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Research report : Optimal dynamic transport with
mass consumption®

Romain Hug'

1 Brief statement of the problem

We have a production area (for instance coal), and
an area to supply. The production area produces
more coal than the needs of the area to be sup-
plied. However transport also requires coal con-
sumption. The objective is to determine an op-
timal allocation map that ensures supply while
minimizing the consumption of coal required for
transportation.
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We choose a dynamic model and we note p the mass to be transported and m the momentum. In
this first model, we consider a consumption proportional to the energy dispersed by solid friction
(for example the friction of the train on the rails), and therefore proportional to the momentum’s
norm |m|, for a coefficient of dispersion k. Here, we choose to overlook the consumption of the
initial impulse (even if it might be another interesting model). It is clear that for such a model
several solutions are possible. We are looking for a model which not take into account the mass not
displaced (useless), and which not allow overlapping of trajectory. That is why, in addition to the
energy term |m/, I add a term (€/2) (|m[*/(2p) + p) with € set.

If we manage to solve this first problem, we hope to be able to prove later the convergence (what kind
?) of solutions (p., m.) to a term (p, m) minimizing only the energy term |m/|, with no overlapping
of trajectory and no useless displaced mass.

We define the domain @ = (0,1) x Q, with Q a convex bounded set (sufficiently regular) of R%. Let
po and py be two (positive) densities of L2(Q) (so [, podz > [, p1 dx), with compact supports in
Q.

We define the following kinetic energy term (1/2)7:

@ if >0,
J(@f)=4 0 if (a,8) =(0,0), (1-1)
400 else.

We also define the space of constraints C:
C= {(p7 m) € LZ(Q)d+17 P(Oa ) < P0o, p(17 ) = P1, atp+ dlvr(m) = 7k|m|7 <m7ﬁ>8ﬂ = O} (1_2)

We want to solve the following problem:

inf [6/(Q(j(p,m)+p) dxdt+/Q|m|dxdt} (1-3)

(pym)ec | 2

In order to more easily a dual formulation of this problem, we choose to expand the space of
constraints as follow:

cre = {(p7m) € LZ(Q)dJrly p(oa ) < po, p(17 ) > p1, 8tp + lex(m) < _k|m|7 <m7ﬁ>8ﬂ > O}
(1-4)
Therefore, we would stude the problem of existence and uniqueness of a couple density-momentum
(p*,m*) such that

(p*,m*) = argmin {6/ (J(p,m) + p) dedt —|—/ |m| dx dt} (1-5)
(p;m)ecre Q Q

and we hope that such a couple would satisfy ultimately (p*, m*) € C.



To model the space of constraint C"¢, we introduce the Lagrange multiplier ¢ as follow:

inf /(Q<6(j(p,m)+p)+m|) dx dt

(p,m)ecCre 2

€
= inf su / (f J(p,m)+p) + m) dz dt
(pm)EL2(Q) oggaebll)l(Q)[ Q 2( (o) + ) + fml

+/ @ (O¢p + divy(m) + k|m|) dx dt
Q

(1-6)
+ [ 600, = po)e(0.) e = [ (o010 _m)@(l,.)dx]

€
= inf su /*J,m+ + (ko + D)|m|) dzdt
(p,m)€L?(Q) OS(’QGIEI(Q) |: Q (2< (p ) P) ( ® )l |)
[ Guwo tpmydzdr+ [ (o1, - (0. pn] e
Q Q

By defining p = (p,m) € L*(Q)**!, G(p) = [,[e(1,)p1 — ¢(0,-)po] dz, and using the Legendre’s
transformation

| (57 Gm)+9) + e+ Dlml) v = sl -~ Fo(0) (17
with
Flpa) =i ={ %y ml ST (1-8)
and
Pe = {q = (a,b) € L*(Q) x L*(Q)?, a+ %(max{\lﬂ,k(p F1l—kp—1)2 < % a.e.} (1-9)
Then, we have
-t /Q (5 Go.m)+p) +ml) dude o

= inf inf Fe(p, G yVizp—
oy, nf, félf?[ (p,0) + G(p) + (1, Viap — q) 2]

Therefore, we search for a saddle point (¢*,¢*, u*) in S = H} (Q) x L*(Q)¥! x L?(Q)**! (where
HL(Q)={¢ € H(Q), ¢ > 0}) of the Lagrangian L¢ defined by

L(p,q,11) = Fe(p,q) + G(0) + (1, Vi = @) 12(q)> (1-11)
i.e. such that Le(¢*, ¢*, u) < Lé(o*, ¢*, u*) < L(¢, ¢, u*) for all (¢,q,p) € S.

First of all, we would like to study the relevance of a a augmented Lagrangian method (inspired by
the algorithm developed in [I]): in this new formulation, where the old primal variable p = (p, m)
is became the Lagrange multiplier, and conversely the old Lagrange multiplier ¢ is now became a
primal variable, the new (linear) constraint is now V, ¢ = ¢. Hence, we introduce, for all r > 0,
the augmented Lagrangian L¢ by:

,
L7 (¢, ¢, 1) = Fe(w,a) + G(9) + {1, Vi = @) r2@) + 5l Ve — al1720)- (1-12)



2 Some few theoric results on the augmented Lagrangian for-
mulation

€
[ah]

Let us characterize the saddle points of the Langrangians L, which are, as we will see, the same

as for L€.

Proposition 2.1. Let € > 0 and (¢*,q*,u*) € S. Then, for all v > 0, the triplet (¢*,q¢*, n*) is a
saddle point of LS. if and only if it satisfies the followings assumptions:

1. q* = Vmga*,
2. ¢* = (a*,0") € P,

3. the vector p* = (p*,m*) is orthogonal to the paraboloid Pg. in q*, i.e. (u*,q—q*)r2 <0 for
all g € Pg-.

4. w* = (p*,m*) € C™: more precisely, we have:
Yo € HY(Q), ¢ >0, / (Orp p™ + Ve -m*)da dt — k:/ |m*|pdxdt + G(p) > 0. (2-13)
Q Q
Especially for ¢ = ¢*, we have:

/ (Orp™ p* + Vo™ - m™)da dt — k/ |m*|p* dx dt + G(¢*) = 0. (2-14)
Q Q

Since this is true for any r > 0, the saddle points are therefore common to all Lagrangians L,
especially for L€ when r = 0.

Before giving proof of this proposition, we will need to state (ond prove) an other one wich will
characterize specially the optimal couple density-momentum p* = (p*, m*).

Proposition 2.2. Let p* = (p*,m*) € L*(Q)¥** and ¢* = (a*,b*) € PS

o> such that p* is orthog-
onal to Pg. in q*, i.e. {(*,q—q*)r2 <0, Vg € Pg.. Therefore:

1. We have p* > 0.
2. For almost all (t,x) € Q,

[% (1 - k‘fz;Tl) b*} (t,x), if [b*|(t,z) > ke*(t,x) +1 > 1,

m*(t,x) = (2-15)

0 else.

