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Abstract—Power Park Modules (PPM), such as wind and
photovoltaic plants, bring new modelling challenges and they are
usually aggregated into equivalent or generic models for stability
analysis. However, most of the existing approaches to build these
models are suited only for the transient stability and, generally,
for a specific kind of PPM like wind farms. Moreover, some of
them might not be always appropriate in the case of large-scale
systems since they require significant computational effort. In
this paper, a new methodology is proposed to construct generic
models for PPM based on transfer matrices. It is suited for
both transient and small-signal stability analysis, independently
on the kind of the PPM and its technology. It has also low
computational requirements. Its validation is done in Matlab and
Eurostag software’s by considering a realistic power system of
23 generators to which a wind farm is connected.

Index Terms—curve fitting, power park modules, power sys-
tems.

I. INTRODUCTION

In modern power systems, the amount of the electric power
generated by Power Parc Modules (PPM), i.e., renewable ener-
gies like wind turbines and solar photovoltaic (PV) plants, con-
nected to the grid by power electronics, increases significantly
each year. As a consequence, its impact on the behaviour of the
overall power system and, especially, on its stability becomes
important and has to be taken into account in dynamic security
assessment. Generally, this cannot be done by considering the
detailed model of each device (e.g., wind turbine) due to their
large number and distributed locations. Moreover, the TSO
(Transmission System Operators) may have limited access
to such detailed models and their parameters. This is why
different techniques were proposed in literature (see, e.g., [1],
[2], [3], [4]) to construct equivalent models for these new
electric power generations.

Mainly there are two families of equivalent models. The
ones based on physical representation, like an equivalent
machine, and the ones with less physical meaning based on
transfer functions. Both are used to reproduce the behaviour of
active and reactive powers injected by the PPM into the grid,
but the second ones are more attractrive when only few data
are available on the physical structure of the PPM, its control
system and the used technologies. Indeed, since they are just
mathematical models, they are better suited to build generic
models in different situations, i.e., they are flexible models.
This is illustrated, e.g., in [1] and [2] where such generic

models were built for wind farms. However this flexibility
was not sufficiently exploited in order to make the generic
models suited for several applications. For instance, most of
the proposed approaches allow constructing equivalent models
only for the transient stability and, generally, for a specific kind
of PPM like wind farms. This is obviously important but not
sufficient to fully analyse the stability of the system which is
usually evaluated at two levels: the transient stability in case
of large disturbances like a fault and the small-signal stability
in case of small disturbances for which the behaviour of the
system can be considered linear. Both are related in the sense
that the small-signal stability can be analysed by linearising,
around a steady state point, the dynamic model used to analyse
the transient stability. This gives informations on how the
modes of the system change after connecting the PPM to the
grid. Especially, the electromechanical modes (see, e.g., [5])
or, more generally, coupling modes which involve distant grid
devices [6], [7]. As a consequence, the target of the generic
model of the PPM is to capture the information related to
both kinds of phenomena (transient and small-signal). Indeed,
if the latter is built only for one class of phenomena, there is
no guarantee that the other one will be well reproduced. This
situation has been put into evidence in [?] where the impact
of a model of wind generation on the inter-area modes was
studied.

Several techniques were proposed to tune the parameters of
the equivalent models. For example, the ones (used, e.g., in
[2]) in which the full dynamic model of the grid is simulated
at each step time in order to update the parameters of the
equivalent model. This has the advantage to give accurate
results since the behaviour of the injected powers is adjusted
at each iteration based on a feedback from the simulation of
the actual model of the grid. However, when the latter is too
complex and of large-scale, this way of doing might require
significant computational effort.

Here, we propose a methodology to construct a unique PPM
generic model suited for the aforementioned target phenomena
with low computational effort. The idea is similar to the
one proposed in [1] which consists of using an input-output
transfer matrix to reproduce the behaviour of active and
reactive powers injected into the grid when the system is
disturbed by a set of faults. The difference here is that the
methodological framework is extended to consider different



kinds of sources (wind, solar, etc.) independently of their
technology, to take into account the small-signal stability and
to tune the parameters without using the model of the grid.
A structure is first proposed for the generic model. Next, to
capture informations related to the target phenomena, time
and frequency domains curve fitting criteria are introduced
and combined into the same cost function. The resulting
optimization problem is solved using only the structure of the
generic model and some recorded signals from the full model
in which the PPM is fully represented.

