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Abstract: This paper deals with the design of a robust control scheme for a suspended
Cable-Driven Parallel Robot (CDPR), composed of eight cables and a moving platform (MP),
dedicated to pick-and-place metal plates with different shapes, sizes and masses. The set
composed of the MP and a metal plate can have a mass of up to 700 kg. In the proposed control
solution, a decentralized control scheme is implemented on the robot. In order to achieve good
accuracy and robust control, a recently developed controller balancing between sliding mode
and linear (SML) algorithms is implemented on a CDPR prototype located at IRT Jules Verne,
Nantes, France. The performances of the SML controller are analyzed along a test trajectory for
several payloads. The results obtained without any information on the platform or metal plate
mass are compared to those of standard proportional-derivative (PD) based control schemes.

Keywords: Cable-driven parallel robot, Robust control, Sliding mode, Experimental results

1. INTRODUCTION

Cable-Driven Parallel Robots (CDPRs) are a particular
class of parallel robots whose moving-platform (MP) is
connected to a fixed base frame by cables, as illustrated in
Fig. 1.

Fig. 1. CAROCA prototype 3D model in a suspended
configuration.

The cables are coiled on motorized winches. Passive pul-
leys may guide the cables from the winches to the ca-
ble exit points. Accordingly, the motion of the MP is
controlled by modifying the cable lengths. CDPRs have
several advantages such as a relatively low mass of moving
parts and a potential large workspace. As a consequence,
they can be used in several applications such as heavy load
handling (Albus et al. (1992)), painting and sandblasting

of large structures (Gagliardini et al. (2018)), fast pick-
and-place operations (Kawamura et al. (2000)), haptic
devices (Fortin-Coté et al. (2014)), support structures
for giant telescopes (Yao et al. (2010)), and search and
rescue deployable platforms (Merlet and Daney (2010)).
It should be noticed that redundant actuated CDPRs are
more appropriate than cranes for accurate pick-and-place
operations and large and heavy parts because they suffer
less from load swinging. Moreover, CDPRs can control
both the position and the orientation of the object in con-
trary to standard cranes. Accordingly, this paper deals the
determination of a control solution for a suspended semi-
industrial CDPR prototype for pick and place operations
of metal plates. Due to the variability of the load, and in
order to get high accuracy and repeatability of the MP
pose, robust control is required.

CDPR control strategies are often based on PD con-
trollers (Kawamura et al. (2000)), that can be completed
with feedforward terms to predict the moving-platform
dynamic behavior (Lamaury et al. (2013); Santos et al.
(2019)). Nonlinear control methods include the more re-
cent developments of sliding-mode controllers, particularly
interesting due to their robustness to uncertainties and
perturbations (Edwards and Spurgeon (1998)). Sliding
mode control has been increasingly considered for CDPR
control in several applications (Zeinali and Khajepour
(2010); El-Ghazaly et al. (2015); Santos et al. (2019))
both in simulation and experimentally, with good per-



formances against perturbations. The drawback of slid-
ing mode control is the existence of discontinuities in
the control input due to the use of the sign function
(Utkin (1992),Shtessel et al. (2014)). As a consequence,
the chattering phenomenon appears: it is a high frequency
oscillation that leads to vibrations on the actuators and
can prematurely deteriorate gearheads and other mobile
parts in the kinematic chains. Higher order and gain adap-
tive sliding mode control methods have been developed to
reduce chattering such as (Utkin (1992); Shtessel et al.
(2014); Levant (1993)), and have been implemented on
a CDPR in (Schenk et al. (2018)). An other drawback
of sliding mode control is that the power consumption is
generally higher than with linear control methods as the
system is constantly excited to achieve high tracking accu-
racy. Recently, new control methods based on linear and
sliding mode algorithms have been developed to achieve
both lower chattering and energy consumption compared
to pure sliding mode controllers (Tahoumi et al. (2018b)).
The controller then balances between the two control types
to get a good trade-off between robustness and smoothness
of the control output. In the sequel, this controller is
defined as the sliding-mode/linear (SML) controller. The
objective of the SML controller is to take advantage of
both control strategies: i) reduced chattering and energy
consumption compared to sliding mode control and ii)
accuracy, stability and robustness in spite of perturbations
and uncertainties.

