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A Novel Method for Accelerating the Analysis of Nonlinear Behaviour
of Power Grids using Normal Form Technique

Nnaemeka Sunday UGWUANYI!' Xavier KESTELYN!, Olivier THOMAS? and Bogdan MARINESCU?

Abstract— Today’s power systems are strongly nonlinear
in essence and are becoming more complex with the large
penetration of power-electronics interfaced generators.
Conventional Linear Modal Analysis does not adequately
study such a system with complex nonlinear behavior.
Inclusion of higher-order terms in small-signal (modal)
analysis, associated with the Normal Form theory proposes
a nonlinear modal analysis as an efficient way to improve
the analysis. However, heavy computations involved make
Normal Form method tedious, and unamenable to large
power system application. In this paper, we present a less
rigorous and speedy approach for obtaining the required
nonlinear coefficients of the nonlinear equations modelling of
a power system, without actually going through all the usual
high order differentiation involved in Taylor’s expansion.
The proposed method is demonstrated on the conventional
IEEE 9-bus system and 68-bus New England/New York system.

Index Terms—Nonlinear coefficients, nonlinear modal anal-
ysis, Normal Form, quadratic and cubic coefficients, Hessian
matrices, small signal analysis.

I. INTRODUCTION

Power system is composed of several generators working
in parallel to supply common load. It is nonlinear in essence
and usually modelled by a set of nonlinear differential
algebraic equations. An inherent problem associated with
interconnected power systems is the presence of oscillations
that could have dangerous effects on the system. The multi-
plication of distributed generation units usually composed of
renewable-energy-based generators coupled with the increase
of energy exchanges through long distance lead to highly
stressed power systems and consequent poor damping and
inter-area oscillations [1], [2]. As a result of the nonlinearity
increase in the system, the conventional Linear Modal Anal-
ysis can be deceptive since its validity becomes very small
[3].

The addition of higher-order terms in small signal (modal)
analysis, has led to Nonlinear Modal Analysis tools which
proved to be more efficient than their linear counterpart. The
two currently used techniques for nonlinear modal analysis
are method of Normal Form and Modal Series method [4].
There seems to be argument in literature regarding which
method is better [1], [5], [6] but one limitation common to
these methods is the heavy computation required. Due to
the computational burden, most works reported are based on
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inclusion of second order term of Taylor’s series expansion.
Though, few works have been recently reported on inclusion
of third order terms [6]-[10]. One of the difficulties in
computation with these nonlinear analysis tools is the need
to compute numerous coefficients even with system of small
size. These coefficients increase geometrically with increase
in the model. In order to reduce the computational burden, it
was suggested in [11], [12] that accurate determination of the
interacting modes by higher order spectra (HOS) and prony
analyses will significantly reduce the computational burden
associated with the method of Normal Form since several of
the computations can be restricted to the interacting modes.
This suggestion calls for a convenient method for selectively
computing these coefficients. Normal Form computations are
generally uninteresting irrespective of the size because many
results of the computation are not very useful in the end. In
the study of modal interaction for instance, even though all
these coefficients are computed, only few of them reveal the
interacting modes at the end. In order to get these coeffi-
cients, higher order differentiation of the system equations
is performed either by using symbolic tools or manually
defining the derivatives for the Hessian matrices in advance.
Symbolic computations are generally slow. The challenge of
defining the Hessian derivatives in advance is that when a
model is modified the whole process is overhauled to account
for the new model. Moreover, modal interaction depends on
the operating condition making it difficult to pre-define the
derivatives for the needed coefficients since the interaction
can change with the change in operating condition. The
authors in [3], [13] acknowledged the challenges in getting
these coefficients.

This paper proposes an easy way to compute the nonlinear
coefficients of a power system nonlinear model in modal
coordinate without all the needed Taylor’s series expansions
and associated Hessian matrices. The rest of the paper is
organized as follows. Section II is a review of the Normal
Form technique. Section III details the proposed method
used in this paper to compute the needed coefficients. The
proposed method is demonstrated on the IEEE 9-bus and
IEEE 68-bus systems in section IV. Finally, a conclusion
section shows the interesting perspectives proposed by the
method.

