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The Guedon-Vershynin Semi-Definite

Programming approach to low dimensional

embedding for unsupervised clustering

Stéphane Chrétien ˚ Clément Dombry : Adrien Faivre ;

July 3, 2019

Abstract

This paper proposes a method for estimating the cluster matrix in the
Gaussian mixture framework via Semi-Definite Programming. Theoretical
error bounds are provided and a (non linear) low dimensional embedding
of the data is deduced from the cluster matrix estimate. The method
and its analysis is inspired by the work by Guédon and Vershynin on
community detection in the stochastic block model. The adaptation is
non trivial since the model is different and new Gaussian concentration
arguments are needed. Our second contribution is a new Bregman-ADMM
type algorithm for solving the semi-definite program and computing the
embedding. This results in an efficient and scalable algorithm taking
only the pairwise distances as input. The performance of the method
is illustrated via Monte Carlo experiments and comparisons with other
embeddings from the literature.

1 Introduction

Low dimensional embedding is a key to many modern data analytics. Data
are better understood after choosing the best coordinates, i.e. embedding, and
extracting the main features. Based on a compressed description, the data can
then be projected, visualized or clustered more reliably and efficiently. The goal
of the present paper is to present an efficient technique for joint embedding and
clustering, based on pairwise affinity analysis and reliable convex optimisation.

Combining the goals of reducing dimensionality and clustering in a princi-
pled manner is challenging and novel, but also draws on ideas from spectral
clustering [25], [3], and Semi-Definite embedding, as in [15]. The main idea
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behind such methods, is to approximately preserve the pairwise distances in the
dataset, with the goal of discovering, via an appropriate coordinate change, the
correct parametrisation of the potentially low dimensional non-linear manifold
that essentially contains the data. An example of non-linear low dimensional
embedding, such as Diffusion Maps, is shown in Figure 1.

5
4

3
2

1
0

-1-2

0

2

4

6

8

4

8

10

-2

0

6

2

10

Original dataset

dimensionality=3

X data: 1

(a) Original 3D Cluster

-2 -1.5 -1 -0.5 0 0.5 1 1.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Result of dimensionality reduction

(b) Mapped data using Diffusion Maps

Figure 1: The mapping of a 3D cluster using Diffusion Maps from the Matlab
package drtoolbox https://lvdmaaten.github.io/drtoolbox/

Apart from this previous works, standard clustering techniques usually start
from already embedded data as obtained after e.g. PCA processing. Said
otherwise embedding and clustering are often considered as completely separate
tasks. Based on embedded data, mainstream clustering techniques are non-
parametric (as K-means , K-means++, etc [14], [10]) and model based clustering
(as Mixture Models [16]). These approaches often rely on non-convex optimisation
such as Lloyd’s algorithm and Expectation-Maximisation [8], [7]. However, even
careful implementation of these algorithms leads to some uncertainty as to
whether one has finally obtained a relevant optimiser. In Mixture Model-based
clustering, one also faces the issue of degeneracy [5]. As a result, a growing
body of researched has emerged lately concerning the study of convex relaxation
for the clustering problem [2], [18], etc. Other approaches such as ClusterPath
[13] have also been proposed; see [23], [22] and [27] for interesting extensions.
One drawback of theses approaches is the presence of many hyperparameters
without robust rules to select them. The present work pursues this recent trend
of promoting convex optimisation-based clustering based on low rank cluster
matrix estimation, as a way of ensuring that no spurious local optimiser is used
in the process of clustering-based decision making in data analytic studies.

Our starting point in this attempt at finding appropriate embeddings for
clustering is the method by Guedon and Vershynin [11], initially developed for
community detection in the stochastic block model (SBM). In mathematical
terms, the SBM considers a random graph based on a set of vertices partitioned
into clusters and with random edges between vertices, all edges are independent

2



and the probabilities of edges depend only on the cluster structure. The usual
assumption made in the SBM is that the probabilities are larger within clusters
than across clusters. The problem of recovering clusters from a random empirical
adjacency matrix has been a topic of extensive research, triggered by the work of
McSherry [17] and which quickly developed into a beautiful body of impressive
results and achievements; see Abbe et al. [1], Heimlicher et al. [12], Mossel et al.
[19], [20], [21]. Guedon and Vershynin recently showed that the cluster matrix
can be estimated via Semi-Definite Programming (SDP) with an explicit control
of the error rate.

From a technical perspective, our contribution is three fold.

• First, we generalise the Guedon/Vershynin approach in order to deal with
the Gaussian Cluster Model (GCM) and show that the cluster matrix in
the GCM can also be estimated by solving an SDP. For doing so, we use
an affinity matrix as input that depends only on the pairwise distances
between observations. Contrarily to the adjacency matrix arising in the
SBM, our affinity matrix from the GCM has non independent entries, thus
making the analysis non trivial.

• Our second contribution is to demonstrate in practice that the estimated
cluster matrix yields a natural associated embedding. Indeed, quite simi-
larly to spectral clustering, the eigenvectors of the estimated cluster matrix
provide a meaningful embedding. Contrarily to standard embedding meth-
ods such as PCA, Laplacian eigenmaps, Maximum Variance Unfolding,
t-SNE, etc, the embedding does not try to preserve pairwise distances but
rather to estimate the cluster matrix. The intuition for using the cluster
matrix is supported by Remark 1.6 in [11] which we now quote: It may be
convenient to view the cluster matrix as the adjacency matrix of the cluster
graph, in which all vertices within each community are connected and there
are no connections across the communities. This way, the Semi-Definite
program takes a sparse graph as an input, and it returns an estimate
of the cluster graph as an output. The effect of the program is thus to
”densify” the network inside the communities and ”sparsify” it across the
communities.