The objective of the paper is to evaluate the performances,
for the considered pick-and-place application, of a new
generation of controllers based on sliding mode. The SML
controller (PC1-SML) has been experimentally compared
to a simple PD controller (PC1-PD), and to a control
scheme implementing a PD controller with a feedforward
term that compensates for the MP mass (PC2-PD). First,
the empty MP of known mass is moved along a test trajec-
tory. Then the trajectory is repeated while carrying metal
plates of unknown mass, that constitute a perturbation to
the system: a metal plate M1 of mass equal to 122 kg, then
a metal plate M2 of mass equal to 249 kg.

The paper is organized as follows. Section 2 presents the
CDPR semi-industrial prototype used for the experimental
tests as well as its modeling. Section 3 describes the
experimental setup and the test trajectory. The control
scheme and controllers are detailed in Sec. 4. Experimental
results are presented and analyzed in Section 5. Finally,
conclusions are drawn and future work is presented in
Section 6.

2. PROTOTYPE DESCRIPTION AND MODELING

This section deals with the description and modeling
of the CDPR prototype, named CAROCA (Gagliardini
et al. (2018)), (see Fig. 2) and used for the experimental
comparison of the control schemes.

2.1 CAROCA prototype and ROCKET project

CAROCA is a reconfigurable CDPR prototype developed
at IRT Jules Verne, Nantes, France, dedicated to indus-
trial operations. A video of a logistics application on the

Fig. 2. The moving-platform (MP) of mass equal to 366 kg,
equipped with five magnets to pick the metal plates.

prototype is available 1 . It this paper, its application is the
displacement of metal plates of highly variable shape and
mass, up to 700 kg, with good accuracy and repeatability,
in the order of one centimeter.

This prototype is reconfigurable, because its pulleys can be
displaced in a discrete manner on its frame, allowing the
robot to be mounted both in a suspended configuration
and in a fully-constrained configuration depending on the
targeted application. In this paper, only the suspended
configuration is considered. The size of the prototype is
7 m long, 4 m wide and 3 m high. It is composed of 8
cables coiled around 120 mm diameter HuchezTM winches,
that are pulling a moving-platform. The winches are
actuated by B&R AutomationTM synchronous motors of
nominal speed and nominal torques equal to 2200 rpm and
15.34 Nm, respectively. A two-stage gearbox of reduction
ratio equal to 40 is assembled between each motor and each
winch. As a consequence, the prototype is able to lift up
to 1 ton. Figure 2 presents the moving-platform (MP) of
size 1.5 m×1.5 m×1 m and mass 366 kg. Five magnets are
embedded under the moving platform to pick metal parts.
The robot is also equipped with TractelTM force sensors
located between the cables and the anchor points of the
platform (Fig. 2). Hardware such as motors and control
bay are standard industrial components commercialized
by B&R AutomationTM. The robot programming is done
under Automation Studio 4.1TM and runs in a 2 ms real-
time loop (500 Hz).

2.2 Inverse Geometric Model (IGM)

Figure 3 depicts the main geometric parameters of a
CDPR and its ith loop-closure equation, i ∈ {1, . . . ,m},
m being the number of cables attached to the MP, Fb

1 CDPR logistics application at IRT Jules Verne (YouTube):
bit.ly/irtjvlogisticscdpr



is the robot base frame, and Fp is the MP frame. Cable
exit points are denoted as Ai, while cable anchor points
are denoted as Bi. Vector bai points from O to Ai and is
expressed in frame Fb. Vector pbi point from P to Bi and
is expressed in frame Fp. Vector bp is the position vector
of point P , the MP geometric center, expressed in Fb.

Fig. 3. CDPR geometric parameterization.

Vector li represents the ith cable vector and points from Bi
to Ai, and reads as :

bli = li
bui = bai − bp− bRp

pbi (1)

with bRp the rotation matrix from frame Fb to frame Fp.
li is the length of the ith cable and ui is the unit vector of
the ith cable vector, defined as

li = ‖bli‖2 bui =
bli
‖bli‖2

(2)

where ‖.‖2 denotes the Euclidean norm of a vector.

