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Abstract We present a new method to automatically track filaments over the solar disk.
The filaments are first detected on Meudon Spectroheliograph Hα images of the Sun, ap-
plying the technique developed by Fuller, Aboudarham, and Bentley (Solar Phys. 227, 61,
2005). This technique combines cleaning processes, image segmentation based on region
growing, and morphological parameter extraction, including the determination of filament
skeletons. The coordinates of the skeleton pixels, given in a heliocentric system, are then
converted to a more appropriate reference frame that follows the rotation of the Sun surface.
In such a frame, a co-rotating filament is always located around the same position, and its
skeletons (extracted from each image) are thus spatially close, forming a group of adjacent
features. In a third step, the shape of each skeleton is compared with its neighbours using
a curve-matching algorithm. This step will permit us to define the probability [P ] that two
close filaments in the co-rotating frame are actually the same one observed on two different
images. At the end, the pairs of features, for which the corresponding probability is greater
than a threshold value, are associated using tracking identification indices. On a represen-
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tative sample of filaments, the good agreement between automated and manual tracking
confirms the reliability of the technique to be applied on large data sets. This code is already
used in the framework of the Heliophysics Integrated Observatory (HELIO) to populate a
catalogue dedicated to solar and heliospheric features (HFC). An extension of this method
to other filament observations, and possibly sunspots, faculae, and coronal-holes tracking,
can also be envisaged.

Keywords Solar filaments · Hα observations · Automated tracking · Image processing ·
Virtual observatory · HELIO · HFC

1. Introduction

The heliophysics community embraces a number of existing disciplines – solar and helio-
spheric physics, magnetospheric and ionospheric physics for the Earth and other planets –
and thus must deal with very large sets of heterogeneous data from ground- and space-based
instruments. The Heliophysics Integrated Observatory (HELIO: http://www.helio-vo.eu)
is a virtual observatory dedicated to solar physics and heliophysics (Bentley et al.,
2011). HELIO provides a distributed network of services, which helps researchers to
easily mine relevant information and data. The Heliospheric Feature Catalogue (HFC:
http://voparis-helio.obspm.fr/hfc-gui/index.php) is a database-oriented service that allows
access to a large amount of solar and heliospheric features data. Extraction of feature
information stored in the HFC is realised using an increasing number of recognition
codes (Fuller, Aboudarham, and Bentley, 2005; Zharkov et al., 2005; Barra et al., 2009;
Krista and Gallagher, 2009; Lobzin et al., 2009; Higgins et al., 2011).

We present here a new algorithm for solar-filament tracking. It has been initially devel-
oped in the framework of the HELIO project in order to provide tracking data, as a sup-
plementary information to the description of filaments already available in the HFC. Fila-
ments are large-scale structures of relatively dense and cool plasma suspended in the hot and
thin corona. They are particularly visible on Hα observations, where they appear as elon-
gated dark features with several barbs in the solar chromosphere (Tandberg-Hanssen, 1995;
Mackay et al., 2010). During their lifetime, their shape and intensity can be subject to a
number of modifications; especially, part or all of a filament can sometimes undergo sud-
den disappearances (which may be followed in some cases by re-appearances) at some
wavelengths, probably due to changes in their background characteristics – temperature,
pressure, etc. – or caused by eruptive process. Hence, this sudden and unpredictable be-
haviour can make filaments difficult to track over the Sun’s surface. Moreover, following
these features over time is relevant, notably for space weather, since erupting disappear-
ances can play a role in the triggering of coronal mass ejections (CMEs) (Gilbert et al., 2000;
Gopalswamy et al., 2003).

Many automated methods have been successfully developed during the last ten years to
detect filaments, including Gao, Wang, and Zhou (2002), Fuller, Aboudarham, and Bent-
ley (2005), Bernasconi, Rust, and Hakim (2005), Zharkova and Schetinin (2005), and more
recently Joshi, Srivastava, and Mathew (2010). In addition to their recognition algorithms,
Gao, Wang, and Zhou (2002), Bernasconi, Rust, and Hakim (2005), and Joshi, Srivastava,
and Mathew (2010) also propose tracking capabilities that allow identification disappear-
ances by following feature locations day by day. In particular, Gao, Wang, and Zhou (2002)
have tracked filament disappearances over a full year, and the code of Bernasconi, Rust, and

http://www.helio-vo.eu
http://voparis-helio.obspm.fr/hfc-gui/index.php
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Hakim (2005) is currently applied to detect and track filaments on Big Bear Solar Observa-
tory (BBSO) images, providing, among others, data to the Heliophysics Events Knowledge-
base (HEK: http://lmsal.com/hek/). In all cases the basics of the methods are quite similar:
starting from heliocentric positions of the filaments detected at a given time (i.e. on a given
image), they estimate the coordinates of their respective centroids on the previous and/or
next adjacent images using equations that correct for the solar rotation (Cox, 2000). Then
they check if the detected filament lies within a given circular area from the predicted loca-
tions; if it does, the two filaments are considered to be the same. In the case of Bernasconi,
Rust, and Hakim (2005), where no filament is found, they then extend the search up to three
days to confirm whether the filament actually disappears or not. As highlighted by the au-
thors, the three-day search is motivated by the fact that filaments sometimes change shape so
much between times of observation that their location may fall out of the search area, tem-
porarily losing the tracking. A consequence is that during this period of time it is not possible
to know if the filament actually disappears, or if its shape is just strongly deformed due to
splitting or partial disappearance. A tracking algorithm based on time, position, but also
shape matching would permit one to distinguish between the different possible behaviours.
This capability appears to be essential to detect, among others, erupting disappearance.

