Figure 17: Instantaneous lateral view of pressure contours, in gray scale, super-
imposed by 3-D velocity magnitude contours, in color.

aerospace applications when using a national supercomputer
from the Brazilian National Laboratory for Scientific Comput-
ing (LNCC). The cluster is named Santos Dumont and it is in
the 193rd position of the top 500 list of November 2019. The

(a) Lateral view of pressure and magniture of vorticity.

(b) Detailed view of pressure and magnitude of vorticity at the jet exit of
the nozzle.

Figure 18: Lateral and detailed view of pressure contours, in gray scale, super-
imposed by vorticity magnitude contours, in color.

numerical solver was developed by the authors to study super-
sonic jet flow configurations using a large eddy formulation.
Results obtained with the code are used for aeroacoustic design
applications. The simulations of such flow configurations are
expensive and require continuous improvement of the numeri-
cal tool regarding efficient parallel computing. Therefore, weak
and strong scalability studies of the solver are performed on the
Santos Dumont supercomputer in order to evaluate if the nu-
merical tool is capable of efficiently using thousands of proces-
sors in parallel. It should be noted that study is performed in the
Teraflop partition of the Santos Dumont supercomputer which
has 18,144 computational cores, 396 Nvidia K40 graphical pro-
cessing units and 108 Xeon Phi 7120 Intel accelerators. More-
over, the system section has a LINPACK performance of 456.8
TFlop/s and a theoretical peak performance of 657.5 TFlop/s.

Spatial discretization in the solver uses a second-order cen-
tered finite difference approach. Time integration is performed
using a five-stage explicit Runge-Kutta scheme. The code is
implemented using Fortran 90 standards coupled with mes-
sage passing interface (MPI) for inter-partition communica-
tions. The jet flow-like geometry and flow condition were
defined for the scalability study, and 13 different grid refine-
ment levels were constructed. Furthermore, different partition-
ing configurations were used in order to evaluate the parallel
code under different workloads. Grid sizes were varied from
370, 000 to approximately 1.0 billion grid points. Calculations
were performed for 1000 time steps or 24 wall-clock hours of
computation, whichever was reached first, using up to 3072
cores in parallel. The CPU time per iteration was averaged,
when the simulation was finished, in order to calculate the
speedup and scaling efficiency. A preliminary strong scaling



study is performed using a smaller computer to evaluate the ef-
fects from the recent implementations added to the LES solver
using up to 400 computational cores in parallel. Hence, more
than 400 simulations were performed for the scalability study
of the parallel solver in the Santos Dumont supercomputer.

The preliminary strong scalability study presents an increase
of 20% on the efficiency curve when using a configuration
of 50-million grid points along with up to 400 computational
cores in parallel. The strong and weak scaling studies per-
formed in the Santos Dumont computer indicate that the par-
allel tool has a good strong scalability and it is able to speedup
the time-to-solution when running on more than 3000 process-
ing units with a strong scalability efficiency of approximately
70%. Super-linear strong scaling is also observed in the tests
performed. Moreover, the largest mesh configuration addressed
in the present effort has achieved a strong scalability which fol-
lows the ideal case very close, even when running on 2048 com-
putational cores.

Five different workloads are considered in the present work
in order to study the weak scaling of the solver. Tests are per-
formed starting with 165 × 103 grid points per computing unit
and moving up to 3.0×106 grid points per core. The load is dou-
bled for each weak scalability test to the next one. The first two
test cases present a significant decay on the weak scaling effi-
ciency when increasing the number of processors. The perfor-
mance for a fixed number of processors is improved for higher
workloads. In the worst scenario evaluated in the present work,
the test cases using 1.5 and 3.0 million points per core present
a weak scalability efficiency of ≈ 70%. It is also important to
remark that super-linear speedup events indicated in the strong
scalability studies are related to the presence of efficiency peaks
in the weak scaling curves.

The results, obtained for the physically relevant test case, in-
dicate that it is possible to achieve good results for supersonic
jet flows using the present solver. The simulations performed
to validate the numerical code are in good agreement with ex-
perimental and numerical references in the regions where the
grid presents high resolution. Additionally, the present work
indicates that the parallel implementation of the code is capable
of handling high spatial resolution properly. Furthermore, the
scalability study performed in the current paper can serve as a
guide for future simulations using the same numerical tool in
the Santos Dumont supercomputer. Nevertheless, the authors
recognize the existence of improvement possibilities and will
continue the development of the solver regarding the optimiza-
tion of cache memory access and the implementation of vector-
ization capabilities.

