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Abstract

The subdifferential of convex functions of the singular spectrum of real matrices
has been widely studied in matrix analysis, optimization and automatic control
theory. Convex optimization over spaces of tensors is now gaining much interest
due to its potential applications in signal processing, statistics and engineering.
The goal of this paper is to present an extension of the approach by Lewis [16]
for the analysis of the subdifferential of certain convex functions of the spectrum
of symmetric tensors. We give a complete characterization of the subdifferential
of Schatten-type tensor norms for symmetric tensors. Some partial results in
this direction are also given for Orthogonally Decomposable tensors.
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1. Introduction

1.1. Background
Multidimensional arrays, also known as tensors are higher-order generaliza-

tions of vectors and matrices. In recent years, they have been the subject of
extensive interest in various extremely active fields such as e.g. statistics, signal
processing, automatic control, etc . . . where a lot of problems involve quantities
that are intrinsically multidimensional such as higher order moment tensors [2].
Many natural and useful quantities in linear algebra such as the rank or the
Singular Value Decomposition turn out to be very difficult to compute or gen-
eralize in the tensor setting [12, 13, 9]. Fortunately, efficient approaches exist
in the case of symmetric tensors which lie at the heart of the moment approach

∗Corresponding author.
Email addresses: stephane.chretien@npl.co.uk (Stéphane Chrétien),

tianwen.wei.2014@ieee.org (Tianwen Wei )

Preprint submitted to Elsevier March 25, 2020



which recently proved very efficient for addressing essential problems in Statis-
tics/Machine Learning such as Clustering, estimation in Hidden Markov Chains,
etc . . . See the very influencial paper [2] for more details. In many statistical
models such as the ones presented in [2], the rank of the involved is low and
one expects that the theory of sparse recovery can be applied to recover them
from just a few observations just as in the case of Matrix Completion [4], [5]
Robust PCA [3] and Matrix Compressed Sensing [18]. In such approaches to
Machine Learning, one usually have to solve a penalized least squares problem
of the type

min
X∈Rn1×n2

‖y −A(X)‖+ λ p(X),

where the penalization p is rank-sparsity promoting such as the nuclear norm
and A is a linear operator taking values in Rn. In the tensor setting, we look
for solutions of problems of the type

min
X∈Rn1×···×nD

‖y −A(X)‖+ λ p(X),

for D > 2 and p is a generalization of the nuclear norm or some Schatten-type
norm for tensors. The extention of Schatten norms to the tensor setting has
to be carefully defined. In particular, several nuclear norms can be naturally
defined [21], [8], [17]. Moreover, the study of the efficiency of sparsity promoting
penalization relies crucially on the knowledge of the subdifferential of the norm
involved as achieved in [1] or [15], or at least a good approximation of this
subdifferential [21] [17]. In the matrix setting, the works of [20, 16] are famous
for providing a neat characterization of the subdifferential of matrix norms or
more generaly functions of the matrix enjoying enough symmetries. In the 3D
or higher dimensional setting, however, the case is much less understood. The
relationship between the tensor norms and the norms of the flattenings are
intricate although some good bounds relating one to the other can be obtained
as in [11]. Notice that many recent works use the nuclear norms of the flattenings
of the tensors to be optimized, especially in the field of compressed sensing; see
e.g. [17, 8]. One noticeable exception is the recent work [21] where a study of
the subdifferential of a purely tensorial nuclear norm is proposed. However, in
[21], only a subset of the subdifferential is given but the subdifferential itself
could not be fully characterized.

Our goal in the present paper is to extend previous results on matrix norms
to the tensor setting. The focus will be on two special type of tensors, namely
symmetric tensors and orthogonally decomposable tensors (abbreviated as odeco
tensor hereafter). Symmetric tensors are invariant under any permutation of its
indices [7]. They play an important role in many applications, e.g. Gaussian
Mixture Models (GMM), Independent Component Analysis (ICA) and Hidden
Markov Models (HMM), see [2] for a survey. odeco tensors have a diagonal
core in their Higher Order Singular Value Decomposition (HOSVD) [14]. They
are special structured tensors that inherit many nice properties of their matrix
counterpart. In this contribution, we propose a general study the subdifferential
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of certain convex functions of the spectrum of these tensors and apply our
results to the computation of the subdifferential of useful and natural tensor
norms. The convex conjugate approach used in this paper stems from the elegant
work of [16]. One key ingredient for the understanding of tensor norms is the
tensor version Von Neumann’s trace inequality and the precise description of
the equality case. We suspect that the lack of results on the subdifferential of
tensor norms in the literature is due to the fact that an extension of the Von
Neumann inequality for tensors did not exist until recently; see [6].