In other words,

1 ko*+1
m* =w*p*b*, with w* = max {0, - (1 - ﬁb*—:_ )} (we consider 1/0 = +00). (2-16)
€

*|% )2
3. We have a* = — e(w?[b]) 6) =0.

e(w b*))? | e R .
> + 5 O the support of p*, i.e. p* | a* + 5 5



Proof:

o iy #0,

0, ify=0.

For all y € R, yf(y) = |y, then p*f(p*) = |p*| and —1 < f(p*) < 1. We define ¢ = (a,b) with
a= f(p*) — 1+ a* and b = b*. Therefore, we have

(TI) [p* = 0]: Let f : R — R be defined as follow: f : y € R+— {

1 1
a+§jmwﬂwk¢Wﬂ}*hﬁ*1f:f@ﬂ*1+aﬁ%%@Mﬂwﬂkﬁ+ﬂ}*mf*UQS

[\l e)

ie. ¢ € Pg., then 0 > (u*,q —q*)r2 = / (lp*] = p*) dx dt.
Q
As |p*| — p* > 0, we conclude that |p*| = p* almost everywhere, that is to say p* > 0.

(II) [m* = w*p*b*|: Firstly, let us remark that for all ¥ € L*°((0,1) x ), and for all 6 > 0, and by
defining bs = b* 4 du, we have:
(Ibs| = ko* = 1)* = [bs]* — 2(ke”™ + 1)|bs| + (ke* +1)?
= (]b*)? + 26(b*, it) + 62|ii|*) — 2(kp* + 1)|bs| + (kp* 4+ 1)? (2-17)
= (|b"] = kp* = 1)% +26(b", @) + 6%|a]* — 20" ([bs] — b7
Let @ e L>=((0,1) x Q) an let A > 0.

e We define
Ay ={(t,z) € (0,1) x Q, |b*| — ko™ — 1> A}

Let @y = 14,4 (we assume @y # 0). Let bs = b* + 0y,

1
as 5 (max{|bs|, kp* + 1} — kp* —1)% +

€

N

For all § < 52— (then such that |bs| > ke* + 1 on Ay), we have

2|[wolloo

/(\b5|—k¢*—1)2dxdt:/ (|0*| = ke* —1)2dadt
A)\ A)\

2-18
2(b*, iy + 8|iio)? (2-18)

[bs| + [b*

+6 (2af,ab>—-2@*

) dxdt+—62j/ |iio|? da dt
Ax Ax

(we recall that (|bs| + [b*|)(t, z) > [b*|(t,z) > kp*(t,2) + 1 > 1 on Ay).



We have g5 = (as,bs5) € Pg.. Then

0> (1", 05 — q") L2((0,1)x Q)

:/ (cm—a*)p*dmdt—}—/ (bs — b*,m") dx dt
A)\ Ax

:/ {—a*p*—g(b5|—kgp*—1)2—|—;p*+5<m*,ﬁo>} da dt
Ay €

1 € |@o]? [ 2(kp* +1)
= — at + — b*—k*—lQ—) *dxdt+52/ — 1) dxdt

*

—5 A ["’ << * o) Wm@*,a@) +(5(m*,1]’0>} dz dt

€ B |bs| + |b*]
io|? [ 2(ke* +1 * 2(ke* +1
352/ [l ( (ke + )—1> dedt — 6 <” (I—W)b*—m*,ﬁo> d dt
Ay 26\ |bs| + |b¥ A\ € |bs| + [b*]
(2-19)
Then
0% [ 2(ke* +1 * 2(kep* +1
5/ ol ( Uk + )1> dxdtf/ <” (1W> b*m*,ﬁo> dz dt < 0.
a4, 2e |bs| + |b*| A\ € |b* + dtdg| + |b*]
(2-20)
Therefore, when § — 0, we have
/ <” <1 L 1> b —m*,ﬁo> drdt > 0. (2-21)
Ay \ € 0¥
When A — 0, we finally have
* ke*+1
/<p <1— gt )b*—m*,ﬁo> drdt > 0. (2-22)
Q \ € 0%

e We define
By ={(t,z) € (0,1) x Q, |b*| — ko™ —1 < =)}

Let 0y = 1p,u (we assume Uy # 0). Let bs = b* + 61,

1
a5 = 5 (max{[bs], k" + 1} — k" = 1)° + 2.

T2
For all § < ﬁ, we have |bs| < ko* +1 on By, i.e. as = ¢/2 (and a* < ¢/2) on B,, and
then g5 = (as,bs) € Pg-.

Thus, for all § <

A
st=m—, we have
2[[To[os ?

0> (1", q5 — q")r2(0,1)xQ) = / (as —a*)p* dx dt +/ (bs — b*,m") dz dt
B B (2-23)

:/ (E_a*)p*dxdtm (Go,m*)dxdt > 8 | (To,m*)da dt.
Ba 2 By B



Therefore, when A — 0, we have / (T, m*)y dxdt < 0.
Q
As 1p, + 14, =1, and then ¥y + @y = @, we finally have, and this for all @ € L>((0,1) x ),

/ (w*p*b* —m™*, @) dedt > 0, (2-24)
Q

w* = max O,1 1_k<p +1 ,
€ |b*]

and we then conclude m* = w*p*b*.

with

(I1II) [p* (a* + e(w*[b*])?/2 — 6/2) = 0]: We define the vector ¢ = (a,b) € PS., with b = b* and
a = —5 (max{|b*|, kg* + 1} — k¢* — 1)? + §, whence

0> (u",q—q")r2 :—/

1
P <a* + — (max{|b*|, ko* + 1} — kp* —1)% — 6) dzx dt.
Q 2€ 2

1
As p* <a* + 2—(rnax{|b*\7 ko* + 1} — kp* —1)% — ;) < 0, we then have
€
* b* 2 1
p* f—km—f =p* a*—|—f(max{|b*|,k:cp*—|—1}—k:<,0*—1)2—E =0 (2-25)
2 2 2e 2
almost everywhere. O

Proof of Proposition [2.1)

e Firstly, let us assume that the triplet (¢*, ¢*, u*) satisfies the four assumptions of the state-
ment.

Let 7 > 0. Let ¢ € H'(Q) such that ¢ > 0, and let ¢ € Pg, i.e. such that Fe(p,q) = 0. Then,
according to (2-13)), we have

€ * * T
L(p,q,17) = Fe(p @) + G(0) + {17, Ve = a)r2@) + 51 Veay — all72q)
(2-26)
> k/Q |m™|¢ dx dt — (1", q) 12 (Q)-

We define the sets A and B by
A={(t,z) € (0,1) x Q, [b(t,z)| — ke(t,z) — 1 > 0},

and
B={(t,z) € (0,1) x Q, |b(t,z)] — ke(t,z) — 1 < 0}.