Acknowledgments

The authors gratefully acknowledge the partial support for
this research provided by Conselho Nacional de Desenvolvi-
mento Cientı́fico e Tecnológico, CNPq, under the Research
Grants # 309985/2013-7, 400844/2014-1 and 443839/2014-0.
The authors are also indebted to the partial financial support re-
ceived from Fundação de Amparo à Pesquisa do Estado de São
Paulo, FAPESP, under the Research Grants # 2013/07375-0 and

2013/21535-0. The authors further acknowledge the National
Laboratory for Scientific Computing, LNCC/MCTIC, for pro-
viding high-performance computing resources through the San-
tos Dumont supercomputer, which have been indispensable in
order to obtain the research results reported in this paper.

References

[1] P. M. Nelson, Transportation Noise Reference Book, Butterworth-
Heinemann, Oxford, UK, 1987.

[2] M. Darecki, C. Edelstenne, T. Enders, E. Fernandez, P. Hartman, J. P.
Herteman, M. Kerkloh, I. King, P. Ky, M. Mathieu, G. Orsi, G. Schotman,
C. Smith, J. D. Wörner, Flightpath 2050: Europes vision for aviation,
Tech. rep., European Commission (2011).

[3] P. Argüelles, M. Bischoff, P. Busquin, B. A. C. Droste, S. Evans, W. Kröll,
J. L. Lagardere, A. Lina, J. Lumsden, D. Ranque, S. Rasmussen, P. Re-
utingler, S. R. Robins, H. Terho, A. Wittlöv, European aeronautics: A
vision for 2020, Tech. rep., European Commission (2001).

[4] C. Wagner, T. Hüttl, P. Sagaut, Large-Eddy Simulation for Acoustics,
Cambridge University Press, Cambridge, UK, 2007.

[5] C. A. Junqueira-Junior, Development of a parallel solver for large eddy
simulation of supersonic jet flow, Ph.D. thesis, Instituto Tecnoógico de
Aeronáutica, São José dos Campos, SP, Brazil (2016).

[6] E. Garnier, N. Adams, P. Sagaut, Large Eddy Simulation for Compress-
ible Flows, Springer, 2009.

[7] D. Bodony, S. K. Lele, On using large-eddy simulation for the prediction
of noise from cold and heated turbulent jets, Physics of Fluids 17 (8).

[8] W. Wolf, S. K. Lele, Airfoil aeroacoustics: LES and acoustic analogy
predictions, Ph.D. thesis, Stanford, Stanford, CA, USA (2011).

[9] S. C. Lo, K. M. Aikens, G. A. Blaisdell, A. S. Lyrintzis, Numerical inves-
tigation of 3-D supersonic jet flows using large-eddy simulation, Interna-
tional Journal of Aeroacoustics 11 (7) (2012) 783–812.

[10] W. R. Wolf, J. L. F. Azevedo, S. K. Lele, Convective effects and the role of
quadrupole sources for aerofoil aeroacoustics, Journal of Fluid Mechanics
708 (2012) 502–538.

[11] C. Junqueira-Junior, S. Yamouni, J. L. F. Azevedo, W. R. Wolf, Influence
of different subgrid-scale models in low-order les of supersonic jet flows,
Journal of the Brazilian Society of Mechanical Sciences and Engineering
40 (258) (2018) 1–29.

[12] J. J. Dongarra, S. W. Otto, M. Snir, D. Walker, An Introduction to the MPI
Standard, Tech. rep., Knoxville, TN, USA (1995).

[13] M. Folk, G. Heber, Q. Koziol, E. Pourmal, D. Robinson, An overview of
the HDF5 technology suite and its applications, in: Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases, ACM, 2011, pp. 36–
47.

[14] M. Folk, A. Cheng, K. Yates, HDF5: A file format and I/O library for
high performance computing applications, in: Proceedings of Supercom-
puting, Vol. 99, 1999, pp. 5–33.

[15] C. L. Rumsey, B. Wedan, T. Hauser, M. Poinot, Recent updates to the
CFD general notation system (CGNS), in: AIAA Paper No. 2012-1264,
Proceedings of 50th AIAA Aerospace Sciences Meeting, Nashville, TN,
USA, 2012, p. 16.

[16] S. M. Legensky, D. E. Edwards, R. H. Bush, D. Poirier, CFD general
notation system (CGNS) - status and future directions, in: AIAA Paper
No. 2002-0752, Proceedings of 40th AIAA Aerospace Sciences Meeting
& Exhibit, Reno, NV, 2002.

[17] D. M. A. Poirier, R. H. Bush, R. R. Cosner, C. L. Rumsey, D. R. McCarthy,
Advances in the CGNS database standard for aerodynamics and CFD, in:
AIAA Paper No. 2000-0681, 38th AIAA Aerospace Sciences Meeting &

Exhibit, Reno, NV, 2000.
[18] D. Poirier, F. Y. Enomoto, The CGNS system, in: AIAA Paper No.