• Our third contribution is to propose a new scalable algorithm for solving
the main Semi-Definite Programming problem at the heart of [11] and
our approach to embedding and clustering. Our new method is based on
a linearised version of the Alternating Direction Method of Multipliers
(ADMM) together with a pragmatic implementation of the constraints,
that allows us the avoid solving the original Semi-Definite Program via
interior point methods.

The paper is organized as follows. The SDP approach for estimating the
cluster matrix, the associated embedding and the main theoretical results are
presented in Section 2. The proofs are postponed to Section A in the appendix.

3



The algorithmic considerations for the resolution of the SDP are discussed in
the supplementary material, where an efficient algorithm is described as well as
a practical method for selecting the unknown tuning parameter. Section 3 is
devoted to the presentation of simulation results, demonstrating the potential of
the proposed method. Some technical background on Gaussian concentration
and Grothendieck inequality is provided in Appendices.

2 Main results

2.1 Framework: the Gaussian Cluster Model

The mathematical framework is the following. We assume that we observe a data
set x1, . . . , xn P Rd over a population of size n. The population is partitioned
into K clusters C1, . . . , CK of size n1, . . . , nK respectively, i.e. n “ n1` ¨ ¨ ¨ `nK .
We assume the standard Gaussian Cluster Model for the data: the observations
xi are independent with

xi „ N pµk,Σkq if i P Ck (1)

with µk P Rd the cluster mean and Σk P Rdˆd the cluster covariance matrix.
The Gaussian Mixture model specifies the addtional information about the
probabilities of belonging to each cluster and the Gaussian Cluster Model
corresponds to conditioning the Gaussian Mixture Model on the values of the
latent cluster indicator variables [16] 1.

The clustering problem aims at recovering the clusters Ck, 1 ď k ď K, based
on the data xi, 1 ď i ď n, only. For each i “ 1, . . . , n, we will denote by ki the
index of the cluster to which i belongs. The notation i „ j will mean that i and
j belong to the same cluster. The cluster matrix Z̄ is the nˆ n matrix defined
by

Z̄i,j “

$

&

%

1 if i „ j

0 otherwise
, 1 ď i, j ď n. (2)

It determines entirely the clusters and, up to a reordering of the points, it is a
block-diagonal matrix with a block of ones for each cluster.

Note that the Gaussian Cluster Model slightly differs from the usual Gaussian
mixture model where the data set consists in independent observations from the
Gaussian mixture

řK
k“1 πk N pµk,Σkq, with pπkq1ďkďK the mixture distribution.

In the Gaussian mixture model, the cluster sizes pn1, . . . , nkq are random with
multinomial distribution of size n and probability parameters pπ1, . . . , πKq.

1Extending our study to the setting of Gaussian Mixture Models using the relationship
with the Gaussian Cluster Model based on this conditioning is a somewhat tedious but not
difficult task.
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2.2 Dimensionality reduction

As proved in [4] the data can be projected onto a space of dimension logpKq while
still preserving separation when the data are assumed to belong to separated
ellipsoids. Therefore, we can consider in the rest of the paper that d is of the
order of logpKq. The results of our main theorem below will give the appropriate
scaling of the parameters that will ensure the well separatedness of the data.

2.3 Embedding associated with the estimated cluster ma-
trix

We will define in the next section an estimate pZ of the cluster matrix Z̄. We
discuss now how a low dimensional embedding of the data set can be associated
with the estimate pZ. The main idea is to use the fact that the cluster matrix Z̄
defined by (2) has a very specific eigenstructure: denoting by C1, . . . , CK the
index set of each cluster and by 1Ck

P t0, 1un the indicator vector of cluster Ck,
we have

Z̄ “
K
ÿ

k“1

1Ck
1tCk

and we deduce that

• the rank of Z̄ is K,

• the nonzero eigenvalues of Z̄ are |C1|, . . . , |CK | with associated eigenvectors
1C1{

a

|C1|, . . . , 1CK
{
a

|C1|.

We assume in the sequel that the cluster sizes are all different so that all non-zero
eigenvalues have multiplicity one. The clusters can hence be recovered from the
eigenstructure of the matrix Z̄: the label of the sample point xi is the index
of the only eigenvector whose i-th component is non zero. Indeed, all other
eigenvectors associated with a non-zero eigenvalue have i-th component equal to
zero.

The estimate pZ of the matrix Z̄ can be used in practice to embed the data
into the space RK by associating each data point xi to the vector consisting of
the i-th coordinate of the K first eigenvectors of pZ. Given this embedding, if we
can prove that pZ accurately estimates the cluster matrix Z̄, one can then apply
any clustering method of choice to recover the clustering pattern of the original
data. The next section gives a method for computing an estimator pZ of Z̄ using
the SDP approach by Guedon and Vershynin.

2.4 Guedon and Vershynin’s Semi-Definite Program

We now turn to the estimation pZ of the cluster matrix using Guedon and Ver-
shynin’s Semi-Definite Programming based approach. Whereas Vershynin and
Guédon [11] were interested in analyzing the Stochastic Block Model for commu-
nity detection, we propose a study of the Gaussian Cluster Model and therefore
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prove that their approach has a great potential applicability in embedding of
general data sets beyond the Stochastic Block Model setting.