In order to benefit from the most accurate modeling, the
CDPR pulleys can be included in the geometric model
of the CDPR, as described in (Gagliardini (2016); Picard
et al. (2018)).

2.3 Static equilibrium

The static equilibrium of the platform is given by

Wt + we + wg = 0 (3)

with W the wrench matrix of the robot and expressed as

W =

[
bu1 . . . bui . . . bum

bb1 × bu1 . . .
bbi × bui . . .

bbm × bum

]
(4)

t is the cable tension vector. wg the wrench applied to
the platform due to gravity and we an external wrench
expressed in frame Fb.

2.4 Inverse Kinematic Model (IKM)

For CDPRs, the forward Jacobian matrix A relates the
MP twist v and the cable unwinding velocities:

Av = l̇ =
rw
R

q̇ with v =
[
bṗ bω

]T
(5)

l̇ =
[
l̇1 . . . l̇i . . . l̇8

]T
being the vector containing the

cable velocities, q̇ = [q̇1 . . . q̇i . . . q̇8]
T

being the vector
containing the motor velocities, R the gearbox reduction
ratio, rw the winch radius, bp the Cartesian position of
MP and bω its angular velocity, expressed in Fb. A and
W are related by the equation:

W = −AT (6)

2.5 Dynamic model

From (Gagliardini et al. (2018)), the dynamic model of the
CDPR reads as

Wt− Ipv̇ −Cv + we + wg = 0 (7)

with Ip the spatial inertia of the platform and C the matrix
of the centrifugal and Coriolis wrenches.

Given that the center of mass of the platform G does not
coincide with the origin of Fp, the wrench wg due to the
gravity acceleration g is defined as

wg =

[
mpI3
MŜp

]
g (8)

with mp the mass of the platform, I3 the 3× 3 identity ma-

trix, MSp =b Rp [mpxG mpyG mpzG]
T

the first momen-
tum of the moving platform defined with respect to frame

Fb. The vector Sp = [xG yG zG]
T

defines the position of

G in Fp. MŜp is the skew-symmetric matrix associated to
MSp.

Ip represents the spatial inertia of the platform, and reads
as

Ip =

[
mpI3 −MŜp
MŜp Ip

]
(9)

with Ip the inertia tensor matrix of the platform, that can
be computed from the platform’s inertia tensor Ig using
the Huygens-Steiner theorem

Ip =b Rp Ig
bRT

p −
MŜpMŜp

mp
(10)

C is the matrix of the centrifugal and Coriolis wrenches
with

Cv =

[
bω̂bω̂MSp
bω̂Ip

bω

]
(11)

where bω̂ the skew-symmetric matrix associated to bω.

2.6 State system

The dynamics of the motors (Lamaury and Gouttefarde
(2013)) are given by

τm = Iqq̈ + Fvq̇ + Fssign(q̇) +
R

rw
t (12)

where Iq is the diagonal matrix containing the moment of
inertia of the gearmotors and winches associated to each
motor, and Fc and Fv are respectively the diagonal ma-
trices containing the static and viscous friction coefficients
for each motor.

From the motor dynamic model (equation 12), the CDPR
inverse kinematic model (equation (5)) and the CDPR
dynamic model (equation (7)), defining the state vector as

x = [q q̇]
T

and the system input as u = τm, the system
can be represented as a standard nonlinear system of the
form

x = f(x) + g(x)u (13)

The system is nonlinear and affine in the control input u.
Furthermore, f(x) is uncertain due to the presence of we

in (equation (7)).