98-3007, Proceedings of 29th AIAA Fluid Dynamics Conference, Albu-
querque, NM, 1998.

[19] National Laboratory for Scientific Computing (LNCC), Santos Dumont
web page, https://sdumont.lncc.br (Jan. 2019).

[20] TOP500 Supercomputer List, Laboratório Nacional de Computação
Cientı́fica, http://www.top500.org/site/50576 (Dec. 2019).

[21] H. W. Meuer, E. Strohmaier, J. J. Dongarra, H. D. Simon, The TOP500:
History, Trends, and Future Directions in High Performance Computing,
1st Edition, Chapman & Hall/CRC, 2014.



[22] J. J. Dongarra, Performance of various computers using standard linear
equations software, SIGARCH Comput. Archit. News 20 (3) (1992) 22–
44.

[23] J. J. Dongarra, The LINPACK benchmark: An explanation, in: Proceed-
ings of the 1st International Conference on Supercomputing, Springer-
Verlag, London, UK, 1988, pp. 456–474.

[24] LNCC, National Laboratory for Scientific Computing (LNCC) web page,
https://www.lncc.br (Dec. 2019).

[25] Lustre, Lustre filesystem page, https://www.lustre.org/ (Dec. 2019).
[26] RedHat, RedHat web page, http://www.redhat.com/ (Dec. 2019).
[27] SchedMD, Slurm workload manager page, https://slurm.schedmd.com/

(Dec. 2019).
[28] A. W. Vreman, Direct and large-eddy simulation of the comperssible tur-

bulent mixing layer, Ph.D. thesis, Universiteit Twente (1995).
[29] E. Turkel, V. N. Vatsa, Effect of artificial viscosity on three-dimensional

flow solutions, AIAA Journal 32 (1) (1994) 39–45.
[30] A. Jameson, D. Mavriplis, Finite volume solution of the two-dimensional

Euler equations on a regular triangular mesh, AIAA Journal 24 (4) (1986)
611–618.

[31] A. Jameson, W. Schmidt, E. Turkel, Numerical solutions of the Eu-
ler equations by finite volume methods using Runge-Kutta time-stepping
schemes, in: AIAA Paper 81–1259, Proceedings of the AIAA 14th Fluid
and Plasma Dynamic Conference, Palo Alto, Californa, USA, 1981.

[32] L. N. Long, M. Khan, H. T. Sharp, A massively parallel three-dimensional
Euler/Navier-Stokes method, AIAA Journal 29 (5) (1991) 657–666.

[33] J. L. Bentley, Multidimensional binary search trees used for associative
searching, Communications of the ACM 18 (9) (1975) 509–517.

[34] J. L. Bentley, Multidimensional binary search trees in database applica-
tions, IEEE Transactions on Software Engineering SE-5 (4) (1979) 0–
340.

[35] P. Balaji, D. Kimpe, On the reproducibility of MPI reduction operations,
in: 2013 IEEE 10th International Conference on High Performance Com-
puting and Communications & IEEE International Conference on Em-
bedded and Ubiquitous Computing (HPCC EUC), IEEE, 2013, pp. 407–
414.

[36] A. Arteaga, O. Fuhrer, T. Hoefler, Desingning a bit-reproducible portable
high-performance applications, in: Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International, Phoenix, AZ, USA, 2014, pp.
1235–1244.

[37] W. Ertel, On the definition of speedup, in: PARLE’94 Parallel Architec-
tures and Languages Europe, Springer, Berlin, 1994, pp. 289–300.

[38] X.-H. Sun, Y. Chen, Reevaluating Amdahl’s law in multicore era, J. Par-
allel Distrib. Comput. 70 (2) (2010) 183–188.

[39] J. L. Gustafson, Reevaluating Amdahl’s law, Communications of the ACM
31 (5) (1988) 532–533.

[40] G. M. Amdahl, Validity of the single processor approach to achieving
large scale computing capabilities, in: AFIPS Conference Proceedings,
Vol. 30, ACM, Atlantic City, N.J., USA, 1967, pp. 483–485.

[41] Center for Mathematical Sciences Applied to In-
dustry (CEPID-CeMEAI), Euler computer web page,
https://sites.google.com/site/clustercemeai/ (Dec. 2019).

[42] S. Ristov, R. Prodan, M. Gusev, K. Skala, Superlinear speedup in HPC
systems: Why and when?, in: Proceedings of the 2016 Federated Con-
ference on Computer Science and Information Systems, Gdańsk, Poland,
2016, pp. 889–898.

[43] M. Gusev, S. Ristov, A superlinear speedup region for matrix multipli-
cation, Concurrency and Computation: Practice and Experience 26 (11)
(2014) 1847–1868.