Based on the data set x1, . . . , xn, we construct the affinity matrix A by

A “
`

fp}xi ´ xj}2q
˘

1ďi,jďn
(3)

where } ¨ }2 denotes the Euclidean norm on Rd and f : r0,`8q Ñ r0, 1s a
non-increasing affinity function. A popular choice is the Gaussian affinity

fphq “ e´ph{h0q
2

, h ě 0, (4)

with h0 ą 0, and other possibilities are

fphq “ e´ph{h0q
a

, fphq “ p1` ph{h0qq
´a,

fphq “ p1` eh{h0q´a ¨ ¨ ¨

Before stating the Semi-Definite Program, we introduce some matrix nota-
tions. The usual scalar product between matrices A,B P Rnˆn is denoted by
xA,By “

ř

1ďi,jďnAijBij . The notations 1n P Rn and 1nˆn P Rnˆn stand for
the vector and matrices with all entries equal to 1. For a symmetric matrix
Z P Rnˆn, the notation Z ľ 0 means that Z the quadratic form associated to
Z is non-negative while the notation Z ě 0 means that all the entries of Z are
non-negative.

With these notations, we define pZ as a solution of the Semi-Definite Program

maximize xA,Zy subject to Z PMopt (5)

with Mopt the set of symmetric matrices Z P Rnˆn such that
$

’

’

&

’

’

%

Z ľ 0
Z ě 0
diagpZq “ 1n
xZ, 1nˆny “ λ0

. (6)

Here λ0 P N is the number of non-zero edges in the true cluster matrix and
Guedon and Vershynin state in [11] that it can be estimated empirically. For
further reference, note that a semi-definite positive matrix Z with non-negative
entries and unit diagonal must have all entries in r0, 1s, so thatMopt Ă r0, 1s

nˆn.

The heuristic justifying that pZ can be seen as an estimate of the cluster
matrix Z̄ is the following Lemma.

Lemma 2.1. Consider the expected affinity matrix

Ā “
´

Efp}xi ´ xj}2q
¯

1ďi,jďn
. (7)

and assume
p “ inf

i„j
Āi,j ą q “ sup

ij
Āi,j . (8)
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Then, the cluster matrix Z̄ defined by Eq. (2) is the unique solution of

maximize xĀ, Zy subject to Z PMopt (9)

with λ0 “
řK
k“1 n

2
k.

The intuition behind condition (8) is that the average distance (or more
precisely the average affinity) between two points within a same cluster is smaller
than the average distance between two points from different clusters. This
corresponds to the intuitive notion of clusters. Note that a similar condition
appears in [11]. In the case of the Gaussian affinity function (4), we provide in
Section 2.6 explicit formulas for the expected affinity matrix that can be used to
check condition (8).

The SDP (5) appears as an approximation of the SDP (9) since the affinity
matrix A can be seen as a noisy observation of the unobserved matrix Ā.
Concentration arguments together with Grothendieck theorem allow to prove
that A « Ā in the sense of the `8{`1-norm (see Proposition 2.4 below). In turn,

this implies pZ « Z̄ in the sense of `1-norm in Rn2

(see Theorem 2.2 below) so

that the SDP program (5) provides a good approximation pZ of the cluster matrix
Z̄. Note that in practice, λ0 is unknown and must be estimated, see comment in
section 5.1.5.

Proof of Lemma 2.1. This corresponds to Lemma 7.1 in [11].

2.5 Theoretical error bounds

Our main result is a non asymptotic upper bound for the probability that pZ
differs from Z̄ in `1-distance, that is an upper bound for

›

›

›

pZ ´ Z̄
›

›

›

1
“

ÿ

1ďi,jďn

| pZi,j ´ Z̄i,j |.

Theorem 2.2. Consider the Gaussian Cluster Model (1) and assume that the
affinity function f is `-Lipschitz and that condition (8) is satisfied. Let

t0 “ 8
a

2 log 2KGσ`{pp´ qq

where KG ď 1.8 denotes the Grothendieck constant and σ2 “ 1
n

řK
k“1 nkρpΣkq

with ρpΣkq the largest eigenvalue of the covariance matrix Σk.
Then, for all t ą t0,

P
´
›

›

›

pZ ´ Z̄
›

›

›

1
ą n2t

¯

ď 2 exp

˜

´

ˆ

t´ t0
c

˙2

n

¸

, (10)

c “
16
?

2KG`σ

p´ q
. (11)
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Moreover, there exists a subset τ Ă t1, . . . , nu with |τ | ě n
2 such that all t ą t0,

P

ˆ
›

›

›

›

´

pZ ´ Z̄
¯

τˆτ

›

›

›

›

1

ą nt

˙

ď 2 exp

˜

´

ˆ

t´ t0
c

˙2

n

¸

. (12)

Proof. See Section A.1 in the Appendix.

Theorem 2.2 has a simple consequence in terms of estimation error rate.
After computing pZ, it is natural to estimate the cluster graph Z̄ by a random
graph obtained by putting an edge between vertices i and j if pZi,j ą 1{2 and
no edge otherwise. Then the proportion πn of errors in the prediction of the
npn´ 1q{2 edges is given by

πn :“
2

npn´ 1q

ÿ

1ďiăjďn

|1
t pZiją1{2u ´ Z̄ij |

ď
2

npn´ 1q

ÿ

1ďiăjďn

2 | pZij ´ Z̄ij |

“
2

npn´ 1q

›

›

›

pZ ´ Z̄
›

›

›

1
.

