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Abstract 

Background : Optical Coherence Tomography (OCT) is an emerging medical imaging 

technology. It is well suited to various medical applications requiring tissue imaging with 

micrometer resolution and millimeter penetration depth such as in ophthalmology and 

dermatology. Despite its numerous advantages, OCT has a long acquisition time for high-

resolution images or volumes. This paper deals with the development of a 

Compressed,Sensing (CS) paradigm for faster 3-dimensional OCT image acquisition. 

Methods : The proposed framework includes three main steps: 1) defining a random-like and 

parameterizable and continuous scanning trajectories that must be compatible with a smooth 

mechanical scan, 2) rasterizing the scanning trajectory to make it achievable by a physical 

system (i.e., galvanometer mirrors), and 3) incorporating a high sparsifying data technique 

so-called 3D shearlet transform into the compressed sensing scheme. Actually, shearlet 
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transform is mathematically optimal for multidimensional data decomposition and has been 

proven more efficient than classical ones such as those obtained by wavelet or curvelet 

transforms. Actually, shearlet system provides a very efficient tool for encoding anisotropic 

features (such as edges in images) in multivariate problem classes. 

Results : Numerical simulations and ex vivo experiments were carried out. The obtained 

results showed the ability of the proposed method to recover OCT images and volumes with 

high fidelity for different subsampling rates and scanning schemes, demonstrating the 

relevance of the proposed approach. 

1. Introduction 

1.1. Overview and motivations 

Optical Coherence Tomography is a powerful biomedical imaging technology that uses low 

coherent light to capture micrometer-scale resolution data from within optical scattering 

media (e.g., biological tissue). Actually, OCT data, sometimes called optical biopsy, can 

image a tissue at or near the resolution of the well-known histopathology procedure without 

the need for excisional biopsy. Consequently, the physician can take unlimited biopsies and 

reduce the need for physical biopsy that are more invasive and imply a delay in the 

interpretation, namely based on histopatho- logical examination. An OCT imaging device 

allows acquiring cross-sections in a non-destructive and contact-less manner. Its operating 

principle is based on the use of low-coherence interferometry employing near infrared light 

Fujimoto, Pitris, Boppart and Brezinski [2000]. Initially, the OCT technology was developed 

for the ophthalmology and optometry fields where it can be used to obtain detailed images 

from within the retina, because of the translucent nature, the minimal scattering, the good 

light-tissue interaction, and the high-light penetration characteristics of the retina. Recently, it 

has also begun to be used in interventional cardiology to help diagnose coronary artery 

disease as well as in dermatology Zysk, Nguyen, Oldenburg, Marks and Boppart [2007]. 

 

There are two main families of OCT imaging techniques: Fourier-Domain (FD) OCT and 

Time-Domain (TD)- OCT. The FD-OCT method is associated with high-speed scanning 

mechanism and better resolution as compared to the TD-OCT. In fact, the scan speed of TD-

OCT systems depends on the mechanical cycle time of the moving reference mirror driver, 

whereas in FD-OCT, the reference mirror is fixed, which assists in sampling multiple points 

from the tissue structures, simultaneously Wang, Xia, Tian and Zhou [2015]. As results, FD-

OCT can provide higher resolution, and frame-rate compared to the TD-OCT Chen, Cense, 

Pierce, Nassif, Park, Yun, White, Bouma, Tearney and de Boer [2005]. However, despite the 

superiority of FD-OCT systems over TD-OCT ones, it nevertheless has limitations for 

effective use in several medical applications. Effectively, FD-OCT offers a high frequency 

acquisition of 1D (optical cores) and 2D (cross-sections), however the required time for 3D 

data (OCT volume), their processing, transfer, and storage remains highly problematic. For 

instance, acquiring a volume of 10×10×3.5mm
3
 using a standard FD-OCT system such as the 

Telesto II from Thorlabs®requires more than 1 minute and 10Go of RAM (Random Access 

Memory) for preview limiting real-time diagnosis or tissue monitoring. Additionally, in FD-

OCT, to discretize and digitize the spectral interferograms at high-resolution and frame-rate, 

it is necessary to use high-performance array detectors such as CCD (Charge-Coupled 

Device) sensors Choma, Sarunic, Yang and Izatt [2003]. The use of these kind of sensors 



increases significantly the cost of an FD-OCT system and then limits their deployment in 

hospitals, particularly in developing countries. 

To overcome certain limitations of using OCT imaging modality, namely when the use of 

C-scan acquisition is required, we explore the potential of developing of Compressed Sensing 

(CS) scheme in aim to: 

• increase the frame-rate of OCT volume acquisition, namely for applications in assisted 

surgical guidance and intervention 

• reduce the amount of data required and subsequent processing for high-resolution image 

reconstruction Liu and Kang [2010]; 

• make possible to use smaller and less expensive array detectors, while guaranteeing spatial 

and axial resolutions that are faithful to those obtained by the expensive sensors usually used; 

• reduce artifacts in OCT volumes mainly due to the low acquisition frame-time and possible 

physiological movements of the patient when it comes to in vivo examination. 

