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Abstract—Transient stability is an important issue in power
systems but difficult to quantify analytically. Most of the ap-
proaches in this case lie on a very simplified model of the
generators, usually reduced to the swing equation. In this work,
a more detailed model which includes voltage dynamics and both
voltage and frequency regulators is considered to get more real-
istic results. The used methodology for algorithmic construction
of Lyapunov functions is based on recent advances in the field of
positive polynomials. This analysis framework uses an algebraic
reformulation technique that recasts the systems dynamics into a
set of polynomial differential algebraic equations in conjunction
with a sum of Squares method to search for a Lyapunov function.
Next, linear matrix inequalities are used to expand the region
of attraction of the considered equilibrium point. The results
are checked against an experimental (by extensive numerical
simulations) evaluation of the region of attraction.

Index Terms—Lyapunov theory, nonlinear systems, power
systems analysis, region of attraction, sum of squares.

I. INTRODUCTION

Transient stability is one of the most important power
systems analysis problems. From a physical viewpoint,
transient stability can be defined as the ability of a power
system to maintain its synchronism when subjected to large
and transient disturbances [1]. Widespread assessment tools
are generally based on indirect methods which rely on the
numerical integration of nonlinear differential equations
describing system dynamics. However, this approach is not
suited to synthesize controllers with a direct quantification
of stability margin since it does not provide an analytical
characterization of stability [2]. Alternatively, direct methods
are based on the estimation of the stability domain of the
equilibrium point; they ensure that all the trajectories initiated
in this domain converge to the equilibrium point [2]. The
main drawback of direct methods is that they rely on the
identification of Lyapunov functions which are hard to
determine. Indeed, there is not a systematic method for the
construction of Lyapunov functions. Moreover, it has been
shown that quadratic (i.e., energy type) Lyapunov functions

do not exist for grids with losses [1].

Recent advances in semidefinite programming relaxation
and the use of the Sum Of Squares (SOS) decomposition
to check non-negativity have opened the way for efficient
algorithmic analysis of systems with polynomial vector fields
[3]. This approach was used in [2] for transient stability
analysis of a power system. However, the generators were
modeled only by their swing equations. As the voltage and
frequency regulators have an important impact on stability
analysis, in the present paper this approach is extended by
considering a generator with voltage dynamics and both
voltage and frequency regulations. This also provides a way
to take into account high penetration of power electronics
elements in the grid due to the integration of renewable
energies and HVDC transmission lines, thus having an
important impact on the transient stability of the system.
SOS method gives an analytical solution for the construction
of Lypunov functions in order to estimate the Region
Of Attraction (ROA) for a locally asymptotically stable
equilibrium point of the system.

The paper is organised as follows: the problem is formulated
in Section II on a Single Machine Infinite Bus (SMIB) system.
SOS formalism is brieffly recalled in Section III. The change
of variables needed to reach a SOS form (i.e., recasting the
model of the system with trigonometric non linearities into a
set of polynomial differential algebraic equations) is given in
Section IV. The recasting procedure is proved to be a Lie-
Bäcklund transformation, which means that the transformed
system has equivalent trajectories and stability properties [4].
Next, in section V we relax Lyapunov's conditions for stability
and model constraint equations to suitable SOS conditions
using theorems from real algebraic geometry in order to
formulate the problem as an optimization one. Hence, a
Lyapunov function for the asymptotically stable equilibrium
point is constructed using the expanding interior algorithm
developed in [3]. An estimate of the ROA is given by a



level set of the Lyapunov function. We finally test the ROA
estimation error in Section VI by numerically computing the
real one in all state directions via full nonlinear simulations.
The codes are implemented in MATLAB using SOSTOOLS
[5], [6] which is a free, third-party MATLAB toolbox that
solves SOS problems. The analysis is carried out in the case
of a single machine-infinite bus system.

II. PROBLEM FORMULATION

We consider a synchronous machine G connected to an
infinite bus N∞ through two lines in parallel (see Figure
1). The infinite bus imposes a nominal voltage of amplitude
Vs = 1pu and frequency ωs = 1pu. The synchronous machine
has two rotating axes d (direct) and q (quadratic), which
support the currents id and iq , generating a voltage (vd, vq).
The synchronous machine is characterized by a resistance
r and equivalent reactances xd, x′d and xq . It receives a
mechanical power Pm which makes it rotate at frequency ω,
generating e.m.f e′q with voltage field Efd. Let δ be the phase
between the machine and the infinite bus and H the machine’s
mechanic inertia constant.