The following corollary provides a simple bound for the asymptotic error.

Corollary 2.3. We have almost surely

lim sup
nÑ8

n´2
›

›

›

pZ ´ Z̄
›

›

›

1
ď t0 “

8
?

2 log 2KGσ`

p´ q
.

In the case when the cluster means are pairwise different and fixed while the
cluster variances converge to 0, i.e. σ Ñ 0, it is easily seen that the right hand
side of the above inequality behaves as Opσq so that the error rate converges to
0. This reflects the fact that when all clusters concentrates around their means,
clustering becomes trivial.

While our proof of Theorem 2.2 follows the ideas from Vershynin and Guédon
[11], we need to introduce new tools to justify the approximation A « Ā in
`8{`1-norm. Indeed, unlike in the stochastic block model, the entries of the
affinity matrix (3) are not independent. We use Gaussian concentration measure
arguments to obtain the following concentration inequality. The `8{`1 norm of
a matrix M P Rnˆn is defined by

}M}8Ñ1 “ sup
}u}8ď1

}Mu}1 “ max
u, vPt´1,1un

n
ÿ

i,j“1

uivjMi,j . (13)

Proposition 2.4. Consider the Gaussian cluster model (1) and assume the
affinity function f is `-Lipschitz. Then, for any t ą 2

?
2 log 2 ` σ,

P
´

›

›A´ Ā
›

›

8Ñ1
ą t n2

¯

ď 2 exp

˜

´

`

t´ 2
?

2 log 2`σ
˘2

32`2σ2
n

¸

. (14)

8



Proof. See Section A.2 in the Appendix.

Theorem 2.2 assumes that λ0 is known. It is worth noting that λ0 corresponds
to the number of edges in the cluster graph and that we can derive from the
proof of Theorem 2.2 how the algorithm behaves when the cluster sizes are
unknown, i.e. when the unknown parameter λ0 is replaced with a different value
λ. The intuition is given in Remark 1.6 in [11]: if λ ă λ0, the solution pZ will
estimate a certain subgraph of the cluster graph with at most λ0 ´ λ missing
edges; if λ ą λ0, the solution pZ will estimate a certain supergraph of the cluster
graph with at most λ´ λ0 extra-edges.

2.6 Explicit formula for Ā

In order to check condition (8), explicit formulas for the mean affinity matrix are
useful. The next proposition solves the case of the Gaussian affinity function.

Proposition 2.5. Assume that A is built using the Gaussian affinity function
(4).

• Let i and j be in the same cluster Ck. Then,

Āi,j “
d
ź

l“1

`

1` 4pσk,l{h0q
2
˘´1{2

with pσ2
k,lq1ďlďd the eigenvalues of Σk.

• Let i and j be in different clusters Ck and Ck1 . Then,

Āi,j “
d
ź

l“1

exp

˜

´
xµk ´ µk1 , vk,k1,ly

2

h20 ` 2σ2
k,k1,l

¸

`

1` 2pσk,k1,l{h0q
2
˘´1{2

with pσ2
k,k1,lq1ďlďd and pvk,k1,lq1ďlďd respectively the eigenvalues and eigen-

vectors of Σk ` Σk1 .

Proof. See Section A.3 in the Appendix.

As an interesting consequence of Proposition 2.5, when the variance matrices
from the Gaussian Cluster Model (1) are all equal and isotropic, that is Σk “ σ2Id
for all k “ 1, . . . ,K with σ2 ą 0, then the constants p and q from Equation (8)
are given by

p “
`

1` 4σ2{h20
˘´d{2

and
q “

`

1` 4σ2{h20
˘´d{2

ˆ min
1ďk‰k1ďK

exp
 

´}µk1 ´ µk}
2{ph20 ` 4σ2q

(

.
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Condition (8) is therefore satisfied (whatever the choice of h0 ą 0) as soon as the
cluster means pµkq1ďkďK are pairwise distinct which is a minimal identifiability
condition. But of course the difference p ´ q is an increasing function of the
noise σ2 and the bounds in Theorem 2.2 become looser for larger noise.

3 Simulation results

In all the experiments, the parameter h0 in (4) was chosen as

h0 “ .5 ˚maxpdiagpXt ˚Xqq1{2.

The hyper-parameter λ was chosen so as to minimise the mean squared error
between the estimated cluster matrix and the empirical affinity matrix.

3.1 Computing the actual clustering from the eigenvector
coordinates

As for spectral clustering, the components of the most significant eigenvectors,
i.e. the eigenvectors associated with the largest eigenvalues, are the coordinates
of the embedded data. Given these embedded data, as advised in [26], the
actual clustering can be computed using a minimum spanning tree method and
removing the largest edges.

