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State estimation in power grids is a crucial step for monitoring and control tasks. It was shown that the state estimation problem can be solved using a convex relaxation based on semi-definite programming. In the present paper, we propose a fast algorithm for solving this relaxation. Our approach uses the Bürer Monteiro factorisation is a special way that solves the problem on the sphere and and estimates the scale in a Gauss-Seidel fashion. Simulations results confirm the promising behavior of the method.

1. Introduction. Power networks have been a topic of extensive recent studies, both from an engineering and an applied mathematical viewpoint. The main problems addressed in Power Networks engineering are come from the need to control and monitor large and sometimes very large grids. The problem of estimating the state, i.e. the voltage at each bus, is one of the most basic problems in the field. One of the major difficulties with the state estimation problem is that is boils down to a non convex polynomial least-squares optimisation problem. Fortunately enough, several recent works has addressed this issue. In this paper, we leverage the structure of the problem in order to provide an efficient method based on the breakthrough results of Bürer and Monteiro [START_REF] Burer | A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization[END_REF] and the recent discoveries around matrix least-squares problems [START_REF] Li | The nonconvex geometry of low-rank matrix optimizations with general objective functions[END_REF].

1.1. Mathematical background on power networks. The power system states are those parameters that can be used to determine all other parameters of the power system. These are the Node voltage phasor voltage magnitude V j , phase angle θ j , the complex power flow: (a) active power flow P ij , P ji , (b) reactive power flow Q ij , Q ji . Recall that the powers are quadratic functions of the voltages and it is sufficient to measure the powers in order to be able to estimate the voltages. Sometimes, on also has access to direct voltage measurements through PMU's. As in every systems, imperfections as often present in the measurement of current and voltage transformer transducers (A/D conversions and Tuning), RTU/IED Data storage, Rounding in calculations, Communication links. 1.2. Previous works on state estimation. Schweppe introduced the state estimation problem in the power systems research community [START_REF] Schweppe | Recursive state estimation: unknown but bounded errors and system inputs[END_REF]. He defined the state estimator as "a data processing algorithm for converting redundant meter readings and other available information into an estimate of the state of an electric power system". State estimation is nowadays an essential part in almost every energy management system [START_REF] Felix | Power system state estimation: a survey[END_REF].

The state estimation problem is most often addressed via least-squares, which is justified in the case of Gaussian random measurement errors if one appeals to maximum likelihood theory. The main difficulty faced by the engineer in the process of state estimation is the fact that the least-squares problem is a non-convex optimization problem with potentially many stationary points and local optimisers.