II. REVIEW OF NORMAL FORM TECHNIQUE

The Normal Form technique transforms a set of nonlinear
differential equation up to a desirable order into a set of
linear differential equations and then handle the system as
linear provided certain conditions are met. This is achieved



by sequential nonlinear coordinate transformations which
simplify the equations. The system is then said to be in their
simple form (Normal Form) [14]. As in Linear Modal Anal-
ysis, a nonlinear function is Taylor-expanded around a stable
operating point (SEP); however the expansion is performed
beyond first-order. Consider a power system modelled as

MX +f5(X) = Py (1)

Where M, X and Py, are inertia constant, state vector and
mechanical power respectively. Though, M and Pm do not
apply to all the equations if the system is in first order
differential equations, the idea is to put element of M = 1
and element of Py, = 0 where they do not apply. This
representation is chosen to facilitate the understanding of
proposed method. (I) is the same as

X +£(X) = Py /M. (2)

where f(X) = £5(X) /M.
The system in third order Taylor expansion can be written
in Einstein notation as

Xi +Aijx; +H2px e+ H3,jgx g +H.O.T = APml./M,'.

3)
where A;; = ng X=Xy, H2ijx = %73;(?;53(1{ X=X,
3
H3j = é%mxo(i,m: 1,2,...N).
A, H2, and H3 are respectively the Jacobian of size (N X N),
second order Hessian of size (N X N x N) and third order
Hessian of size (N X N x N x N) corresponding to first,
second and third order terms evaluated at the initial operating
point vector Xy. The small case letter x is a vector of
the perturbed state variable (AX), while X is the original
unperturbed state variable both of length N. H.O.T is the
higher order terms.
Neglecting the higher order terms and performing a linear
transformation x = Uy in (3) and pre -multiplying the result-
ing equation by the left vector, the j" equation of . ) yields

N N N

N N
Vi +A’]yj + Z chlyk)’l Z Z ZDf;qrypyqyr =0. 4
k=1[= p=1g=1r=1

=

Where CJ, = % L v [UTHLU],

D;’qr - 6 Z vjlkzl lzl Z H’quru;:u? 11;1
i=1
A,Uand V are respectlvely eigenvalue, right and left eigen-

vector of A. v is jith element of V and uk is the K
row and p" column of U and so on. Ckl and D,,qr are
the required second and third order nonlinear coefficients in
modal coordinate. In modal analysis, the mechanical power
is assumed to be constant for small disturbance and therefore,
the right hand side of (3) is usually assumed zero.

From (@), it is observed that the linear part is decoupled
and simplified but the second and third order terms are yet
coupled. Also the system is now in a new coordinate (modal
coordinate). Normal Form theory requires simplification of
the system by introducing nonlinear transformation given as

y =z+h2(z) +h3(z). %)

Where

N N
yi=2zj+ Z ZhZ‘]ilezl-f-
k=11=1

N N N
lelzlm;,q,zpzqzr. (6)
p=lg=lr=

The vector z is the state vector in the new coordinate,
h2 and h3 are respectively complex valued quadratic and
cubic polynomials in z. If h2{, and h3},, coefficients are
determined and certain conditions apply, the second and third
order terms can be annihilated. Then the system is simplified
to a linear problem in another coordinate (Normal Form
coordinate) as in (7).

Zj = Ajzj )

The quadratic and cubic Normal Form coefficients of (6)) are
given by [14] .
j
b Dl

Wl =M p3 =P
M Dot — AP Ayt A+ Ay — A

®)
Where h2{, and h3}, are the quadratic and cubic Normal
Form coefficients of (3) in Normal Form coordinates.

From it can be seen that if the denominators are very
close to zero, the values of the coefficients will be high.
Therefore, large values of these Normal Form coefficients
indicate potential strong interactions among the modes that
form the denominator. This information is very important in
achieving a proper control design and siting of power system
stabilizers PSS [11]. The system can be reversed to its orig-
inal coordinate by an inverse Normal Form transformation.

The whole work in applying Normal Form transformation
to study power system revolves around finding the so called
Normal Form coefficients hZil and h3’ pqr- However, manipu-
lations of (3 to get coefficients in () are very cumbersome
to follow due to multivariate higher order differentiation
involved. For every model, one has to either work out the
expressions for all the needed derivatives in advance or resort
to multivariate numerical differentiation where possible. The
former is indeed awful and the latter is based on careful
selection of step size which offers approximate result with
increased error as the order of differentiation increases.

For linear mode base of size N (i.e N differential equa-
tions), the number of coefficients is given by

Ne=—+"—+N". )

The above equation clearly shows that the computational
burden will increase in the power of four.