The plan of the paper is as follows. In Section 2, we provide a general
overview of tensors and their spectral factorizations. In Section 4, we provide a
general formula for the subdifferential for symmetric tensors and odeco tensors.
Finally, in Section 5, we provide formulas for the subdifferential of Schatten
norms for symmetric tensors and the subset of odeco tensors in the subdifferential
of Schatten norms for odeco tensors.

1.2. Notations
1.2.1. Convex functions

For any convex function f : Rn 7→ R ∪ {+∞}, the conjugate function f∗

associated to f is defined by

f∗(g)
def
= sup

x∈Rn

〈g, x〉 − f(x).

The subdifferential of f at x ∈ Rn is defined by

∂f(x)
def
= {g ∈ Rn | ∀y ∈ Rn, f(y) ≥ f(x) + 〈g, y − x〉} .

It is well known (see e.g. [10]) that g ∈ ∂f(x) if and only if

f(x) + f∗(g) = 〈g, x〉.

1.2.2. Tensors
Let D and n1, . . . , nD be positive integers. In the present paper, a multi-

dimensional array X in Rn1×···×nD is called a D-mode tensor. If n1 = · · · = nD,
then we will say that tensor X is cubic. The set of D-mode cubic tensors will
be denoted by Rn×···×n or RnD with a slight abuse of notation.

The mode-d fibers of a tensor X are the vectors obtained by varying the
index id while keeping the other indices fixed.

It is often convenient to rearrange the elements of a tensor so that they form
a matrix. This operation is referred to as matricization and can be defined in
different ways. In this work, X(d) stands for a matrix in Rnd×

∏D
i=1;i6=d ni obtained

by stacking the mode-d fibers of X one after another with forward cyclic ordering
[19]. Inversely, we define the tensorization operator T (d) as the adjoint of the
mode-d matricization operator, i.e. it is such that

〈X(d),M〉 = 〈X ,T (d)(M)〉
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for all X ∈ Rn1×···×nD and all M ∈ Rnd×
∏D

i=1;i6=d ni , where 〈·, ·〉 denotes the
scalar product defined in Section 2.1.3.

The mode-d multiplication of a tensor X ∈ Rn1×···×nD by a matrix M ∈
Rn′d×nd , denoted by X ×d M , yields a tensor in Rn1×···×nd−1×n′d×nd+1×···nd . It
is defined by

(X ×dM)i1,...,iD =
∑
id

Xi1,...,id−1,id,id+1,...,iDMid,i′d
.

Last, we denote by ⊗ the tensor product, i.e. for any v(1), . . . , v(D) with
v(d) ∈ Rnd , v(1)⊗· · ·⊗ v(D) is a tensor in Rn1×···×nD whose entries are given by(

v(1) ⊗ · · · ⊗ v(D)
)
i1,...,iD

= v
(1)
i1
· · · v(D)

iD
.

2. Basics on tensors

2.1. General tensors
2.1.1. Tensor rank

If a tensor X can be written as

X = v(1) ⊗ · · · ⊗ v(D),

then we say X is a rank one tensor. Any tensor X can easily be written as a
sum of rank one tensors. Indeed, if (e

(n)
i )i=1,...,n denotes the canonical basis of

Rn, we have

X =
∑

i1=1,...,n1,...,iD=1,...,nD

xi1,...,iD · e
(n1)
i1
⊗ . . .⊗ e(nD)

iD
.

Among all possible decomposition as a sum of rank one tensors, one may look
for the one involving the least possible number of summands, i.e.

X =
∑

j=1,...,r

v
(1)
j ⊗ . . .⊗ v

(D)
j , (2.1)

for some vectors v(d)j , j = 1, . . . , r and d = 1, . . . , D. The number r is called the
rank of X . It is already known that the rank of a tensor is NP-hard to compute
[13].

