N

N

A FAST ALGORITHM FOR THE SEMI-DEFINITE
RELAXATION OF THE STATE ESTIMATION
PROBLEM IN POWER GRIDS
Stephane Chretien, Paul Clarkson

» To cite this version:

Stephane Chretien, Paul Clarkson. A FAST ALGORITHM FOR THE SEMI-DEFINITE RELAX-
ATION OF THE STATE ESTIMATION PROBLEM IN POWER GRIDS. Journal of Industrial and
Management Optimization, 2019, 16, pp.431 - 443. 10.3934/jimo.2018161 . hal-02515906

HAL Id: hal-02515906
https://hal.science/hal-02515906
Submitted on 25 Mar 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02515906
https://hal.archives-ouvertes.fr

JOURNAL OF INDUSTRIAL AND doi:10.3934 /xx.XX.XX.XX
MANAGEMENT OPTIMIZATION

A FAST ALGORITHM FOR THE SEMI-DEFINITE RELAXATION
OF THE STATE ESTIMATION PROBLEM IN POWER GRIDS

STEPHANE CHRETIEN AND PAUL CLARKSON

ABSTRACT. State estimation in power grids is a crucial step for monitoring
and control tasks. It was shown that the state estimation problem can be
solved using a convex relaxation based on semi-definite programming. In the
present paper, we propose a fast algorithm for solving this relaxation. Our
approach uses the Biirer Monteiro factorisation is a special way that solves the
problem on the sphere and and estimates the scale in a Gauss-Seidel fashion.
Simulations results confirm the promising behavior of the method.

1. Introduction. Power networks have been a topic of extensive recent studies,
both from an engineering and an applied mathematical viewpoint. The main prob-
lems addressed in Power Networks engineering are come from the need to control
and monitor large and sometimes very large grids. The problem of estimating the
state, i.e. the voltage at each bus, is one of the most basic problems in the field.
One of the major difficulties with the state estimation problem is that is boils
down to a non convex polynomial least-squares optimisation problem. Fortunately
enough, several recent works has addressed this issue. In this paper, we leverage
the structure of the problem in order to provide an efficient method based on the
breakthrough results of Biirer and Monteiro [8] and the recent discoveries around
matrix least-squares problems [29].

1.1. Mathematical background on power networks. The power system states
are those parameters that can be used to determine all other parameters of the
power system. These are the Node voltage phasor voltage magnitude V;, phase
angle 0, the complex power flow: (a) active power flow P;;, Pj;, (b) reactive power
flow Q;j;, Qj;. Recall that the powers are quadratic functions of the voltages and
it is sufficient to measure the powers in order to be able to estimate the voltages.
Sometimes, on also has access to direct voltage measurements through PMU’s. As
in every systems, imperfections as often present in the measurement of current and
voltage transformer transducers (A/D conversions and Tuning), RTU/IED Data
storage, Rounding in calculations, Communication links.

1.2. Previous works on state estimation. Schweppe introduced the state esti-
mation problem in the power systems research community [36]. He defined the state
estimator as “a data processing algorithm for converting redundant meter readings
and other available information into an estimate of the state of an electric power
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system”. State estimation is nowadays an essential part in almost every energy
management system [40].

The state estimation problem is most often addressed via least-squares, which
is justified in the case of Gaussian random measurement errors if one appeals to
maximum likelihood theory. The main difficulty faced by the engineer in the pro-
cess of state estimation is the fact that the least-squares problem is a non-convex
optimization problem with potentially many stationary points and local optimisers.

Fortunately, in many cases, the State Estimation problem can be successfully
approached using convex programming via standard relaxation techniques. The
most remarkable result in this spirit is the breakthrough obtained in [28] stating
that the power flow problem could be solved exactly via a natural positive semi-
definite programming problem. This result has been extended in [32], [24], [30],
[5], [20]. The case of State estimation was then studied in [43], [41], [25] and [31].
One of the main drawbacks of the convex relaxation is that it relies on a semi-
definite programming which, although solvable in polynomial time, does not scale
to large networks. Distributed approaches have been proposed in [43] in order to
circumvent this problem. On the other hand, an interesting recent trend based on
the Burer Monteiro factorisation [8] is currently extensively explored in the context
of various low rank matrix estimation problems in statistics. Surprisingly, the Burer
Monteiro was proved to be amenable to gradient-type algorithm with polynomial
time complexity in several situations [7], [4], [34] and potential applicability of this
approach deserves some attention.

1.3. Goal and organisation of the paper. The goal of the present paper is to
propose a new factorisation based approach to the State Estimation problem and
report on its efficiency via extensive computational experiments.