The paper is organized as follows: in Section II, the
methodology is given. Section III explains the tuning of the
parameters of the generic model. The test system and the
obtained results are shown in Section IV while Section V is
devoted to conclusions.

II. METHODOLOGY AND HYPOTHESIS

In a power system, each PPM (with one or more units) is
connected to a single connection node of the grid via power
electronic devices like back-to-back structures. Thus, both grid
and PPM (with its connexion device) exchange active and
reactive powers during time and they form two interconnected
subsystems as shown in Fig. 1a.
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(a) Connexion of a PPM to the grid
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(b) Concept of generic model
Figure 1. Physical and generic models of PPM

Based on these considerations, the idea behind a generic
model is to represent the full physical and detailed model of
the PPM by a simpler one (as shown in Fig. 1b) in which the
model of subsystem 2 does not have necessarily a physical
meaning. Its main role is to reproduce the behaviour of active
and reactive powers injected by the PPM into the grid when the
whole interconnected system is disturbed, e.g., by a grid fault.
For this, local signals like the voltage at the connexion node,
injected current, exchanged powers can be used as inputs and
outputs of the generic model. Indeed, Ym (t) and u (t), shown
in Fig. 1b, are not necessarily the inputs and the outputs of
the physical model of the PPM since, in a realistic situation,
it can be not easy to identify them. For instance, if the PPM
is connected to the grid by a transmission line, it is clear that
the current through the line and the voltage at the Point of
Common Coupling (PCC) are the interconnection variables.
However, it is not clear which of them is the input or the
output of the PPM. This is why hypothesis are generally made
on the structure of the generic model as well as on its input
and output signals. In our case, the way in which this is done
is explained below along with the basic idea of the proposed
methodology.

A. Basic idea

To reproduce the target phenomena, informations related to
them are firstly needed. They are used to tune the parameters
of the generic model. Based on this, the idea here is to use both
time and frequency responses of the system. More precisely,
to capture the transient stability, the proposed strategy is to
disturb the system by a set of faults NF at critical nodes. The
latter are chosen such that (i) they have the Critical Clearing
Time (CCT) smaller than the others, (ii) they cover well the
zone around the PCC. Condition (i) is to capture the transient
stability while condition (ii) is to give acceptable results for
other sets of faults. The approach is a little different for the
small-signal phenomenon since, in this case, the reference is a
Bode diagram. More specifically, as the modes of the system
can be captured by its linearized model around a steady-state
point, the parameters of the generic model can be tuned to
fit the Bode diagrams of a well-chosen input-output transfer
issued from the full detailed model of the power system. An
overview on the complete methodology including all these
steps is given in the diagram of Fig. 2.
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Figure 2. Steps of the proposed methodology

B. Structure of the generic model

As mentioned before, the structure of the generic model is
not unique and it can be chosen in function of the objectives.
In our case, the structure proposed for the generic model is
shown in Fig. 3.
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Figure 3. Integration scheme of the generic model

It consists of a multivariable transfer matrix H (s) connected
to the model of the grid by a feedback loop in which Ym is the
steady state value of Ym (t). This choice is mainly motivated
by two reasons. First, by the need to develop a unique generic
model able to reproduce the aforementioned target phenomena.
Indeed, such a structure is more convenient to take into
account the small-signal phenomena in the sense that it is



already linear and does not need to be linearized. Next, it
can be used to capture the power injected by different kinds
of sources independently on their technologies. As shown in
Section III, only some measured signals are needed to tune
the parameters of the transfer matrix H (s). The latter has the
following form

H (s) =

H11 (s) · · · H1p (s)
...