Compressed Sensing was developed simultaneously by Donoho and Candès, Romberg and 

Tao Donoho [2006]; Candès, Romberg and Tao [2006] who introduced randomized 

acquisition schemes and provided the strong mathematical underpinnings of CS theory. It 

consists of a paradigm which illustrates the possibility to acquire at sub-Nyquist rate and 

compress signals (measurements) all at the same time under sparsity assumptions, at the 

expense of potentially more involved computations for the recovery Foucart and Rauhut 

[2013]. Sparsity, which is the opposite of density, is an essential feature shared by many 

wavelet-type decompositions, that is leveraged in CS theory Davenport and Duarte [2012]. 

Most medical imaging systems, such as magnetic resonance imaging (MRI), computed-

tomography (CT), OCT, ... are known to admit a high-level of sparsity in other 

decomposition bases such as wavelets, curvelets, shearlets, etc. This especially because that 

medical images are generally composed of large homogeneous areas with a low dynamic 

range in terms of contrast compared to conventional images Fei, Wei and Zongxi [2017]. In 

addition, it is admitted to consider that the different medical imaging modalities (e.g., OCT) 

share the common feature of acquiring, totally or at least partially, the signals through 

spectral measurements of highly sparse signals. However, in many practical settings, natural 

sparsity is sometimes insufficient for accurate signal recovery and other tools have to be put 

to work in order to achieve better reconstruction in inverse problems of the CS type. 

One of the necessary conditions for the feasibility of compressed acquisition is the ability 

to decompose efficiency the signal/image in a sparsifying functions bases such as wavelet, 

curvelet, shearlet transforms, etc. The latter have recently been introduced as a new 

decomposition that is superior, in many respects, to wavelet multiple scale decomposition 

Mallat [1989]. Shearlet system Labate, Lim, Kutyniok and Weiss [2005] provides an efficient 

compactly supported decomposition which extends the wavelet decomposition and was 

proved to outperform the wavelet decomposition in many applications such as sparsifying 

method. A notable feature of shearlet is that it can encode curvilinear singularities and others 

anisotropic features in a much better fashion than wavelet functions can do. As a result, 

shear- let provides a more precise separation of the morphologically distinct features of 

points and curves. Whereas wavelet systems are obtained using dyadic scaling and 

translations of a single function shearlet systems can be generated using a single operator 

including parabolic scaling, shearing, and translation operators Kutyniok and Labate [2012]. 

From the point-of-view of CS, shearlet systems provide a high-sparsity representation of the 

signal, which is practically often optimal, a considerable advantage over other techniques 

such as Fourier and wavelet transforms. 



1.2. Contributions 

Most of the existing CS methods requires the use of incoherent pseudo-random or 

random subsampling of k- sparse data Candes, Romberg and Tao [2006]; Candes 

[2008]. These subsampling schemes (also called masks or sensing matrices) are often 

of little relevance since they cannot be implemented on physical acquisition systems 

Bigot, Boyer and Weiss [2016]. In OCT context, the acquisition is processed through 

xy scanning scheme performed by a two degrees-of-freedom (dof) galvanometer mirror 

device and random sampling which leads to the fact that is inconsistent with the 

physical constraints that preclude the use of non-smooth trajectories. Consequently, in 

case of a physical implementation, acquiring few measurements in a random sampling 

method can result in a longer computation time in comparison to the acquisition of all 

data in raster mode. 

In this paper, we investigate novel scanning schemes using continuous trajectories 

(e.g., spiral, rosette, and Lissajous), that consider the limitations imposed by the OCT 

mirrors in terms of scanning speed, scan area, and kinematics. We also develop a 

rasterization strategy which ensures that pixel coordinates are optimally chosen to 

follow the predefined trajectory (i.e., xy positions) on the sample to be scanned. 

Our implementation bridges our new scanning schemes with the existing digital 

shearlet transform toolbox provided by Kutyniok, Lim and Reisenhofer [2014]. Our 

scanning schemes are based on spiral, rosette or Lissajous shaped trajectories that offer 

rapid and efficient coverage of the k-space. The proposed rasterization algorithm is 

embedded into our package and is designed to permit handy tuning of the subsampling 

rate, the scan area, and the variable density sampling along the trajectory. Finally, the 

developed methodology is shown to outperform current state of the art in the two 

following scenarios: 1) using a simulation based numerical validation framework in 

both 2D cross-sectional OCT image and 3D OCT volumes cases, and 2) using an 

experimental set-up equipped with a Fourier-Domain OCT device. 

The rest of this paper is organized as follows. In Section 2, we present the 

compressed sensing framework, the sparsity representation as well as the shearlet 

transform. Also, the acquisition schemes, the proposed subsampling continuous 

trajectories, and the rasterization algorithm, both the sparsity and the incoherence are 

detailed in this section. Section 3 deals with the numerical validation when Section 4 

discusses the experimental validations of the proposed methods and materials. Finally, 

a discussion on the obtained results with regard to the state-of-the-art is also provided. 

2. Materials and 

Methods 

2.1. Compressed 

sensing 

Compressed sensing was discovered in the breakthrough papers by E. Candes, J. 