The paper is organised as follows. In Section 2, we present the mathematical
details on power networks and the main notations used in the sequel. In Section 3,
we introduce our factorisation approach to the problem and prove that is provides
a solution to the original semi-definite programming relaxation of [43] under the
assumption that the observation design satisfies a certain algebraic condition known
as RIP [29]. Finally, in Section 4, we present some numerical experiments on some
real networks.

2. Problem formulation.

2.1. The estimation problem. In this section, we introduce the state estimation
problem in power grids.

2.1.1. Notations. We consider a power network with N buses. Let N' = {1,..., N}
and £ C N? we index the set of lines. For each bus indexed by n, its neighbours
will have index set denoted by N,,. We will denote by V,, the complex value of the
voltage at bus n. We will work in rectangular coordinates as in [43].

2.1.2. Measurement model. We assume to measure the power at certain nodes and
certain edges. These measurements are quadratic functions of the voltages at every
nodes. More precisely we will observe the power injection at bus n, denoted by P,
(real) and Q,, (reactive), and flows from bus n to bus n’, denoted by P, ,+ (real)
and Q. (reactive) as well as the squared magnitude of the voltages. The bus
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admittance matrix Y is the matrix defined by

Y if (n,n)€E
Yo = QUnn+2pen, Yo i n=n

0 otherwise

where y,, ,» denotes the line admittance between buses n’ and n, g, ,, is the shunt
admittance at bus n. Let also §, - denote the shunt admittance at bus n associated
with line (n,n’). The current flowing from bus n to bus n’ is denoted by I,, ,,» and
the injected current at bus n is denoted by I,,. They satisfy

I=YV
and
I/ = G Vo + Yo (Vi — Vo).
The AC power flow model asserts that the complex power injection at bus n is given
by
P, +jQn =V,I,
while the complex power flow from bus n to bus n’ is given by
Pon +3Qunr = Vol .

Let us collect the measurement values in a vector z as in [43], i.e. the column vector

z = [{Pn}ne/\/p)a {Qn}n@\/@)7 {Prn Ynnresp {Qn,n’}n,n’EEQa {|Vn|2}neNv] I

where € is a noise vector. Note that currently the z vector does not contain the
voltage angles. The statistical problem of estimating the voltages from the observa-
tion vector z is called the State Estimation problem. Notice that all measurements
are noisy quadratic functions of the voltage and this is the reason that makes the
voltage estimation problem difficult.

2.2. Semi-Definite relaxation of State Estimation. After the breakthrough
paper [28], a extensive effort has been devoted to the study of Semi-Definite relax-
ations of quadratic least-squares problems with rank one constraint in Power Flow
estimation and State Estimation [43].

2.2.1. Notation. We adopt the same notations as [43]. Let e,, denote the vector of
all one’s in C”. Define

Y, = enez;Y
— T T
Yn,n’ = (yn,n’ + yn,n’)enen — Yn,n'€n€yr,

and define Hp,, Hg p, ... as

X ‘
Hpp =5 (v +77). Hg., = %(Y =0

2 .
Hppn = ) (Yn,n’ + Yrj,n’)? Honn = %(Ynm’ - Y:,n’)

and

Hy.,, =ene,.
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Using these notations, we obtain that
P, = trace(Hp,VV™), Qn = trace(Hg ,VV™)
P, = trace(Hp ., VV™), Qn,n = trace(Hg nn/ VV™)
and

[V, |? = trace(Hy,,VV™*).

2.2.2. The least squares problem and a first Semi-Definite Relazation. After a small
notational change allowing to enumerate the matrices H; from 1 to L, independent
of the subscripts P, Q,n,n’, the least squares estimation problem is thus given by

L
2
min z; — trace(H;VV* ) 1
L min lzl(l (HVV") M
Using the change of variable W = VV* we then have the equivalent rank con-
strained Semi-Definite Program
L 2
i ( ) d k(W) = 1
min z; — trace(H|W st. W =0 an ran =1.
WeCNxN ; ! (HW) o
A standard way to obtain a Semi-Definite relaxation is just to relax the rank one
constraint. The resulting Semi-Definite Relaxation is given by

i W t. W=0 2
plin o fW) s = (2)

with

Fw) =3 (2~ trace(HlW))2. (3)

=1

3. The factorisation approach. Our goal in this section is to present a fast
method for solving (2) based on the factorisation idea of [8].

3.1. Presentation of the method. We will use a Biirer-Monteiro type approach
to solving (2). In the Biirer-Monteiro philosophy, one uses the factorisation W =
AA* where A € C™*". In this ideal case where the SDR relaxation is exact, one can
take » = 1 and recover the voltage vector V directly as equal to A up to a 'rotation’
R, ie.