According to (2-15)), we have m* = w*p*b*, and then
k/Q|m*</9d$df— (W5 q) L2 Q)
:—/ |m*|dxdt+/(kgp+1)|m*|d;vdt—/ap*dacdt—/ b-m*dxdt
Q Q Q Q
Z—/ |m*|dxdt—/(|b|—k;<p—1)|m*|da:dt—/ ap” dx dt
Q Q Q
27/ |m*|dxdt+/(k‘<p+1f|b|)|m*|dmdt7/ ap® dx dt (2-27)
Q B B
1
—/ a+ —(|b] — ke — 1)? p*dmdt—f/(w*|b*\)2p*dajdt
A 2e 2 A
2—/ |m*|dxdt—£/ p*dwdt—i/p*dxdt—f/(w*|b*|)2p*dxdt
Q 2 B 2 A 2 A
z—/ |m*|da;dt—f/ (14 (w*[o*])?) p* dedt.
Q 2 Jq

We have b* - m* = b* - (w*p*b*) = w*p*[b*|?> = |b*| - [m*|, and moreover, by definition of w*
(see ([2-16), we have (|b*| — ko* — 1)|m*| = e(w*|b*|)?p*. Thus,

k:/Qm*go* drdt — (1", q") 12(Q)
z—/ |m*|dxdt—/ a*p*dzdt+/(k<p*+1)|m*\dxdt—/ b* - m* dx dt
Q Q Q Q
:—/ |m*|dxdt—/a*p*d;vdt—/ (|6*] — ko™ — 1) |m*| dz dt
Q Q Q

:—/ |m*|dmdt—/ (a* + e(w*|b*])?) p* dx dt.
Q Q

(2-28)
According to the third point of Proposition 2.2, we have,
(a" + (b)) p* = 5 (1+ (w'[b*])?) o,
and then
k/Q |m*|¢ dx dt — (u*, q) 2 Q) > —/Q |m™*| da dt — ;/Q (14 (w*[b*])?) p* dadt a0

= k/Q Im* " drdt — (1", q") 2(Q)-



Consequently, according to (2-14f), (2-26) and (2-27)), and since ¢* = V; z¢*, we have:

€ * * T
Lp,q,17) = Fe(p, @) + G(0) + {17, Ve = a)r2@) + 5l Ve — all72(q)
>k [ iyt dodt — ", 0") 1200
Q
= G(p")
* * * * * * r * *
= Fel¢",q") + G@") + (1" Viad™ = 0)12(@) + 5[ Vead™ = 0 li20)
=L(¢" q" 1)
Moreover, it is obvious, according to the first assumption (ie. ¢* = V,,¢*) that for all
p e L2(Q)*, we have L%, g%, ) = G(p*) = Le(¢*, g%, 1*).

Conversely, we now assume that (¢*, ¢*, u*) is a saddle point of L¢ in S, that is to say that,
for all (p,q, 1) € S, we have Ly (¢*, ¢*, ) < Li(¢*, ¢, 1*) < Ly(p, g, p1*).
d+1

(2-30)

For the two firsts assumptions, we can remark that all u € L?(Q)
0=1L3(0,0,p") = Li(¢", ¢, ") = Li(@*, ¢, pp+ 7).

Then, Fe(¢*,q*) = 0 (ie. ¢" € Pg.), and we have (u, Vi " — ¢*)p2 < 0 for all vector
p € L2(Q)*1 and thus ¢* = V, ,¢*.

For the third one, we can remark that for all ¢ € Pg. (i.e. Fe(¢*,q) =0), we have
Ge™) + (1" Viap™ —qr = Li(¢", ¢, 17) 2 Li(¢™, ¢ 1*) = G(¢").

Therefore, as ¢* = V; »¢*, for all ¢ € Pg., we have (u*,q — ¢*)r2 <0.

, we have:

The fourth assumption is detailed in the following Lemma.

O

Lemma 2.1. Lete > 0 and r > 0, and let (¢*, ¢*, u*) be a saddle point of LS in S (if such a saddle
point exists). Then p* = (p*,m*) € C"°, more precisely,

Vhe HYQ), h >0, /(8thp*+vxh~m*)dxdt—k/ m*hdedt +G(h) > 0. (2-31)
Q Q

Moreover, we have in particular,

/ (O™ p* + Vo™ -m*)dax dt — k/ |m*|p* dz dt + G(¢*) = 0. (2-32)
Q Q

Before giving a proof of the above Lemma, let us prove the following other Lemma:

Lemma 2.2. Let h € H(Q) such that h + ¢* >0, and ||h| L~ < 1/(4k). We define gn, = (0,by),
with by, defined for almost all (t,z) € Q by:

)k Eoh) (t,x)  if b*(t,x) #0, i
ult @) = { 0 (lb | ) else (if b*(t,x) = 0). (2-33)



Then, for any € > 0 and for all X € (0,1], we have Ah + ¢* >0, and
F(Ah+¢" Aqn +47) =0, ie Agn+q" € PSyppn
Proof: Let A € (0,1]. For almost all (¢,2) € @, if h(t,x) > 0, we have
(A +@")(t,x) = @*(t,2) = 0;
else, if h(t,z) < 0, we have
b+ 9%)(1,2) = (= Dh(t,2) + (h+ ") (1) > (h+97) (6 2) > 0.
Firstly, for almost all (¢,2) € @, if we assume that b*(¢,z) # 0. We then have

kAh
(t,2) = ’ > “! 0°|(t, ) = | \kh + |87 (8, ).

Ibp, + 07| (t,z) = ’(’“27 + 1) b

o [b*|(t,z) > 1/2. Then (Akh + |b*|)(t, ) > (1/2) + Akh(t,z) > (1/2) — (1/4)A > 1/4 > 0.
1. If |b*|(t, z) < ke*(t,x) + 1, then
[Akh 4 6% | = (Akh + |b%|) (¢, ) < Mkh(t, ) + ko™ (¢, z) + 1.

Thus, max(|\kh + [b*| |, Mkh + ke* + 1) (¢, ) = (Akh + kp* + 1)(¢,2). And then,
max(|A\kh + [0%| |, Akh + ko™ + 1) (¢, x) — (Akh + kp* 4+ 1)(t, x)
=0 (2-34)
= max([b*], ko™ + 1)(t, ) — (ke™ + 1)(L, ).
2. If [b*|(t, ) > kp*(t,x) + 1, then
[Akh + 0% | = (Akh + [b*]) (¢, ) > Mkh(t, z) + ko™ (¢, x) + 1.
Thus, max(|Akh + [b*| |, Akh 4+ ko* + 1)(¢, ) = (Akh + |b*|) (¢, 2). Then,
max(|\kh + [*|, |, Akh + ko™ + 1)(t, ) — (Akh + ko™ + 1) (¢, z)
— (7] - kg — 1)(t,2) (2-35)
= max([b*], ko™ + 1)(t, ) — (ke™ + 1)(t, ).
o If |b*|(t,x) < 1/2, then
A+ [b*[ | (£, 2) < (AR +[67))(t, 2) = A(|h] = h)(E, ) + (Ah + [b7[)(E, )
< 2MR(t, ) (AR + |0*])(t,2) < 2 x (1/4) + (Mkh + [b*])(t, )
< (1/2) 4+ Akh(t,z) + (1/2)
=14+ Meh(t,z) <14+ k(Ah+ ") (t, x)

(2-36)

Thus, max(|Akh + [b*| |, A\kh + ko™ + 1)(t, ) = k(Ah 4+ ¢*)(¢,2) + 1, and consequently
max (| kh + [b*| |, \kh + ko™ + 1)(t, ) — k(AR + ") (¢, 2) — 1
-0 (2-37)
= max((b], k" + 1)(t,2) — K (t,7) — 1.