III. THE PROPOSED METHOD

In this paper we propose a method that utilizes only the
information from the state matrix to obtain simultaneously
the coefficients of the higher order terms of (3). The idea
was introduced in [15] in the of study geometric nonlinear-
ities of second order mechanical systems. To the author’s
best knowledge, this is the first time the method is being
formulated in order to study power system in first order.
In the following paragraphs, step by step derivation of the
proposed method is presented.



Step 1 - Run power flow and linear analysis: The
equations for the nonlinear model are written, power flow
performed and linear analysis done to obtain the state matrix
(A), the right eigenvector (U) and the left eigenvector (V).

Step 2 - Change variables and transform to modal coor-
dinate: The nonlinear equation is written as a combination
of linear and nonlinear part and then transformed to Jordan
form by linear transformation. Notice that is made up
of linear, quadratic and cubic part. Therefore, it could be
written as comprising linear and nonlinear parts in (I0).

X+Ax+B(x)=P

Where P = AP, /M and B(x) is a collection of all the
nonlinear parts. Applying linear transformation to (I0) and
pre-multiplying by left vector yields

(10)

¥+ VAUy +fNL(y1, )25, yn) = VP. (11)

where fyp, = VB.

Step 3 - Prescribe some arbitrary modal deviations: From
we know the expression for fiy, in the Taylor series for
" equation to be

fNL(y17y27

N N N N N
Z Z Cinyjye + Z Z ZD;kly VIV

j=lk=1 j=lk=1i=1
(12)

~

Where r = (1,2,...N).

But avoiding the Hessian evaluations, we can find fy; by
prescribing small deviation in modal space to the original
nonlinear and linear functions under static considerations
(i.e all derivative = 0) and estimate the forcing term P. The
assumption made for this method is that the mechanical
input power is no longer constant. But this assumption is
only to compute the coefficients. That is to say the system
is disturbed by varying the state variables arbitrarily and
the forcing vector that would have caused such variation is
estimated. For instance, using (2) let us prescribe a very small
deviation x; then the right hand side can be written as

Pr= f(X0+X) %f(Xo)—I—AX—I—ﬁ(X) :P0+PL+PNL- (13)

P is the total forcing vector estimated which can cause such
deviation (Xg+x), Py is the original value at equilibrium,
Py, is linear contribution of the forcing vector while Py, is
the nonlinear contribution. Notice that this is a restorative
process since the system of (2) should have been driven by
its right hand side (Pt = Py /M + APy, /M).

To ensure that the deviation is in the modal space, the
value of this deviation is assigned using the linear eigenvec-
tor. We choose arbitrary small amplitude of deviation say
a and multiply with right eigenvector since any multiple of
eigenvector is still an eigenvector. Hence x = Ua; where « is
the amplitude of the deviation (note that o means arbitrary
value of y).

Step 4 - Evaluate the nonlinear contribution: From (13)

we can write Pni, = Pr— P —Py. (14)

Where Pr, = Ax, Py =1£(Xy).

Step 5 - Formulate linear equations: Passing x = U;q; to

linear and nonlinear static models will have effect only on the
node ii since only mode i will be excited, x = U;a; + U ¢;
will have effect on nodes ii, jj and ij since both mode i
and j will be excited. By prescribing series of x each time
getting the linear and nonlinear static contributions, a set of
linear equations is formulated and solved simultaneously to
get the coefficients.
For example, if C{, and D}, (r =1,2,N) are needed, we
can prescribe x=+Ujq; and x=—U;q; . The essence
of the negative part is to create two equations in order to
solve simultaneously. By prescribing as above and solving
for linear and nonlinear static solutions, Pnp, is obtained
from (I4). Then from (@) and (II) we can write set of linear
equations as

{VrP;L = Vrﬁ(—‘rUlOCl) = Cfl o0 +D{11(x1 o 0

ViPy, = ViB(—Uray) = Cj a1 — DY o 0 04y
15)
Or generally as AcX¢ = Be.
Where
A. = a12 a13 X. = {1 B. — VrP;L
Clad oo P Dy T [ Py |

In this way all C1;&Dy; coefficients are computed. The
approach is same for all Cy; and Djj;> only that x becomes
x =Uym. All C;; and Dj; can be calculated this way. For
coupled terms such as Cj;, Dj;;&D’;;;, X may be

+U;o;

:tUjOtj

Uio; + Uj o

Ui o — Uj Otj

—Uo; + Uj a;j

Following the same approach, we get similar expression
AX, = Bc, with

(a7 & 0 0 0 0 0
a—a? 0 0 0 0 0
0 0 or o 0 0 0
Ac=|0 0 of—al 0 0 0
aiz of o o oo azaj 0,07
of o o - —oyo; —ofo; oyar
_oc2 —o ajz oc3 —a,ocj oo —aiocjz._
[V.P NL;
l()j; V"P;/Li
+
C;; VrPNL,-
Xe = D/// Be = VrP;/L
5 ViPi,
D Vil
LD P7+J
ViePyr, |

For coupled terms such as D! ok # i j, X can be prescribed
as: x = U;jo; +Ujo; + Uk oy and then the size of A, increases
accordingly.