3.2 Comparison with standard embeddings on a 3D clus-
ter example

Simulations have been conducted to assess the quality of the proposed embedding.
In this subsection, we used the Matlab package drtoolbox 2 proposed by Laurens
Van Maatten on a sample drawn from a 10 dimensional Gaussian Mixture Model
with 4 components and equal proportions. In Figure 2, we show the original
affinity matrix together with the estimated cluster matrix. In Figure 3, we
compare the affinity matrix of data with the affinity matrix of the mapped
data using various embeddings proposed in the drtoolbox package. This toy
experiment shows that the embedding described in this paper can cluster as
the same time as it embeds into a small dimensional subspace. This is not very
surprising since our embedding is tailored for the joint clustering-dimensionality
reduction purpose whereas most of the known existing embedding methods
aren’t. Given the fact that clustered data are ubiquitous in real world data
analysis due to the omnipresence of stratified populations, taking the clustering
purpose into account might be a considerable advantage.

3.3 Monte Carlo Experiments

In this section, we present some simulation experiments assessing the performance
of the Guedon-Vershynin embedding for Gaussian Cluster Models.

2https://lvdmaaten.github.io/drtoolbox/
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Figure 2: Original affinity matrix vs. Guedon Vershynin Cluster matrix

3.3.1 Setup

Our experiments were performed on problems of successive sample size 100, 200,
. . . , 1000 and number of clusters equal to 2, 5 and 10. The dimension of the
Gaussian Mixture Model was set to 100. For each experiment, we performed 100
Monte Carlo repeats. All the results in this section show the average over the
Monte Carlo experiments. Our Gaussian Cluster Model was built as follows: for
a model with K clusters, we set the kth component of each center to 10{3, 20{3,
. . . , 50{3 for each cluster k “ 1, . . . ,K. Then, the data are obtained by adding
a unit variance i.i.d. Gaussian vector to the center of the cluster it belongs to.
All clusters were taken to have equal size.

3.3.2 Selection of λ

The value of λ was selected so as to minimise the Frobenius distance between Ẑ
and A. Model based selection rules will be discussed in a follow up paper.

3.3.3 Results

Figures 4 and 5 show the estimation error }Z̄ ´ Ẑ}1 between the true and the
estimated cluster matrix. These results illustrate Theorem 2.2 as they show that
the error grows as a function of sample size. Moreover, the growth is quadratic
as predicted by the theory of Section 2, and more precisely Eq. (10).

4 Conclusions

The goal of the present paper was to propose an analysis of Guedon and Ver-
shynin’s Semi-Definite Programming approach to the estimation of the cluster
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(a) Original affinity
matrix vs. affinity ma-
trix after PCA embed-
ding
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(b) Original affinity
matrix vs. affinity ma-
trix after MDS embed-
ding
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(c) Original affinity ma-
trix vs. affinity matrix
after Factor Analysis
embedding
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(d) Original affinity
matrix vs. affinity ma-
trix after t-SNE em-
bedding
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(e) Original affinity ma-
trix vs. affinity matrix
after Sammon embed-
ding
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(f) Original affinity ma-
trix vs. affinity matrix
after LLE embedding

Figure 3: The affinity matrix obtained after embedding using different methods
from the Matlab package drtoolbox https://lvdmaaten.github.io/drtoolbox/

Figure 4: Estimation error }Z̄ ´ Ẑ}1

matrix and show how this matrix can be used to produce an embedding for pre-
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Figure 5: Estimation error }Z̄ ´ Ẑ}1

conditioning standard clustering procedures. The procedure is suitable for very
high dimensional data because it is based on pairwise distances only. Moreover,
increasing the dimension will improve the robustness of the procedure when the
Law of Large Numbers will apply along dimensions, hence forcing the affinity
matrix to converge to a deterministic limit and thus making the estimator less
sensitive to its low dimensional fluctuations.

Another feature of the method is that it may apply to a large number of
mixtures type, even when the component’s densities are not log-concave, as do
a lot of embeddings as applied to data concentrated on complicated manifolds.
Further studies will be performed in this exciting direction.

Future work is also needed for proving that the proposed embedding is
provably efficient when combined with various clustering techniques. One of the
main reason why this should be a difficult problem is that the approximation
bound proved in the present paper is not so easy to leverage for controlling
the perturbation of the eigenspaces of Z. More precise use of the inherent
randomness of the perturbation, in the spirit of [26], might be necessary in order
to go a little further in this direction.

Acknowledgements. The results presented in this paper have appeared
previously as Chapter 3 of the third author’s PhD thesis [9].
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A Proofs

A.1 Proof of Theorem 2.2

The proof follows the same lines as in Guédon and Vershynin [11] and we provide
the main ideas for the sake of completeness. The proof is divided into 4 steps.

Step 1: We prove that

xĀ, Z̄y ´ 2KG}A´ Ā}8Ñ1 ď xĀ, pZy ď xĀ, Z̄y (15)

with KG denoting Grothendieck’s constant. The upper bound follows directly
from Lemma 2.1. For the lower bound, we use the definition of pZ as a maximizer
and write

xĀ, pZy “ xA, pZy ` xĀ´A, pZy

ě xA, Z̄y ´ xA´ Ā, pZy

“ xĀ, Z̄y ` xA´ Ā, Z̄y ´ xA´ Ā, pZy.

Grothendieck’s inequality implies that for every Z PMopt,
ˇ

ˇxA´ Ā, Zy
ˇ

ˇ ď KG}A´ Ā}8Ñ1.

See Theorem C.3 and Lemma C.4 in the Appendix. Using this, we get

2KG}A´ Ā}8Ñ1 ě xĀ, Z̄ ´ pZy (16)

as desired.