2.1.2. The Higher Order SVD
One of the main problems with the “sum-of-rank-one” decomposition (2.1) is

that the vectors v(d)j , j = 1, . . . , r may not form an orthonormal family of vectors.
The Tucker decomposition of a tensor is another decomposition which reveal a
possibly smaller tensor S hidden inside X under orthogonal transformations.
More precisely, we have

X = S ×1 U
(1) ×2 U

(2) · · · ×D U (D), (2.2)
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where each U (d) is orthogonal and S is a tensor of the same size as X defined
as follows. Take the (usual) SVD of the matrix X(d)

X(d) = U (d)Σ(d)V (d)t

and based on [14], we can set

S(d) = Σ(d)V (d)t
(
U (d+1) ⊗ · · · ⊗ U (D) ⊗ U (1) ⊗ · · · ⊗ U (d−1)

)
.

Then, S(d) is the mode-d matricization of S. One proceeds similarly for all
d = 1, . . . , D and one recovers the orthogonal matrices U (1), . . . , U (D) which
allow us to decompose X as in (2.2). Notice that this construction implies that
S has orthonormal fibers for every modes.

2.1.3. Norms of tensors
Several tensor norms can be defined on the tensor space Rn1×···×nD . The

first one is a natural extension of the Frobenius norm or Hilbert-Schmidt norm
from matrices. We start by defining the scalar product on Rn1×···×nD as

〈X ,Y〉 def
=

n1∑
i1=1

· · ·
nD∑
iD=1

xi1,...,iDyi1,...,iD .

Using this scalar product, we can define the Frobenius norm of tensors as

‖X‖F
def
=

√
〈X ,X〉.

In this work, we shall focus on a family of tensor norms called Schatten-(p, q)
norms. The Schatten-(p, q) norm of X is defined by

‖X‖p,q
def
= λ

( D∑
d=1

‖σ(d)(X )‖qp
)1/q

, (2.3)

where σ(d)(X ) is the vector of singular values of X(d), called the mode-d spectrum
of X , and λ is a positive constant. In the particular case that p = q = 1 and
λ = 1/D, the Schatten-(1, 1) norm will be referred to as the nuclear norm, and
will be denoted by ‖ · ‖∗ instead, i.e.

‖X‖∗
def
=

1

D

D∑
d=1

‖σ(d)(X )‖1.

2.2. Orthogonally decomposable tensors
Definition 2.1. Let X be a tensor in Rn1×···×nD . If

X =

r∑
i=1

αi · u(1)i ⊗ · · · ⊗ u
(D)
i , (2.4)

where r 6 n1 ∧ · · · ∧ nD, α1 > · · · > αr > 0 and {u(d)1 , . . . , u
(d)
r } is a family of

orthonormal vectors for each d = 1, . . . , D, then we say (2.4) is an orthogonal
decomposition of X and X is an orthogonally decomposable (odeco) tensor.
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Denote α = (α1, . . . , αr, 0, . . . , 0) in Rn1∧···∧nD . For each d ∈ {1, . . . , D}, we
may complete {u(d)1 , . . . , u

(d)
r } with {u(d)r+1, . . . , w

(d)
nd } so that matrix U (d) =

(u
(d)
1 , . . . , u

(d)
nd ) ∈ Rnd×nd is orthogonal. Using U (1), . . . , U (D), we may write

(2.4) as

X = diag(α)×1 U
(1) ×2 U

(2) · · · ×D U (D), (2.5)

where diag(α) denotes the cubic tensor whose diagonal entries are given by
vector α.

2.3. Symmetric tensors
Let SD be the set of permutations over {1, . . . , D}. A D-mode cubic tensor

X ∈ RnD will be said symmetric if for all τ ∈ SD,

Xi1,...,iD = Xτ(i1),...,τ(iD)

The set of all symmetric tensors of order n will be denoted by Sn. An immediate
result is the following useful proposition whose proof is straightforward.

2.4. Spectrum of tensors
Let E denote a subspace of the space of all tensors. Let us define the spectrum

as the mapping which to any tensor X ∈ E associates the vector σE(X ) given
by

σE(X )
def
=

1√
D

(σ(1)(X ), . . . , σ(D)(X )).

Here we stress that the underlying tensor subspace E does make a difference. For
instance, although σRnD (X ) = σSn(X ) for all X ∈ Sn, the two different tensor
space RnD and S may result in different subdifferential of the same tensor norm.

The following result is straight forward.

Proposition 2.2. If X is either odeco or symmetric, then σ(1)(X ) = · · · =
σ(D)(X ).