In our method, filaments are first detected on Hα images by an automated recognition
code that extracts, among other things, the pruned skeletons of filaments. A pruned skeleton
can be defined as the thickest curve inside the feature area that preserves the shape topol-
ogy; in terms of image processing it results of a thinning followed by a pruning operation
(Gonzalez and Woods, 2002) applied on the feature pixels. Then the coordinates of the re-
sulting skeleton pixels are converted to a more appropriate reference frame that rotates with
the solar surface. In such a frame, the skeleton of a filament observed on successive images
appears as a cluster of close curves (Mouradian, 1998). Hence, a comparison in this frame
of each skeleton curve with its closer neighbours, using a curve-matching algorithm, allows
us to calculate probabilities that all of these features actually belong to the filament. The
algorithm demonstrates its ability to track filaments on large data sets, limiting the num-
ber of false tracking detections. Section 2 will introduce the observations used to test the
technique, and briefly describe the filament-detection process; Section 3 is devoted to the
explanation of the tracking algorithm; Section 4 will present the resulting performances of
the code. Finally, applications will be discussed in Section 5.

2. Detection of Filaments

2.1. Observations

The Meudon spectroheliograph of the Observatoire de Paris performs daily observa-
tions of the solar photosphere and chromosphere at three wavelengths: blue wing of the
Ca II K 393.4 nm line, or K1v ; centre of the Ca II K 393.4 nm line, or K3; and Hα
656.3 nm. More than fifteen years of data are accessible from the BASS2000 website
(http://bass2000.obspm.fr/home.php), which permits us to apply the tracking algorithm over
a large period of time.

The images produced are 2D heliocentric projections of the full solar disk as seen
from the Earth, with a typical size of 1024 by 1024 pixels, and a spatial resolution of
≈ 2.28 arcsec. The origin of the reference frame corresponds to the disk centre, the x-axis
is aligned with the Sun’s Equator and points towards the west limb, and the y-axis is aligned
with the rotation axis and points towards the North. Figure 1 shows such an image before

http://lmsal.com/hek/
http://bass2000.obspm.fr/home.php
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Figure 1 (a) Grey-scale image of the Sun observed in Hα by the Meudon spectroheliograph on 21 Au-
gust 2002 at 11:59:00 UT. The image is centred on the solar disk, and modified to have x- and y-axes
respectively aligned with the Equator and rotation axis. Due to their cooler temperature, the filaments are
seen as dark features on the solar surface. Centre-to-limb effects as well as dark faint lines, caused by dust
particles on the optics, are also visible. (b) Same image after cleaning processes.

(left panel) and after (right panel) cleaning processes (Fuller, Aboudarham, and Bentley,
2005); these pre-processes are required to avoid false detections, but also to optimise the
efficiency of the region-growing process used by the detection algorithm, by increasing the
contrast between the filaments and quiet-Sun intensities.

2.2. Recognition Code

In order to retrieve the location and morphology of filament skeletons required to perform
tracking, an automated recognition code is first run over the full data set available. We use
here an algorithm developed in the framework of the European Grid of Solar Observa-
tions (EGSO: http://www.egso.org) project, and successfully applied on Hα data from the
Meudon Spectroheliograph and BBSO (Fuller, Aboudarham, and Bentley, 2005). This code
is now also used in HELIO to provide to the HFC, a description of the filaments detected
on Meudon images. (Filaments detected on BBSO observations are planned to be added in
HFC in few months.)

The recognition method requires three main steps to be completed:

i) Since images are sometimes blurred, which can reduce the efficiency of the filament
segmentation, a Laplacian spatial filter (Russ, 2002) is first used to enhance the clearness
of filament contours.

ii) Then a region-growing algorithm (Gonzalez and Woods, 2002) permits us to group pix-
els of a same filament together. Starting from a seed region (found using an appropriate
threshold value), the procedure searches the connected pixels for which the intensities
are within a range defined by the mean and standard deviation of their neighbours.

iii) A morphological-closing operator (Gonzalez and Woods, 2002) will finally merge re-
sulting nearby regions that could be considered as a single filament on the segmented
images.