Romberg, T. Tao and D. Donoho Donoho [2006]; Candes et al. [2006] that created via 

a mathematical tour de force, a new paradigm for joint signal acquisition and 

compression and explored its tight relationships with modern optimization and random 

matrix theory. It has subsequently triggered an extensive research effort exploiting 

sparse representation of signals and images via fast orthogonal and even non-

orthogonal decomposition such as wavelet transforms. CS initially attracted the signal 



processing community's attention after Candes and Donoho were able to show how to 

use random sampling in order to break the Nyquist barrier that had set the what used to 

be thought of as the sampling frequency limit to any data acquisition procedure. Then, 

the theory developed into richly ramified research field Foucart and Rauhut [2013] 

with a versatile set of mathematical and algorithmic tools for efficient sampling of 

inherently sparse objects. 

In mathematical terms, the problem can be stated as follows. Let x be an object (a 

vector, a matrix or a tensor) in a Euclidean space  which admits a k-sparse 

representation in a dictionary , i.e., 

1

q

j j

j

x c  (1) 

where c q  is a k-sparse vector, which means that a vector with no more than k 

nonzero components. The observations are simply given by linear measurements of the 

form 

,i iy m x  

where ,im  is a functional on the  for i = 1,. . . ,n, and we obtain a linear system 

y Ac  (2) 

where A n q  and the rows of A are given by  

, : ; 1, ,t

i iA m i n  

In a CS type of problem, our goal is to recover the sparse vector c of components with as 

few observations (i.e., measures) as possible and therefore n will be thought as small 

compared to q. The main challenge is then to construct an observation matrix A, which allow 

recovering x with n as small as possible for given values of k and m. 

The CS problem can be solved unambiguously if there is no sparser solution to the linear 

system (2) than c. Thereby, recovery is obtained by simply finding the sparsest solution to 

(2). If for any c in q  we denote by 0|| ||c  the l0-norm of c, i.e. the cardinal of the set of 

indices of nonzero components of c, the CS problem is equivalent to 

0
min s.t.

qc
c Ac y         (3) 

Let us denote by Δ0(y), the solution of problem (3) and Δ 0(y) is called a decoder 
1
. Thus, 

the CS problem may be viewed as a combinatorial optimization problem. Moreover, the 

following lemma is well known. 

Lemma 1. (see for instance Cohen, Dahmen and DeVore [2009]) If A is any n × p matrix 

and 2k ≤ n, then the following properties are equivalent: 

                                                           

1 'In the general case where c is not the unique sparsest solution of (3) using this approach for 

recovery is of course possibly not relevant. Moreover, in such a case, this problem has 

several solutions with equal l0-“norm” and one may rather define Δ0(y) as an arbitrary 

element of the solution set. 



• The decoder Δ0 satisfies Δ0 (Ac) = c, for all c 'k  

• For any set of indices T with #T = 2k, the matrix AT has rank 2k where AT stands for 

the submatrix of A composed of the columns indexed by T only. 

The l1 relaxation is given by 

1
min s.t.

pc
c Ac y         (4) 

In the following, we will denote by Δ1(y) the solution of the l1-relaxation (4). From the 

computational viewpoint, this relaxation is of great interest since it can be solved in 

polynomial time. Indeed, (4) is equivalent to the linear program 

 

The main subsequent problem induced by this choice of relaxation is to obtain easy-to-

verify sufficient conditions on A for the relaxation to be exact, i.e. to produce the sparsest 

solution to the underdetermined system (2). An algebraic condition was given by Candès, 

Romberg and Tao Candès et al. [2006], called Restricted Isometry Property (RIP). We say 

that a matrix A satisfies the ,kRIP  if, for every index subset S with cardinality S k , and 

every c q  

2 2 2
1 1S S S Sc A c c . (5) 

The smallest value of δ in the previous inequalities is denoted by δk. Up to now, this 

condition could only be proved to hold with great probability in the case where A is a sub 

Gaussian random matrix. Several algorithmic approaches have also been recently proposed 

in order to guaranty exactness of the l1 relaxation such as in Juditsky and Nemirovski [2011] 

and d’Aspremont and El Ghaoui [2011]. A different approach to the study of decoder Δ1 is 

based on the notion of incoherence. The coherence μ(A) of the observation matrix A is the 

largest absolute value among all scalar products of different columns of A, i.e. 

2 2

,
max

j j

j j
j j

A A
A

A A
 (6) 

The matrix A is said to be incoherent when its coherence μ(A) is on the order of 1/ 

log(q). Several results have been obtained that guarantee exact recovery under the low 

coherence assumption.  