Fortunately, in many cases, the State Estimation problem can be successfully approached using convex programming via standard relaxation techniques. The most remarkable result in this spirit is the breakthrough obtained in [START_REF] Lavaei | Zero duality gap in optimal power flow problem[END_REF] stating that the power flow problem could be solved exactly via a natural positive semidefinite programming problem. This result has been extended in [START_REF] Daniel K Molzahn | Implementation of a large-scale optimal power flow solver based on semidefinite programming[END_REF], [START_REF] Rabih | Exploiting sparsity in sdp relaxations of the opf problem[END_REF], [START_REF] Steven | Convex relaxation of optimal power flow, part ii: Exactness[END_REF], [START_REF] Bienstock | Lp formulations for mixed-integer polynomial optimization problems[END_REF], [START_REF] Fazelnia | Convex relaxation for optimal distributed control problem[END_REF]. The case of State estimation was then studied in [START_REF] Zhu | Power system nonlinear state estimation using distributed semidefinite programming[END_REF], [START_REF] Zhang | Power system state estimation with line measurements[END_REF], [START_REF] Klauber | Distribution system state estimation using semidefinite programming[END_REF] and [START_REF] Madani | Convexification of power flow equations for power systems in presence of noisy measurements[END_REF]. One of the main drawbacks of the convex relaxation is that it relies on a semidefinite programming which, although solvable in polynomial time, does not scale to large networks. Distributed approaches have been proposed in [START_REF] Zhu | Power system nonlinear state estimation using distributed semidefinite programming[END_REF] in order to circumvent this problem. On the other hand, an interesting recent trend based on the Burer Monteiro factorisation [START_REF] Burer | A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization[END_REF] is currently extensively explored in the context of various low rank matrix estimation problems in statistics. Surprisingly, the Burer Monteiro was proved to be amenable to gradient-type algorithm with polynomial time complexity in several situations [START_REF] Boumal | The non-convex burermonteiro approach works on smooth semidefinite programs[END_REF], [START_REF] Bhojanapalli | Global optimality of local search for low rank matrix recovery[END_REF], [START_REF] Park | Nonsquare matrix sensing without spurious local minima via the burer-monteiro approach[END_REF] and potential applicability of this approach deserves some attention. The paper is organised as follows. In Section 2, we present the mathematical details on power networks and the main notations used in the sequel. In Section 3, we introduce our factorisation approach to the problem and prove that is provides a solution to the original semi-definite programming relaxation of [START_REF] Zhu | Power system nonlinear state estimation using distributed semidefinite programming[END_REF] under the assumption that the observation design satisfies a certain algebraic condition known as RIP [START_REF] Li | The nonconvex geometry of low-rank matrix optimizations with general objective functions[END_REF]. Finally, in Section 4, we present some numerical experiments on some real networks.

2. Problem formulation.

2.1. The estimation problem. In this section, we introduce the state estimation problem in power grids.

2.1.1. Notations. We consider a power network with N buses. Let N = {1, . . . , N } and E ⊂ N 2 we index the set of lines. For each bus indexed by n, its neighbours will have index set denoted by N n . We will denote by V n the complex value of the voltage at bus n. We will work in rectangular coordinates as in [START_REF] Zhu | Power system nonlinear state estimation using distributed semidefinite programming[END_REF].

2.1.2. Measurement model. We assume to measure the power at certain nodes and certain edges. These measurements are quadratic functions of the voltages at every nodes. More precisely we will observe the power injection at bus n, denoted by P n (real) and Q n (reactive), and flows from bus n to bus n , denoted by P n,n (real) and Q n,n (reactive) as well as the squared magnitude of the voltages. The bus admittance matrix Y is the matrix defined by

Y nn =                -y n,n if (n, n ) ∈ E ȳn,n + ν∈Nn y n,ν if n = n 0 otherwise
where y n,n denotes the line admittance between buses n and n, ȳn,n is the shunt admittance at bus n. Let also ȳn,n denote the shunt admittance at bus n associated with line (n, n ). The current flowing from bus n to bus n is denoted by I n,n and the injected current at bus n is denoted by I n . They satisfy

I = Y V and I n,n = ȳn,n V n + y n,n (V n -V n ).
The AC power flow model asserts that the complex power injection at bus n is given by

P n + jQ n = V n I *
n , while the complex power flow from bus n to bus n is given by

P n,n + jQ n,n = V n I * n,n .
Let us collect the measurement values in a vector z as in [START_REF] Zhu | Power system nonlinear state estimation using distributed semidefinite programming[END_REF], i.e. the column vector

z = {P n } n∈N P ), {Q n } n∈N Q ), {P n,n } n,n ∈E P , {Q n,n } n,n ∈E Q , {|V n | 2 } n∈N V * +
where is a noise vector. Note that currently the z vector does not contain the voltage angles. The statistical problem of estimating the voltages from the observation vector z is called the State Estimation problem. Notice that all measurements are noisy quadratic functions of the voltage and this is the reason that makes the voltage estimation problem difficult.

2.2.

Semi-Definite relaxation of State Estimation. After the breakthrough paper [START_REF] Lavaei | Zero duality gap in optimal power flow problem[END_REF], a extensive effort has been devoted to the study of Semi-Definite relaxations of quadratic least-squares problems with rank one constraint in Power Flow estimation and State Estimation [START_REF] Zhu | Power system nonlinear state estimation using distributed semidefinite programming[END_REF].