3. TEST TRAJECTORY AND EXPERIMENTAL
SETUP

In order to evaluate the performance of different control
methods, a desired trajectory describing a typical pick-
and-place application has been generated. The trajectory
is generated using s-curves, that ensure continuous velocity
and acceleration trajectory profiles. The x-axis of the
frame Fb is defined along the width of the CDPR, the
y-axis along its length and the z-axis along its height. The
trajectory consists of (see Fig. 4):

(1) AB: 200 mm vertical displacement up;
(2) BC: arc along the diagonal of the base footprint, with

simultaneous displacements of 300 mm up, 300 mm
along the x-axis and 1400 mm along the y-axis;

(3) CD: arc along the diagonal of the base footprint, with
simultaneous displacements of 300 mm down, 300 mm
along the x-axis and 1400 mm along the y-axis;

(4) DE: 200 mm vertical displacement down;

The platform moves from A to E in 30 s.
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Fig. 4. Test trajectory (blue) and CDPR configuration.

This test is first performed on the CDPR with the empty
platform of mass 366 kg. In order to evaluate the control
robustness, two metal plates are successively carried by
the platform. Three cases are then considered:

(1) the empty moving-platform of mass 366 kg (MP);
(2) the MP and a metal plate M1 of mass 122 kg, for a

total load of 488 kg (MPM1);
(3) the MP and a metal plate M2 of mass 249 kg, for a

total load of 615 kg (MPM2)

Note that the mass variation is significant, namely +33%
(M1) and +68% (M2) with respect to the MP mass,
respectively.

(a) MPM1 (488 kg). (b) MPM2 (615 kg).

Fig. 5. MP carrying a metal plate: (a) M1, (b) M2.

4. CONTROL STRATEGIES

Accordingly to equation (12), Fig. 6 presents the system
input, output and perturbation signals. The system input
is the motor torque vector τm. The usual outputs of
the system are the actual motor positions q and motor
velocities q̇. The considered perturbation is gravity wrench
wg of the moving-platform and the embedded metal plate.

Fig. 6. Diagram of the CDPR.

4.1 Control schemes

No direct information on the platform pose is readily
available from the system sensors, and solving the direct
geometric model of a CDPR is not an easy task since
more than one solution is possible from a fixed set of
motor positions, even considering straight and inelastic
cables (Merlet (2015)). As a consequence, the following
control architectures only rely on the system internal
sensors i.e. the motor angular positions and velocities.
Decentralized control architectures have been considered
for their simplicity of implementation, with one controller
separately tuned for each motor.

PC1: Basic control scheme. The first control architec-
ture is denoted as PC1 (Fig. 7). The controller box at
the center of the control schemes is left unspecified in this
section. In the sequel, proportional-derivative controller or
the sliding mode based controller will be introduced. The
corresponding control architecture is then referenced as
PC1-PD or PC1-SML, accordingly.

cd is the 6-dimensional vector containing the desired
Cartesian position and orientation of the MP, vd the
desired MP twist (linear and angular platform velocities).
qd, q̇d and τm are the desired motor angular positions,
velocities obtained from the inverse geometric (IGM) and
kinematic (IKM) models, respectively. In this first scheme,
the motor torque vector τm is the control signal, each
signal being of dimension 8.

Fig. 7. PC1 control architecture.

The MP Cartesian MP pose and twist are converted into
desired motor positions and velocities using the CDPR
inverse geometric (IGM) and kinematic (IKM) models.



PC2: Control scheme with feedforward. Feedforward
terms (see Fig. 8 blue blocks) are commonly included in
CDPR control strategies to predict the dynamics of the
platform and improves the accuracy of the robot (Lamaury
et al. (2013); Vafaei et al. (2010)).

From Eq. (7), a feedforward term compensating part of
the gravity is defined as

τ da =
rwW†(Ipv̇d + wg)

R
(14)

with τda the feedforward torque, wg the wrench due to
the gravity, rw the radius of the winches and R the
gearhead ratio. W† denotes the Moore-Penrose pseudo-
inverse of W. However, for metal plate handling,the mass
of the metal plates is supposed to be unknown. As a
consequence, only the MP mass is considered in the
feedforward term, that gives

wg = [0 0 −mMP g −mMP gyG mMP gxG 0]
T

(15)

withmMP the MP mass and g the gravity vector expressed
in Fb. xG and yG are the Cartesian coordinates of the MP
center of gravity G expressed in Fp. Note that xG and yG
are supposed to be null along the trajectory.