In the noisy setting, the observation is given by  

,i i iy m x є  (7) 

and the problem can be addressed by solving 

2

2 1

1
min

2qc
y Ac c  (8) 

for specific values of . Exact recovery cannot hold in this setting, but using 

incoherence, exact recovery of the support of c was proved in Candès, Plan et al. [2009] in 



the case where the variance of the noise is known beforehand, and in Chrétien and Darses 

[2014] in the case of unknown variance. The main result from Chrétien and Darses [2014] is 

 

Theorem 2.1. Set α > 0 and q ≥ e
8/a

. Let X satisfy the Generic Condition from Chrétien and 

Darses [2014]. Let Assumption 2.1, 2.2, 2.3 and 2.4 from Chrétien and Darses [2014] hold 

with 

o log 1n C q .  (9) 

Then the probability that the estimator ˆ  defined by (8) with λ satisfying
2
 

2

2 2
var

ˆ

log
y X

C q
n

        (10) 

where a relevant range for Cvar is given by 

2 2

2 2

var

spar spar

1 1
;

20 1 2 1

r rn n
C X X

r C q r C q
     (11) 

exactly recovers the support and sign pattern of β is greater than 1 – 228/q
α
. 

Another approach for fast reconstruction makes use of the Iterative Hard Thresholding 

algorithm Blumensath and Davies [2009]. This algorithm is defined by the iterations
1l l lt

kc T c A y Ac       (12) 

where Tk  is the threshold operator which sets all components to zero except for the k  largest 

among them. Furthermore, the main result from Blumensath and Davies [2009] is the 

following theorem. 

Theorem 2.2. Let #c  denotes the best k-term approximation of c. By assuming that A 

satisfies the RIP property with 3 1/ 32k , then, for all I,  we have

1 #

22
2

l lc c c       (13) 

where 

# #

22 1

1
c c c c

k
     (14) 

The Iterative Hard Thresholding algorithm can also be studied from the point of view of 

incoherence. A breakthrough result of Maleki Maleki [2009] is the following Theorem. 

 

Figure 1: Sparsity comparison between wavelet, curvelet, and shearlet supports using Lena 

photography as benchmark. Note that, the histogram obtained by plotting the computed 

                                                           
2 note that this eqnarray is implicit since β depends on λ, but on the other hand, good 

algorithms for tuning A exist as shown in Chretien and Darses [2014]  



coefficients, sorted by their decreasing absolute values. One can reminder that the more the 

decomposition offer a large number of null-coefficients (or close to zero), the more the 

method allows a higher sparsity. 

Theorem 2.3. Suppose that k 1/ 3.1k A  and 4

1/ 3 3 ji
ll

j jc c , i = 1,. . .  ,k. Then, the 

Iterative Hard Thresholding algoritm finds the support of c in at most 
1

k

ii
l k  iterations. 

Finally, choosing between different estimators is always a matter of finding the good 

balance between several technological constraints. In the rest of this paper, we will use the 

Iterative Hard Thresholding method for estimating the sparse vector c. The reason for this 

choice is that Iterative Hard Thresholding is lighter and faster than solving the LASSO 

problem (8). 

2.2. Sparse representations 

Sparsity is essential to the CS approach to reconstruction with few samples. In order to 

ensure the sparsity condition, it is necessary to represent the image in a suitable basis such as 

wavelet, curvelet or shearlet systems. In this work, we opted for the use of the shearlet 

transform, denoted by Θ , for the sparse representation of the OCT images, because shearlet 

transform was observed to achieve the best sparsity among these three options. To 

demonstrate this, we applied successive decompositions of the “Lena” photography having 

the resolution of 512×512 pixels, using wavelet, curvelet, shearlet transforms, respectively. 

As can be highlighted in Fig. 1, the shearlet method outperforms both the wavelet and the 

curvelets ones as summarized in the following: 

• wavelet transform:  15×10
4
 null-coefficients; 

• curvelet transform:  5×10
5
 null-coefficients; 

• shearlet transform:  2×10
6
 null-coefficients. 

In a recent work, we also demonstrated experimentally that shearlet decomposition 

outperforms both the wavelet and the curvelet Duflot, Krupa, Tamadazte and Andreff [2016]. 

2.3.Shearlet system 

Shearlet theory provides an efficient mathematical tool for sparse image representation 

including geometry and multiscale analysis. It is considered as an extension of the wavelet 

transform, achieved by increasing their directional sensitivity in order to be more adapted for 

anisotropic image objects (e.g., edges and key points). Indeed the shearlet coefficients can be 

obtained by applying three successive anisotropic operations: dilation DE and 
E

D , shearing 

SSD  and translation (shift) Gg on a finite number of generating functions 2, 2ψ ψ L . The 

anisotropic operators are defined using the following matrices. 

The anisotropic dilation and shearing matrices are defined by: 

• dilation: E = diag(2, 2 ) and E  = 

diag( 2 ,2)  

• shearing : 
1

,
0 1

s

s
sS  

 



Figure 2: Illustration of the fundamental working of a cone-adapted continuous shearlet 

system. The latter is able efficiently cover whole 2  and giving equal treatment of all 

directions. 

• translation: 
2

2,gG h hp p g p,g  , where g is xy translation vector, h is a 

function defined in 2 2L , and p represents the image-point coordinates. 

Note that, the operator Ss is used instead of the rotation parameter, namely used in a 

curvelet transform Candes and Donoho [2000], which can be considered as a significant 

advantage for discretization, as the integer lattice is invariant under the shear operator for any 

s . In other words, similarly to wavelet support, it unified the treatment of the continuous 

and digital shearlet theory, which leads to a fast implementation of the shearlet system. These 

operators are used in the following definition of a discrete shearlet system Kittipoom, 

Kutyniok and Lim [2012]. 