[44] X. Jin, T. Yang, X. Tang, A comparison of cache blocking methods for fast
execution of ensemble-based score computation, in: Proceedings of the
39th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 16, Pisa, Italy, 2016, pp. 629–638.

[45] S. Kamil, P. Husbands, L. Oliker, J. Shalf, K. Yelick, Impact of mod-
ern memory subsystems on cache optimizations for stencil computations,
in: Proceedings of the 2005 Workshop on Memory System Performance,
Chicago, Illinois, 2005, pp. 36–43.

[46] D. Gannon, W. Jalby, K. Gallivan, Strategies for cache and local memory
management by global program transformation, in: Proceedings of the
International Conference on Supercomputing, Athens,Greece, 1987, pp.
229–254.

[47] R. Lhner, Cache-efficient renumbering for vectorization, International

Journal for Numerical Methods in Biomedical Engineering 26 (5) (2010)
628–636.

[48] A. Basermann, et al., HICFD: Highly efficient implementation of cfd
codes for hpc many-core architectures, in: Proceedings of an Inter-
national Conference on Competence in High Performance Computing,
Schloss Schwetzingen, Germany, 2010, pp. 1–13.

[49] S. Mendez, M. Shoeybi, A. Sharma, F. E. Ham, S. K. L. P. Moin, Large-
eddy simulations of perfectly-expanded supersonic jets using an unstruc-
tured solver, AIAA Journal 50 (5) (2012) 1103–1118.

[50] J. Bridges, M. P. Wernet, Turbulence associated with broadband shock
noise in hot jets, in: AIAA Paper No. 2008-2834, Proceedings of the 14th
AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Confer-
ence), Vancouver, Canada, 2008.

About the Authors

Carlos Junqueira Junior is a Research Engineer at École
Nationale Supérieure d’Arts et Métiers (ENSAM), in Paris. He
graduated with the Engineering degree at the École Nationale
Supérieure de l’Énergie l’Eau et l’Environnement (ENSE3) and
also at the Universidade Estadual Paulista (UNESP). He holds
the titles of Master of Science and Doctor of Science both
achieved at Instituto Instituto Tecnológico de Aeronáutica. His
research interests are in the area of computational fluid dynam-
ics, high performance computing, and numerical methods.

João Luiz F. Azevedo is a Senior Research Engineer in the
Aerodynamics Division of Instituto de Aeronáutica e Espaço,
at São José dos Campos, Brazil. His professional experience
includes development and application of CFD codes for ap-
plied aerodynamic and aeroelastic analyzes of aerospace vehi-
cles, aeroelastic clearance of launch vehicles, and aerodynamic
CFD analyzes of wind tunnel models prior to testing. Areas of
research interest include development of high-order, adaptive,
unstructured grid CFD codes for realistically complex config-
urations, implementation of turbulence models, and develop-
ment of cost effective techniques for coupling CFD solvers with
aeroelastic analysis procedures.

Jairo Panetta is a Professor of the Scientific Computing
Department at Instituto Tecnológico de Aeronáutica (ITA). He
graduated as an engineer and received his Master of Science
Degree, both at the Instituto Tecnológico de Aeronáutica. He
defended his Ph.D. at Purdue University. His research interests
are in the area of computer architecture, analogic processing
and high performance computing.

William R. Wolf is a Professor of the Faculdade de Enge-
nharia Mecânica at Universidade Estadual de Campinas (UNI-
CAMP). He holds a Mechanical Engineering degree obtained
from the University of São Paulo and the title of Master of Sci-
ence from Instituto Tecnológico de Aeronáutica. He defended
his Ph.D. Thesis at Stanford University. His research interests
are in the area of aeroacoustics, turbulent flows, aerodynamics,
and computational fluid dynamics.

Sami Yamouni is a Data Scientist at DataLab Serasa Expe-
rian. He has an Engineering degree from Institut Supérieur de
Mécanique de Paris and a Master of Science degree from the
Université de Poitiers. Yamouni defended his Ph.D. Thesis at
École Polytechnique. His research interests are in the area of
dynamic mode decomposition, proper orthogonal decomposi-
tion, artificial intelligence and high performance computing.


	1 Introduction
	2 Computer Configuration
	3 Large Eddy Simulation Formulation
	4 Implementation Aspects
	4.1 Preprocessing Mesh Partitioner
	4.2 Large Eddy Simulation Code
	4.3 Inter-Partition Data Exchange

	5 Computational Performance Study
	5.1 Scalability Setup
	5.2 Strong Scaling
	5.2.1 Evaluation of Code Improvements
	5.2.2 Strong Scalability on Santos Dumont Supercomputer

	5.3 Weak Scalability on Santos Dumont Supercomputer

	6 Compressible Jet Flow Simulation
	7 Concluding Remarks