...
Hq1 (s) · · · Hqp (s)

 , (1)

in which p and q are, respectively, the number of inputs and
outputs. For each Hij (s), the assumed form is as follows

Hij (s) =

∑mij

k=0 a
(i,j)
k sk∑nij−1

`=0 b
(i,j)
` s` + snij

(2)

where mij and nij , with (i, j) ∈ {1, · · · , p} × {1, · · · , q},
are, respectively, the numerator and denominator degrees of
Hij (s). All the coefficients a(i,j)

k ∈ Rmij+1 and b(i,j)
` ∈ Rnij

are then to be tuned together in order to reproduce the target
phenomena. In the sequel, all the coefficients of H (s) are
grouped into the following vector

Θ =

[{
a

(i,j)
k

}i,j

k

{
b
(i,j)
`

}i,j

`

]
,

called here vector of parameters. Finally, only the input u (t)
and the output Ym (t) of the generic model have to be fixed.
For this, one assumes here that the generic model of Fig. 1b
is a dynamic power or current injector, i.e., the output u (t) is

u (t) =

[
P (t)
Q (t)

]
or u (t) =

[
IR (t)
II (t)

]
, (3)

where P (t), Q (t) are the injected active and reactive pow-
ers, respectively, while IR (t) and II (t) are the real and the
imaginary parts of the injected current (if system equations
are written in a grid (load-flow) axes). That is, in both cases,
the following relationships{

P (t) = VR (t) IR (t) + VI (t) II (t)

Q (t) = VR (t) II (t)− VI (t) IR (t)
, (4)

at the connection node PCC, are satisfied where VR (t) and
VI (t) are the real and the imaginary parts of the voltage
VPCC (t) at the node PCC. Notice, however, that for both
kinds of injectors (power or current), the injected variable is
always a current. Indeed, if VR (t) and VI (t) are fixed by the
voltage at the node to which the injector is connected (here
PCC), equation (4) shows that two variables are free. It is then
possible to inject a desired current Id (t) = (IRd

(t) , IId (t)) or
inject IR (t) and II (t) to have desired trajectories for P (t) and
Q (t).

Thus, when the kind of the injector is selected, the feedback
signal Ym (t) can be chosen in order to close the loop. In the
next section, more details and explanations are given on how
all these different signals are used to tune the parameters of
the generic model (1).

III. PARAMETERS TUNING PROCEDURE

Before explaining how to tune the parameters of the generic
model (1), let us first recall that our goal is to find a unique and
optimal vector of parameters Θopt which can lead to satisfy all
the fixed objectives. For this, the latter have to be considered
all together by formulating each of them. The way in which
this is done here is presented and explained in what follows.

A. Transient stability index
Usually, to reproduce the transient stability phenomenon,

the standard technique of least squares optimization is used
to tune the parameters of the equivalent model. However, since
this is often done by optimization interwoven with simulations,
an important computation effort may be needed. For instance,
if one considers the structure of Fig. 3, such an approach
consists of minimising simulating the closed-loop system (i.e.,
with the model of the grid) and update the parameters of the
vector Θ at each simulation step time in order to match the
signal u with the one recorded or measured from the original
full model of the power system. This can be easy when the
model of the grid is very simple, but for complex and large-
scale models, such a technique becomes less feasible. This
motivated us to propose a non imbricated tuning procedure
which can be explained based on the diagram of Fig. 4.
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Figure 4. Non imbricated tuning procedure

To start, let us first denote by u∗ (t) = u + ∆u∗ (t) and
Y∗m = Ym + ∆Y∗m (t) where u and Ym are the steady
state values, the signals recorded from the simulation of the
full model when its is disturbed by a set of faults at the
critical nodes (see Section II-A). This implies that if u∗ (t)
is as defined by (3), i.e., powers or currents, then when
u (t) = u∗ (t) in the diagram of Fig. 1b, we will obtain
Ym (t) = Y∗m (t). Based on this, the role of the generic
model is then to inject a signal u as close as possible to u∗

when the system of Fig. 3 is disturbed in the same way as the
original one of Fig. 1a. For this, one has to find the optimal
parameters Θ∗ for H (s,Θ) which make the square of the
error between ∆u (t) and ∆u∗ (t) as small as possible (Fig.
4). Mathematically, this can be formulated in two steps. First,
define the following optimisation index