Note that for a 2-dimensional scaling function 2 2L , and generating shearlet 

2, 2ψ ψ L , a so-called cone-adapted shearlet system can be defined in order to cover the 

whole frequency plane S. and G. [2014]. Therefore, it is important to choose the generating 

shearlet functions ψ  and ψ  such that they are supported in different frequency cones as 

depicted in Fig. 2. 

In the following, we will describe the mathematical background of the cone-adapted 

shearlet system that inspired our work. Note that in contrast to the standard discrete 

transform, it has a direction bias which allows separating the low-frequency region with a 

square centered around the origin Kutyniok and Labate [2012] as can be seen in Fig. 2. 

By considering the scaling function , the generating functions ψ , ψ ) and the sampling 

constants b = 1 2,b b , the shearlet system is defined as 

1, Ψ Ψψ,ψ, b ψ, ψ,Θ , b b b      (15) 

Where, 

1

2

1, ,bb G g g        (16) 

22Ψ : 0, 2 ,
j

j,s,ψ, ψ j sgb g      (17) 

22Ψ : 0, 2 ,
j

j,s,ψ, ψ j sgb g      (18) 

And 

E s

j

j,s,ψ D D G ψ
gg S B

        (19) 

E t
s

j

j,s,ψ D D G ψ
g

g BS
        (20) 



with B = diag(b1 ,b2), B  = diag(b2,b1) and  denoting the ceiling function. Also, 22
j

s  is 

an important condition which allows varying the orientation of the shearlet support up to 
4

. 

It can be observed that the low frequency region is associated to 1,b , when both the 

horizontal and the vertical cones correspond to Ψ ψ,b  with Ψ ψ,b  (Fig. 2). 

Furthermore, the straightforward generalization of 2D shearlet is the 3D decomposition 

framework defined below. First, let us consider the 3-dimensional scaling function 
2 3L , generating shearlet 3ˆ 2ψ,ψ,ψ L , and the 

sampling constants b = 1 2 2, ,b b b  for which a so-called pyramid-adapted 

discrete shearlet system is defined as 

1
ˆˆ ˆ, Ψ Ψ Ψψ,ψ,ψ, b ψ, ψ, ψ,Θ , b b b b   

where the sets 

1

3

1, ,bb G g g        (21) 

32
1 2Ψ : 0, , 2 ,

j

j,s,ψ, ψ j s s
g

b g      (22) 

32
1 2Ψ : 0, , 2 ,

j

j,s,ψ, ψ j s s
g

b g      (23) 

32
1 2

ˆ ˆ ˆΨ : 0, , 2 ,
j

j,s,ψ, ψ j s s
g

b g      (24) 

And 

ˆ ˆ ˆ
ˆ ˆ

s
, , , , ,G

g g g
g E S B g gE BS E BSs s

j j j

j s j,s j sψ D D ψ ψ D D G ψ ψ D D G ψ   (25) 

with B = diag(b1, b2, b2), B  = diag(b2, b1 ,  b2), so the scaling matrices are obtained as 

follows  

ˆdiag 2, 2, 2 , diag 2,2, 2 , diag 2, 2,2 ,E E E   (26) 

and shearing matrices 

1 2

1 2 1 2

1 2

1 1 0 0 1 0 0

ˆ0 1 0 , 1 , 0 1 0 , ,

0 0 1 0 0 1 1

s s s

s s

s s s s

s s

S S S    (27) 

As results, the shearlet transform allows decomposing an OCT image (respectively, a 

volume) in a sparse basis as coefficients. 



2.4. Scanning trajectories 

As mentioned in the introduction, usually, the literature related to the compressed sensing 

methods in imaging, almost all have one characteristic in common: the use of pseudo-random 

or random subsampling scheme to select the k-sparse data that will reconstructed Rauhut 

[2010]; Candes and Plan [2011]. This methodology is suitable for image sensors with an 

electronic data acquisition process such as CCD/CMOS cameras. Unfortunately, when it 

concerns imaging systems equipped with a mechanical device (scanning mirrors, magnetic 

coils, etc.), random scanning methods may be irrelevant owing to acquisition constraints. 

To overcome this limitation, the notion of continuous trajectories with variable density 

samplers is discussed in this section. Continuous and smooth trajectories-based samplers are 

crucial to extend CS results to a physical implementation, especially for 3D OCT data 

acquisition and processing. The proposed trajectories are based on spiral, rosette and 

Lissajous scanning schemes which meet certain criteria such as: 

• the design scheme should be reconstruction-guidance-based not observation-based; 

• the trajectory must be continuous and easily achievable by the scanning system, i.e., 

considering the kinematics aspects; 

• the scanning trajectory must be tunable in terms of sampling rate, length, sampling step, 

executing time, etc. 

In other words, this results in creating proper 2D and 3D subsampling masks (i.e., sensing 

matrices) M for 2D or 3D OCT images, respectively. 