2.2.1. Notation. We adopt the same notations as [START_REF] Zhu | Power system nonlinear state estimation using distributed semidefinite programming[END_REF]. Let e n denote the vector of all one's in C n . Define

Y n = e n e T n Y Y n,n = (ȳ n,n + y n,n )e n e T
n -y n,n e n e T n , and define H P,n , H Q,n , ... as

H P,n = 1 2 Y n + Y * n , H Q,n = j 2 Y n -Y * n H P,n,n = 1 2 Y n,n + Y * n,n , H Q,n,n = j 2 Y n,n -Y * n,n and 
H V,n = e n e * n .
Using these notations, we obtain that

P n = trace(H P,n V V * ), Q n = trace(H Q,n V V * ) P n,n = trace(H P,n,n V V * ), Q n,n = trace(H Q,n,n V V * )
and

|V n | 2 = trace(H V,n V V * ).
2.2.2. The least squares problem and a first Semi-Definite Relaxation. After a small notational change allowing to enumerate the matrices H l from 1 to L, independent of the subscripts P, Q, n, n , the least squares estimation problem is thus given by min

V ∈C N ×N L l=1 z l -trace(H l V V * ) 2 (1) 
Using the change of variable W = V V * , we then have the equivalent rank constrained Semi-Definite Program min

W ∈C N ×N L l=1 z l -trace(H l W ) 2 s.t. W 0 and rank(W ) = 1.
A standard way to obtain a Semi-Definite relaxation is just to relax the rank one constraint. The resulting Semi-Definite Relaxation is given by min

W ∈C N ×N f (W ) s.t. W 0 (2) 
with

f (W ) = L l=1 z l -trace(H l W ) 2 . ( 3 
)
3. The factorisation approach. Our goal in this section is to present a fast method for solving (2) based on the factorisation idea of [START_REF] Burer | A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization[END_REF].

3.1. Presentation of the method. We will use a Bürer-Monteiro type approach to solving (2). In the Bürer-Monteiro philosophy, one uses the factorisation W = AA * where A ∈ C n×r . In this ideal case where the SDR relaxation is exact, one can take r = 1 and recover the voltage vector V directly as equal to A up to a 'rotation' R, i.e.

V = AR

with R a unitary matrix, i.e. RR * = I. Finding the matrix R can be achieved by direct measurements of the voltage value at some particular buses using e.g. PMU's and using simple least squares estimation, a particular case of the Procrustes problem. This situation appears frequently in the State Estimation problems as was proved in the breakthrough paper [START_REF] Lavaei | Zero duality gap in optimal power flow problem[END_REF]. In general however, it might happen that the rank at the solution of ( 2) is larger than one and one might account for this possible issue in the method. Therefore, one usually sets r to a value larger than one in general. Let g: C n×r → C r denote the function

g(A) = L l=1 z l -trace(H l AA * ) 2 . ( 4 
)
This function is quartic in A and g has an infinite number of minimisers due to the fact that, for any unitary matrix R, ARR * A * = AA * . The idea of Burer and Monteiro [START_REF] Burer | A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization[END_REF] is to find a relaxation of higher rank to the SDP leading to a solution of the Semi-Definite Relaxation while avoiding the use of standard SDP optimisation tools which might not scale to large real life problems. This was proved to be optimal for r sufficiently large in [START_REF] Boumal | The non-convex burermonteiro approach works on smooth semidefinite programs[END_REF]. The approach is also known to achieve provable recovery if the matrices H l , l = 1, . . . , L satisfy a Restricted Isometry Property [4] [29]. Different approaches can be chosen for optimising g, based on first order information, i.e. an oracle which outputs the computation of the gradient ∇g(A) at a given A. One of the most relevant family of methods is the family of quasi-Newton methods such as BFGS algorithms with efficient line-search [START_REF] Bonnans | Numerical optimization: theoretical and practical aspects[END_REF]. One of the main advantages is the quarantee that the method will reach a local minimizer instead of a saddle point. For a complete bibliography of the available techniques, we refer the reader to [START_REF] Nocedal | Numerical optimization[END_REF].