Step 2: We show that for every Z PMopt,

xĀ, Z̄ ´ Zy ě
p´ q

2

›

›Z̄ ´ Z
›

›

1
. (17)

This corresponds to Lemma 7.2 in [11] and shows that the expected objective
function distinguishes points. Introducing the set

In “ YKk“1Ck ˆ Ck (18)

of edges within clusters and the set

Out “ t1, . . . , nu2zIn (19)

of edges across clusters, we decompose the scalar product

xĀ, Z̄ ´ Zy “
ÿ

pi,jqPIn

ĀijpZ̄ij ´ Zijq ´
ÿ

pi,jqPOut

ĀijpZij ´ Z̄ijq.

Note that the definition of the cluster matrix (2) implies that Z̄ij ´ Zij ě 0 if
pi, jq P In and Z̄ij ´ Zij ď 0 if pi, jq P Out. This together with condition (8)
implies

xĀ, Z̄ ´ Zy ě p
ÿ

pi,jqPIn

pZ̄ ´ Zqij ´ q
ÿ

pi,jqPOut

pZ ´ Z̄qij .

16



Introduce SIn “
ř

pi,jqPInpZ̄ ´ Zqij and SOut “
ř

pi,jqPOutpZ̄ ´ Zqij . Since

xZ̄, 1nˆny “ xZ, 1nˆny “ λ0, we have SIn ´ SOut “ 0. On the other hand
SIn ` SOut “

›

›Z̄ ´ Z
›

›

1
. From these computations, we easily obtain the lower

bound

xĀ, Z̄ ´ Zy ě
p´ q

2

›

›Z̄ ´ Z
›

›

1
. (20)

Step 3: Combining (16) and (20), we obtain

›

›

›
Z̄ ´ pZ

›

›

›

1
ď

4KG

p´ q
}A´ Ā}8Ñ1. (21)

Step 4: From (21) we get

P
`
›

›Z ´ Z̄
›

›

1
ą t n2

˘

ď P

ˆ

›

›A´ Ā
›

›

8Ñ1
ą t

p´ q

4KG
n2
˙

.

and follows then directly from Proposition 2.4.

Step 5: For every matrix H P Rnˆn, we have

}H}1 ě }H}8Ñ1 . (22)

From Proposition 5.2 in [24], there exists a subset τ Ă t1, . . . , nu such that
|τ | ě n

2 and

}Hτˆτ }1 ď
2KG

n
}H}8Ñ1.

Therefore, taking H “ Z̄ ´ pZ, we get

›

›

›

´

Z̄ ´ pZ
¯

τˆτ

›

›

›

1
ď

2KG

n

›

›

›

´

Z̄ ´ pZ
¯
›

›

›

8Ñ1
(23)

and Equation (22) entails

›

›

›

´

Z̄ ´ pZ
¯

τˆτ

›

›

›

1
ď

2KG

n

›

›

›

´

Z̄ ´ pZ
¯
›

›

›

1
. (24)

Combining this last equation with (21), we obtain
›

›

›

›

´

Z̄ ´ pZ
¯

τˆτ

›

›

›

›

1

ď
1

n

8K2
G

p´ q
}A´ Ā}8Ñ1.

We thus may deduce that

P

ˆ
›

›

›

›

´

Z̄ ´ pZ
¯

τˆτ

›

›

›

›

1

ą t n

˙

ď P

ˆ

›

›A´ Ā
›

›

8Ñ1
ą t

p´ q

4KG
n2
˙

.

and (12) follows then directly from Proposition 2.4.
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A.2 Proof of Proposition 2.4

The concentration of the affinity matrix A around its mean Ā follows from con-
centration inequalities for Lipschitz function of independent standard Gaussian
variables. From definition (13)

}A´ Ā}8Ñ1 “ max
u,vPt´1,1un

Fuv (25)

Fuv “
n
ÿ

i,j“1

uivjpAi,j ´ Āi,jq. (26)

We introduce the standardized observations: if xi is in cluster Cki , i.e. xi „

N pµki ,Σkiq, then yi “ Σ
´1{2
ki

pxi ´ µkiq, 1 ď i ď n are independent identically
distributed random variables with standard Gaussian distribution. In view
of definition (25), the random variables Fuv can be expressed in terms of the
standardized observations

Fuvpy1, . . . , ynq “

2
ř

1ďiăjďn uivj

«

f

ˆ
›

›

›

›

Σ
1{2
kj
yj ´ Σ

1{2
ki
yi ` µkj ´ µki

›

›

›

›

2

˙

´ Āi,jq

ff

.

We prove next that the function Fuv : Rpˆn Ñ R is L-Lipschitz with L “ 2`σn3{2.
Indeed, for py1, . . . , ynq, py

1
1, . . . , y

1
nq P Rpˆn, we have

ˇ

ˇFuvpy1, . . . , ynq ´ Fuvpy
1
1, . . . , y

1
nq
ˇ

ˇ

ď `
ÿ

1ďi‰jďn

}xi ´ x
1
i}2 ` }xj ´ x

1
j}2

“ 2pn´ 1q`
n
ÿ

i“1

}Σ
1{2
ki
pyi ´ y

1
iq}2

ď 2n`
n
ÿ

i“1

ρpΣkiq
1{2}yi ´ y

1
i}2

ď 2`σn3{2}py1, . . . , ynq ´ py
1
1, . . . , y

1
nq}2.