JT (Θ) =
∑
tk∈T

‖ ∆u∗ (tk)−∆u (tk,Θ) ‖22,

where ‖ · ‖2 is the usual 2-norm and T = {t0, t1, · · · , T} is
the time window (of size T ) in which the signal u∗ is available.
Next, solve the associated optimization problem given by



Θ∗ = argmin
Θ∈Rn

JT (Θ) , (5)

where n =
(∑q

i=1

∑p
j=1 nij +mij

)
+ pq.

Notice that, in this case, it is not needed to add stability
constraints to (5) since if one has a good fitting (i.e., u close
to u∗), the stability of the closed-loop system of Fig. 3 can be
preserved and all the poles of H (s,Θ∗) are with real part less
or equal to zero. However, the situation is not the same for
the small-signal stability as one can see in the next section.

B. Small-signal stability index

For the power system of Fig. 1a, it is interesting to know
how the modes change when connecting the PPM to the
grid. Especially, the modes of interest which are mainly the
electromechanical modes like the inter-area ones and coupling
modes in general. The latter were introduced in [6] and [7]
as modes involving distant devices and are not necessarily
of electromechanical nature. In [8], e.g., a sensitivity index
is introduced to analyse the impact of a wind farm on these
modes based on its equivalent model which can be e.g., the
generic one that we propose. This is why it is important that
the generic model reproduces as well as possible such modes
in the closed-loop system of Fig. 3. For this, a curve fitting in
the frequency domain is proposed here. More precisely, after
linearising the dynamic model of the system of Fig. 1a, each
input-output transfer can captures the modes of the system
which are dominant in that transfer. Notice that the ones which
are not dominant are not of interest for our problem since they
are not impacted by the considered PPM injection. Moreover,
the most impacted modes by the power injection are, generally,
related to the devices located near the injection point. Thus,
by selecting a frequency range to which belong the modes
of interest, any transfer (possibly multivariable) of the system
related to a sensitive device to PPM injection and in which
these modes are dominant can be chosen. Its Bode diagram
plays the role of a reference which has to be reproduced when
the generic model is used.

To formulate this, let us start by the diagram of Fig. 5 which
is the small-signal stability representation of the system of
Fig. 3, where G (s) is the transfer matrix of the grid model
linearised around the equilibrium point. The variables W and
Z are respectively the inputs and the outputs of the chosen
transfer in which the modes of interest are dominant and
sensitive to PPM injection.
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Figure 5. Closed-loop system for the small-signal stability

From the diagram of Fig. 5, the transfer between W and Z
can be written by the following linear fractional transformation
(see, e.g., [9])

Fl (G,H (Θ)) = G11 + G12 [I −H (Θ)G22]
−1

H (Θ)G21

(6)
which is the closed-loop transfer matrix, with[

Z
Ym

]
=

[
G11 G12

G21 G22

]
︸ ︷︷ ︸

G

[
W
u

]
.

Now, let us consider that ω+ and ω− are, respectively, the
upper and the lower frequency bands of the frequency range
Ω? = [ω+ ω−] to which belong the frequencies corresponding
to the modes of interest. More precisely, if one denotes by Λ
the set of all the modes of the linearised model of the system
of Fig. 1a, the set of modes of interest Λ? ⊂ Λ is such that

Λ? := {λ ∈ Λ | Im (λ) ∈ Ω?} .

Let also F? (iωk) ∈ Cnz×nw with ωk ∈ Ω?, i2 = −1 and
nz, nw the length of Z and W respectively, be the frequency
response, in the restricted frequency range Ω?, of the transfer
between W and Z selected from the linearised model of the
initial system of Fig. 1a. It is then our reference which has to
be fitted, in the frequency domain, by the closed-loop transfer
matrix (6) in order to reproduce the modes of Λ?. For this,
the index to be minimized is chosen

JΩ? (Θ) =
∑

ωk∈Ω?