10



By grouping, we have

max(|Akh+ [b*| |, Akh+ ko™ + 1) (¢, 2) — k(A4 ™) (¢, 2) — 1 = max(|b*|, ke* +1)(t, ) — k™ (¢t,z) — 1.
(2-38)
Finally, if we assume that b*(¢,x) = 0, then by, (¢, ) = 0, and therefore:

max(|by|, Akh + k™ + 1) (¢, 2) — k(AR + ™) (t,2) — 1
= (Mkh+ k*)(t,2) + 1 — k(M + o™ (8, 2) — 1
=0
=max(|b*], ke" + 1)(t,x) — k" (t,z) — 1.

In general, we conclude:
max(|bp|, Akh + ko™ +1) — k(A + ¢*) — 1 = max(|b*], ke™ + 1) — ko™ — 1. (2-39)
Therefore, for all ¢ > 0 and all 1 > A > 0, we have:
FcAh+ 9" Aqn +¢") =0 & Agnh +¢" € Py & ¢° € Py (true).
O

Proof of Lemma[21; Let h € H).(Q) = {f € H'(Q), f+ ¢* > 0}, such that [|h]|p~ < 1/(4k).
We define ¢, = (0,b,,) like in the statement of Lemma according this lemma, we then have
Ah 4 * >0 and Agn + ¢* € P54 (i.e. Fe(Av+ @™, Aqn + ¢*) = 0), for all A > 0.

By introducing Ah + ¢* and Agp, + ¢* in LS, we obtain for all A > 0:

r * * * * * *
Vet ¢") = (Aan + a)72(g) + (Vew W +97) = Qan + ), 1) 12(g) + GO + %)

A2 N .
= THVt,xh — qnllZ2g) + MViah — qn, %) 12(Q) + AG () + G(p7)

=Li(Ah+ @™ Agn + ¢", 1%) > Li(e", ¢%, 1) = G(¢™)
(2-40)

Therefore, for all A > 0,
MVioh = anllZzq) + (Vewh 1) L2@) — (an, ) L2q) + G(h) > 0 (2-41)
We remark (according to Proposition that gp - u* = by, - (w*p*b*) = kw*p*|b*|h = k|lm*|h.
When A — 0, we then obtain, for all h € H(Q) such that h + ¢* > 0 and |||~ < 1/(4k),
/ (Ouh p* + Voh -m*) da dt — k/ im* | d dt + G(h) > 0 (2-42)
Q Q

In particular (2-42)) is true for all h € H1(Q) = {f € H(Q), f > 0} with ||h||r~ < 1/(4k), and
therefore, by linearity of ([2-42), this is still true for any h € H1(Q) N L>(Q). This is sufficiant to

conclude that p* = (p*, m*) € C"®: we only need to use non-negative test fonctions in C*°(Q).

However, we would like to be able to extend the test fonctions to the all space H (Q), in order to can
use, as above, the relation (2-42)) as a component of the Lagrangian LS. We can conclude by density
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of C°(Q) (set of non-negative C>-class functions on @) in H}(Q). Indeed, for all ¢ € HL(Q),
we can consider the family of regularized functions ¢, € C5°(Q) defined as the restrictions to Q of
the fonctions Prat1 (@) * 0, where Pga+1(¢) is a smooth non-negative extension of ¢ from H(Q)
to H*(R?*1), and where 6. = (1/e)6(-/€) with § € C°(R*™!) non-negative such that [y, 6 = 1.

We then obtain the relation (2-31)).

We finish by proving the equation (2-32). For all n € N*, let K, be the real R defined for all x € R
by

z, if x € [-n,n],
Fu(z) =3 15 (el =3zl =n)%), ifn<l|o[<n+1,
|}TT|(”+%)’ if ] >n+ 1.

The functions F), are of class C1(R), with F},(0) =0, |F,| <n+ (1/2) and |F),| < 1.

According to Proposition IX.5 of [2], the functions F,, o ¢* are in H!(Q), for all n € N*, with
Viz(Fno@*) = (F) o p*)Viz9*. Moreover, we have |F, o ¢*| < min{yp*,n+ (1/2)}.

By taking v, = (1/2) min {2/[4k(2n + 1)], 1}, for all n € N*, we have v, || F,, 0 ¢*[|cc < 1/(4k), and
—n(Fn 0 @) 2 —(1/2)¢" (hence —y,(Fy 0 ") + @™ > 0).

Consequently, by taking h = —v,,(F,, 0 ¢*) in , we have for all n € N*:

—Yn </ (F), 0 @*)(Orp" p* + V™ -m*) dx dt — k:/ |m*|(F,, 0 ™) dxdt + G(F, o @*)) >0,
Q Q

(2-43)
The sequence of functions [1(,«)-1([(—nn])(F), © ©*)]n = [L(p*)~1([—n,n])]n Simply converges almost
everywhere to 1.

On the contrary, for all n € N*, we have }]l(ap*)*l(R\[fn,n])(FrlL o (p*)| < ]l(go*)*l(]R\[fn,n]) and the
sequence [1(,+)-1(R\[—n,n])]n SiMply converges almost everywhere to 0. Then, by dominated con-
vergence, we have:

n—-+oo

/ (F) 0 @) (00" p* + Vup* -m*)drdt —> / (Orp* p* + Vup* - m*) dz dt.
Q Q
In addition, the sequences F, o ¢*, F, o [¢*(0,-)] and F, o [p*(1,-)] respectively simply converge
almost everywhere to ¢*, ©*(0,-) and ¢*(1,-); and, for all n € N*, we have |F, o ¢o*| < ¢*,
|Fy o[ (0,)]] < ¢*(0,-), and |F, o [¢*(1,-)]| < ¢*(1,-). Thus, by dominated convergence, we have:
—k/ |m*|(Fy 0 p*)dzdt + G(F,o¢") — —k/ |m*|¢* dx dt + G(¢™).
Q n—-+oo Q
Hence, by convergence in ([2-43)) (after eliminating ~,,), we obtain
/ (O™ p* + V™ -m*)dax dt — k/ |m*|p* dz dt + G(¢™) < 0.
Q Q
Finally, by taking h = ¢* > 0 in (2-42)), we also have
/ (O™ p* + V™ -m*)dax dt — k/ |m*|p* dzdt + G(¢*) > 0.
Q Q

We then can conclude (2-32)). O
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Finally, let us show that the saddle point is well a solution to the original problem.