3. Further results on the spectrum

In this section, we will present some further results on the spectrum such as
the question of characterizing the image of the spectrum and the subdifferential
of a function of the spectrum.
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3.1. The Von Neumann inequality for tensors
Von Neumann’s inequality says that for any two matricesX and Y in Rn1×n2 ,

we have

〈X,Y 〉 ≤ 〈σ(X), σ(Y )〉,

with equality when the singular vectors of X and Y are equal, up to permuta-
tions when the singular values have multiplicity greater than one. This result
has proved useful for the study of the subdifferential of unitarily invariant con-
vex functions of the spectrum in the matrix case in [16]. In order to study the
subdifferential of the norms of symmetric tensors, we will need a generalization
of this result to higher orders. This was worked out in [6].

Definition 3.1. We say that a tensor S is blockwise decomposable if there exists
an integer B and if, for all d = 1, . . . , D, there exists a partition I(d)1 ∪ . . .∪ I

(d)
B

into disjoint index subsets of {1, . . . , nd}, such that Xi1,...,iD = 0 if for all b =

1, . . . , B, (i1, . . . , iD) 6∈ I(1)b × . . .× I
(D)
b .

An illustration of this block decomposition can be found in Figure 1. The
following result is a generalization of von Neumann’s inequality from matrices
to tensors. It is proved in [6].

Theorem 3.2. Let X ,Y ∈ Rn1×···×nD be tensors. Then for all d = 1, . . . , D,
we have

〈X ,Y〉 6 〈σ(d)(X ), σ(d)(Y)〉. (3.6)

Equality in (3.6) holds simultaneously for all d = 1, . . . , D if and only there exist
orthogonal matrices W (d) ∈ Rnd×nd for d = 1, . . . , D and tensors D(X ),D(Y) ∈
Rn1×···×nD such that

X = D(X )×1 W
(1) · · · ×D W (D),

Y = D(Y)×1 W
(1) · · · ×D W (D),

where D(X ) and D(Y) satisfy the following properties:

(i) D(X ) and D(Y) are block-wise decomposable with the same number of
blocks, which we will denote by B,

(ii) the blocks {Db(X )}b=1,...,B (resp. {Db(Y)}b=1,...,B) on the diagonal of
D(X ) (resp. D(Y)) have the same sizes,

(iii) for each b = 1, . . . , B the two blocks Db(X ) and Db(Y) are proportional,
i.e. there exist c1, c2 ∈ R with c1c2 6= 0, such that c1Db(X ) = c2Db(Y).

3.2. Surjectivity of the spectrum
Note that any diagonal tensor is both odeco and symmetric. A diagonal

tensor X with non-negative diagonal entries (λ1, . . . , λn) satisfies σ(1)(X ) =
· · · = σ(D)(X ) = (λ1, . . . , λn)T. Therefore, for any non-negative vector s, there
exist a symmetric and odeco tensor X such that σ(X ) = (s, . . . , s).

Notice that general tensors have different spectra along all the different
modes and the question of analysing the surjectivity is much more subtle.
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Figure 1: A block-wise diagonal tensor.

4. The subdifferential of functions of the spectrum

Hereafter, we shall always assume that f : Rn × · · · × Rn 7→ R is a proper
closed convex function that satisfies the following property:

f(s1, . . . , sD) = f(|sτ(1)|, . . . , |sτ(D)|), ∀s1, . . . , sD ∈ R, ∀τ ∈ SD. (4.7)

See Section 5 for a concrete example of f .
The purpose of this section is to present a characterization of the subdiffer-

ential of f of the spectrum for symmetric and odeco tensors.

4.1. Lewis’ characterization of the subdifferential
Let us recall that the spectrum is defined on a subspace E . In this section,

we recall the result of Lewis in the setting of tensor spectra, which characterizes
the subdifferential if the formula

(f ◦ σE)∗ = f∗ ◦ σE (4.8)

holds on the domain of definition of σE. The proof is exactly the same as in [16]
thanks to the tensor version of Von Neumann’s inequality. We recall it here for
the sake of completeness.

Theorem 4.1. Let X and Y be two tensors in RnD. If (4.8) holds, then Y ∈
∂(f ◦ σE)(X ) if and only if the following conditions are satisfied:

(i) σE(Y) ∈ ∂f(σE(X )),
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(ii) equality holds in the Von Neumann inequality, i.e. 〈X ,Y〉 = 〈σE(X ), σE(Y)〉.

Proof. As is well known, Y ∈ ∂(f ◦ σE)(X ) if and only if

(f ◦ σE)(X ) + (f ◦ σE)∗(Y) = 〈X ,Y〉.