V=AR

with R a unitary matrix, i.e. RR* = I. Finding the matrix R can be achieved
by direct measurements of the voltage value at some particular buses using e.g.
PMU’s and using simple least squares estimation, a particular case of the Procrustes
problem. This situation appears frequently in the State Estimation problems as was
proved in the breakthrough paper [28]. In general however, it might happen that
the rank at the solution of (2) is larger than one and one might account for this
possible issue in the method. Therefore, one usually sets r to a value larger than
one in general.
Let g: C"*" — C" denote the function
L 2
g =3 (zl - trace(HlAA*)) . (4)

=1
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This function is quartic in A and ¢ has an infinite number of minimisers due to
the fact that, for any unitary matrix R, ARR*A* = AA*. The idea of Burer
and Monteiro [8] is to find a relaxation of higher rank to the SDP leading to a
solution of the Semi-Definite Relaxation while avoiding the use of standard SDP
optimisation tools which might not scale to large real life problems. This was proved
to be optimal for r sufficiently large in [7]. The approach is also known to achieve
provable recovery if the matrices H;, | = 1,...,L satisfy a Restricted Isometry
Property [4] [29].

Different approaches can be chosen for optimising g, based on first order infor-
mation, i.e. an oracle which outputs the computation of the gradient Vg(A) at a
given A. One of the most relevant family of methods is the family of quasi-Newton
methods such as BFGS algorithms with efficient line-search [6]. One of the main
advantages is the quarantee that the method will reach a local minimizer instead
of a saddle point. For a complete bibliography of the available techniques, we refer
the reader to [33].

One of the main issues with our optimisation problem is that the gradient is a
third order polynomial function of the variable and the Lipschitz constant of the
gradient, which is fundamental for analysing the convergence of the method, can be
very large even on reasonably small compact sets. As a result, numerical problems
such as divergence of the iterates may be observed. A simple remedy to this issue
is to incorporate some additional constraints into the problem in order to stabilise
the algorithm. In this paper, we chose to use the unit ball of the operator norm.
The reason for doing this is based on the following proposition.

Proposition 1. Problem (1) is equivalent to the following problem:

L 2
min Z (zl -« trace(HlAA*)) . (5)

aeRy, |Al=va =

Proof. This is straightforward after making the change of variable V' = y/a A and
observing that the feasable sets are the same in the two problems. O

Based on the splitting approach given in Proposition 1, we now present a very
simple and intuitive approach to the problem based on alternating optimisation on
the unit ball for the operator norm and scaling the solution:

e The first stage corresponds to solving the optimisation problem over the set
of unit norm matrices with k columns by simple projected gradient steps, i.e.
we find a stationary point for the problem

L

i (zl -« trace(HlAA*))

2
mi .
lAll=1"=

=1

(6)

e The second stage corresponds to rescaling the matrix by tuning its norm via
a least squares criterion, i.e.

L 2
miﬁé 2 (zl —« trace(HlAA*)> (7)

This is done using a simple explicit formula.
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The details are given in Algorithm 1 below. One of the main advantages of the
method is its simplicity, scalability and speed, as demonstrated through computa-
tional experiments in Section 4.

Result: W,
Choose A1) e Cnxk
First stage

while s < S —1 do

Vg(A) =23 (— 2 a(HF + H)A
=1

+2a? trace (HJAA*)(H; + Hl)A>.

A(t,s+1) — A(t,s) o nvg(A(t,s))

At L qssn
At
end
Set ALY — A®1S).
Second stage
Set
Wopt — a(t+1) A(t+1,1)A(t+1,1)* (11)

with

Zf:l 2 trace (H; AHLD ACHLDT)
Zlel (trace (HIA(t+171)A(t+171)*))2

Algorithm 1: The two stage optimisation procedure

QD) —

3.2. Theoretical analysis. In this section, we prove that the method recovers
the true solution under standard assumptions on the measurement matrices Hj,

I=1,...,L.

Let r* denote the smallest rank of an optimal solution to (2). Throughout this
section, we will make the following assumption.

Assumption 1. The family H;, 1 =1,..., L of measurement matrices satisfies the
following Restricted Isometry Property
MI = V2f(W) = mI (13)

for all A with rank(W) < 2r*

The Restricted Isometry Property played a key role in the field of Compressed
Sensing [12] [10]. Compressed sensing is an elegant new paradigm for near optimal
data acquisition which has gained paramount interest in the last fifteen years due
to its wide applicability and various industrial and medical contexts [14], [2], [19],
[27], [21]. Extension of this work to the case of unknown noise variance have been
studied in [23], [16], [3], [35], [38]. Interpretation using Lagrange duality and im-
proved reconstruction performance were studied in [15]. Extension of compressed
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sensing ideas to low rank matrix and tensor estimation and completion was achieved
rapidly after the vector case [11], [13], [9], [18], [42], [37], [L7], [39] and the case of
unknown noise variance was studied in [26]. The Lagrangian approach of [15] and
also extended to the matrix setting in [1].