 

Figure 3: Illustration of the designed subsampling masks (black dots represent positions of 

the acquired measurements (20%)). 

2.5. Parametrizable scanning curves 

As mentioned above, in this work, we designed three different continuous scanning 

trajectories (spiral, rosette, and Lissajous) (Fig. 3) deemed relevant to ensure an effective CS 

system while respecting the criteria cited. 

There are different ways to implement the chosen scanning continuous curves. Easy 

tuning of the sampling parameters (sampling rate, step time, length, etc.), can be achieved 

using the following expressions: 

 Spiral: 

cos

sin

d

d

x

y

     ( 2 8 )  

with d  allows tuning the distance between two successive spires. 

 Rosette: 
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     ( 2 9 )  

where  is the curvilinear abscissa, kmax is the curvature, z is the number of rosette's 

petals, 

 Lissajous: 

1

2
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sin 2

f z
a

z

a f

x

y

       ( 3 0 )  

where the parameters a1 and a2 represent the covered surface size, f determines the base 

frequency of Lissajous curve. 

2.6. Rasterization 

To be able to successfully apply the designed sensing matrices (i.e., designed masks) and 

to match the coordinates of the selected measurements to the corresponding ones in the 

physical OCT device, we implemented a rasterization technique. The latter allows converting 

continues geometric curves of the vector format of pixels, points, lines,... into an image and 

vice-versa. Among the existing rasterization algorithms, one can cite “Digital Differential 

Analyzer” (DDA). To meet perfectly the requirements of the proposed methods, we revisited 

DDA method in order to: 

• meet the drawing speed (on-line rasterization) of complex scanning curves; 

• convert the drawn trajectory defined in the image (in pixels) to the physical scanning 

curve (in metric) to be achieved into the sample by the galvanometer mirrors. 

 

Figure 4: Illustration of the rasterization algorithm operating in case of a spiral-like scanning 

trajectory. 

Figure 5: Comparison of the notion of incoherence between different subsampling methods. 

The numerical values are obtained for sensing matrices of 105×105 pixels. 

Recall that the designed sensing matrices M is actually a binary matrix: 

1, acquirean A scan at coordinates ,
( , )

0, do nothing

i j
i jM      (31) 

At the same time, this mask has to be generated from a continuous trajectory. Therefore, 

it is important to project parametric curve in the discrete basis of mask matrix. Also, the xy 

coordinates of M are used in the rasterization algorithm to map the pixels positions (in the 

image frame) to the metric locations (in the OCT frame) (Fig. 4). Moreover, with the 

proposed rasterization algorithm it is possible to control the global sampling rate, i.e. the 

percentage of the measures that will be acquired: 



1 1*
,

100
Area of the trajectory

h w

i j
i j

p
M

     (32) 

2.7. Coherence evaluation 

As discussed in Section 2, the notion of incoherence μ(A) (6) of the observation matrix A 

of the proposed continuous trajectories sampling (i.e., spiral, rosette, and Lissajous) was 

studied and compared to that of the traditional random sampling matrix. As can be seen in 

Fig. 5, the numerical values μ(A) are very close, with a slight difference for the spiral 

scanning trajectory, this shows that the proposed sensing schemes enjoy sufficiently small 

coherence and can therefore be considered as relevant for compressed sensing-based 

recovery. 

3. Results and Discussion 

3.1. Numerical validation using realistic biological data 

The proposed methods and materials were firstly validated numerically (in simulation) 

using ground-truth data. The first validation tests consist of using 2D OCT images of 

512×512 pixels, while the second uses OCT volumes of 281×281×199 pixels directly 

acquired by the Telesto II system. 

3.1.1. Evaluation criteria 

In order to quantitatively assess the results obtained with different scenarios and OCT 

images, we implemented two criteria: 1) the peak signal noise ratio (PSNR), and 2) the 

structural similarity index (SSIM), which are generally 

 

Figure 6: OCT volumes (here only a 2D slices are depicted) used to access the performances 

of the proposed algorithm: a) Shepp-Logan phantom, b) x — y OCT slice of a part of grape, 

and c) x — z OCT slice of the retina of a fish eye. 

used by the compressed sensing and more widely the image processing communities Miao, 

Huo and Wilson [2008]. The PSNR score, given in db, is expressed by 

2

1010log
d

PSNR
EQM

       (33) 

where d is the maximal pixel value in the initial OCT image and the EQM is obtained by 

2

1 1

1
, ,

h w

i j

EQM i j i j
hw

I R      (34) 

with I representing an initial full-scanned 2D OCT slice (selected from the OCT volume), R 

is the reconstructed one. 

Furthermore, the SSIM score is based on the computation of three values, namely, the 

brightness l, the contrast c and the structural aspect s. It is given by 



s , / , ,SSIM fR I R I R I       (35) 

where, 

, 3 1 2

3 1 2

2 2 2
, , , ,and ,

f f f
s l f

f f f

R I R I R I

2 2 2 2

R I R I R I

R I R I R I  (36) 

with R , I , R , I , and 
R,I

 are the local means, standard deviations, and cross-

covariance for images R, I. The variables f1 , f2 and f3 are small numbers used to stabilize the 

division with weak denominator. 