Also, a linear friction model (Khalil and Dombre (2004))
has been implemented in each actuation chain to compen-
sate the losses in the motors, gearbox and winches:

τ fc = Fcsign(q̇d) + Fvq̇d (16)

with τ fc the friction compensation and q̇d the desired
motor rate vector.

Figure 8 presents the PC2 control architecture with feed-
forward, where v̇d contains the Cartesian acceleration and
angular acceleration of the platform. The control torques
in τm applied to the motors is based finally on τ c, τ da

and τ fc.

Fig. 8. PC2 control architecture with feedforward terms.

4.2 Control algorithms

The control algorithms are described thereafter.

PD controller. Proportional-derivative (PD) controllers
are already widely used in industry and machinery. The
choice of a PD controller compared to the full PID is
based here on its asymptotic stability (Khalil and Dombre
(2004)). Its main drawbacks are the static error between
the desired and real position of the robot as well as
a tuning that often requires iteration. In addition, this
controller can be sensitive to noise and its settings are
optimal only around an operating point.

The 8-dimensional output signal of the controller τ c is
therefore defined by

τ c = Kpeq + Kdeq̇ (17)

with eq the difference between the desired and actual
motor positions and eq̇ being the difference between
the desired and actual motors velocities. In PC1-PD
(Fig. 7), u = τm = τ c, while in PC2-PD (Fig. 8),
u = τm = τ c + τ da + τ fc.

In a decentralized control architecture, each motor is
independently controlled: then, the matrices Kp and Kd

are diagonal. For simplicity and since the identified motor
friction coefficients have been found to be similar across all
motors, the 8 decentralized controllers have been tuned in
a similar manner: Kp = Kp,1 = Kp,2 . . . and Kd = Kd,1 =
Kd,2 . . . . However, it could be possible to independently
adjust the gains of each motor according to their errors
along the test trajectory or interdependence. The PD
controller has been tuned to achieve accuracy and stability
with the MP, using the standard method proposed by
(Ziegler and Nichols (1995)). The obtained gains Kp and
Kd are given in Table 1.

Table 1. PD controller gains.

Gain Kp Kd
ROMP values 0.3 0.03

SML controller. Similarly to the PD controller, eight
individual SML controllers have been implemented. Note
that in this paper, the SML controller is applied only to
PC1 scheme (Fig. 7).

Define the sliding vector σ as

σ = (q̇d − q̇) + λ(qd − q) (18)

= eq̇ + λeq (19)

with qd and q respectively the desired and current motor
angular positions, q̇d and q̇ respectively the desired and
current motor velocities, eq and eq̇ the corresponding
tracking errors and λ a strictly positive parameter (λ > 0).

Sliding mode control must ensure that the sliding variable
reaches and is maintained at zero in a finite time (Utkin
(1992); Shtessel et al. (2014)): given the definition (18) of
σ, when the sliding variable of the ith motor σi tends to
zero, the convergence of eq,i, the ith component of eq, to
zero is guaranteed exponentially with a rate depending on
the parameter λ. This is described as the transient phase.
Then, the controller is in the steady state: the sliding
variable σi is maintained around zero and the dynamic
of the control is defined by the differential equation eq̇,i =
−λeq,i, as such the higher λ, the faster the correction. This
is described as the sliding phase.

σ has a relative degree of one with respect to τm. The
time derivative of the sliding variable equals

σ̇ = eq̈ + λeq̇ (20)

= (q̈d − q̈) + λ(q̇d − q̇) (21)

= (q̈d + λ(q̇d − q̇))− q̈ (22)

q̈d and q̈ being the desired and actual motor acceleration
vectors, respectively. q̈ is correlated to the motor torques
τm by equation (12). σ̇ then takes the form

σ̇ = a(q) + b(q)τm (23)



where b(q) 6= 0.

In order to design the twisting algorithm, the sliding
variable is derived a second time ; one gets:

σ̈ = (
...
qd −

...
q) + λ(q̈d − q̈) (24)

= (
...
qd + λ(q̈d − q̈))−

...
q (25)

= h(q) + j(q)τ̇m (26)

with j(q) 6= 0.