G

S
R+ jX R+ jX

2(R+ jX)

N∞

VG ∼ (vd, vq) V∞ ∼ (Vs, ωs)

∞

Figure 1: Synchronous machine connected to an infinite bus

The equations describing the dynamics of this system are
given in [7] (p.105). They can be written as follows

T ′d0
de′q
dt

= −e′q − (xd − x′d)id + Efd (1a)

2H
dω

dt
= Pm − (vdid + vqiq + ri2d + ri2q) (1b)

dδ

dt
= ω − ωs (1c)

iq =
(X + x′d)Vs sin δ − (R+ r)(Vs cos δ − e′q)

(R+ r)2 + (X + x′d)(X + xq)
(1d)

id =
X + xq
R+ r

iq −
1

R+ r
Vs sin δ (1e)

vd = xqiq − rid (1f)
vq = Riq +Xid + Vs cos(δ) (1g)

where T ′d0 is a characteristic time.
The machine is governed by two regulators whose equations

are the following

Ta
dEfd
dt

= −Efd +Ka(Vref − Vt) (2)

where Ta, Ka are the parameters of the voltage regulator
(AVR), Vref is the reference, and

Vt =
√
v2
d + v2

q (3a)

Tg
dPm
dt

= −Pm + Pref +Kg(ωref − ω) (3b)

where Tg , Kg are the parameters of the turbine regulator
(governor) and Pref , ωref are the references.

We then introduce a temporary short-circuit at node S (see
Figure 1), according to the following protocol:
• At a time tc a short-circuit occurs and we switch from the

nominal system (Figure 1) to a new short-circuited system
(Figure 2), and thus we are no longer at an equilibrium
point

• The system leaves the equilibrium point of the nominal
model and follows the short-circuit equations (see below)
for a while, until the short-circuit is eliminated

• At a time tcl = tc + ∆t, we switch back to the nominal
topology and equations; the problem is to know whether
the system reaches an equilibrium point or not, i.e.
whether it is still in the ROA of one equilibrium points
of the nominal model or not.

G

S
R+ jX R+ jX

2(R+ jX)

N∞

VG ∼ (vd, vq) V∞ ∼ (Vs, ωs)

∞

Figure 2: The short-circuited system

During the short-circuit the system’s equations are the same
as (1), but with (R,X) replaced by 2

3 (R,X) and Vs replaced
by 1

3Vs:

T ′d0
de′q
dt

= −e′q − (xd − x′d)id + Efd (4a)

2H
dω

dt
= Pm − (vdid + vqiq + ri2d + ri2q) (4b)

dδ

dt
= ω − ωs (4c)

iq =
(2X + 3x′d)Vs sin δ − (2R+ 3r)(Vs cos δ − 3e′q)

(2R+ 3r)2 + (2X + 3x′d)(2X + 3xq)
(4d)

id =
2X + 3xq
2R+ 3r

iq −
1

2R+ 3r
Vs sin δ (4e)

vd = xqiq − rid (4f)
3vq = 2Riq + 2Xid + Vs cos(δ). (4g)

Finally, the regulation equations (2), (3a) and (3b) are not
affected by the short-circuit.

The aim of this work is to estimate the ROA of a given
equilibrium point so as to be able to give an analytical stability
assessment of the power system.



III. THE SOS APPROACH

SOS are real polynomials that can be written as sums of

squares of polynomials: s =
k∑
j=1

p2
j where p1, . . . , pk ∈ Rn.

Here, Rn is the set of real polynomials in n variables and we
denote by Σn the set of SOS in n variables.

The SOS approach is detailed in [3]. It is based on the
Positivstellensatz (P-satz, [8]):

Let g1, . . . , gβ , f1, . . . , fα, h1, . . . , hγ ∈ Rn. Then, the
following statements are equivalent:
• The set f1(x) ≥ 0, . . . , fα(x) ≥ 0

x ∈ Rn g1(x) 6= 0, . . . , gβ(x) 6= 0
h1(x) = 0, . . . , hγ(x) = 0


is empty.

• ∃F ∈ P(f), G ∈M(g), H ∈ I(h) ;

F +G2 +H = 0 (5)

(such F,G,H are called P-satz certificates, or P-satz
refutations), where

M(g) :=


β∏
j=1

g
kj
j |k1, . . . , kβ ∈ N


with the convention M(∅) = {1}.