Proposition 2.3. Let € > 0 and r > 0, and let (oF, ¢, 1) be a saddle point of LS in S (if such a
saddle point exists). We have u? = (p,m?) € C™ (according to Lemmal[2.1). We recall that

- { p,m 6 L2 Q)d+1a P((), ) < P0, p(la ) > P1, 6t,0+d1V:c(m) < _k‘m‘7 <m7ﬁ>3§2 > 0}7

or, 1n other words:

(p,m) €C™ < Vh € HY(Q), h >0, /

(5‘thp+vmh~m)dmdt—k/ hlm|dzdt + G(h) >0
Q Q

For all couple (p,m) € L*(Q)™*!, we define the enregy term I.(p,m) by:

T.(p,m) = /Q (5 o+ T(om)) + pml) dad.

*

*Y is a minimizer of Z. on C™°, i.e. for all (p,m) € C"¢, we have

Ze(p,m) = Le(pe, me).

Proof: Let 3 be a L9 Lrepresentative function of p*. We define a partition of () with the sets A,
and B, by:

Then, it = (p2,m

Ac = {(t,.%‘) €Q, k¢:<t’x) +1< |b:(t7x)‘}> B = {(t,l‘) €Q, k@Z(t,x> +12> |b:(t,(1})|},
Let a couple (p,m) € L?(Q)%*! such that Z.(p, m) < +oo, i.e. / J(p,m)dx dt < +occ.
Q
Then, J(p, m)(t,x) < +oo, i.e. p(t,z) > 0 or (p(t,z),m(t,xz)) = (0,0), for almost all (¢,z) € Q.

Therefore, we can define a velocity field v € L*(Q, p £d+1) such that m = pv: for almost all
(t,z) € Q, we can choose v(t,x) = (m/p)(t,z) if p(t,z) > 0, and v(¢t,z) = 0 if p(¢t,z) = 0. We have:

T(p,m) = /Q (5 (o T(o.m) + ml) dods

:/ Epdxdt+/ f|v|2pdxdt+/ Im| dz dt
Q2 Q2 Q

* € * | 71.% [\ 2 € 2 (2_44)
> [ alpdedt+ = [ (wl|bI|)*pdxdt+ | =|v|°pdaxdt+ | |m|dxdt
Q 2Jq Q2 Q

1
Z/a:pdxdtJrf/ (\b:|—k¢:—l)2pd9:dt+/ E|v|2pda:dt+/ |m| dx dt
Q 2¢ Ja. 4.2 Q

Indeed, according to Proposition we have 5 >al+ = ( X|bz))?, with w’ = 0 on B, and

k 1
w*:]__ <p€+

p 157] on A.. We also have

1 % % € * * * *
(521~ kit~ 1)+ Sof? 2 (1]~ kgt — Dlol 2 v (k? + Dl
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Then, we have

Ié(p7m)2/ ajpdmdt—{—/ (b:-v)pdmdt—/ (kg0:+1)|v|pdxdt+/ |m| dx dt
Q Q

€ e

€

:/ a:pdxdt—&—/ b:~mdmdt—/ (kgo:+1)|m|da?dt+/ |m| dx dt

Q A Q

:/ a:pdxdt+/ b:~mdxdtf/(kg0:+l)|m|dxdt+/ |m| dx dt
Q Q Q Q

—/ b:-mdxdt—i—/ (ko: +1)|m|dzdt
B.

BE

2/5tg0:pdxdt+/Vz@i'mdxdt—k/gaym\dwdt—&-/ (kol +1—|b])|m|dx dt
Q Q Q B

€

> / Opol pdx dt +/ Vs -mdxdt — k/ eimldxdt > —G(p)),
Q Q Q
(2-45)

such that (p,m) € C™¢. Moreover, according to Proposition we have e(w?|b?])2p* = |m*| =0
on A., and

e(wi bz 1)o7 = (1be] = ked — Dw?[bE|pe = (0] — k7 — D)me| = [b7] - [m| — (ke + 1)|m¢]
= b -me — (kee +1)Imc],

on B.. Then, in all cases, we have b7 - m} = e(w|b|)?p? + (ky? + 1)|m?|. Therefore, according to
2-32):

Tiom) 2 ~Gel) = | ot ot deds | optomidmir— | i do
Q
:/a psdzdt—k/b* my dx dt — /¢Z|m2\dxdt
Q Q

€

:/ (5 - gl )pi‘dwdH/ (cCw? p])p + (et + 1)|m?]) der dt
Q2 Q

(2-46)
—k/ oIml| dx dt
€ € wrb* *
/62(2-1-2 M \))ped:ﬂdt+/|m|dmdt
= | S+ Tm) dvdet | et = m).
Q
O

2.1 Proof of the property of consumption (p*, m*) € C

We begin by state a short lemma and its corollary:
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Lemma 2.3. Letn € N*, 1 <1 < 400, and let w be an open set of R™ such that L™(w) < +o00.
Let f be a real Lebesgue measurable function on w such that the Lebesgue measure equivalent class,
also noted f, is an element of W1P(w). Then, we have |f| € WP (w), and

VIfl= (Ly=2qosocp = Ly=1(=c0p) V- (2-47)
Proof: For all € > 0, let F. be the real C'-class function on R, defined for and all y € R by
Y

VEre

F.(y) = Vy?+¢e2—¢, andthen, F.(0)=0and F.(y) =

Therefore, for all y € R,

Y
[Fl(y)| < 7'2 l =<1, and [F.(y)| = Fe(y) < |yl.
VY t+e
The function F uniformly converges to | - |, when e converges to 0. Indeed, for all y € R we have

—e< Fe(y) -yl <0.

Moreover, F simply converges to 1jg 4oo[ — 1j—oo,0[, When € converges to 0.
According to the Proposition IX.5 of [2], for all € > 0, we have F. o f € W'?(Q), and moreover
Viz(Feo f)=(Fl.o f)Vf. We remark that

[Vea(Feo f)l < |[Flo f]-[VfI<|V].

The function F.of simply converges to | f| € LP(w), and V(F.of) simply converges to (]lfq(]oﬂroo[) — ]lf—l(],oo’()[)) Vfe
LP(w)™, when e converges to 0. In addition, for all 1 > ¢ > 0, we have |F; o f| <|-|+ 1. Then, for
all ¢ € C(w)™, by dominated convergence, we have

/w |f| div(ep) dax = sl_i)r(r)l+ /w(FE o f)div(y) dz

=—lim [ (Flof)(Vf-p)dx (2-48)

e—=07% J,

= */ (L1001 400) = Lf-10—c00p) - (Vf - ¢) da.