Recall that we assumed the following equality to hold

(f ◦ σE)(X ) + (f ◦ σE)∗(Y) = f(σE(X )) + f∗(σE(Y)).

On the other hand,

f(σE(X )) + f∗(σE(Y)) > 〈σE(X ), σE(Y)〉,

where equality takes place if and only if

σE(Y) ∈ ∂f(σE(X )).

Finally, by the von Neumann inequality, we have

〈σE(X ), σE(Y)〉 ≥ 〈X ,Y〉,

where the equality takes place if and only if the equality condition is satisfied.

4.2. The symmetric case
Throughout this section E will be the set Sn of all symmetric tensors in RnD.

4.2.1. Proving (4.8) for symmetric tensors
There exists a simple formula for the conjugate of the composition of the

spectrum with a convex function. This formula will be helpful for gaining useful
information on the subdifferential of convex functions of the spectrum.

Theorem 4.2. Let X be a symmetric tensor in RnD. Then,

(f ◦ σSn)∗(X ) = f∗ ◦ σSn(X )

Proof. This proof mimics the proof of [16, Theorem 2.4]. Let

X = SX ×1 U · · · ×D U

denote the Higher Order singular value decomposition of X . By definition of
conjugacy, we have

(f ◦ σSn)∗(X ) = sup
Y∈Rn×···×n

〈X ,Y〉 − f(σSn(Y)).

By the tensor von Neumann inequality we have

sup
Y∈Rn×···×n

〈X ,Y〉 − f(σSn(Y))

≤ sup
Y∈Rn×···×n

1

D

D∑
d=1

〈σ(d)(X ), σ(d)(Y)〉 − f(σSn(Y)) (4.9)

≤ sup
s1,...,sD∈Rn

1√
D

D∑
d=1

〈σ(d)(SX ), sd〉 − f

(
1√
D

(s1, . . . , sD)

)
.(4.10)
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By (4.7) and the symmetry of X , there exists a maximizer s∗ of the right hand
side term of this last equation that satisfies s∗ ≥ 0 and s∗1 = . . . = s∗D. Now,
based on Section 3.2, there exists a tensor S∗ such that s∗ = σ(S∗). Thus, we
obtain that

sup
s1,...,sD∈Rn

1√
D

D∑
d=1

〈σ(d)(SX ), sd〉 − f

(
1√
D

(s1, . . . , sD)

)

=
1

D

D∑
d=1

〈σ(d)(SX ), σ(d)(S∗)〉 − f(σSn(S∗)).

On the one hand, using that S∗ has support included in S and Theorem 3.2, we
obtain that

sup
s1,...,sD∈Rn

1√
D

D∑
d=1

〈σ(d)(SX ), sd〉 − f

(
1√
D

(s1, . . . , sD)

)
= 〈X ,X ∗〉 − f(σSn(X ∗))

where

X ∗ = S∗ ×1 U · · · ×D U.

From this, we deduce that

sup
s1,...,sD∈Rn

1√
D

D∑
d=1

〈σ(d)(SX ), sd〉 − f

(
1√
D

(s1, . . . , sD)

)
= sup
Y∈Rn×···×n

〈X ,Y〉 − f(σSn(Y)) (4.11)

= (f ◦ σSn)∗(X ).

On the other hand, using the fact that σSn(SX ) = σSn(X ),

sup
s1,...,sD∈Rn

1√
D

D∑
d=1

〈σ(d)(SX ), sd〉 − f

(
1√
D

(s1, . . . , sD)

)

= sup
s1,...,sD∈Rn

1√
D

D∑
d=1

〈σ(d)(SX ), sd〉 − f

(
1√
D

(s1, . . . , sD)

)
= f∗ ◦ σSn(X ).

Therefore,

(f ◦ σSn)∗(X ) = f∗ ◦ σSn(X )

as announced.
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4.2.2. A closed form formula for the subdifferential
We now present a closed form formula for the subdifferential of a symmetric

function of the spectrum of a symmetric tensor.

Corollary 4.3. The necessary and sufficient conditions for an symmetric ten-
sor Y to belong to ∂(f ◦ σRnD )(X ) are

1. Y has the same mode-d singular spaces as X for all d = 1, . . . , D

2. σRnD (Y) ∈ ∂f(σRnD (X )).

Proof. Combine Theorem 4.2 with Theorem 4.1.