From the boundary detection, several parameters can be extracted concerning the inten-
sity, location, or morphology of filaments. In particular, the algorithm uses thinning and

http://www.egso.org
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Figure 2 (a) Same image as in Figure 1b, but over-plotted with coloured contours and skeletons extracted
from the recognition code. (The colours used here are randomly distributed to distinguish individual features
detected.) (b) Zoom on the area marked by the black box on the image displayed in Panel (a).

pruning methods (Gonzalez and Woods, 2002) in order to compute skeleton shapes (results
of a skeleton computation is illustrated on Figure 2). Two conditions are required to produce
such shapes: all skeleton parts should be connected, and the full extent of the region must be
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contained in the skeletonised representation. Knowing this characteristic will permit us to
define, among others, the length, the centre, and the curvature of the filaments. At the end,
all of these parameters will be ingested into the HFC from where they can be downloaded
using dedicated query interfaces.

For our purpose, the shape of the skeletons will serve as a matching criterion to identify
a filament from an image to the following one.

3. Tracking of Filaments

3.1. Description of the Algorithm

In this section we present in detail the tracking algorithm. In addition to the coordinates of
skeleton pixels provided by the recognition code, two types of index are also required to
follow co-rotating features over time. The first index, called feature identification number
[νi] is allocated to each filament [i] extracted by the recognition code. All of its values are
unique (the values of the feature identification number typically follow the order of detection
of the filaments) in order to identify and retrieve in the HFC, a feature detected at a given
time on a given image. The second index, called the tracking identification number [τi] is
assigned to each filament [i] by the tracking code. As opposed to νi several filaments can
have the same value for τi , which will be an indication that these filaments are actually
components of the same co-rotating feature observed on successive images. The values of τi

are set by the tracking code, comparing and associating filaments two by two (as explained in
Section 3.1.4). At the beginning of the execution, all of the tracking indices [τi] are initially
equal to the feature ones [νi] by default.

The main steps of the tracking method can be summarised as follows:

i) We select the time [tι] of the image [ι] for which we want to perform tracking.
ii) We then define a time window [t0, t1] centred on tι and spanning one Carrington rotation

of the Sun, such that t0 = tι −0.5Tcarr and t1 = tι +0.5Tcarr, where Tcarr = 27.2753 days.
The choice of this time range makes sure that all of the filaments detected at tι will be
fully tracked over a period of 0.5Tcarr days (which is actually the average time required
to cross the solar disk).

iii) We download the HFC information about filaments detected between t0 and t1; pa-
rameters required are typically the pixel coordinates of the pruned skeletons, but also
their corresponding feature identification numbers [ν]. (In practice, the corresponding
tracking identification numbers [τ ] are also loaded to ensure a continuity with possible
previous tracking runs.)

iv) Since the pixel coordinates are given in the reference frame of images (see Section 2.1),
we convert them to a more appropriate coordinates system as explained in the following
section.

v) We apply a curve-matching algorithm in the new frame. The purpose of this algorithm
is to compare the shape of all of the possible pairs of skeletons: if two skeletons have
similar shapes, then they are assumed to be two distinct parts of the same filament
moving over the Sun’s surface.

vi) When the comparison succeeds, we associate the two corresponding skeletons by allo-
cating them the same tracking identification number.

vii) The same process is then repeated on the next image [ι + 1] taken at time tι+1, saving
all of the tracking numbers [τ ] defined during previous runs on the image [ι]. This
operation allows us to conserve tracking information from a processed image to the
following.
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3.1.1. Reference Frame Used for Tracking

The tracking for filaments detected at time t = tι is performed on a specific reference frame
[�] that follows the solar rotation between t0 and t1. Such a frame has the advantage to:

i) Stabilise the coordinates of co-rotating filaments around the same position, by correcting
the translation of heliocentric longitudes for the rotation.

ii) Make appear all the segments of a filament visible between t0 and t1, which may suffer
full or partial disappearance during its lifetime.

iii) Offer fast computation time by working in two dimensions instead of three, since along
the first dimension time and space are intermingled. (The computation for all of the
filaments detected over one solar rotation takes less than ≈ 30 seconds on average on a
3.06 GHz Intel Duo Core machine.)

For each image processed, the detection code returns the heliocentric coordinates (X,Y ) of
skeleton pixels (as defined in Section 2.1), which must be converted in the proper coordinates
system associated to � before being usable by the matching algorithm. To achieve this goal,
the heliographic longitudes and latitudes (ϕh, λh) of skeleton pixels on the Sun’s surface
are first computed using an appropriate transformation matrix (Thompson, 2006), then the
coordinates (ϕ,λ) in the co-rotating frame � are deduced using the relations

λ = λh, (1)

ϕ = �carr(t0 − t) + (ϕt0 − ϕh) + ϕDRC(λh), (2)

where �carr is the Carrington rotation speed in degrees day−1, t is the time when the fila-
ment was detected in decimal days (i.e. the time of the observation), t0 is the start time of
the tracking period in decimal days, ϕt0 = 360◦ is the longitude of the central meridian in �
at t0, and ϕDRC(λh) is a term that corrects the effects caused by differential rotation (Ulrich
and Boyden, 2006). These effects are not significant here, but will become important when
the algorithm will be run to track filaments from one solar rotation to the following (see Sec-
tion 3.2). We note that the coordinates system defined here is quite similar to the Carrington
one, but starting at ϕt0 .