P(f) :=

{
s0 +

P∑
i=1

sibi|P ∈ N, s ∈ ΣP+1
n , b ∈ M(f)P

}
with the convention P(∅) = Σn.

I(h) :=

{
γ∑
i=1

hkpk|p1, . . . , pγ ∈ Rn

}
with the convention I(∅) = {0}.

The idea is simply to estimate the ROA of the system using
a set whose complement can be described like in the P-satz
formulation. Indeed, we know that for a given vector field
F : Rn → Rn, an equilibrium point x (without any loss of
generality, we assume x = 0) of the equation ẋ = F (x) is
stable iff there exists a function V defined on a neighbourhood
of 0 (let us call it Ω), and a domain D ⊂ Ω on which V is
an LF. In such case, any level set Ωβ = {x ∈ Ω|V (x) ≤ β}
such that Ωβ ⊂ D is a positively invariant subset of the
system’s ROA. The SOS approach consists in finding the
largest possible Ωβ ⊂ D with varying V and D, which
is possible as soon as F ∈ Rn. Two algorithms allowing
to perform this research are discussed in [3] and [2]: the
expanding D algorithm and the expanding interior algorithm.
Since the latter is more efficient than the former, we only
implemented the expanding interior algorithm.

The aim of the SOS program is to find the largest

Pβ := {x ∈ Rn|p(x) ≤ β} ⊂ ∆ := {x ∈ Rn|V (x) ≤ 1} ,

where p ∈ Σn and V is a yet unknown Lyapunov function
of which level set Ω1 = {x ∈ Ω|V (x) ≤ 1} approximates the
ROA. In order for ∆ to satisfy the conditions of Lyapunov’s
theorem, we must have 0 < V ≤ 1 =⇒ V̇ < 01. Since we
want V to be positive definite over ∆ while V and ∆ are
initially unknown, the best way to ensure that is to look for
a V which is positive definite on Rn. This problem can be
written with set emptiness constraints as

maximize
V ∈Rn,V (0)=0

β (6a)

s.t., {x ∈ Rn|V (x) ≤ 0, x 6= 0} = ∅ (6b)
{x ∈ Rn|p(x) ≤ β, V (x) ≥ 1, V (x) 6= 1} = ∅ (6c)
{x ∈ Rn|V (x) ≤ 1, V̇ (x) ≥ 0, x 6= 0} = ∅ (6d)

which can be reformulated as

maximize
V ∈Rn,V (0)=0

β

s.t., {x ∈ Rn| − V (x) ≥ 0, `1(x) 6= 0} = ∅
{x ∈ Rn|β − p(x) ≥ 0, V (x)− 1 ≥ 0, V (x)− 1 6= 0} = ∅

{x ∈ Rn|1− V (x) ≥ 0, V̇ (x) ≥ 0, `2(x) 6= 0} = ∅

with `1, `2 ∈ Σn are positive definite ensuring the non
polynomial constraint x 6= 0. Then, we can use the P-satz
and a simplification given in [3] to write the problem in a
form which is suitable for the algorithm presented above:

maximize
V ∈Rn,V (0)=0, s1,s2,s3∈Σn

β (7a)

subject to, V − `1 = s4 ∈ Σn (7b)
− ((β − p)s1 + (V − 1)) = s5 ∈ Σn (7c)

−
(

(1− V )s2 + V̇ s3 + `2

)
= s6 ∈ Σn. (7d)

Since Σn and the set of positive semi-definite matrices are
isomorphic, this is reduced to an LMI problem which can be
solved within an iterative algorithm (e.g., [9], [10]) (see Figure
3).

Some features of SOSTOOLS include the setting of poly-
nomial optimization problems and the search for a polynomial
Lyapunov function after expressing the SOS problem as a LMI
feasibility problem. In [2], SOSTOOLS is used to implement
the expanding interior algorithm for a dynamic model without
regulation.

IV. RECASTING THE POWER SYSTEMS MODEL

The system (1), (2), (3a), (3b) can be reformulated as an
autonomous ODE:

ẏ = F (y) (8)

1With the well known convention V̇ = ∇V · F



choose β(0) > 0 and V (0)

Lyapunov function on
∆ = {x ∈ Rn|V (0)(x) ≤ 1}

such that
P

(0)
β := {p(x) ≤ β(0)} ⊂ ∆

search for s(i+1)
6,8,9 ∈ Σn and a

maximal β(i+1) > β(i) satisfying
(7) for V (i+1) = V (i)

search for s(i+2)
6 ∈ Σn,

V (i+2) ∈ Rn and a
maximal β(i+2) > β(i+1) satisfying

(7) for s(i+2)
8,9 = s

(i+1)
8,9

test β(i+2) − β(i+1) < βtol

The resulting
∆ = {x ∈ Rn|V (i)(x) ≤ 1}
is an estimate of 0’s R.O.A.

