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Abstract

The problem of extracting a well conditioned submatrix from any rectangular matrix (with
normalized columns) has been studied for some time in functional and harmonic analysis.
In the seminal work of Bourgain and Tzafriri and many subsequent improvements, methods
using random column selection were considered. Constructive approaches have been pro-
posed lately, mainly sparked by the work of Batson, Spielman and Srivastava. The column
selection problem we consider in this paper is concerned with extracting a well conditioned
submatrix, and more precisely, a matrix with all its singular values being contained in the
interval [1− ε, 1 + ε]. Such results are known to have far reaching connections with many
fields in mathematics and engineering.

Our main contribution is a new deterministic method that achieves the same order R
for the number of selected columns as in Bourgain and Tzafriri’s original Theorem, up
to a log(R) multiplicative factor. Our analysis is elementary and shows how a simple
eigenvalue perturbation argument can lead to an intuitive and very short proof. We also
obtain individual lower and upper bounds for each singular value of the extracted matrix.

Keywords: Restricted Invertibility, Bourgain-Tzafriri Theorem, Column Subset
Selection, Eigenvalue Perturbation.
2000 MSC: 68P, 68W, 42A.

1. Introduction

Let X ∈ Rn×p be a matrix such that all columns of X have unit euclidean `2-norm.
The problem of well conditioned column selection that we consider consists of finding the
largest subset of columns of X such that the corresponding submatrix has all singular
values in a prescribed interval [1− ε, 1 + ε]. The one-sided problem of finding the largest
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possible T such that λmin(X t
TXT ) ≥ 1 − ε is called the Restricted Invertibility Problem

and has a long history starting with the seminal work of Bourgain and Tzafriri [2].
Bourgain and Tzafriri’s result has far reaching connections with many areas in mathe-

matics and engineering and a renewed interest in Bourgain and Tzafriri’s result was sparked
by the introduction of new methods based on finite random matrix theory, followed by new
deterministic methods and at the same time, by its strong similarity with RIP-type results
in signal processing [8] and machine learning (under the name of "feature extraction") [1].
Recent contributions have shown that Column Selection may be an important ingredient
in differential privacy [4], and discrepency minimisation [5]. Let us also recall that the orig-
inal result of Bourgain and Tzafriri were motivated by application to harmonic analysis
and the Kadison-Singer problem in operator theory [2].

2. Historical background

2.1. Bourgain and Tzafriri’s original result
Bourgain and Tzfriri’s original result on the Restricted Invertibility Problem can be

stated as follows [2].

Theorem 2.1 ([2]). Given a p×p matrix X whose columns have unit `2-norm, there exists
T ⊂ {1, . . . , p} with |T | ≥ d

p

‖X‖2
such that λmin(X t

TXT ) ≥ C, where d and C are absolute

constants.

See also [7] for a simpler proof.
In [2], an application is given to harmonic analysis: let T be the circle with normalised

Lebesgue measure ν and B be a subset of T with positive measure. Define the two norms

‖f‖L2(B) =

√
1

ν(B)

∫
B

f 2dν and ‖f‖L2(T ) =

√∫
T

f 2dν. (2.1)

Now suppose that the Fourier transform f̂ of f is supported on a subset Λ of Z. How
dense can Λ be while still ensuring that the two norms are equivalent? Using Theorem 2.1,
Bourgain and Tzafriri proved that there exists such a set Λ with density cν(B) for which

‖f‖L2(B) ≥ c ‖f‖L2(T ). (2.2)

2.2. Vershynin’s generalization
Vershynin [10] generalized Bourgain and Tzafriri’s result to the case of rectangular

matrices and the estimate of |T | was improved as follows.

Theorem 2.2 ([10]). Given a n× p matrix X and letting X̃ be the matrix obtained from
X by `2-normalizing its columns. Then, for any ε ∈ (0, 1), there exists T ⊂ {1, . . . , p} with

|T | ≥ (1− ε)‖X‖
2
HS

‖X‖2

such that C1(ε) ≤ λmin(X̃ t
T X̃T ) ≤ λmax(X̃

t
T X̃T ) ≤ C2(ε).
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Vershynin also presents in [9] an interesting application to communication systems. In
that application, one assumes that a signal x ∈ Rn is encoded into a frame as follows:

x =

p∑
j=1

〈xj, x〉xj. (2.3)

Recall that the family xj, j = 1, . . . , p is a frame if
∑p

j=1 xjx
t
j = I. Of course, if p > n,

the information contained in the coefficients 〈xj, x〉, j = 1, . . . , p is redundant. This can
be leveraged in communication systems when some coefficients can be lost during the
transmission process. Theorem 5.1 in [9] determines a threshold for the probability of
loosing a component at random under which one can still nearly recover the original signal.

2.3. Spielman and Srivastava’s and Youssef ’s contributions
In [6], Spielman and Srivastava proposed in a deterministic construction of T which

allows them to obtain the following result.