The steps of calculation of the skeleton coordinates in the reference frame � are il-
lustrated on Figure 3. In this example, we want to track filaments detected on a Meudon
spectroheliogram on 21 August 2002 at 11:59:00 UT; the date defines here the time of ob-
servation [tι]. Thus, according to the discussion in Section 3.1, the tracking process concerns
all of the filaments extracted between 7 August 2002 at 20:40:47 UT and 4 September 2002
at 03:17:12 UT, which correspond to the start time [t0] and the end time [t1] of the tracking
period respectively. Panels a, b, c, d, and e show a sample of five images of the Sun ob-
tained during this time range; the date of observation is indicated in the upper-left corner of
each image (for more clarity only a few images produced during this period are displayed).
The heliocentric coordinates of skeleton pixels as well as the identification numbers of each
detected filament are also plotted using a coloured scale. Panel f presents an example of
corresponding coordinates (ϕ,λ), calculated for the co-rotating filament visible inside the
white bounding rectangles on the previous panels. In �, all of the skeletons belonging to
this filament form a structured cluster around the same location, giving the full shape of the
filament over the disk crossing.

Figure 4 presents the resulting synoptic map of skeleton pixel’s coordinates converted in
� for the previous example over the full period [t0, t1]. The longitude axis uses the Carring-
ton convention starting at ϕt0 = 360◦, and ending at ϕt1 = 0◦, with ϕtι = 180◦, corresponding
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Figure 3 Illustration of the calculation of the skeleton pixels’ coordinates from the heliocentric coordinates
system to the co-rotating one. Panels a, b, c, d, and e show a sample of five images of the Sun produced
between 7 August 2002 at 20:40:47 UT and 4 September 2002 at 03:17:12 UT (on each image the date of
observation is written in the upper-left corner). Example of skeleton pixels’ coordinates (ϕ,λ) calculated
in the co-rotating frame [�] are plotted on panel f; the region displayed corresponds to the white bounding
rectangles on each image.
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Figure 4 Synoptic map of the skeleton pixels’ coordinates in � between 07 August 2002 at 20:40:47 UT
(i.e., t0) and 04 September 2002 at 03:17:12 UT (i.e., t1). Carrington convention is used to define the longitude
axis. The vertical darker line at the centre indicates the longitude ϕtι = 180◦ , which corresponds the longitude
of the central meridian on 21 August 2002 at 11:59:00 UT. The bounding rectangle delimited by black dashed
line shows the area displayed on the panel f in Figure 3.

to the longitude of the central meridian on 21 August 2002 at 11:59:00 UT. At this stage of
the procedure, the heliocentric and co-rotating pixel coordinates of features, as well as their
corresponding identification numbers [ν and τ ], are stored by the tracking code.

3.1.2. Curvilinear Interpolation

To be consistent, the curve-matching algorithm must be applied on two curve segments hav-
ing the same number of points and the same length. However, due at least to the coordinates’
projections, the distribution of points along the skeleton curves is not necessarily uniform,
hence we need to interpolate the curves in such a way that the distance [ds] between two
consecutive points is constant. At the same time, such a procedure can be seen as a smooth-
ing operation that will highlight the main shape of the skeletons. As a result, the value in
degrees of ds to use in the co-rotating frame has to be a compromise between the spatial
resolution (i.e. minimum distance between two points) and the length of the skeletons: too
small a value can significantly increase the computation time, but also the possible spatial
fluctuations along the curve at small scales, whereas too large a value decreases the number
of points along the curve, and so the spatial resolution used to define its shape.

Once an acceptable value of ds is found, starting from the location of the first point
(ϕ1, λ1) at one of the ends of the curve (the order of the points along the curve goes from one
end to the other), the interpolation method consists of the determination of the intersection
point (ϕkint , λkint) between the circle of radius ds centred on (ϕ1, λ1), and the line passing
through the two points (ϕk, λk) and (ϕk+1, λk+1) of the curve, which satisfy the condition

k∑

l=2

√
(ϕl − ϕl−1)2 + (λl − λl−1)2 ≤ ds ≤

k+1∑

l=2

√
(ϕl − ϕl−1)2 + (λl − λl−1)2. (3)

When the intersection point (ϕkint , λkint) is known, the process is repeated replacing
(ϕ1, λ1) by (ϕkint , λkint) as the new circle centre, and calculating the next intersection point
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(ϕkint+1 , λkint+1) with the curve. The interpolation finally stops when the other end of the
curve is reached.