Each component of τ̇m (Tahoumi et al. (2018a)), is defined
as

τ̇m,i = −K1dσic
α

2−α −K2dσ̇icα (27)

with τ̇m,i the ith component of τ̇m and

dσicα = |σi|αsign(σi) (28)

K1 and K2 are the controller gains, and α ∈ [0 1] based
on the following adaptation law:

α = max

(
−β

(
|σi|

|σi|+ εσ
+

|σ̇i|
|σ̇i|+ εσ̇

)
+ 1, 0

)
(29)

with β, εσ and εσ̇ constant parameters chosen such that
β > 1 and εσ, εσ̇ > 0. Values of these parameters for the
experiments are provided in table 2. The control input τm
is then obtained by integrating its time derivative from
Eq. (27).

The principle of the SML controller (Eqs. (27)-(29)) is
the following: the value of the variable α depends on the
current tracking errors. If the absolute values of |σi| and
|σ̇i| are large, it means that the closed-loop system is
not accurate: the controller should lean towards a robust
controller, namely the sliding mode control. That is the
case because in such a situation, α → 0, from Eq. (27),
the control becomes a twisting one (Levant (1993)):

τ̇m,i = −K1sign(σi)−K2sign(σ̇i) (30)

that ensures, in practice, the convergence of σi and σ̇i to
a vicinity of (0, 0), in finite time.

On the other hand, if these errors are small, in order to
reduce chattering and energy consumption, the controller
should lean towards the linear control behavior: that
is the case because α → 1. α regulates the trade-off
between accuracy and chattering reduction. τ̇m,i then
tends towards the expression

τ̇m,i = −K1σi −K2σ̇i (31)

In order to guarantee convergence of the closed-loop sys-
tem, the gains K1 and K2 must be positive and follow the
condition (Levant (1993)):

K1 > K2 > 0, (K1 −K2)jm > hM
(K1 +K2)jm − hM > (K1 −K2)jm + hM

(32)

with hM , jm and jM positive constants such that for each
motor

|hi(q)| 6 hM (33)

0 < jm 6 ji(q) 6 jM (34)

The reduced energy consumption of the SML controller
compared to the twisting algorithm is ensured by the
following condition (Tahoumi et al. (2018a)):

K1εσ +K2εσ̇ < K1 −K2 (35)

Recall that K1 and K2 are the gains of the controller: they
must be chosen sufficiently large in order to counteract

perturbations and uncertainties effects. β and εσ,εσ̇ have
opposing effects on the evolution of α. These parameters
should be chosen to calibrate the controller behavior with
respect to the desired compromise between accuracy and
chattering/consumption reduction: the higher β or the
smaller εσ, εσ̇, the lower α. Then, the system leans towards
sliding mode. As a consequence, the control accuracy is
improved with higher energy consumption. On the other
hand, if β is decreased or εσ, εσ̇ are increased, α will
increase: the chattering and energy consumption will be
reduced as the linear control contribution increases. How-
ever, the robustness, and then the accuracy, are reduced.

Table 2. SML controller parameter values.

Parameter λ β εσ εσ̇ K1 K2

ROMP values 0.15 1.01 4 80 4 2

Since only the motor position and velocity are provided
on the prototype, the motor angular acceleration errors eq̈
appearing in σ̇ are derived from the motor velocity errors
with the usual Euler method.

5. EXPERIMENTAL RESULTS

The objective of the experiments is to compare the per-
formances of the SML controller without knowledge of the
MP and metal plate mass (PC1-SML), to those of the
PD controller (PC1-PD) in the same conditions, and of
the PD controller with feedforward for the compensation
of the MP mass (PC2-PD). A video of the metal plate
handling experiments is available 2 .

5.1 Motor position errors

Figure 9 presents the Root Mean Square (RMS) of Motors
1 to 8 position errors along the test trajectory, for each
controller and load. As expected, the PC1-PD gives the
highest RMS in all scenarios, up to 12 degrees, due to
the controller static error. PC2-PD provides the smallest
RMS for load MP, as the mass of the platform is exactly
compensated by the feedforward term. Thus, the static
error is greatly reduced. However, the RMS of PC2-PD
motor position error naturally increases as a metal plate
of unknown mass is carried. It appears that PC1-SML
provides the most consistent results no matter the load, the
motor position errors being always smaller than 4 degrees.
Slight differences in the performances from one motor to
another could be attributed to the impact of the new
center of mass of the set constituted of the MP and the
metal plate.