With the nonlinear coefficients determined, @]) is then used
to determine the Normal Form coefficients /23, and h3},.
With the Normal Form coefficients and Normal Form initial
conditions known, the indices defined in [11] can reveal



many information about the system behaviour under stress.

IV. APPLICATION TO IEEE TEST SYSTEMS
The proposed method is demonstrated on a 3-machine
9-bus power system [16] in Fig. |I| and 16-machine 68-
bus power system [17] in Fig. @] The system of Figll]

Fig. 1. 3-Machine 9-Bus System

is represented in two-axis model with 4 sate variables per
machine

6 = o(w;— 1) (16)

TéOEclz,- = _Ec/;,- - (xdi _xii,-)ldi +Efq, amn
ToE! = —Ej + (x4 — X,y (18)

M;®; = Py, — (Eg 1g;+ Eg1d;) — Di(0; — 1) (19)

Where @ is the rated speed of the synchronous generato, w
is the rotor speed deviation in p.u, D is damping coefficient,
M is the inertial constant, & is the rotor angle.

If one of the generators is used as a reference, the number
of differential equations will be 11. From equation [} it
implies we expect at least 3,872 coefficients. In this paper we
show randomly some of the coefficients in order to compare
with the usual direct Hessian approach.

The quadratic and cubic coefficients of " equation of
system 19| using the proposed method are presented in
Table [[I] and Table [V} The results from the conventional
direct Hessian approach are also presented (Table[l|and Table
for comparison. As could be seen from the tables, the
two results highly agree.

TABLE I
QUADRATIC COEFF.HESSIAN METHOD

rh Cii Cy3 Cys

1 0.3249 + 0.2378i 0.5124 + 0.36631 0.6631 - 3.0947i
4 -0.1323 - 0.01911 0.0641 + 0.13351 0.3234 - 0.8295i
7 -0.1193 + 0.0151i 0.0264 - 0.0059i -0.0597 + 0.0051i
8 0.1065 +0.0439i -0.0052 - 0.00201 -0.1101 - 0.0258i
11 0.0140 +0.0099i1 -0.0469 +0.00751 -0.2191 - 0.0653i

TABLE II
QUADRATIC COEFF.PROPOSED METHOD

Cy Cy3 Cys

Zooo k=Y

0.3249 + 0.23761
-0.1323 - 0.01891
-0.1191 - 0.0151i
0.1065 + 0.04391
0.1088 + 0.0439i

0.5124 + 0.3661i
0.0641 + 0.1337i
0.0264 - 0.00591
-0.0051 - 0.00201
-0.0468 + 0.00751

0.6631 - 3.0948i
0.3234 - 0.8293i
-0.0597 + 0.0051i
-0.1100 - 0.0258i
-0.2191 - 0.0653i

The maximum error taking into account all the coeffi-
cients were computed as E rrorg”‘”‘ =|C2

J

kZH essian

2]

i . klepaxed
ax __ J _ J :

and Errory!™ = |D3}gryssian — D3parproposea| fOr quadratic and

TABLE III
CuBIC COEFF. HESSIAN METHOD

rh Doy Dygs Do 10,11

1 -0.3191 - 0.37631  -0.0015 - 0.01881  -0.2008 - 1.0589i
4 0.0034 + 0.00911 0.0077 - 0.0214i 0.0210 - 0.2150i
7 -0.0046 - 0.0104i  0.0104 + 0.0015i  0.0633 + 0.0000i
8 -0.0162 - 0.0334i  0.0189 + 0.00041 0.1378 + 0.0000i
11 -0.0022 - 0.00671 0.0013 - 0.0000i 0.0071 + 0.00001

TABLE IV
CuBIC COEFF. PROPOSED METHOD

rh Dy Dyg3g Do 10,11

1 -0.3191 - 0.37631  -0.0015 - 0.01881  -0.2010 - 1.05841
4 0.0034 + 0.00911 0.0077 - 0.0213i 0.0209 - 0.2150i
7 -0.0046 - 0.0104i  0.0104 + 0.00151 0.0632 + 0.00001
8 -0.0162 - 0.0334i  0.0189 + 0.00041 0.1378 + 0.0000i
11 -0.0022 - 0.00671 0.0013 - 0.0000i 0.0071 + 0.00001

cubic coefficients respectively. These errors were found to
be 0.024% and 1.8% for quadratic and cubic coefficients
respectively.