At the same time, the lengths of the skeletons are estimated by simply summing the
distances ds found between each interpolated points (i.e. (ϕkint , λkint) and (ϕkint+1 , λkint+1)).
This technique will slightly under-estimated the actual length, which appears to be not really
significant on the tracking results.

3.1.3. Curve Matching Algorithm

In order to significantly reduce the computation time, the matching algorithm is only ap-
plied on skeletons that are close enough on the reference frame. To achieve this goal, for
each coordinates (ϕki

, λki
) of a first skeleton i, we search the coordinates (ϕkj

, λkj
) of other

skeletons j (j �= i) for which the distance rkikj
=

√
(ϕki

− ϕkj
)2 + (λki

− λkj
)2 is less than a

maximum value rmax (defined in degrees in �). If the condition rkikj
< rmax is fulfilled, then

the curve matching algorithm is applied. In practice the value of the input parameter rmax

does not affect significantly the efficiency of the algorithm, because it will automatically
dissociate features that are too much distant.

Given two curves C1 and C2 of close skeletons 1 and 2 from the same filament observed
on two different images at two different times, there should be a Euclidean transformation
E, such that EC1 matches C2. However, since during its lifetime a filament can be subject
to shape deformation, segmentation, as well as translation and/or rotation, no exact match is
likely to occur, and so we look for a transformation [E] giving the best match in the least-
squares sense. Let C1 and C2 be represented by the vectorial sequences (uk)

n
k=1 and (vk)

n
k=1

respectively, where n is the number of points of the curves (we assume here that the two
curves have the same length). Matching consists of finding a Euclidean transformation E of
the plane that will minimise the distance [l2] between the sequences (Euk)

n
k=1 and (vk)

n
k=1

such that

� = min
E

l2 = min
E

n∑

k=1

|Euk − vk|2. (4)

To simplify the calculation, the curve C1 is first translated so that
∑n

k=1 uk = 0. Then, if we
write E as Euk = Rθuk + a, where Rθ denotes a counter-clockwise rotation by an angle
θ , and a a translation, then the best match is obtained when (Ayache and Faugeras, 1986;
Wolfson, 1990)

a = 1

n

n∑

k=1

vk, and θ = −
n∑

k=1

ukvk, (5)

where uk and vk are complex representations of the vectors uk and vk , respectively.
At the end, for each pair (Ci,Cj ) of skeleton curves analysed, the matching process

returns three best-fitted parameters

(
a = |a| + δa, θ = |θ |, l = √

�
)
ij
, (6)

where δa is a term that corrects the
∑n

k=1 uk = 0 translation introduced previously. These
parameters, which represent, respectively, the degrees of translation, rotation, and deforma-
tion between the two curves, will be used to compute in a second step the probability [Pij ]
that the skeletons [i and j ] belong to the same filament.
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If two skeletons have different lengths, li �= lj , the matching is also performed but be-
tween the smallest of the two, say i, and all of the possible sub-segments k of the other
one, j , that have the same length, lk = li . In this case, only the probability [Pik] for the
sub-segment returning the best match is finally retained. This technique becomes consistent
only if the lengths of the two curves do not differ significantly, we therefore introduce an
additional condition on the ratio of minimum to maximum length: if this ratio is too small,
then the matching algorithm is not applied.

3.1.4. Confidence of Tracking

For each set of best-fitted parameters (a, θ, l)ij , we calculate a normalised probability [Pij ]
defined by

Pij = WaPa + WθPθ + WlPl (0 ≤ Pij ≤ 1), (7)

where Pa , Pθ , and Pl are the probability terms respectively related to the translation [a],
rotation [θ ], and deformation [l] parameters, and Wa , Wθ , and Wl are the corresponding
probability weights, which satisfy Wa + Wθ + Wl = 1. Pij can be seen as the level of trust
of the tracking; the larger it is, the more the automated code is confident about the fact that
the two skeletons [i and j ] are actually two segments of the same filament.

Since no formal relation exists, the Pa , Pθ , and Pl terms are simply described here us-
ing linear expressions, nevertheless, under the condition that the probability [Pij ] decreases
when the three parameters a, θ , and l increase:

Pa = 1 − a

a0
(1 − P�) if a ≤ a0

1 − P�

, and Pa = 0 otherwise, (8)

Pθ = 1 − θ

θ0
(1 − P�) if θ ≤ θ0

1 − P�

, and Pθ = 0 otherwise, (9)

Pl = 1 − l

l0
(1 − P�) if l ≤ l0

1 − P�

, and Pl = 0 otherwise, (10)

where a0, θ0, and l0 are input parameters that satisfy Pa=a0 = P�, Pθ=θ0 = P�, and Pl=l0 =
P�), respectively. At the same time, the three conditions a ≤ a0

1−P�
, θ ≤ θ0

1−P�
, and l ≤ l0

1−P�

will ensure that Pa , Pθ , and Pl always have positive values. The determination of these three
parameters’ values will be explained later, in Section 4.2. Concerning P�, we take P� = 0.5
which is actually also the value of the respective probability [Pij ] above which two skeletons
are assumed to match, and are thus associated.