Therefore | f| € WP (w), with V|f| = (L5-1(0,400)) — Lf-1(=00,0p)) V- O

Corollary 2.1. Letn € N*, 1 <1 < 400, and let w be an open set of R™ such that L™ (w) < +o0.
Let f be a real Lebesgue measurable function on w such that the Lebesgue measure equivalent class,
also noted f, is an element of WYP(w). Then, for all a € R, we have max(a, f), min(a, f) €
WP (w), with

1
Vmax(a, f) = §]1f*1({a})vf +1s1ga4+00p VS5

and 1
V min(a, f) = §1f—1({a})vf 11 (-ocap V-
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Proof: Indeed, for all a € R, we have max(a, f) = (1/2)(f + a+|f — a|]) and min(a, f) = (1/2)(f +
a —|f —al), and then, according to Lemma [2.3] we have max(a, f), min(a, f) € W'P(w) with

1
V max(a, f) = 3 (Vf 1
1

= 5L(ap VI + Li=1gat0o) VS

S\ 1f*1(]a7+00[)vf)

f=1(—-oc0a

and
. 1
Vmin(a, )= 5 (V7 + 100,100 VS = 1o V)

1
= 5L (e VF + Ly-1-c0ap V-

Now, we are interested in the main statement of this section.

Lemma 2.4. Let e > 0 and r > 0, and let (¢*,q*, u*) be a saddle point of LS in S (if such a saddle
point exists), with p* = (p*,m*). Then dyp* + div,(u*) = —k|m*|, and p1 is the weak L*-trace of

p* int =1. Furthermore, we have (m, Moo = 0. More precisely,

Yo € Hg((0,1] x Q), /(atcpp*+vz<p~m*)dxdt—k/ \m*\gpdxdt—/ p(1,-) prdz =0. (2-49)
Q Q Q

Before to prove this Lemma, we state the following Lemma:

Lemma 2.5. Let n € N* and let L™ be the measure of Lebesque on R™. Let f € HY(w), with
w an open set of R™. Then, for all L™-representative mesurable function f of the function class
f, we have 11?71({0})Vf =0 (i.e. all representative of Vf in equal to zero almost everywhere on

-1
o ({o}).
For all € > 0, let I, be the real R defined for all x € R by

g, if y € [—¢,¢],
F(yy=4q 1, ify=>e,
-1, ify<—e.

In other word, for all y € R, we have F.(y) = max(min(y/e, 1), —1). According to Corollary
we have F. o f € H'(w) and

1 ([
V(Feo f) = (21min<f/e,1>—1<{—1}> + ]lmin(f/e,1>—1<1—1,+oo[>> Vmin (g 1)
(L 1 Ly 1 v
o\ T e Tl oop) 9 (f/e)~t({1h) LG /e-10-00p | VS

1/1 1
T e (2]11“1({—8}) + ]lfl(]—a,+oo[)> (2]11“1({8}) + ﬂflﬂ—w’a[)) v
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We can observe that Ly-1,_yy - Ig-1 g = Tg-v s Ipma gy g oy = L1y

Lt mepy Ut gqey = Qand D T2 oo = L7 e ey 201 then
— 1
V(o f) = 131, o) VF- (2-50)
Therefore, for all ¢ € C°(w)™, we have:
— . 1 1
/(Fsof)dlv(ga)dx:—f/V(FEOf)wpdm:—f/ (Vf-p)dx. (2-51)
w €Juw EJT N (-]
Let ¢ € C2°(w)™. Since |F€ o f| < 1, we then have for all £ > 0:
/7 ) (Vf-p)dz|=¢ /(F‘E o f)div(yp)dx| < 5/ | div(p)| dx (2-52)
o ([~ee)) w w

Since ]].?—1 (=c.e]) simply converges to ]].?—1 ({0})’ then by dominated convergence we have
lim [ (Vf-p)de = [ (Vf-p)de. (2-53)
e=0T JF (el Fon)
Therefore, according to (2-52)), we have
15 (Vf-p)de = / (Vf-p)de =0, (2-54)
/w Foon 7 (op)

and this for any ¢ € C2°(w)™. Consequently we can conclude that I Vf=0.

({0})

Proof of Lemma[24) Since p* = (p*,m*) € L*(Q)**!, we only need to conclude to prove (2.4)
with test functions in C2°((0,1] x Q) (since C°((0,1] x Q) is dense in H((0,1] x Q) for the norm

- Mla)-

Let p € C2°((0,1] x Q), and let * be a L9+ -measurable representative function of ¢*. We define
the sets AT, A} and B, (a partition of Q) by :

A ={(t.2) € Q. (e +7)(t,2) >0}, Ay ={(t,2) €Q, (\p+T")(t,2) <0},

and By ={(t,z) € Q, (Ao +F")(t,z) =0}.

According to Corollary m for all A > 0, we have max(Ap + ©*,0) = Lytus, (Ao + %) € HL(Q)
with

* 1 —x
Vi [max(Ap +3%,0)] = <2113A + ]IAI> Via(Ap +77). (2-55)
To finish, there exist 0 < tg < 1 such that ¢(¢,2) = 0 for all (¢,z) € [0,to] x 2, then the function
[Ap + *| is almost everywhere equal to |p*| = ¢* on (0,%9) x © and then admits a L2-trace in t = 0
which is the trace of ¢* noted ¢*(0,-). We have

A 4+ ¢ > max(Ap + ¢, 0) > Ap + 7,

17



and then, since the L?-trace linear operator conserve the sign, and then the inequalities between
H' functions, we have

max(Ap + %, 0)(0,-) < [Ap +¢"((0,-) = ¥"(0,), (2-56)

and
maX(AQP + 90*’ 0)(17 ) > (>‘§0 + 90*) (1’ ) = )‘90(1; ) + 90*(1; ) (2_57)

Then, we have
G [max(Ap + ¢*,0)] = / max(Ap + ¢",0)(0,-) po dw — / max(Ap + ¢, 0)(1,-) p1 da
Q Q
< / ©*(0,-) po dx — / (Ao +¢7)(1,-) prda
Q Q
=G =2 [ ol e
Therefore, according to (2-31) (Lemma , we obtain:
/ Vi [max(Ap +%%,0)] - p* dedt — k/ max(Ap + ¢*,0)|m*| dx dt + G(¢*) — )‘/ o(1,-) prdx
Q Q Q

> / Vi [max(Ap +@*,0)] - p* do dt — k/ max(Ap + ¢*,0)|m*| dx dt + G [max(Ap + ", 0)]
Q Q

> 0.
(2-58)