‖F? (iωk)−Fl (G (iωk) ,H (iωk,Θ)) ‖22

and the optimization problem to solve is

Θ̂ = argmin
Θ∈Rn∩Sc

JΩ? (Θ) , (7)

where Sc is the constraints domain, i.e., such that the poles of
each Hij (s) are all of real part less or equal to zero. Indeed,
here, one has to add at least stability constraints on the entries
of H (s) since one could obtain a good frequency fitting with
an unstable generic model. It is also possible to add constraints
on the stability of the closed-loop transfer matrix (6) in order
to ensure the stability of the system of Fig. 5.

Remark 1: For large-scale power systems, the input data
F? (iωk) and G (iωk) with ωk ∈ Ω?, can be obtained
by using appropriate tools. In [10], for example, such data
were obtained in the case of the European system for which
the number of the state variables is about 20000. Likewise,
to obtain the time domain trajectories, needed to tune the
parameters of the generic model, some simulation tools like the
Eurostag program [11], used here, are very efficient to simulate
the behaviour of complex and large-scale power systems.

C. Mixed index

After giving the indexes corresponding to each kind of
stability, one has now to mix them into a same objective
function in order to find the optimal parameters Θopt which



can lead the generic model to reproduce both small-signal and
transient stabilities. This is very important since if a generic
model is tuned only for one kind of stability, there is no
guarantee that it can reproduce the other one. Such an objective
function is chosen here as

JTΩ? (Θ) = αJT (Θ) + βJΩ? (Θ) , (8)

where α and β are two positive constants to give high or
low priority to a kind of stability compared to the other one.
Moreover, they can be scaled to belong to a set D defined by

D :=
{(
ᾱ, β̄

)
∈ [0 1]× [0 1] | ᾱ+ β̄ = 1

}
.

In this way, they can be expressed by percentages. Finally, the
vector Θopt of optimal parameters can be obtained by solving
the optimization problem bellow

Θopt = argmin
Θ∈Rn∩Sc

JTΩ? (Θ) . (9)

Remark 2: (9) is a non linear optimization problem which
can be solved by different programs like the fmincon func-
tion of Matlab. However, since the index JTΩ? (Θ) is not
a convex function, with respect to the parameters of Θ, it
is possible to get local minimums which may not lead to
satisfactory results. Thus, it is better to start with an initial
vector Θinit which makes the entries of H

(
s,Θinit

)
all stable.

IV. POWER SYSTEM APPLICATION

To test and to validate our approach, we considered a
realistic power system represented in Fig. 6.���������� ���	
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Figure 6. France-Span-Portugal interconnected system
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Figure 7. Test system

It is a simplified model of the France-Span-Portugal in-
terconnection which consists of 23 synchronous generators
to which is connected a wind farm of 19 DFIG (Double
Fed Induction Generator) split into two groups as shown
in Fig. 7. The DFIG’s are firstly connected between them
by a transmission line of reactance X2 which represents the
geographic distance between them. Next, they are connected,
via a transmission line of reactance X1, to 24 kV terminal bus
(Vandellos (PCC)) of Generator G8. The total active power
generated by the wind farm is about 276 MW.

All the synchronous generators, as well as the DFIG’s,
are modelled in detail along with their different regulators.
The resulting dynamic model has 1021 state variables among
which more than half are related to the dynamic model of the
wind farm which has to be replaced by a generic model.

Starting from this situation, the first step to design our
generic model is to generate the input data, i.e., the ref-
erence trajectories for both transient and small-signal sta-
bilities. This is done in two steps. First, the whole in-
terconnected system is disturbed at time 100 s by a set
of symmetrical faults (cleared after 200 ms) at grid buses
NF = {PCC,Begues (near G4),Foix (terminal of G6)} for
which the CCT’s are shown in the first line of Table I. Notice
that NF was chosen as explained in Section II-A.