One of the main issues with our optimisation problem is that the gradient is a third order polynomial function of the variable and the Lipschitz constant of the gradient, which is fundamental for analysing the convergence of the method, can be very large even on reasonably small compact sets. As a result, numerical problems such as divergence of the iterates may be observed. A simple remedy to this issue is to incorporate some additional constraints into the problem in order to stabilise the algorithm. In this paper, we chose to use the unit ball of the operator norm. The reason for doing this is based on the following proposition. (

) 5 
Proof. This is straightforward after making the change of variable V = √ α A and observing that the feasable sets are the same in the two problems.

Based on the splitting approach given in Proposition 1, we now present a very simple and intuitive approach to the problem based on alternating optimisation on the unit ball for the operator norm and scaling the solution:

• The first stage corresponds to solving the optimisation problem over the set of unit norm matrices with k columns by simple projected gradient steps, i.e. we find a stationary point for the problem min

A =1 L l=1 z l -α trace(H l AA * ) 2 . (6) 
• The second stage corresponds to rescaling the matrix by tuning its norm via a least squares criterion, i.e.

min α∈R L l=1 z l -α trace(H l AA * ) 2 (7) 
This is done using a simple explicit formula.

The details are given in Algorithm 1 below. One of the main advantages of the method is its simplicity, scalability and speed, as demonstrated through computational experiments in Section 4.

Result: W opt Choose A (1,1) ∈ C n×k First stage while s ≤ S -1 do ∇g(A) = 2 L l=1 -z l α(H * l + H l )A + 2 α 2 trace (H l AA * )(H * l + H l )A . (8) 
Ã(t,s+1) = A (t,s) -η∇g(A (t,s) ) ( 9)

A (t,s+1) = 1 Ã(t,s+1) Ã(t,s+1) . ( 10 
)
end Set A (t+1,1) = A (t,S) .

Second stage Set

W opt = α (t+1) A (t+1,1) A (t+1,1) * [START_REF] Emmanuel | Exact matrix completion via convex optimization[END_REF] with

α (t+1) = L l=1 z l trace (H l A (t+1,1) A (t+1,1) * ) L l=1 trace (H l A (t+1,1) A (t+1,1) * ) 2 ( 12 
)
Algorithm 1: The two stage optimisation procedure 3.2. Theoretical analysis. In this section, we prove that the method recovers the true solution under standard assumptions on the measurement matrices H l , l = 1, . . . , L.

Let r * denote the smallest rank of an optimal solution to (2). Throughout this section, we will make the following assumption.

Assumption 1. The family H l , l = 1, . . . , L of measurement matrices satisfies the following Restricted Isometry Property