A single motor is considered in the sequel for a more
detailed analysis. Fig. 10 presents Motor 4 angular error
eq4 along the trajectory, with the three controllers and
the three payloads. Again, the static errors of PC1-PD
and PC2-PD are clearly visible as the mass increases.
The maximum error is reached around 11 degrees for the
heaviest load (MPM2) for PC1-PD. The compensation
of the MP mass limits this maximum error to around
4 degrees for PC2-PD. Although eq,4 has a more oscillating
behavior with PC1-SML, it is noteworthy that it is the
most robust one amongst the three controllers. Indeed, its
value oscillates around zero for all loads.
2 Metal plate handling video (Dropbox): bit.ly/ifac2020id3263
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Fig. 9. Root Mean Square (RMS) of position error (de-
grees) for Motors 1 to 8 (left to right) against load.
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(a) Load MP (366 kg).
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(b) Load MPM1 (488 kg).
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(c) Load MPM2 (615 kg).

Fig. 10. Motor 4 position error eq,4 (degrees).

The control input of Motor 4 associated with each con-
troller is plotted in Fig. 11. All controllers generate a sim-
ilarly shaped torque output, although chattering is visible
in the case of the sliding mode, that is to be expected:
this is the cost of robustness. Static friction in the gearbox
can be observed around t = 1 s and t = 6 s, when the
motor changes direction. The friction is anticipated in the
feedforward term of PC2-PD, and is quickly corrected by
the SML controller, leading to similarly shaped signals.

5.2 MP position error along z-axis

The MP pose has been tracked using a HTC VIVE
Tracker. Figure 12 presents the Cartesian error along the
vertical axis between the desired and measured position of
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Fig. 11. Motor 4 control input τm (Nm) for load MPM2
(615 kg).

the MP center P (see Fig. 3), for the heaviest load MPM2.
The observations made on the motor position errors are
also visible: the PC1-PD controller leads to the largest
error while the addition of the feedforward term in PC2-
PD reduces this error. The sliding mode controller provides
the smallest error although a static error of around 20 mm
remains. This error is certainly due to cable elasticity,
which is not negligible for the 615 kg load, and will need
to be compensated in the future.
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Fig. 12. MP Cartesian position error along z-axis (mm)
for load MPM2 (615 kg).

5.3 Evolution of α

The mean value of α along the trajectory across all motors
is presented in Fig. 13. As expected, the larger the payload,
the closer the controller to sliding mode control i.e. the
lower α. Figure 14 shows the evolution of α for Motor 4 for
the heaviest load (MPM2), versus time. It can be noticed
that with the current tuning of the SML controller, the
values of α are relatively low with an average value of
0.12 in general, namely the controller is mostly a sliding
mode one along the trajectory, due to the system high
level of uncertainties. It is noteworthy that around t = 7 s
and t = 27 s, α reaches higher values for short periods
of time. Meanwhile, Fig. 11 shows reduced chattering in
τm and Fig. 10 presents lower motor position oscillations.
Contrarily, around t = 15 s, as α lower values lead to
higher oscillations. The control is effectively smoother
when α increases.
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Fig. 13. Mean of α along trajectory, across all motors and
for each load.
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Fig. 14. Evolution of α4 for load MPM2 (615 kg).

6. CONCLUSION

Although, a proportional-derivative based control scheme
can be applied for smooth control signal of a cable-driven
parallel robot, it is very restrictive due to the required
knowledge of the carried mass in order to achieve good
accuracy. If no information is available on the load mass,
the novel control scheme balancing between sliding mode
and linear algorithms is relevant for its robustness towards
uncertainties and stability, with reducing chattering and
oscillations when the parameter α increases. Future work
will focus on further reducing oscillations, and include
a cable elasticity compensation to improve the control
robustness and pose accuracy of the moving-platform.
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