Theorem 2.3 ([6]). Let X be a p×p matrix and ε ∈ (0, 1). Then there exists T ⊂ {1, . . . , p}

with |T | ≥ (1− ε)2‖X‖
2
HS

‖X‖2
such that ε2

‖X‖2

p
≤ λmin(X t

TXT ).

The technique of proof relies on new constructions and inequalities which are thoroughly
explained in Naor’s Bourbaki seminar [3].

Using these techniques, Youssef [11] improved Vershynin’s result as:

Theorem 2.4 ([11]). Given a n× p matrix X and letting X̃ be the matrix obtained from
X by `2-normalizing its columns. Then, for any ε ∈ (0, 1), there exists T ⊂ {1, . . . , p} with

|T | ≥ ε2

9

‖X‖2HS

‖X‖2
such that 1− ε ≤ λmin(X̃ t

T X̃T ) ≤ λmax(X̃
t
T X̃T ) ≤ 1 + ε.

3. A new elementary approach

3.1. Our contribution
Our main contribution is a short and elementary proof of the following result:

Theorem 3.1. Given a n × p matrix X whose columns have unit `2-norm, a constant
ε ∈ (0, 1) there exists T ⊂ {1, . . . , p} with |T | ≥ R and

R logR ≤ ε2

4(1 + ε)

p

‖X‖2
, (3.4)

such that 1− ε ≤ λmin(X t
TXT ) ≤ λmax(X

t
TXT ) ≤ 1 + ε. Moreover, we have the following

bounds on each of the individual eigenvalues:

1−

√
(1 + ε)‖X‖2 logR

p

R + k − 1√
R

≤ λk(X t
TXT ) ≤ 1 +

√
(1 + ε)‖X‖2 logR

p

2R− k√
R

for all k = 1, . . . , R.
3



Notice that we loose a log(R) factor in (3.4) compared to the original result of Bourgain
and Tzafriri. One the other hand, our method of proof is able to provide an individual
control of each eigenvalue, which might be of independent interest. In data science in
particular, it is intersting to know that either not all eigenvalues of the selected sub-matrix
(of so called “features”) achieve the worst case bound but may instead be more evenly
distributed inside the interval.

4. Proof of Theorem 3.1

Our proof is constructive. We select the columns in a greedy fashion. At every round,
we will control the evolution of the eigenvalues. The interior eigenvalues will be controlled
by interlacing, for an appropriately chosen induction hypothesis (4.13). The extreme eigen-
values will then be controlled by the secular equation.

Let us now provide some more details on the greedy selection criterion for choosing the
next column in the growing extracted submatrix. This criterion will naturally follow from
the subsequent analysis. Imagine you start with a matrix Yr of columns of X and that

Yr+1 = [Yr, yr+1] (4.5)

where yr+1 is the next selected column of X. We can then write

Y t
r+1Yr+1 =

[
ytr+1

Y t
r

] [
yr+1 Yr

]
=

[
1 ytr+1Yr

Y t
r yr+1 Y t

r Yr

]
, (4.6)

and it is well known that the eigenvalues of Y t
r+1Yr+1 are the zeros of the secular equation:

q(λ) := 1− λ+
r∑

k=1

(vtkY
t
r yr+1)

2

λ− λk,r
= 0. (4.7)

Our first goal will be to prove that
r∑

k=1

(vtkY
t
r yr+1)

2

λ− λk,r
≤ C

r∑
k=1

(vtkY
t
r yr+1)

2

k
(4.8)

for some constant C > 0 and for a range of values for λ that contains the largest root of
q. This will require a first key ingredient: a non trivial recurrence relationship between all
the spectral gaps at the successive stages of the algorithm. Now, replacing (4.7) with

g(λ) := 1− λ+ C
r∑

k=1

(vtkY
t
r yr+1)

2

k
= 0, (4.9)

will provide a control of the increase of the largest eigenvalue of Y t
r+1Yr+1 if yr+1 is chosen

appropriately. One easy idea is to choose yr+1 such that

yr+1 ∈ argminx column of X

r∑
k=1

(vtkY
t
r x)2

k
. (4.10)
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For such a choice, we can guarantee that

r∑
k=1

(vtkY
t
r yr+1)

2

k
≤ 1

p− r
∑

x remaining column

r∑
k=1

(vtkY
t
r x)2

k
(4.11)

and the second key ingredient in our proof will be a tight control of the RHS term in this
last inequality (given early in the proof in Lemma 4.1 below).

4.1. The algorithm
Our deterministic sequential column selection procedure can be recast as an algorithm.

We now present the detailed structure of this algorithm as follows.

The column selection algorithm
Result: YR
Set V0 = {x1, . . . , xp}. Set r = 1. Choose y1 ∈ V0 and set Y1 = y1.
Let λ1,1 = λ1(Y

t
1Y1).

while λ1,r ≤ 1 + ε and λr,r ≥ 1− ε do
For k = 1, . . . , r, let vk be a unit eigenvector of Y t

r Yr associated with λk,r := λk(Y t
r Yr).