3.1.2. Numerical validation: 2D images 

The numerical validation was performed following several scenarios. First of all, as inputs 

in the proposed algorithm we used three OCT volumes (only 2D slice images are depicted 

for a better visualization) shown in Fig. 6. Note that the first image (Fig. 6(a)) is the “Shepp-

Logan” phantom, which is generally used in the literature dealing with medical image 

processing and CS. In addition, two OCT images of biological samples (i.e., part of grape 

and retina of a fish eye) were also used in this validation. 

First, for each image test, we applied the proposed CS method using various subsampling 

rate ranging from 10% to 70% with a step of 10% defined using the constructed masks based 

the developed continuous trajectories introduced in Section 2.4. The obtained results are 

presented and discussed in the following. image. The second remark is that in the 

reconstructed image, the edges appear smoother than to those of the original image. Finally, 

the obtained results are very similar using the other two subsampling methods. 

Shepp-Logan phantom (30% of measurements) 

The first numerical validation consisted of the reconstruction of the Shepp-Logan 

phantom image using 30% of measurements. The latter were obtained using the continuous 

subsampling trajectories. In Fig. 7, are compared the original (ground-truth) image (Fig. 7(a)) 

and the reconstructed one (Fig. 7(b)). As can be noticed, the recovered image (using the 

spiral subsampling method) is faithful to the ground-truth one. This is confirmed by the 

zoom-in thumbnail 

 

Figure 7: [Sheep-Logan phantom] Comparison between (a) the original image and (b) the 

reconstructed one using 30% of measurements. 

The qualitative study of the obtained results are discussed in Section 3.2 using the 

similarity scores, i.e., the PNSR and the SSIM. 

Grape (20% of measurements) 

Similarly, the CS method was validated using OCT images of a part of a grape. In this 

test, the subsampling rate is of 20%. The reconstructed images are depicted in Fig. 8: from 

left to right, using the spiral, the rosette, and the Lissajous trajectories subsampling methods, 

respectively. Again, one can highlighted the recovered OCT images are very similar to 

ground-truth ones. Note that, even the recovered images still similar from one subsampling 

method to another, Lissajous-based sensing matrix appears more interesting because it covers 

the entire OCT field-of-vision compared to both the spiral and rosette methods. 



3.1.3. Numerical validation: volumes 

The proposed methods were also validated using directly the OCT volume instead of 

individual 2D slices (B-Scans) as input of the proposed algorithm. One can compare the 

reconstructed OCT volume with the ground-trust one as can be seen in Fig. 9. It can be 

concluded that the recovered volume (using 30% of measurements) is very similar to the 

original one  

 

Figure 8: [Grape] Reconstruction of OCT image using 20% of measurement and different 

subsampling techniques. 

3.2. Quantitative analysis 

To assess the performances of the proposed compressed sensing algorithm, we conducted 

numerous validation tests using both the different types of masks (i.e., spiral, rosette, and 

Lissajous) and various subsampling rates: 10%, 20%, 30%, 50%, and 70%. For each test, we 

computed the values of both the PSNR and SSIM (introduced at the beginning of this 

Section). Then, Table 1 summarizes the obtained numerical values of each test using both the 

retina of a fish eye and “Shepp-Logan” phantom images as inputs on the CS algorithm. Note 

that, generally, if the PSNR values are typical between 30 db and 50 dB (for 8-bits encoded 

images), then reconstructed image is considered faithful to the original one. Also, when the 

PSNR is equal or greater to 40 db, as consequence the quality of the reconstruction is 

qualified as similar to the original image. 

As can be underlined the obtained PSNR values vary from approximately 40db for 10% of 

data to 45 db for 70% of data. The first remark is that even for only 10% of samples, the 

quality of the reconstructed image/volume is very interesting. This is confirmed by the 

second similarity score (i.e., SSIM) with numerical values varying from 0.97 to 0.99 for 10% 

to 70% of samples, respectively. The SIMM values are also interesting even only 10% of 

measurements 

 

Figure 9: Visual comparison between the original and the reconstructed OCT volumes. 

Table 1 

Quality evaluation of the validation tests on both the retina of a fish eye and the Shepp-Logan 

phantom images using different subsampling rates and scanning trajectories. 

subsampling 

rate (%)  

continuous trajectory 

type 

image type 

retina of a fish eye Shepp-Logan phantom image 

  PSNR 

(db) 

SIMM PSNR 

(db) 

SSIM 

10% rosette 38.944 0.834 40.771 0.973 

spiral 39.059 0.833 41.440 0.974 

Lissajous 37.825 0.859 40.908 0.973 

20% rosette 39.902 0.849 41.730 0.976 

spiral 39.961 0.847 42.171 0.978 

Lissajous 38.911 0.882 41.790 0.977 



30% rosette 41.048 0.868 42.472 0.980 

spiral 41.129 0.870 42.827 0.982 

Lissajous 40.103 0.910 42.420 0.981 

50% rosette 43.361 0.898 44.043 0.987 

spiral 43.767 0.903 44.891 0.989 

Lissajous 42.006 0.945 44.004 0.988 

70% rosette 45.921 0.917 45.278 0.991 

spiral 45.893 0.917 45.436 0.991 

Lissajous 44.202 0.969 45.073 0.991 

are used during the recovery task. Remember that, generally, SSIM numerical values are in 

the range of [–1, 1], where value 1 (respectively, –1) is reachable when the similarity, 

between the compared images, is “perfect”. 