YES NO

linear search for β

Figure 3: The expanding interior algorithm

where y =


δ
ω
e′q
Efd
Pm

 ∈ R5 is the state vector and the vector

field F : R5 −→ R5 is defined by:

F1(y) = y2 − ωs
F2(y) =

1

2H
(y5 − (vd(y)id(y) + vq(y)iq(y)+

rid(y)2 + riq(y)2)
)

F3(y) = 1
T ′
d0

(−y3 − (xd − x′d)id(y) + y4)

F4(y) = 1
Ta

(−y4 +Ka(Vref − Vt(y)))

F5(y) = 1
Tg

(−y5 + Pref +Kg(ωref − y2))

(9)

with iq(y), id(y), vq(y) and vd(y) introduced in (1d), (1e),
(1g) and (1f).

Here one can see that F is not a polynomial vector field,
as requested in the SOS approach. However, the following
variables allowed us to recast the system as a polynomial ODE:

z1 = sin(δ − δeq) (10a)
z2 = 1− cos(δ − δeq) (10b)
z3 = ω − ωs (10c)
z4 = e′q − e′eqq (10d)
z5 = Efd − Eeqfd (10e)
z6 = Pm − Pref (10f)
z7 = Vt − V eq (10g)

z8 =
1

Vt
− 1

V eq
(10h)

where Y eq is the value of the variable Y at the considered
equilibrium point. One can then easily compute the dynamics
of the recasted system:

ż = H(z) (11)

with H : R8 −→ R8 defined by:

H1(z) = (1− z2)z3

H2(z) = z1z3

H3(y) =
1

2H
(z6 + Pref − (vd(z)id(z)+

vq(z)iq(z) + rid(z)
2 + riq(z)

2)
)

H4(y) = 1
T ′
d0

(
−(z4 + e′eqq )− (xd − x′d)id(z) + z5 + Eeqfd

)
H5(y) = 1

Ta

(
−(z5 + Eeqfd) +Ka(Vref − (z7 + V eq)

)
H6(y) = 1

Tg
(−z6 −Kgz3)

H7(z) =
(
z8 + 1

V eq

) ∑
i∈{1,2,4}

(vd(z)∂zivd(z) +

vq(z)∂zivq(z)) ·Hi(z)

H8(z) = −
(
z8 + 1

V eq

)3 ∑
i∈{1,2,4}

(vd(z)∂zivd(z)+

vq(z)∂zivq(z)) ·Hi(z)

(12)

and iq(z) = iq(y), id(z) = id(y), vq(z) = vq(y) and
vd(z) = vd(y).

The size of the recasted system has a direct impact on the
computation burden of the ROA estimation. Let us notice that,
if (Vref −V (y)) in F4(y) is replaced by (V 2

ref −V (y)2), i.e.,
if

F4(y) =
1

Ta
(−y4 +Ka(Vref − Vt(y))) (13)

is used in (9), we no longer need to introduce z7 and z8 in the
recasted system which consists in this case in only the first 6
equations of (12):

ż = H ′(z) =


H1(z)
H2(z)
H3(z)
H4(z)
H5(z)
H6(z)

 . (14)

From a physical point of view, instead of comparing the
magnitude (or, modulus) of the voltage (phasor) over the
synchronous machine to a reference, we are comparing its
squared magnitude to the square of the reference. As the model
is written in per-unit variables, voltages are around 1 and this
approximation has little impact (this has also been checked in
simulation).

Thus, H ′ is a polynomial vector field: H ′ ∈ R6. However,
for the new equations to model the same system as the
former, it is necessary to make sure that the change of
variable is a Lie-Bäcklund transformation (see [4]). Indeed,
this is necessary to ensure that the new equations and the
former ones have the same trajectories.



Definition : Let M be a smooth manifold, possibly of
infinite dimension, and F :M−→ TM a smooth vector field
on M.