M I ∇ 2 f (W ) mI ( 13 
)
for all A with rank(W ) ≤ 2r *

The Restricted Isometry Property played a key role in the field of Compressed Sensing [START_REF] Emmanuel | Decoding by linear programming[END_REF] [START_REF] Emmanuel | The restricted isometry property and its implications for compressed sensing[END_REF]. Compressed sensing is an elegant new paradigm for near optimal data acquisition which has gained paramount interest in the last fifteen years due to its wide applicability and various industrial and medical contexts [START_REF] Emmanuel | An introduction to compressive sampling[END_REF], [START_REF] Richard | Compressive sensing [lecture notes[END_REF], [START_REF] Yonina | Compressed sensing: theory and applications[END_REF], [START_REF] Kutyniok | Theory and applications of compressed sensing[END_REF], [START_REF] Foucart | A mathematical introduction to compressive sensing[END_REF]. Extension of this work to the case of unknown noise variance have been studied in [START_REF] Giraud | High-dimensional regression with unknown variance[END_REF], [START_REF] Chrétien | Sparse recovery with unknown variance: a lasso-type approach[END_REF], [START_REF] Belloni | Pivotal estimation via square-root lasso in nonparametric regression[END_REF], [START_REF] Salmon | On high dimensional regression: computational and statistical perspectives[END_REF], [START_REF] Virouleau | Highdimensional robust regression and outliers detection with slope[END_REF]. Interpretation using Lagrange duality and improved reconstruction performance were studied in [START_REF] Chrétien | An alternating l 1 approach to the compressed sensing problem[END_REF]. Extension of compressed sensing ideas to low rank matrix and tensor estimation and completion was achieved rapidly after the vector case [START_REF] Emmanuel | Exact matrix completion via convex optimization[END_REF], [START_REF] Emmanuel | The power of convex relaxation: Near-optimal matrix completion[END_REF], [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF], [START_REF] Mark | An overview of low-rank matrix recovery from incomplete observations[END_REF], [START_REF] Zhang | Exact tensor completion using t-svd[END_REF], [START_REF] Song | Tensor completion algorithms in big data analytics[END_REF], [START_REF] Chrétien | Sensing tensors with gaussian filters[END_REF], [START_REF] Wang | Near-optimal noisy low-tubal-rank tensor completion via singular tube thresholding[END_REF] and the case of unknown noise variance was studied in [START_REF] Klopp | High dimensional matrix estimation with unknown variance of the noise[END_REF]. The Lagrangian approach of [START_REF] Chrétien | An alternating l 1 approach to the compressed sensing problem[END_REF] and also extended to the matrix setting in [START_REF] Bai | Alternating optimization of sensing matrix and sparsifying dictionary for compressed sensing[END_REF].

RIP was also found crucial in the analysis of fast non-convex factorisation methods for low rank estimation of Burer-Monteiro type for Matrix Sensing [START_REF] Li | The nonconvex geometry of low-rank matrix optimizations with general objective functions[END_REF], [START_REF] Ge | No spurious local minima in nonconvex low rank problems: A unified geometric analysis[END_REF], [START_REF] Zhu | The global optimization geometry of nonsymmetric matrix factorization and sensing[END_REF]. The RIP assumption may not hold in some practical settings but we think it is however useful as a conceptual guideline. In the sequel, we will use the main result from [START_REF] Li | The nonconvex geometry of low-rank matrix optimizations with general objective functions[END_REF] in order to study a projected gradient type method on the sphere for the State Estimation problem.

The first step of our method produces a sequence of iterates on the unit sphere in the Frobenius norm. The following lemma characterises the limit behavior of this sequence.

In the sequel, we will assume that S = +∞. The matrix A (t,∞) will denote an arbitrary cluster point of the sequence (A (t,s) ) s∈N .

Lemma 1. For all t ∈ N, A (t,∞) is a Karush-Kuhn-Tucker point of the function g on the sphere.

Proof. Using continuity of the function g, we obtain that the gradient of g is orthogonal to the unit sphere, which is equivalent to saying that A (t,∞) is a stationary point of the minimisation problem.

Given Lemma 1, the following proposition is a standard result in optimisation theory.

Proposition 2. Any cluster point of the sequence ((α (t) , A (t,∞) )) t∈N is a stationary point of g.

Proof.

Straightforward given that g is differentiable.

Theorem 1. If r * is the smallest rank of a minimiser in (2), then any cluster point of the sequence α (t) 2 A (t,∞) A (t,∞) * , t = 1, . . . , +∞ is a global optimum of the original least-squares problem (2).

Proof. Using Proposition 2 and Assumption 1, Theorem 1 in [START_REF] Li | The nonconvex geometry of low-rank matrix optimizations with general objective functions[END_REF] concludes the proof.