TABLE I
CRITICAL CLEARING TIMES (IN MILLISECONDS)

Node PCC Teruel Begues Foix
With full model 277 320 299 774

With generic model (case 1) 272 313 310 768

With generic model (case 2) 272 311 312 767

This allowed us to get the trajectory of the voltage at node
PCC, shown in Fig. 8, as well as the ones of the active (Fig. 9a)
and the reactive (Fig. 9b) powers between nodes N1 and PCC,
i.e., trough the transmission line of impedance X1. Notice just
that, to test the robustness of the proposed approach, terminal
bus (Teruel) of generator G7 was chosen. It does not belong
to set NF and it has also a CCT smaller than the one of Foix.

Figure 8. Response of VPCC to a short-circuit at node PCC

Next, to capture all the coupling modes of the system, a
frequency range between ω− = 0.01 rad/s (i.e., 0.0016 Hz)
and ω+ = 30 rad/s (i.e., 4.77 Hz) is fixed, i.e., Ω? = [0.01 30]
rad/s. Generator G8 is connected to PCC bus. Thus, according
to the explanations of section III-B, the transfer between



its mechanical torque and its speed is selected. Its Bode
diagrams are shown in Fig. 10 and one can see that there are
mainly three dominant mode. Especially, the inter-area one of
frequency 0.8109 Hz. Indeed, as mentioned, e.g., in [12], a
dominant pole is the one for which the frequency is close to
the frequency at which arises the peak in the Bode magnitude
diagram.

Also, by choosing the generic model as a dynamic power
injector, i.e., u = {P (t) , Q (t)} for which Ym (t) = {VPCC},
the frequency responses of all the entries of the transfer matrix
G (s) are computed in the frequency range Ω?. All these
choices was motivates by practical reasons.

From all these data, two cases are considered. On one hand,
the case where the parameters of the generic model are tuned
to reproduce only one class of phenomena (transient), i.e.,
β = 0 in (8). On the other hand, the case where the other
class (small-signal) is taken into account with α = 0.01 and
β = 0.99. In both cases, the generic model is assumed of
order 5, i.e., n11 = m11 = n21 = m21 = 5 since from Figs.
9a and 9b one can notice that there are at least two oscillatory
modes. The optimization problem (8) is solved with fmincon
function of Matlab and two generic models of the form[

∆P
∆Q

]
=

[
H11 (s)
H21 (s)

]
︸ ︷︷ ︸

H(s)

∆VPCC, (10)

are obtained where the transfer matrix H (s) is given by

H1 (s) =

− 220.6+236.9s+189.3s2+85.65s3+11.63s4+2.195s5

45.51+126.6s+33.05s2+32.39s3+1.423s4+s5

−0.9334+43.25s+80.4s2+107.6s3+3.851s4+2.827s5

5.332+15.62s+28s2+28.09s3+1.409s4+s5

 ,
for the first one and

H2 (s) =

− 4.1349+1.3588s+4.1466s2+0.814s3+0.5024s4+0.0045s5

1+1.2143s+1.1376s2+0.295s3+0.1444s4+0.0007s5

−37.2+953.525s+33.84s2+168.93s3+0.2533s4+3.6686s5

80.94+193.63s+54.68s2+35.76s3+2.3368s4+s5

 ,
for the second one. The results of the curve fitting obtained
with both generic models are shown in Figs. 9 and 10.

For the transient stability, one can see in Figs. 9a and 9b that
the output of the first generic model of order 5 fits very well
the reference trajectories corresponding to the change of active
and reactive powers. In the second case, i.e., when β 6= 0,
the fitting of active power, shown in Fig. 9c, is less accurate
than in the first case, but better results are obtained for the
small-signal stability as one can see in Fig. 10. Indeed, the
latter shows that the pic around 0.81 Hz, corresponding to
an inter-area mode of the full system, is better reproduced
with the second generic model than with the first one. This
can be also seen in the results of Table II. At this stage, two
conclusions come out. The first one is that when a generic
model is built only for one class of phenomena (transient),
there is no guarantee that it can gives good results for the
other one (small-signal). The second one, is that there is a
trade-off between these two objectives.