The pair (M, F ) is a system iff there exists a smooth
fiber bundle π : M −→ (Rm)N, for a certain m ∈ N∗,
such that every fiber is finite-dimensional with locally constant
dimension, and for all ξ ∈M

∇π(ξ) · F (ξ) = Fm(π(ξ)) (15)

This allows us to define:
• local coordinates ξ = (x, u) , where u = π(ξ) and x ∈

Rn, in which

F (ξ) = f(x, u)
∂

∂x
+

m∑
i=1

∑
k≥0

u
(k+1)
i

∂

∂
u
(k)
i

(16)

with f depending on a finite number of coordinates.
• trajectories t 7−→ ξ(t) := (x(t), u(t)) such that ξ̇(t) =
F (ξ(t)) i.e. ẋ(t) = f(x(t), u(t))

This way, one obtains a controlled differential system with
finite dimension. However, the definition of the state variables
and the control variables entirely depends on the choice of
π, which makes this definition fit also the non-controlled
systems. In fact, the presence of a control does not depend
on the system, but on the projection π one uses.

Then we can introduce the notion of Lie-B”acklund
transformation.

Definition : Let (M, F ), (N , H) be two systems, Φ :

M C∞

−→ N , p ∈M and q := Φ(p) ∈ N . Then,
• if ξ is a trajectory of (M, F ) in a neighbourhood of p,

then ζ := Φ ◦ ξ stays in a neighbourhood of q and we
have

ζ̇(t) = ∇Φ(ξ(t)) · F (ξ(t)) (17)

which holds even in infinite dimension: everything de-
pends only on a finite number of coordinates.

• Φ is an endogenous transformation iff, for any ξ in a
neighbourhood of p

∇Φ(ξ) · F (ξ) = H(Φ(ξ)) (18)

(we say that F and H are Φ-related at (p, q); then ζ̇ =
H(ζ)) and Φ has a smooth inverse Ψ (then, H and F are
automatically Ψ-related).

• Φ is a Lie-Bäcklund isomorphism iff we locally have

TΦ(span(F )) = span(H)

and Φ has a smooth inverse Ψ such that TΨ(span(H)) =
span(F )2. In other words, for ξ in a neighbourhood of p
and ζ in a neighbourhood of q, we should have

(∇Φ(ξ))(R · F (ξ)) = R ·H(Φ(ξ)) (19a)
(∇Ψ(ζ))(R ·H(ζ)) = R · F (Ψ(ζ)) (19b)

2A distribution D :=span(V1, . . . , Vk) being intuitively defined on a man-
ifoldM by D(x) =span(V1(x), . . . , Vk(x)) ⊂ TM, where V1, . . . , Vk are
vector fields onM. TΦ is a notation to denote the application ξ 7→ ∇Φ(ξ)·•.

From this definition, it is obvious that an endogenous
transformation (which is a particular case of Lie-Bäcklund
isomorphism) preserves the trajectories (and so the stability
properties) of a system, which is exactly what we need for
our transformations not to modify the ROA of the considered
equilibrium point.

In the present case Φ :

{
R5 −→ R6

y 7−→ z
is not a Lie-

Bäcklund isomorphism : indeed, F and H are Φ-related, but
Φ obviously does not have a smooth inverse Ψ : R6 −→ R5.
In fact, it is intuitive that one has to add some algebraic
constraints on z so as for Φ to be a licit change of variables:

G(z) = 0. (20)

Here, the algebraic constraint is:

G(z) = z2
1 + z2

2 − 2z2. (21)

One can verify that Φ : R5 −→ {z ∈ R6|G(z) = 0} is an
endogenous transformation of the system. It is then possible to
apply the SOS approach to the differential algebraic equation
(DAE): {

ż = H ′(z)

G(z) = 0
(22)

V. SOS ESTIMATION OF THE ROA

In the expanding interior algorithm, the addition of the
equality constraints G(z) = 0 only influences the definition
of the domain

∆ = {z ∈ R6|G(z) = 0 and V (z) ≤ 1}
and of

Pβ = {z ∈ R6|p(z) ≤ β ;G(z) = 0}. (23)

This leads, according to the P-satz, to the expanding interior
problem (7) enriched as

V − `1 − q1G = s4 ∈ Σn (24a)
− ((β − p)s1 + (V − 1))− q2G = s5 ∈ Σn (24b)

−
(

(1− V )s2 + V̇ s3 + `2

)
− q3G = s6 ∈ Σn (24c)

where q1,...,3 are free polynomial variables (qiG is therefore
the definition of an element of the ideal I(G)). The expanding
interior algorithm then returned the following estimation of the
equilibrium point’s ROA:
Pβ = {z ∈ R6|p(z) := ‖z‖2 + z2