4.3. The odeco case
Throughout this subsection E = RnD.

4.3.1. Proving (4.8) for odeco tensors
As for the symmetric case, we start with a result in the spirit of (4.8).

Theorem 4.4. For all odeco tensors X , we have

(f ◦ σRnD )∗(X ) = f∗(σRnD (X )) (4.12)

Proof. By definition, equality (4.12) is equivalent to

sup
Y
{〈X ,Y〉 − f(σRnD (Y))} = sup

s1,...,sD∈Rn

{
1

D

D∑
d=1

〈σ(d)(X ), sd〉 − f(s1, . . . , sD)

}
.

(4.13)

Consider the optimization problem

sup
Y

{
〈X ,Y〉, f(σRnD (Y)) 6 C

}
(4.14)

and

sup
s1,...,sD∈Rn

{
1

D

D∑
d=1

〈σ(d)(X ), sd〉, f(s1, . . . , sD) 6 C

}
. (4.15)

Clearly, we have

sup
Y
{〈X ,Y〉, f(σRnD (Y)) 6 C}

6 sup
Y

{
1

D

D∑
d=1

〈σ(d)(X ), σ(d)(Y)〉, f(σRnD (Y)) 6 C

}

6 sup
s1,...,sD∈Rn

{
1

D

D∑
d=1

〈σ(d)(X ), sd〉, f(s1, . . . , sD) 6 C

}
. (4.16)
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Assume that the supremum (4.15) is achieved at (s∗1, . . . , s
∗
D). Denote

s† =
1

D!

∑
τ

sτ(k).

Clearly, s† is independent of k. Moreover, we have

1

D

D∑
d=1

〈σ(d)(X ), sd〉 =
1

D

D∑
d=1

〈σ(d)(X ), s†〉

f(s†, . . . , s†) 6
1

D!

∑
τ

f(sτ(1), . . . , sτ(D)).

Using (4.7), we have

1

D

D∑
d=1

〈σ(d)(X ), sd〉 =
1

D

D∑
d=1

〈σ(d)(X ), s†〉

f(s†, . . . , s†) 6 C.

This means that the supremum of (4.15) can also be achieved at (s†, . . . , s†).
Now take an odeco tensor Y† such that σ(d)(Y†) = s† and Y† has the same
singular matrices as X . For this particular Y†, we have by the equality condition
of the generalized von Neumann’s Theorem

〈X ,Y†〉 = 〈σRnD (X ), σRnD (Y†)〉 =
1

D

D∑
d=1

〈σ(d)(X ), s†〉

and

f(σRnD (Y†)) = f(s†, . . . , s†) 6 C.

We then deduce that

sup
Y
{〈X ,Y〉, f(σRnD (Y)) 6 C} >

〈X ,Y†〉 = sup
s1,...,sD∈Rn

{
1

D

D∑
d=1

〈σ(d)(X ), sd〉, f(s1, . . . , sD) 6 C

}
.(4.17)

Combining (4.16) and (4.17) gives

sup
Y
{〈X ,Y〉, f(σRnD (Y)) 6 C} =

sup
s1,...,sD∈Rn

{
1

D

D∑
d=1

〈σ(d)(X ), sd〉, f(s1, . . . , sD) 6 C

}
.

Then (4.13) follows.
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4.3.2. A closed form formula for a subset of the subdifferential
The following Corollary is a direct consequence of Theorem 4.1 and Theorem

4.4.

Corollary 4.5. Let X be an odeco tensor. Then necessary and sufficient con-
ditions for an odeco tensor Y to belong to ∂(f ◦ σRnD )(X ) are

1. Y has the same mode-d singular spaces as X for all d = 1, . . . , D

2. σRnD (Y) ∈ ∂f(σRnD (X )).

Moreover, the closure of the convex combination of these odeco tensors belongs
to ∂(f ◦ σRnD )(X ).

5. The subdifferential of tensor Schatten norms for symmetric and
odeco tensors

In this section, we compute the subdifferential of the Schatten norm (2.3)
for symmetric and odeco tensors. Consider f : Rn × · · · × Rn 7→ R defined by

f(s1, . . . , sD) = λ
( D∑
d=1

‖sd‖qp
)1/q

(5.18)

for some integers p, q > 1 and constant λ > 0. Clearly, f is a convex function
and

‖ · ‖p,q = f
(
σ(1)(·), . . . , σ(D)(·)

)
.