Then, according to (2-55)), we have

1
/A+ Via(Ap +¢%) - pdedt + 5 | Via(Ap+¢") - dwdt—A/QsD(l,-)m dz + G(¢")
A

B
> k/ max(Ap + ", 0)|m*| dx dt (2-59)
Q
> k/ (Ao +@")|m*| dz dt.
Q

Indeed, by definition we have Ap +%* < 0 on A, and Aj\' U By = Q\A} . Therefore,

1
A / Vt7m<p~,u*dxdt+f/ Vi 1 dwdt—k/ g0|m*|dxdt—/g0(1,~)p1dx>
At 2 Jp, Q Q

A
1
+/ Vize™ - p" dedt— / Vi@ - p*drdt — 5/ Vi@ - p*dadt + G(p")
Q N Bx

A

> k/ " |m*| dx dt.
Q

18



According to (2-32)) (in Lemma 7 we then have

1
A / Vig - p* dedt+ - Vi 1" dodt — k/ plm*| dx dt — / o(1,) p1 dx)
A 2 B Q Q
1
> Vie@™ - pdedt+ < [ V9" p" dedt.
AT 2 Jp,
According to Proposition we have

)t = 5L+ (W' b)) = 5

2-60
> (a* + e(w™|b* (2-60)

[p" + T (p*,m")] 2 0.

Indeed, 0 < w* < 1/e. Then

1
A Bx

Therefore, for all A > 0, we have:

1
/ Vizp - w dodt+ 7/ Vizp - p* dedt — k/ olm*| dxdt — / w(1,:) prdx >0,
At 2 JB, Q Q

A

that is to say, for all A > 0,
1

5 Vi p* dedt.
By

/Vt’zgp-,u*dxdt—k/ cp|m*|dxdt—/ go(l,-)pldmZ/ Vizp-p* dedt+
Q Q Q Ay

261

For all (t,x) € Q, if §*(t,z) > 0, then, for A small enough, we have (A\p +7*)(t,z) > 0, ancg ther)1
]lA; (t,x) and 15, (¢, z) converge to 0 when A converges to 0. If g* (¢, z) = 0, then, if p(¢,2) > 0, we
have 1, - (t,x) =1p,(t,x) =0 for all A > 0; if p(¢,z) = 0, we have Ty (t,z) =0and 1p, (t,z) =1
for all A > 0; and if ¢(¢,2) < 0, we have Ty (t,z) =1 and 1, (t,2) = 0 for all A > 0.

Therefore, as ¢(t, ) > 0 almost everywhere, the function 1 AL (Vizp - ") simply converges almost
everywhere to 1)1 ({opne—1(®__) (Viz@ - 1); and the function 1, (V2 - p*) simply converges
almost everywhere to 1 (z+)-1((o})ne-1({0o}) (Ve - 1)

Moreover, we have max {| (Veap - #%) 1y- |, | (Veag 1) L, |} < [Veag| - [u°] € L1(Q), for al
A > 0. Thus, by dominated convergence, we obtain

1
/ Vi pdedt + — Vi p' drdt
AX 2 Bx
(2-62)

1 *
o g <]1<so*>1<{0}>mw<R> + Qﬂw*)l({onmw(m})) Viep - p" dzdt.

Let v > 0 such that v|V.p| < 1 and v|0;p| < €/2, for instance v = min(1,¢)/ (2||¢]lc), Whence
*’th@@ € ,P;*
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Let A be a measurable subset of Q). We define q4(t,z) = { %ﬁyvgéf(f(i’)x)’ i Ei’ 3 E g,\A
t,x ) 9 9 .

We then have g4 € Pg.. Therefore, with the orthogonality L2 of u* to Pg- at point Vi 0™ (see
the third point of Proposition , we have
/ (YVizp) - p*dedt = / (Viz$™ —qa) - p* dodt — / Via@™ " dadt
A Q A
> —/ Vg™ p"dedt = —/ (Vizp™ - 1)1 dxdt
A Q
Whence, by taking A = (") "1 ({0}) N~} (R__) and A = (")~ 1({0}) N~ 1({0}), we obtain
1 *
/Q <1(«o*)1({0})ﬂ«>1(R) + 2]1@*)1({0})0@1({0})) (YVizp) - p" dadt
1 * *
= —/Q (11(90*)1({0})“@1(R——) + 2]1@*)1({0})%1({0})) Viey™  p" dudt

> 7/ Vi@ - p*dedt > 7/ L)1 qop [Vea™| - [p1*] dx dt.
(CORECY Q

Indeed, we have ]l(a*)—l({o})nw—l(R,,) + (1/2)1(5*)_1({0})080_1({0}) < ]l(a*)_l({o}). According to
(2-61)) and (2-62]), we then have

/Vmgaou*dxdtfk/ gp|m*|dmdt7/go(1,~)p1d:c
Q Q Q

1
> lim / Vizp-p*dedt+ - Vizp - p" dedt
A—=0t A3 2 Ba
1 * *
> _7/ Lg)-1(goy) [Vea@™| - || dzdt = 0.
TJQ
(2-63)
Indeed, according to Lemma [2.5] we have 1(g+)-1({0})Vi,z¢* = 0. Finally, we have:
/ Vizp- 1" dodt — k/ plm*| dx dt — / o(1,-) prdx > 0. (2-64)
Q Q Q

The relation ([2-64) being satisfied for all ¢ € C2°((0,1] x Q) (and then it is satisfied by —¢ for all
0 € C2((0,1] x Q) ), we then can conclude that for all ¢ € H((0,1] x Q):

/(8t<pp*+vw<p-m*)dxdt—k/ |m*|<pdxdt—/<p(1,-)p1da:
Q Q o

:/Vt7m<p~,u*dxdt—k:/<p|m*|dacdt—/cp(1,~)p1dx:0.
Q Q Q

We are now interested in the trace of p* in t = 0.
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Lemma 2.6. Lete > 0 and r > 0, and let (¢*, ¢*, u*) be a saddle point of LS in S (if such a saddle
point exists), with p* = (p*,m*). Then, in addition to verifying with m* the consumption relation
Opp* + div,(u*) = —klm*|, to admit p1 as weak L?-trace int =1 (as it had been proven in Lemma
, p* admits moreover a non-negative weak L*-trace p, in t = 0, such that py, < po. In other
words, we have:

/(8thp*+th-m*)dxdt—k/ |m*|hd:cdt+/ h(O,-)ﬁOdm—/ h(1,)prdz =0,  (2-65)
Q Q Q Q

for all h € HY(Q).
Proof: We define the real linear form A on H'(Q) respectively by

A(h) = / (Othp* + Vi h-m™)dedt — k/ hlm™*|dz dt — / h(1,-)p1 dx, (2-66)
Q Q Q

for all h € HY(Q).