RIP was also found crucial in the analysis of fast non-convex factorisation meth-
ods for low rank estimation of Burer-Monteiro type for Matrix Sensing [29], [22],
[44]. The RIP assumption may not hold in some practical settings but we think
it is however useful as a conceptual guideline. In the sequel, we will use the main
result from [29] in order to study a projected gradient type method on the sphere
for the State Estimation problem.

The first step of our method produces a sequence of iterates on the unit sphere
in the Frobenius norm. The following lemma characterises the limit behavior of this
sequence.

In the sequel, we will assume that S = 4+o0o0. The matriz A®°) will denote an
arbitrary cluster point of the sequence (A®*)) cn.

Lemma 1. For allt € N, A& s o Karush-Kuhn-Tucker point of the function g
on the sphere.

Proof. Using continuity of the function g, we obtain that the gradient of g is or-
thogonal to the unit sphere, which is equivalent to saying that A(*°°) is a stationary
point of the minimisation problem. O

Given Lemma 1, the following proposition is a standard result in optimisation
theory.

Proposition 2. Any cluster point of the sequence ((a®, A®H:>))),cy is a stationary
point of g.

Proof. Straightforward given that g is differentiable. O

Theorem 1. If r* is the smallest rank of a minimiser in (2), then any cluster
point of the sequence a(t)2A(t’°°)A(t’°°)*, t=1,...,4+00 is a global optimum of the
original least-squares problem (2).

Proof. Using Proposition 2 and Assumption 1, Theorem 1 in [29] concludes the
proof. O

4. Numerical experiments. We conducted some numerical experiments on var-
ious grids including IEEE - 30, a network called Malaga and the Polish network
known as 'case2746wp’. In each experiment, we ran 100 Monte Carlo trials. Each
trial corresponds to a different realisation of the observation noise, which was gen-
erated from a Gaussian distribution A(0,02) with o = .1. Other values of the noise
level have been tested as well and it was observed that the behavior of the method
was the same for the tested level values, with a Mean Squared Error increasing
linearly as a function of the noise level.

4.1. The IEEE - 30 network. In the experiments with the IEEE - 30 grid, we
compared two approaches. The first approach is our new method for problem (2)
and the second approach consists in using the YALMIP package in Matlab for
solving the Semi-Definite Programming Relaxation. Figure 1 shows that a much
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Least squares error YALMIP vs. Our method
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FiGURE 1. Comparison of Sum of Squared Errors for the IEEE-30
network: New method vs. SDP relaxation (using YALMIP) with
noise standard deviation equal to .2 when power is observed at half
the number of buses chosen at random.

better accuracy is obtained with our new approach. Figure 2 shows that the method
converges much faster than YALMIP.

The evolution of the objective value function is presented in Figure 3 below. It
shows that, while convergence is not monotonic, it is fast. The evolution of the
distance between successive iterates is shown in Figure 4 and shows that a much
more robust stopping criterion may be obtained based on this distance than based
on the objective value.

4.2. A larger network. We then applied our method on a large network called
‘case2746wp’. We quote the description given in [45]. The ’case2746wp’ represents
the Polish 400, 220 and 110 kV networks during winter 2003-04 evening peak condi-
tions. Multiple centrally dispatchable generators at a bus have not been aggregated.
Generators that are not centrally dispatchable in the Polish energy market are given
a cost of zero.

Figure 5 shows the histogram of the Mean Squared Error and Figure 6 shows the
computation time for the same set of Monte Carlo experiments as for the IEEE-30
network. Again, the method showed good performance despite the larger dimen-
sionality of the network (2746 buses). The YALMIP method did not converge in
reasonable computation time for this problem and only the results obtained with
our method are shown below.

5. Conclusion. In this paper, we presented a factorisation approach for the State
Estimation problem in power networks. Our approach is very efficient in practice
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FiGURE 2. Comparison of computation times for the IEEE-30 net-
work: New method vs. SDP relaxation (using YALMPI) with noise
standard deviation equal to .2 when power is observed at half the
number of buses chosen uniformly at random.

and outperforms e.g. YALMIP for the solution of the Semi-Definite Relaxation of
the problem.

Our future objective is to relax the Restricted Isometry Property with is the
main ingredient in our analysis. The Restricted Isometry property is an essential
theoretical tool which allows to understand if a problem can be efficiently approach
by efficient procedures such as in Compressed Sensing or Matrix Sensing. However,
one of the main drawbacks of this property is that it is NP-Hard to check and it is
very difficult to know if the network at hand has this property.
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