Set Vr := {x1, . . . , xp} \ {y1, . . . , yr}.
Choose yr+1 ∈ Vr so that

r∑
k=1

(vtkY
t
r yr+1)

2

k
≤ 1

p− r
∑
x∈Vr

r∑
k=1

(vtkY
t
r x)2

k
. (4.12)

Set Yr+1 = [Yr, yr+1].
Set r = r + 1.

end

The proof of Theorem 3.1 with ensure that the algorithm above will not stop before
having incorporated R columns with R satisfying (3.4).

4.2. First property of yr+1

Lemma 4.1. For all r ≥ 1, yr+1 verifies

r∑
k=1

(vtkY
t
r yr+1)

2

k
≤ λ1,r‖X‖2 log(r)

p− r
.

Proof. Let Xr be the matrix whose columns are the x ∈ Vr, i.e. XrX
t
r =

∑
x∈Vr xx

t. Then∑
x∈Vr

(vtkY
t
r x)2 = Tr

(
Yrvkv

t
kY

t
rXrX

t
r

)
≤ Tr(Yrvkv

t
kY

t
r )‖XrX

t
r‖ ≤ λk,r‖X‖2,

which yields the conclusion by plugging in into (4.12) since λk,r ≤ λ1,r.
5



4.3. Controlling the individual eigenvalues
Let us define δ as

δ =

√
(1 + ε)‖X‖2 logR

p
,

so that, from (3.4), 2δ
√
R ≤ ε.

Lemma 4.2. For all r and k with 1 ≤ k ≤ r ≤ R, we have

1− δ r + k − 1√
r

≤ λk,r ≤ 1 + δ
2r − k√

r
. (4.13)

Proof. It is clear that (4.13) holds for r = 1 since then, 1 is the only singular value because
the columns are supposed to be normalized.

Assume the induction hypothesis (Hr): for all k with 1 ≤ k ≤ r < R, (4.13) holds.
Let us then show that (Hr+1) holds. By the Cauchy interlacing theorem, we have

λk+1,r+1 ≤ λk,r, 1 ≤ k ≤ r

λk+1,r+1 ≥ λk+1,r, 0 ≤ k ≤ r − 1.

Using (r+ 1)(2r− k)2 ≤ r(2r+ 1− k)2 and (r+ 1)(r+ k)2 ≤ r(r+ 1 + k)2, we thus deduce

λk+1,r+1 ≤ 1 + δ
2r − k√

r
≤ 1 + δ

2(r + 1)− (k + 1)√
r + 1

, 1 ≤ k ≤ r,

λk+1,r+1 ≥ 1− δ r + k√
r
≥ 1− δ (r + 1) + (k + 1)− 1√

r + 1
, 0 ≤ k ≤ r − 1.

It remains to obtain the upper estimate for λ1,r+1 and the lower one for λr+1,r+1. Recall
that the eigenvalues of Y t

r+1Yr+1 are the zeros of the secular equation:

q(λ) := 1− λ+
r∑

k=1

(vtkY
t
r yr+1)

2

λ− λk,r
= 0. (4.14)

We first estimate λ1,r+1 which is the greatest zero of q, and assume for contradiction
that

λ1,r+1 > 1 + 2δ
√
r. (4.15)

From (Hr), we then obtain that for λ ≥ 1 + 2δ
√
r ≥ λ1,r + δ/

√
r,

q(λ) ≤ 1− λ+

√
r

δ

r∑
k=1

(vtkY
t
r yr+1)

2

k
:= g(λ).

6



Let λ0 be the zero of g. We have g(λ1,r+1) ≥ q(λ1,r+1) = 0 = g(λ0). But g is decreasing, so

λ1,r+1 ≤ λ0 = 1 +

√
r

δ

r∑
k=1

(vtkY
t
r yr+1)

2

k
.

By (Hr), λ1,r ≤ 1 + 2δ
√
R ≤ 1 + ε. Thus, using Lemma 4.1 and noting that r ≤ p/2,

λ1,r+1 ≤ 1 +
2
√
r

δ

(1 + ε)‖X‖2 log(R)

p
= 1 + 2δ

√
r,

which yields a contradiction with the inequality (4.15). Thus, we have that λ1,r+1 ≤
1 + 2δ

√
r, and therefore, λ1,r+1 ≤ 1 + δ 2r+1√

r+1
. This shows that the upper bound in (Hr+1)

holds.
Finally, to estimate λr+1,r+1 which is the smallest zero of q, we write using (Hr) that

for λ ≤ 1− 2δ
√
r ≤ λr,r − δ/

√
r,

q(λ) ≥ 1− λ−
√
r

δ

r∑
k=1

(vtkY
t
r yr+1)

2

k
:= g̃(λ).

By means of the same reasoning as above, we prove by contradiction that λr+1,r+1 ≥
1 − 2δ

√
r, which gives λr+1,r+1 ≥ 1 − δ 2r+1√

r+1
and shows that the lower bound in (Hr+1)

holds. This completes the proof of Lemma 4.2.

Applying Lemma 4.2 to r = R and simple algebraic manipulations conclude the proof
of Theorem 3.1.
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