The time cost was investigated on an Inter CoreTM
17-3520M 2.9GHz desktop computer, where the nonlinear
coefficients computation using the Symbolic Math Toolbox
in MATLAB takes about 40.7 seconds while the proposed
method takes about 10.5seconds. No time optimization was
considered in coding the algorithm. All coefficients were
selectively computed each time as if there had not been any
previous computations. Hence, several computations were
repeated. Much time will be saved if it is programmed to use
the previously computed coefficients in the linear equations.
This can be improved upon in future work.

As earlier stated, the proposed method was also applied to
16-machine 68-bus New England/New York power system
shown in FigP] Classical representation of generator was
used and one generator used as a reference, making the
total number of differential equations 31. It follows from
equation @I) that there are 184,512 different coefficients to
be computed. The direct Hessian approach was performed
with the help of Symbolic MATLAB Toolbox in the same
computer as before and the total time for all the coefficients
was 21,924.095 seconds(x~ 6hrs). This same coefficients
were all computed with proposed method in about 3540
seconds (~1hr) with same computer.

As shown in Table [V]and Table the results are highly

4]
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Fig. 2.

16-Machine 68-Bus System



TABLE V

QUADRATIC & CUBIC COEFF.HESSIAN METHOD

it Cig14 Ci20 Dz1016  D303030

1 -0.02601 - 0.0154i  0.00731 0.0655i1

5 - 0.00851 0.0006i 0.0013i - 0.00151

7 - 0.00601 0.0025i 0.0004i 0.0007i

20 -0.0024i -0.0520i 0.00151 - 0.0019i
TABLE VI

QUADRATIC & CUBIC COEFF.PROPOSED METHOD

be extended to other types of grid. The method is convenient
and fast with results in agreement with the conventional
direct Hessian approach.

Since many commercial time-domain simulation software
can give the state matrix and the static computations corre-
spond to system’s steady state after the small modal deviation
introduced, we will investigate in future work the possibility
of obtaining the static computation directly from commercial
time domain simulation software. In future work we will
also investigate a criterion for determining a priori the most
relevant coefficients and then use the proposed method to
compute just these coefficients in order to apply Normal

/7 Cl4,14 Ci 20 D016 D303030
1 -0.02611 - 0.01531  0.0075i 0.0655i1
5 - 0.0090i  0.00061i 0.0014i - 0.0016i
7 - 0.00611 0.0025i 0.00041 0.0007i
20 -0.00251 -0.0510i 0.0016i - 0.0020i

in agreement. We have stated that amplitude of the modal
deviation is chosen arbitrarily, however, it should neither
be too small nor too big. Very small value of o does not
trigger the nonlinearity very well; hence, the system is more
or less linear. On the other hand too large value of o leads
to higher nonlinearity, hence the domain of validity of 3rd
order approximation is exceeded. A value in the range of
0.001 < o < 0.9 gives good result.

Fig. 3 shows the evolution of some coefficients with
variation of o. As pointed out earlier, the coefficients are

0 . .
107 102 10! 10" 10!
Modal Deviation Amplitude()

Fig. 3. Sensitivity of Modal deviation amplitude (o)
consistent for o within certain range as seen in Fig. 3. As o
becomes large, the nonlinearity increases beyond the validity
of third order approximation. This is evident from Fig[3] as
the curves deviate from the actual results.

The benefits of the proposed method are highlighted as
follows: (1) Both 2™ and 3" order nonlinear coefficients
are computed simultaneously. (2) With good knowledge of
the coefficients of interest, they can be selectively computed
rapidly. (3) It requires only the state matrix used for the linear
analysis. No further differentiation needed. (4) It is easy to
implement and can easily adapt to model variations. (5) It
maybe convenient to integrate in a commercial software.

V. CONCLUSION

In this paper a method for selectively determining the
nonlinear coefficients of power system represented with third
order Taylor expansion has been proposed. The method is
easy requiring only the state matrix of the system and direct
substitution of arbitrary values in the static equations of the
system. The proposed method has been demonstrated on
conventional IEEE 9-bus and IEEE 68-bus systems but can

Form to some selected modes in a large system.
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