(a) Curve fitting result for active
power (case 1)

(b) Curve fitting result for reactive
power (case 1)

(c) Curve fitting result for active
power (case 2)

(d) Curve fitting result for reactive
power (case 2)

Figure 9. Curve fitting results for active and reactive powers

Figure 10. Frequency response fitting: reference and reproduced responses

Now, to validate our results, the obtained generic models
have to be integrated to the nonlinear model of the grid as
shown in Fig. 3. Indeed, Fig. 9 shows just the results of the
curve fitting since, in our approach, the model of the grid is
not used in the tuning procedure. For this, Eurostag program
was used to construct the dynamic model corresponding to the
system of Fig. 3 and to simulate its behaviour. A grid fault,
started at 100 s and cleared after 200 ms, is applied at the grid
bus Teruel and the results are shown in Fig. 11.

As one can see in Figs., 11a and 11b, the first generic
model (i.e., the one obtained with β = 0) gives acceptable
results for the transient stability (between 100 s and 103 s
approximately). This shows the robustness of the proposed
approach since, as mentioned before, a fault at bus Teruel
was not considered when the reference trajectories, used in
the tuning procedure, were generated. Second line of Table I
claims also this since the CCT’s computed with the generic
model, at different grid buses, are not far from the ones



(a) Response of active power (case 1) (b) Response of reactive power (case
1)

(c) Response of active power (case 2) (d) Response of reactive power (case
2)

Figure 11. Response of powers with both generic and full models

computed with the original full model. However, after 103
s, one can notice that there are a lot of oscillations. The latter
are related to the small-signal stability and they are dues to
the pic (around 0.81 Hz) in the Bode gain diagram of Fig.
10. Indeed, as the small-signal stability is not considered in
this case, the resulting generic model disturbs a lot the inter-
area mode of frequency 0.8109 Hz by reducing its damping
from 7.27% to 4.71% as shown in Table II. Notice that is
other situations, the differences could be more important. For
example, in [?], the inter-area mode of interest was instable
with the generic model built only for transient stability.

In the second case, the situations is, however, more accept-
able for the small-signal stability as one can see in Figs. 11c
and 11d but less accurate for the active power as shown in Fig.
11c. The reason is that, with the second generic model, the
inter-area mode of frequency 0.8109 Hz is better reproduced
than in the first case. Its damping (of 6.05%) is more close
to the one of the full model as shown in Table II. This can
be also seen in Fig. 10 where the pic around 0.81 Hz is less
important in the second case. However, as there is a trade-off
between small-signal and transient stabilities, one can notice
that the less accurate (but still acceptable since the CCT’s are
almost the same with the previous case) result obtained for the
active power is coherent with the curve fitting result of Fig.
9a. A possible way to improve this result is to increase the
order of the generic model (1).

V. CONCLUSION

An optimal and not interwoven with simulations methodol-
ogy to build generic models for PPM, integrated into large-
scale power systems, is presented in this paper. Its advantages
compared to the existing techniques are mainly:

TABLE II
FREQUENCY AND DAMPING OF INTER-AREA MODE

Frequency (Hz) Damping (%)
With full model 0.8109 7.27

With generic model (case 1) 0.8134 4.71

With generic model (case 2) 0.833 6.05

• it allows to reproduce both kinds of phenomena (transient
and small-signal) with the same generic model.

• it requires less computational effort since the parameters
of the generic model are tuned without using the dynamic
model of the grid.

• it is suited for different kinds of power sources indepen-
dently on their technologies.

A realistic power system application is considered for which
acceptable results are obtained. This motivate us to apply the
proposed approach in the case of more complex systems like
the European one. Its application to another kind of sources
like PV plants will be also tested. In the case of several PPM,
a coordinate tuning of parameters is under development. For
the TSO, all the above advantages can be exploited, e.g., to
improve numerical simulations, to better design voltage and
power controllers and to exchange models between them in a
more flexible way.
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