4. Numerical experiments. We conducted some numerical experiments on various grids including IEEE -30, a network called Malaga and the Polish network known as 'case2746wp'. In each experiment, we ran 100 Monte Carlo trials. Each trial corresponds to a different realisation of the observation noise, which was generated from a Gaussian distribution N (0, σ 2 ) with σ = .1. Other values of the noise level have been tested as well and it was observed that the behavior of the method was the same for the tested level values, with a Mean Squared Error increasing linearly as a function of the noise level.

4.1. The IEEE -30 network. In the experiments with the IEEE -30 grid, we compared two approaches. The first approach is our new method for problem [START_REF] Richard | Compressive sensing [lecture notes[END_REF] and the second approach consists in using the YALMIP package in Matlab for solving the Semi-Definite Programming Relaxation. Figure 1 shows that a much better accuracy is obtained with our new approach. Figure 2 shows that the method converges much faster than YALMIP. The evolution of the objective value function is presented in Figure 3 below. It shows that, while convergence is not monotonic, it is fast. The evolution of the distance between successive iterates is shown in Figure 4 and shows that a much more robust stopping criterion may be obtained based on this distance than based on the objective value.

4.2.

A larger network. We then applied our method on a large network called 'case2746wp'. We quote the description given in [START_REF] Ray D Zimmerman | Matpower. PSERC[END_REF]. The 'case2746wp' represents the Polish 400, 220 and 110 kV networks during winter 2003-04 evening peak conditions. Multiple centrally dispatchable generators at a bus have not been aggregated. Generators that are not centrally dispatchable in the Polish energy market are given a cost of zero.

Figure 5 shows the histogram of the Mean Squared Error and Figure 6 shows the computation time for the same set of Monte Carlo experiments as for the IEEE-30 network. Again, the method showed good performance despite the larger dimensionality of the network (2746 buses). The YALMIP method did not converge in reasonable computation time for this problem and only the results obtained with our method are shown below.

Conclusion.

In this paper, we presented a factorisation approach for the State Estimation problem in power networks. Our approach is very efficient in practice Computation time for our method Our future objective is to relax the Restricted Isometry Property with is the main ingredient in our analysis. The Restricted Isometry property is an essential theoretical tool which allows to understand if a problem can be efficiently approach by efficient procedures such as in Compressed Sensing or Matrix Sensing. However, one of the main drawbacks of this property is that it is NP-Hard to check and it is very difficult to know if the network at hand has this property. . Mean Squared Error obtained using the estimator based on the new method with noise standard deviation equal to .2 when power is observed at half the buses. The buses selected for observation were selected uniformly at random. . Computation times using the new method with noise standard deviation equal to .2 when power is observed at half the buses. The buses selected for observation were selected uniformly at random.
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 3 Goal and organisation of the paper. The goal of the present paper is to propose a new factorisation based approach to the State Estimation problem and report on its efficiency via extensive computational experiments.
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 1 Problem (1) is equivalent to the following problem: min α∈R+, A = √ α L l=1 z l -α trace(H l AA * ) 2 .
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 1 Figure1. Comparison of Sum of Squared Errors for the IEEE-30 network: New method vs. SDP relaxation (using YALMIP) with noise standard deviation equal to .2 when power is observed at half the number of buses chosen at random.
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 2 Figure2. Comparison of computation times for the IEEE-30 network: New method vs. SDP relaxation (using YALMPI) with noise standard deviation equal to .2 when power is observed at half the number of buses chosen uniformly at random.
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 3 Figure 3. Example of evolution of the objective function as a function of iteration number for one realisation of a random noise for the IEEE-30 network.
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 4 Figure 4. Example of evolution of the euclidean distance between successive A-iterates as a function of iteration number for one realisation of a random noise for the IEEE-30 network.
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 5 Figure 5. Mean Squared Error obtained using the estimator based on the new method with noise standard deviation equal to .2 when power is observed at half the buses. The buses selected for observation were selected uniformly at random.
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 6 Figure 6. Computation times using the new method with noise standard deviation equal to .2 when power is observed at half the buses. The buses selected for observation were selected uniformly at random.
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