3 ≤ β = 0.08544} ⊂ ∆

with



V (z) = 2.010 z2
1 + 0.07823 z1z2 + 3.1961 z1z3

−2.244 z1z4 − 0.02231 z1z5 + 0.2172 z1z6

+0.9483 z2
2 + 3.422 z2z3 − 2.246 z2z4

−0.003099 z2z5 + 0.1913 z2z6 + 22.92 z2
3 (25)

−0.07196 z3z4 − 0.07616 z3z5 + 2.998 z3z6

+4.058 z2
4 − 0.0003899 z4z5 − 0.1467 z4z6

+0.004611 z2
5 + 0.008518 z5z6 + 0.2425 z2

6 .

Two-dimensional projections of the resulting ROA in origi-
nal coordinates are plotted in Fig. 4 and 5 in red lines. These
estimations are quite large, especially when compared to the
exact ROA (blue lines in 5) numerically computed as explained
in the next section.

VI. ROA ESTIMATION VIA NUMERICAL TIME-DOMAIN
SIMULATIONS

We aim to validate the estimate of the ROA found by the
SOS approach, by testing, in simulation, the limits of stability
of the system in all the state-space directions. For this, the
system is systematically initialized at a starting point far from
the considered equilibrium point, and we check by simulation
if it goes back to equilibrium or not.

Since the system has 5 state variables which means a huge
number of combinations and because δ and ω are the most
important state variables for transient stability analysis, we
decide to make the test in a projection of the state space on
the plane (δ, ω), (Pm, ω) and (e′q, Efd).

Figure 5 shows that the estimated ROA is inside the real
one (computed numerically by simulation) and this validates
the previous results. The arrows in the plots show that the real
ROA is larger in the direction of the arrows.

The same figure shows that the trajectories of the system
initialized in several points in the ROA converge to the
considered equilibrium point asymptotically, and thus the
computed ROA is compliant with the Lyapunov conditions
for asymptotic stability.

VII. CONCLUSIONS

SOS approach and tools have been sucessfully used to
quantify transient stability of a SMIB system for which the
generator has been modeled in more detail as in previous
studies. Indeed, voltage dynamics and voltage and frequency
regulations were taken into account in this formalism. First,
this provides more accuracy in estimation of the stability
margin in terms of the ROA. Indeed, the estimated ROA
is large enough compared to the exact ROA computed by
simulation. Next, the Lyapunov approach is well suited for
the control synthesis and this quantification can be further
exploited to build/tune regulators in order to maximize ROA.
As a matter of fact, in the SOS optimization one can next
include the regulators’ parameters as decision variables. Future
work will focus on
• estimation with the full model (without the approximation

(13))

(a)

(b)

(c)

Figure 4: (a) estimated ROA and the LF, together in a projec-
tion of the state space on the plane (e′q, Efd). (b) estimated
ROA and the LF, together in a projection of the state space
on the plane (Pm, ω). (c) estimated ROA and the LF, together
in a projection of the state-pace on the plane (δ, ω).

• inclusion of the non linearities of the machine related to
saturations of the actuating variables

• application to larger grids
• extension to the tuning of regulators’ parameters



-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-50

0

50

100

(a)

-8 -6 -4 -2 0 2 4 6

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

(b)

-1 -0.5 0 0.5 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(c)

Figure 5: (a) real ROA in blue (the largest one) and the SOS
estimated one in red, together in a projection of the state-space
on the plane (e′q, Efd). (b) real ROA in blue (the largest one)
and the SOS estimated one in red, together in a projection of
the state space on the plane (Pm, ω). (c) real ROA in blue
(the largest one) and the SOS estimated one in red, together
in a projection of the state space on the plane (δ, ω).

VIII. APPENDIX

Parameters of the test system

T ′d0 = 9.67 xd = 2.38 x′d = 0.336 xq = 1.21
H = 3 r = 0.002 ωs = ωref = 1 R = 0.01
X = 1.185 Vs = 1 Ta = 1 Ka = 70
Vref = 1 Tg = 0.4 Kg = 0.5 Pref = 0.7

The considered equilibrium point (of (9) approximated with
(13)):

Eeqfd = 2.459 ; e′eqq = 1.070 ; δeq = 1.539
ωeq = ωref = 1 ; P eqm = Pref = 0.7
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