We also define the real linear form 7 on H'(Q) by T(f) = —A(f), with HY(Q) > f : (t,z) — f(z)
for all f € HY(Q). To finish, let us observe that, according to (2-31)) (in Lemma [2.1)), for all
f € H*(Q) such that f > 0, we have

0< / Vaof -m* da:dt—k‘/ |m*|fdrdt+ [ f(0,)podx — [ f(1,-)p1dx
Q Q Q Q
= =T()+ [ F0 e (2:67)

—-1()+ [ fooda.
Q
We now have to show that for all h € C*°(Q), we have [, h(0,-)podx = —A(h). For all n € N*, we
choose a function y,, € C*° ([0, 1]), satisfying:
e xn(t) =0if & <t <1, and x,(t) =1if 0 <t < -,
o Vt€[0,1], —2"T2 </ (t) <0 (and then 0 < x,, < 1).

For all f € H'(Q), all n € N*, we then have (1 — x,,)f € H'((0,1] x Q), whence A ((1 — x»)f) =0
(because of (2-49) ), and thus:

T(f) = _A(f) = _A(Xn?) —A ((1 - Xn)?) = _A(an)
Then, for all n € N* and all f € H*(£), we have

T(f) = - /Q (0 (xuT) - 0" + Vi (xuF) -m*) der dt — xa(1) / Fou da

- - / N (OF @)p* (t,) de dt - / (Vo f (@) - m* (t,)) o (8) da dt.
Q

Q

We observe that x,, simply converges to 0 on (0,1) when n tends to infinity, and that |x,, V. f - m*|
is bounded by |V, f| - [m*| for all n € N* (and m* € L?(Q)?). Then, by dominated convergence, we
have, for all f € H(Q):

/Q (Vof(@) m*(t,2)) xa() dodt — 0,

n—-+oo
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and then
- /Q o) F(@)p" (tx) dudt —  T(f), (2:68)

n——+o0o

Whence, for all f € H'(Q2) such that f > 0, we have fQ Xn (@) f(z)p*(t,x)dxdt <0 for all n € N*
(because x/, < 0), and then T'(f) > 0.

Then, according to (2-67)), for all f € H'(Q) such that f > 0, we have:

0<T(f) < /Q Fpo dz. (2-69)

Let f € HY(Q), f* = max(f,0) and f~ = max(—f,0): we then have f = f* — f~. According to
Corollary we have f*, f~ € HY(Q) with f*, f* >0, and then
T() =T =T = =T == [ s
2 =/ llzz - llpolle = =l fllz2 - ool

and
T(f)=T(")-T(f7)<T(f*) < /QJ”po de < |[f*llz2 - llpollee < Il - llpollze,

that is to say |T(f)] < ||fl[z= - [poll2-

This last inequality can then be extend by density to the space L?(f2), and then the application
feL?(Q) — [, fduo is an element of the dual space of L?(): thus, there exist a (non-negative)
density p, € L?(Q) such that T : f fQ f Py dx. Moreover, by (2-69)), we have 5y < po.

We now have to show that for all h € H'(Q), we have [, h(0,-)py dz = —A(h). We will solve this
problem for all h € C*°(Q), and we will then be able to conclude by density. Let h € C*°(Q). First
note that for all n € N*, we have (1 — x,)h € C°((0,1] x ), whence A ((1 — x»)h) = 0 (according

to ), and then:
A(h) = Alxnh) + A((1 = xn)h) = Alxnh) = A(xnh)

= / (at (th) ) p* + V. (th) : m*) dx dt — k/ th|m*| dr dt — / Xn(l)h(lv ')pl dx
Q Q Q

=/ (xnO:h + hx.,) p* dxdt—f—/
Q Q

:/hx’np*dxdt—l—/ (3th~p*+vwh-m*)xndxdt—k/th\m*\da:dt.
Q Q Q

(Vzh-m™) xn dedt — k:/ Xnhlm*| dx dt
Q

As before, since x,, simply converges to 0 on (0,1) when n tends to infinity, and since
[0k - p + Vil -m| < [[Vighlloo - (Ip] + |m])

(with pu* = (p*,m*) € L?(Q)?*1), we obtain the dominated convergence:

/ (Ouh - p* + Vyh-m*) xp, de dt — k/ Xnhlm*|dxdt — 0,
Q Q n—~+00
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whence

n—-+oo

/ ol ptdzdt —s  A(h). (2-70)
Q
For all n € N*, if we use h = x;, in (2-31) (in Lemma [2.1)), we obtain
0= / (X 0"+ Vaxn -m") dx dt — k/ [m*|xn dz dt + G(xn)
Q Q
— [0t dedt—k [ mlton @ dedi+ [ 0 pa) do - [ xa(1) o) da.
Q Q Q Q
Since, x»(0) =1, x»(1) =0, xn > 0 and X}, < 0, we have
| olptaydear = - [ @ptaydede < [ poydo<toe. 1)
Q Q Q
According to the convergence relation (2-70)), we have
A(R) + / h(0, )y dz = A(h) — A (h(o, -)) — A (h — 70, -))
Q

1
= im0 aa) - n0) g dedt o)

n—-+oo

5 t
= lim /2 //X%(t)ath(s,x)p*(t,x)dzdsdt
n—-4o0o 2n1+1 0 Q

Indeed, X/, is zero outside of [1/2"1 1/2"]. Thus, according to (2-71)):

‘/ / /Qxil(t)ath(s,x)p*(t,x)da:dsdt’ g/ / [ O] oihs. )l (1) o s
2n1+1 0 L 0

on+1

1 o )
<gelonl [ [ ol (a) deas

on+1

1
on (/ Po d:c) |0¢h][ 0o
Q

o t
A(h) + / h(0,-)pydx = lim / / / X0 (£)Och(s,2)p*(t,z) dx dsdt = 0, (2-73)
Q L Jo Jo

We can therefore conclude that:

n—-+oo

omn

and this for all h € C*(Q).

In summary, we can conclude, by density of C*°(Q) in H'(Q) that for all h € H'(Q), we have
A(h) = — [ h(0, )Py dz, i.e.

/(6thp*+vrh~m*)d:cdtfk/ h|m*|d:cdt+/ h(0,~)ﬁodmf/ h(1,)prdx=0. (2-74)
Q Q Q

Q
with p, € L?(Q), and 0 < 5y < po. O
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3 Abstract of issues

e Conditions of existence of a saddle point (¢*, ¢*, u*) of L in S (conditions on py and p1)?
Begining by a study of an (non dynamic) Monge-Kantorovitch formulation (using a pointwise
transport cost).

e Uniqueness of the component density-momentum p* = (p*, m*) 7

e Find an algorithm that would solve numerically the problem (subject to the existence of a
saddle point for L€). For instance, like [I]], a kind of augmented Lagrangian algorithm (ADMM
version) 7 Or any other splitting proximal method ?

e Prove that, if (p¥, m}) is defined, for all € > 0, by:

(7, m?) = argmin [ | o) dvae+ [ s dt} | (3-75)
(p,m)eC Q Q

then we have, for such a kind of convergence (to determine):

(pr,ml) — (p*,m") Eargmin/ |m| dx dt. (3-76)
0 (p;m)ec JQ
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