The association step is very important since it will permit us to follow a filament on
successive images, assigning the same tracking identification number to its skeletons. An
example of such a process is described on Figure 5. If two skeletons [i and j ] are not as-
sociated together (i.e. τi �= τj ), but both are associated with a third one [k] (i.e. τi = τk

and τj = τk), then all three will be related, and will obtain the same tracking identification
number (i.e. τi = τj = τk). This condition appears to be very efficient for merging several
segments of a filament that suffers significant shape modifications.

Once all of the associations between the pairs of curves are done, for each skeleton [i]
we finally calculate the average value

〈Pi〉 = 1

Nj

Nj∑

j=1

Pij , (11)
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Figure 5 Given two skeletons [i and j ] of feature and tracking identification numbers initially equal to
(νi = i, τi = i) and (νj = j, τj = j) respectively, where i �= j , the association consists of assigning the same
tracking identification number to both skeletons when the matching succeeds. In practice the minimum value
between τi and τj is conserved. In the case where at least one of the skeletons compared has already received
a different tracking number, from a previous matching with another skeleton k for instance, τi = τk �= i, then
we assign to all the features [i, j , and k] the same number τi = τj = τk = min(τi , τj , τk).

where Nj is the number of matchings realised between the skeleton [i] and the skeletons [j ]
(j �= i) for which τj = τi . This value will be used as an average tracking confidence level
for the corresponding filament [i].

3.2. Tracking Filaments over Two Successive Solar Rotations

The algorithm can also be adapted to track filaments that perform two consecutive crossings
on the solar disk. If we assume that a given filament is observed around a time tι, but also
around tι −Tcarr, then we can extend the previous time range [t0, t1] such that t0 ≈ tι −1.5Tcarr

and t1 ≈ tι + 0.5Tcarr, where the average coordinates of the filament skeletons in the cur-
rent and in the previous rotations will be respectively (〈ϕ〉, 〈λ〉) and (〈ϕ〉 + 360◦, 〈λ〉) (us-
ing the reference convention defined by Equations (1) and (2)). Figure 6 shows the skele-
ton pixels’ coordinates in � between t0 and t1, tι taken at 11:59:00 UT on 21 August
2002.

At this stage, we first apply the matching algorithm in order to set the tracking identifi-
cation numbers (as described on previous sections), then from a first group [gi] of skeletons
[i] having the same tracking identification number τi = τgi

and located around (〈ϕi〉, 〈λi〉),
we look for a possible group [gj ] of skeletons [j ] satisfying τj = τgj

and situated around
the coordinates (〈ϕj 〉 ≈ 〈ϕi〉 + 360◦, 〈λj 〉 ≈ 〈λi〉). If such a group [gj ] is found, then the
matching algorithm is run between the skeletons of both groups only. In practice, to start the
matching process, the average centre of gravity (〈ϕj 〉, 〈λj 〉) of the group [gj ] must be inside
the circle of radius rmax and centred on (〈ϕi〉 + 360◦, 〈λi〉).

However, since the chance to observe the same filament over several successive rota-
tion periods decreases with time, we introduce here a new probability term [P�t ] that is
proportional to the difference [�t] of the observation times between the two skeletons to
match. (Since one solar rotation period separates the two features, �t should be normally
around Tcarr.) Hence, the resulting probability [P ′

ij ] that we calculate for each pair (i, j) of
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Figure 6 Synoptic map of the new skeleton pixel’s coordinates between t0 at 14:04:21 UT on 11 July 2002,
and t1 at 03:17:12 UT on 4 September 2002. Carrington convention is still used here to define the longitude
axis. The vertical red line on the left indicates the longitude ϕt = −180◦ , which corresponds the longitude of
the central meridian at t , on 21 August 2002 at 11:59:00 UT. The vertical blue line on the right indicates the
longitude ϕt−Tcarr = +180◦ , which coincides with the longitude of the central meridian at t − Tcarr. The two
groups of skeletons coloured respectively in purple and orange belong to the same filament observed over
two solar rotations (all the others skeletons are plotted here in green for more clarity). In this example, the
matching process is first used to group together the purple skeletons on one side, and the orange skeletons on
the other. Then, when each group has its own tracking identification number, the matching algorithm is run
to compare the curves of the two clusters using Equation (14). In this case the matching process can be done
because both group gravity centres are separated by 360◦ .

skeletons of the two groups will be slightly different:

P ′
ij = P�tPij , (12)

where Pij is the probability defined in Equation (7).
In order to reproduce the filament’s average lifetime, the term P�t must be maximal (i.e.

P�t = 1) when �t = 0, and must tend towards zero when �t increases. As for Pa , Pθ , and
Pl (see Equation (8)), we here use a linear expression defined by

P�t = 1 − �t

�t0
(1 − P�) if �t ≤ �t0

1 − P�

, and P�t = 0 otherwise, (13)

where �t0 is an input parameter above which the probability [P�t ] falls below a given value
P� = 0.5. The value of �t0 is also estimated empirically as explained in the next section.