5.1. The case p, q > 1
In this case we can write (5.18) as

f(s1, . . . , sD) = λ sup
‖w‖q∗=1

‖vd‖p∗=1,d=1,...,D

{
D∑
d=1

wd 〈vd, sd〉

}
. (5.19)

Notice that since the supremum in (5.19) is taken over a compact set and the
function to be maximized is continuous, then this supremum is attained. Let
VW∗ denote the set of maximizers in the variational formulation of f (5.19).
Then, by [10] the subdifferential of f is given by

∂f(v1, . . . , vD) = λ conv
{

(w∗1v
∗
1 , . . . , w

∗
Dv
∗
D) | (v∗1 , . . . , v∗D, w∗) ∈ VW ∗

}
.

Notice that VW∗ is fully characterized by

v∗d =


sd/‖sd‖p∗ if sd 6= 0

Bp∗ otherwise

w∗ =


ω∗/‖ω∗|q∗ if ω∗ 6= 0

Bq∗ otherwise.
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with

ω∗ = (〈v∗d, sd〉)Dd=1

and Bp denotes the unit ball in the `p norm.
Using these computations, we obtain the following result.

Theorem 5.1. We have

1. the subdifferential of the nuclear norm for symmetric tensors is the set of
tensors Y satisfying

(a) Y has the same mode-d singular spaces as X for all d = 1, . . . , D

(b) σRnD (Y)d = w∗dv
∗
d if σ(d)(X ) 6= 0,

(c) σRnD (Y)d = 0 if σ(d)(X ) = 0 and if σ(d′)(X ) 6= 0 for some d′.

(d) σRnD (Y)d ∈ w∗dBp∗ , w∗ ∈ Bq∗ if σ(d′)(X ) = 0 for all d′ = 1, . . . , D.

2. the subdifferential of the nuclear norm for odeco tensors contains the clo-
sure of the convex hull of odeco tensors Y satisfying

(a) Y has the same mode-d singular spaces as X for all d = 1, . . . , D

(b) σRnD (Y)d = w∗dv
∗
d if σ(d)(X ) 6= 0,

(c) σRnD (Y)d = 0 if σ(d)(X ) = 0 and if σ(d′)(X ) 6= 0 for some d′.

(d) σRnD (Y)d ∈ w∗dBp∗ , w∗ ∈ Bq∗ if σ(d′)(X ) = 0 for all d′ = 1, . . . , D.

5.2. The nuclear norm
Consider f(·) : Rn × · · · × Rn → R defined by

f(s1, . . . , sD) =
1

D

D∑
i=1

‖si‖1.

Then for any (s1, . . . , sD) ∈ Rn × · · · × Rn, we have

∂f(s1, . . . , sD) =
1

D
{(c1, . . . , cD)},

where cd = (cd1, . . . , cdn)t for d = 1, . . . , D satisfies

cdj =

 1 sdj > 0
−1 sdj < 0
ωdj sdj = 0

with ωij being any real number in the interval [−1, 1].
Thus, we obtain the following result.

Theorem 5.2. We have that
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1. the subdifferential of the nuclear norm for symmetric tensors is the set of
tensors Y satisfying

(a) Y has the same mode-d singular spaces as X for all d = 1, . . . , D

(b) σRnD (Y)dj = 1 if σ(d)
j (X ) > 0,

(c) σRnD (Y)dj ∈ [−1, 1] if σ(d)
j (X ) = 0.

2. the subdifferential of the nuclear norm for odeco tensors contains the clo-
sure of the convex hull of odeco tensors Y satisfying

(a) Y has the same mode-d singular spaces as X for all d = 1, . . . , D

(b) σRnD (Y)dj = 1 if σ(d)
j (X ) > 0,

(c) σRnD (Y)dj ∈ [−1, 1] if σ(d)
j (X ) = 0.

5.3. Remark on the remaining cases
We leave to the reader the easy task of deriving the general formulas for the

cases p = 1 and q > 1, p > 1 and q = 1.

6. Conclusion and perspectives

In this paper, we studied the subdifferential of some tensor norms for sym-
metric tensors and odeco tensors. We provided a complete characterization of
for the symmetric case and described a subset of the subdifferential for odeco
tensors. The main tool in our analysis is an extension of the Von Neumann’s
trace inequality to the tensor setting recently proved in [6]. Such results may
find applications in the field of Compressed Sensing. A lot of work remains in
order to extend our results to non-symmetric settings. We plan to investigate
this question in a future research project.
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