In the first inequality, we use the fact that f is `-Lipschitz. The second inequality

relies on the fact that all the eigenvalues of Σ
1{2
ki

are smaller that ρpΣkiq. The

last inequality relies on Cauchy-Schwarz inequality and on the definition σ2 “
1
n

řn
i“1 max1ďkďK ρpΣkiq.

Thanks to this Lipschitz property, the Tsirelson-Ibragimov-Sudakov inequality
implies

E rexppθFuvqs ď exp
`

L2θ2{2
˘

for all θ P R
and we deduce that

E
“

}A´ Ā}8Ñ1

‰

“ E

„

max
u,vPt´1,1un

Fuv



ď
a

2L2 log 2n “ 2
a

2 log 2`σn2.
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On the other hand, the function maxu,vPt´1,1un Fuv is also L-Lipschitz and we
obtain that

P
`

|}A´ Ā}8Ñ1 ´ E}A´ Ā}8Ñ1| ą t
˘

P
`

|maxu,vPt´1,1un Fuv ´ E maxu,vPt´1,1un Fuv| ą t
˘

ď 2 exp
´

´ t2

8L2

¯

.

Combining these different estimates, we obtain for t ą 2
?

2 log 2`σ,

Pp
›

›A´ Ā
›

›

8Ñ1
ą tn2q

ď P
´

ˇ

ˇ

›

›A´ Ā
›

›

8Ñ1
´ E

›

›A´ Ā
›

›

8Ñ1

ˇ

ˇ

ą pt´ 2
a

2 log 2`σqn2q
¯

and thus,

Pp
›

›A´ Ā
›

›

8Ñ1
ą tn2q

ď 2 exp

˜

´

`

t´ 2
?

2 log 2`σ
˘2

32`2σ2
n

¸

.

A.3 Proof of Proposition 2.5

The proof mainly relies on the following lemma.

Lemma A.1. Let X „ N pµ,Σq. If µ “ 0, we have

E
”

et}X}
2
ı

“

p
ź

d“1

`

1´ 2tσ2
d

˘´1{2
, t ď 0,

with σ2
1 , . . . , σ

2
p the eigenvalues of Σ. More generally, for µ ‰ 0,

E
”

et}X}
2
ı

“

p
ź

d“1

exp

ˆ

xµ, vdy
2t

1´ 2tσ2
d

˙

`

1´ 2tσ2
d

˘´1{2

with σ2
1 , . . . , σ

2
p the eigenvalues of Σ and v1, . . . , vp the associated eigenvectors.

The proof of the proposition then follows from the fact that Xi ´Xj is a
Gaussian random vector with mean µki ´ µkj and variance Σki ` Σki so that
the distribution of }Xi ´Xj}

2
2 is related to the noncentral χ2 distribution with

p degrees of freedom. The quantity Erexpp´}Xi ´Xj}
2
2{h0qs corresponds to the

Laplace transform of the noncentral χ2 distribution explicited in Lemma A.1.
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B Solving the SDP

The problem of solving the Semi-Definite Programming (SDP) problem given by
(5) and (6), despite polynomial time solvable, can be hard to tackle in practice
for large datasets. Indeed, standard packages based on interior point methods do
not scale beyond medium size problems of dimension on the order 500. The main
difficulty resides in having to joinlty deal with the positive semi-definiteness
constraint and the componentwise non-negativity constraint. In this section,
we propose a new and scalable approach to this problem, based on a linearised
version of the Alternating Direction of Multipliers Method (ADMM).

B.1 A Bregman ADMM

The main idea behind the ADMM approach to solving problem (5) is that
it can be augmented by including a matrix variable W which will account
for the positive-semi-definiteness and the constraint diagpW q “ 1n, while the
non-negativity and ’summing-to-λ’ constraints can be enforced on Z, i.e.

max
Wľ0, Zě0

xA,W y (27)

subject to

xZ, 1nˆny “ λ,

diagpW q “ 1n, (28)

W “ Z.

The Lagrange function associated with this problem is

LpW,Z,Λq “ xA,W y ´ xΛ,W ´ Zy. (29)

Given a weight π ą 0, the augmented Lagrangian function is given by

LπpW,Z,Λq “ xA,W y ´ xΛ,W ´ Zy ´ π}W ´ Z}2F . (30)

Using the notation DKL for the Kullback-Leibler divergence, the standard
Bregman ADMM [28] then works as follows

W pk`1q “ argmaxW : Wľ0, diagpW q“1n LπpW,Z
pkq,Λpkqq,

Zpk`1q “ argmaxZ: xZ,1nˆny“λ LπpW
pkq, Z,Λpkqq ´ β´1 DKLpZ,Z

pkqq, (31)

Λpk`1q “ Λpkq ´W k`1 ` Zpk`1q

where β is a penalisation weight.
Unfortunately, these iterations cannot be easily computed, due to the

quadratic penalisation term associated with the augmented Lagrangian func-
tion. Moreover, the previous scheme needs to be accelerated for practical
implementability.
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B.2 Linearisation and acceleration using projection

In order to obtain easy to compute iterations, one possible approach is to linearise
the quadratic terms.