Finally, the code will associate the two groups [gi and gj ] of skeletons only if the average
value

〈
P ′〉 = 1

2

1

Ni

1

Nj

Ni∑

i=1

Nj∑

j=1

P ′
ij , (14)

where Ni and Nj are, respectively, the number of skeletons in the first and second group, is
greater than 0.5. In this case, all of the skeletons [i] of the first group [gi] will receive a third
identification number [ωi], which will be equal to the tracking identification number of the
group [gj ], so ωi = τj = τgj

.
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At the end of the tracking computation, a filament will be specified by three identification
numbers [νi, τi, and ωi] to be identified on an image, to be tracked over the solar disk, and to
be possibly linked to another feature on the previous rotation respectively. This information
will be written in a dedicated tracking table of the HFC.

3.3. Filaments Behaviour

In addition to the tracking algorithm, a module has been implemented in the code to char-
acterise the behaviour of the filaments during their crossing the solar disk. To achieve this
goal, the procedure checks, using the tracking identification numbers, that each co-rotating
filament is well detected on every image between its first and last times of observation. If
during this period the filament disappears (i.e. is not seen on one or more successive im-
ages), then the times corresponding to the last observation before its disappearance and the
first observation after its re-appearance are saved. Moreover, if the filament appears once
it has crossed the east limb, and/or disappears before reaching the west limb, the informa-
tion is also returned by the code. To proceed in this case, average heliographic coordinates
(〈ϕh〉, 〈λh〉) of the filament skeleton centres on the first/last image are used to calculate the
predicted longitudes on the observation just before/after; if these longitudes are less than 70◦
(in absolute value), then we assume that there is an appearance/disappearance after/before
the limb. As for the tracking data, the results of the analysis are stored in the tracking table
of the HFC.

4. Performances of the Algorithm

4.1. Assessments

To optimise the tracking code, we need to define the combination of input parameters
[a0, θ0, l0,�t0] that gives the best matching rate. This set will serve as a reference for track-
ing the filaments on the Meudon Hα spectroheliograms. At the same time, the assessment of
these parameters will also give an indication of the performance of the algorithm, providing
a positive tracking rate [Rp] after each run (as explained below).

To find the best set of input parameters, we compared the code results with a repre-
sentative sample of filaments manually tracked. This sample contains approximately 2000
filaments, detected by the recognition code between 2000 and 2009 on Meudon spectrohe-
liograms. The tracking was then performed identifying “by-hand” the co-rotating filaments
on synthetic synoptic maps, such as the one displayed on Figure 4. Direct checking on cor-
responding Hα images was also done to confirm the first choice. In order to keep track
of this selection, the results are written in ASCII format files using identification numbers
[νman

i , τman
i ,ωman

i ] as in the automatic code. In practice, since all filaments were loaded from
the HFC, the identification numbers [νman

i and νi] are actually identical; this criterion will
permit us to identify individual features between both sets of results.

Once the sample was generated, we then proceeded as follows.

i) The values of the input parameters ds, rmax, Wa , Wθ , Wl , P�, and � were first fixed to a
given value. (The effects of these parameters on the code performance were also tested,
but the results of this evaluation are not presented here to not overload the discussion.)
We took, respectively, ds = 1◦, rmax = 5◦, Wa = Wθ = Wl = 1/3, P� = � = 0.5, and
the ratio of minimum to maximum lengths of the compared filaments had to be greater
than 1/3. Since the application of the tracking algorithm to too small filaments is neither
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Table 1 Results of the assessments for the tracking over one crossing of the solar disk: the positive rate [Rp]
in percent (second line) and the corresponding number of filaments [Nfil: third line], using the best input
parameters, are indicated for different lengths of filament [lske: first line].

lske ≥ 5◦ ≥ 6◦ ≥ 8◦ ≥ 10◦ ≥ 15◦

Rp 86 % 89 % 92 % 94 % 95 %

Nfil 1991 1698 1263 924 479

Table 2 Results of the assessments for two successive rotation tracking: the total positive rate [Rp in percent:
second line] and the corresponding number of filaments [Nfil: third line], using the best input parameters for
different lengths of filament [lske: first line].

lske ≥ 5◦ ≥ 6◦ ≥ 8◦ ≥ 10◦ ≥ 15◦

Rp 74 % 77 % 81 % 88 % 90 %

Nfil 1991 1698 1263 924 479

relevant nor efficient, we decided to process only the filaments for which the length is
equal to or greater than 5◦.

ii) We carried out a series of executions of the code, using different combinations of values
for the input parameters a0, θ0, l0, and �t0 (reasonable ranges of values were previously
defined for each parameter). After each computation, a positive tracking rate [Rp] was
systematically calculated to evaluate the performance of the automated process com-
pared to the manual one. In order to estimate Rp, we compare two by two the groups
of filaments from both manual and automatic sets, which can be identified by their own
tracking identification numbers τman

i and τi respectively. For two filaments [i and j ]
belonging to each type of group, if the condition νman

i = νj is fulfilled, then Rp was
incremented by 1/n where n is the total number of comparisons.

iii) Finally, we keep the combination of values of a0, θ0, l0, and �t0 that gives the highest
positive rate.

In the first computation series, we did not take account of the results of the tracking
over two rotations including ωi ; then in a second series, we performed the same operation
including both τman

i and ωman
i to compute Rp. Results of the computed series are presented

in the following subsection.

4.2. Results

Table 1 shows the results of a first series of comparisons between the automated and the
manual processes. As explained in the previous subsection, this first series does not take
account of the tracking from one rotation to another using ωman

i . The values of the input
parameters given the highest rate Rp are in this case: a0 = 5◦, θ0 = 30◦, and l0 = 4◦. Rp

and the corresponding numbers of tracked filaments, which have a length of skeleton [lske]
greater than 5◦, 6◦, 8◦, 10◦, and 15◦, respectively, are indicated. (Rp is provided in percent.)

According to Table 1, the performance of the code increases when the length [lske] in-
creases: passing from 86 % of successful tracking for the Nfil = 1991 filaments that have
a length greater than 5◦, to 95 % for the Nfil = 479 filaments for which lske ≥ 15◦. This is
the consequence of the algorithm sensitivity to the length of the skeletons, since it is more
difficult for the curve-matching to compare filaments that have too small lengths.
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Figure 7 Same synoptic map as Figure 4, but after the execution of the tracking code using the best input
parameters found in the first series. Each group of skeletons that actually correspond to the same co-rotating
filament (i.e. which have the same tracking identification number) are plotted with one specific colour. Only
filaments that have a length greater than 5◦ are tracked, and therefore plotted on the map. The two black
dashed lines delimit the longitude range of the image taken at the time t , and for which tracking is initially
performed.

Table 2 shows the results of the second series of assessment, including here the tracking
results from a rotation to the following. In this case, the input parameters that give the best
positive rate [Rp] are: a0 = 5◦, θ0 = 20◦, l0 = 2◦, and �t0 = 112 decimal days. The total
positive rate [Rp] (given in percent) and the corresponding numbers of tracked filaments,
which have a length of skeleton [lske] greater than 5◦, 6◦, 8◦, 10◦, and 15◦, respectively, are
provided.

The method also offers good results for the tracking over successive rotations (i.e. 90 %
for lske ≥ 15◦), but the performance decreases more rapidly when lske decreases. We note
that the best values of the input parameters are smaller than for the first series, because the
algorithm tends to reduce the false tracking occurrences by using more restrictive values on
larger features matched.

An example of a synoptic map, produced after a run of the tracking code using the best set
of input parameters found in the first series, is shown on Figure 7. The colours of skeletons
are proportional to the corresponding tracking identification numbers, in such a way that
associated features appear with the same colour on the plot. In most cases, we can notice
that the larger features are well grouped by colours.

5. Conclusions

We have presented a new method to track filaments on solar images. This technique is based
on a curve-matching algorithm, applied to the skeletons of filaments in a reference frame
rotating with the Sun’s surface. The comparison of the automated-code results with a rep-
resentative sample of filaments tracked manually confirms the good performance (close to
≈ 90 %; depending on the length of the skeletons) of the method. Moreover, the results
show the good aptitude of the process to identify the main parts of a segmented filament (as
a complementary tool to the detection codes, which often offer such a process on each im-
age). Application of the code to track features over two successive rotations gives also good
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results, but appears to be less efficient, especially for the smaller filaments; improvements
to include cases with smaller filaments are in progress.

For now, a version of the code is already used to provide tracking information to the
filaments table of the HFC. Stored content only concerns filaments detected on the Meudon
Hα spectroheliograms, but efforts are currently made to also include BBSO observations.
Joint use of these data sets will allow us to improve the ability of the code to follow filaments,
by increasing the temporal resolution (Meudon Observatory provides only one image per
day on average), but also will refine the analysis of the filament behaviour, since a low
cadence limits the capability of the algorithm to accurately detect the occurrence time of
events such as filament disappearances.

In addition, several applications of this method are envisaged in the future. Firstly, au-
tomated tracking will be a primary step to the creation of filament synthetic synoptic maps
(Mouradian, 1998; Aboudarham et al., 2007); these maps provide useful information about
solar features to the community. Since the detection and tracking codes can be run inde-
pendently (and insofar as a dedicated detection code can provide the pruned skeletons),
investigations are in progress to apply this technique to filament-extraction codes working
on other wavelength observations (Buchlin et al., 2010). Finally, an extension to other so-
lar features, such as active regions or coronal holes, could be reasonably envisaged using
appropriate matching algorithms.
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