B.2.1 Our approach: the linearised Bregman ADMM

One easy way to go about solving this problem is to linearise this quadratic term
as

}W ´ Zpkq}2F “ 2 xW ´ Zpkq,W pkq ´ Zpkqy ` o
´

}X ´ Zpkq}F

¯

(32)

when minimizing with respect to the variable X and

}Z ´W pkq}2F “ 2 xZ ´W pkq, Zpkq ´W pkqy ` o
´

}Z ´W pkq}F

¯

(33)

when minimizing with respect to the variable Z. Let us define the linearised
augmented Lagrangian function

Llinπ

´

W,Z,Λ,W pkq, Zpkq
¯

“ xA,W y ´ xΛ,W ´ Zy ´ 2π xW ´ Z,W pkq ´ Zpkqy.

The linearised versions of iterations (31) are obtained after disregarding the little
’o’ terms and then read

W pk`1q “ argmaxW : Wľ0, diagpW q“1n Llinπ

´

W,Zpkq,Λ,W pkq, Zpkq
¯

,

Zpk`1q “ argmaxZ: xZ,1nˆny“λ Llinπ

´

W pkq, Z,Λ,W pkq, Zpkq
¯

,

Λpk`1q “ Λpkq ´ µk

´

W k`1 ` Zpk`1q
¯

,

where µk is a stepsize used to stabilise the scheme. The choice of µk “ C{k for
a constant C was observed to be the most efficient in practice.

B.2.2 Explicit expressions for the iterates

Each step in these linearised iterations has an explicit closed form expression,
which is given in the following lemma.

Lemma B.1. We have that

• The W -iteration is given by

W pk`1q “ n VmaxDmaxV
t
max (34)

where Vmax is a matrix whose columns are eigen-vector associated with the
maximum eigenvalue of A´ Λ` 2πpZpkq ´W pkqq and Dmax is a diagonal
matrix with non-negative components summing to one.
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• The Z-iteration is given by

Z̃pk`1q “ Zpkq d exp
´

βpΛ` 2π pW pkq ´ Zpkqq
¯

(35)

Zpk`1q “
λ

řn
i,i1“1 Z̃pkq

Z̃pkq.

Proof. The W -step involves solving the following problem

W̃ pk`1q “ argmaxXľ0, diagpXq“1n xA´ Λ` 2π pZpkq ´W pkqq,W y (36)

which is equivalent to finding the eigenvector associated with the largest eigen-
value of A´Λ` 2πpZpkq ´W pkqq. The computation of the Z-step is classical in
the online optimisation literature.

B.3 Constraining Λ

In our experiments, we also enforced the additional constraint

A´ Λpkq ` 2πpZpkq ´W pkqq ě 0 (37)

at every step k. Based on this constraint, one easily gets that the largest
eigenvectors are non-negative by the Peron-Frobenius theorem, and therefore,
non-negativity of W pk`1q is guaranteed. Moreover, when the multiplicity of
the largest eigenvalue of M “ A ´ Λplq ` 2πpZpkq ´W pkqq is larger than one,
the graph corresponding to the weighted adjacency matrix M is disconnected
and the associated eigenvectors have disjoint supports, which characterises the
presence of several clusters. In our experiments, enforcing the constraint (37)
never appeared to preclude convergence of }Xpkq ´ Zpkq}F to zero. In other
words, (37) was always observed to be redundant.

B.4 Choosing λ

Our approach is to simply choose the value of λ than minimises the distance
between the estimated cluster matrix and the observed affinity matrix. A method
based on statistical model selection will be studied in a follow up paper.

C Recalls on standard results

C.1 Concentration inequalities

The following inequality is a particular case of the Log-Sobolev concentration
inequality, see Theorems 5.5 and 5.6. in [6].
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Theorem C.1 (Gaussian concentration inequality). Let Y1, . . . , Yn be indepen-
dent Gaussian random vectors on Rp with mean 0 and variance Ip. Assume that
F : Rnˆp Ñ R is Lipschitz with constant L, i.e.

|F py1q ´ F pyq| ď L}y1 ´ y}2 for all y, y1 P Rnˆp.

Then the random variable F “ F pY1, . . . , Ynq satisfies

Erexppθ pF ´ EF qqs ď exppL2θ2{2q for all θ P R

and also
Pp|F ´ EF | ą tq ď 2 exp

`

´t2{p8L2q
˘

for all t ą 0.

The next theorem provides useful results for the expected maxima of (non
necessarily independent) subgaussian random variables.

Theorem C.2. Let Z1, ¨ ¨ ¨ , ZN be real valued sub-Gaussian random variables
with variance factor ν, i.e. satisfying

ErexppθZiqs ď exppνθ2{2q for all θ P R.

Then

E

„

max
i“1,¨¨¨ ,N

Zi



ď
a

2ν logN.

C.2 The Grothendieck inequality

In this paper, we use the following matrix version of Grothendieck inequality.
We denote by MG the set of matrices Z “ XY T with X,Y P Rnˆn having all
raws in the unit Euclidean ball, i.e.

@i P t1, . . . , nu,
n
ÿ

j“1

X2
ij ď 1 and

n
ÿ

j“1

Y 2
ij ď 1

Theorem C.3 (Grothendieck inequality). There exists an universal constant
KG such that every matrix B P Rnˆn satisfies

max
ZPMG

|xB,Zy| ď KG}B}8Ñ1

where the `8 Ñ `1 norm of B is defined by (13).

It is also useful to note the following properties of MG, see Lemma 3.3 in
[11].

Lemma C.4. Every matrix Z P Rnˆn such that Z ľ 0 and diagpZq ď 1n
satisfies Z PMG.
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