Furthermore, the rosette and spiral sampling patterns only acquire 
4

 region of k-space 

due to their circular k- space support, as compared to Lissajous method. This factor is 

considered in the computation of the subsampling rate for each trajectory. The same 

performances assessment was achieved using the OCT image acquired on the fish eye. The 

PSNR and SSIM numerical values are reported in Table II in which one can highlighted that 

the results are very similar to those obtained for the “Sheep-Logan” phantom image. Again, 

the spiral-scanning trajectory gives better results comparing to rosette and Lissajous. 

4. Experimental Validation 

4.1. Experimental setup 

The proposed materials and methods were validated in both simulation and experimentally. 

To carry out the experimental implementation of the CS algorithm, we designed a robotic 

setup which acts as a positioning platform combined with an OCT device, the Telesto II from 

Thorlabs® (Fig. 10(a)). The latter consists of a FD-OCT system which offer three types of 

acquisition modes: A-scan (1D optical core), B-scan (2D cross-sectional image) and C-scan 

(n × m × k) volume). In fact, the Telesto II system is based on the principle of low-coherence 

interferometry because the velocity of light is extremely high. The low-coherence i.e., high-

bandwidth light beam is directed to the target tissue and the scattered back-reflected light is 

combined with a second beam (reference beam), which was split off from the original light 

beam. The resulting interference patterns are used to reconstruct the A-scan. The latter 

represents the axial resolution in the tissue, of about 1-15 |m Drexler and Fujimoto [2008]. In 

addition, the light beam is able to move along the tissue in xy directions. This results in a 

compilation of A-scans with each of them having a different incidence point. From these 

series of A-scans, a two-dimensional cross-sectional image of the target tissue can be 

reconstructed which known as a B-scan. Moreover, a C-scan acquisition consists of the 

concatenation of parallel B-scans as summarized in Fig. 10(b-c). 

Figure 10: a) the global view of the OCT device (b-c) depicts the both the B-scan and C-

scan acquisition modes, respectively. 



4.2. Validation using a physical system 

The experimental validation scenario is performed as follows: instead of using 

prerecorded images or volumes with further off-line subsampling them (using sensing 

matrices) to create the sparse data, we directly (on-line) controlled the galvanometer mirrors 

of the OCT probe to acquire sequentially only a limited number of measurements (A-Scans) 

following a predefined continuous trajectory. The xy coordinates (pixels at 1 in the sensing 

matrix) of rasterized trajectory are used as the inputs control of the galvanometer mirrors. As 

claimed previously, it is possible to tune the scanning trajectories parameters in aim to 

manage the acquisition rate (expressed as a percentage of the entire volume). 

The first experiment was conducted by acquiring 30% of samples on the fish eye. The 

latter was placed under the OCT probe. Therefore, instead of acquiring the entire data, we 

controlled the galvanometer mirrors of the OCT device to acquire only 30% of 

measurements under a continuous trajectory (here a spiral). To do this, we used a spiral- 

scanning trajectory. Actually, each position p = (x, y) of the rasterized trajectory is 

considered as the control input of the galvanometer mirrors. In Fig. 11 is depicted 

simultaneously, the ground-truth OCT volume (acquiring using 100% of data), the 30% 

acquired data, and the reconstructed OCT volume. One can remark that the reconstructed 

volume is faithful to the ground-truth one. 

In the second experimental test, we changed the retina sample by a part of a grape (less 

translucent sample compared to the retina). The obtained results are shown in Fig. 12. Again, 

the reconstructed OCT volume (Fig. 12(c)) is of good accuracy compared to the ground-truth 

one (Fig. 12(a)) 

 

Figure 11: Experimental validation using a fish eye as biological sample (30% of 

measurements). 

4.3. Discussion 

The obtained results are satisfactory according to the metric evaluation criteria. It has 

been shown that it is possible to design non-random sampling matrices that are compatible 

with the physical implementation as widely studied in the related literature Donoho [2006]; 

Candes et al. [2006]; Rauhut [2010]. The studied sensing matrix offer similar features in 

terms of sparsity and incoherence comparing to the well-established random or pseudo-

random methods. 

In addition, bi-dimensional shearlet Duflot et al. [2016] and wavelet Chitchian, Fiddy and 

Fried [2008] decomposition were studied the sparsity tool in CS paradigms applied to 

improve 2D OCT acquisition. However, to the best of our knowledge, it was the first time 

that tri-dimensional shearlet decomposition was implemented in a physical OCT system. 

Additionally, continuous trajectories combined with rasterization technique were already 

reported in the literature, however, they were designed to operate off-line using recorded 

image data Chauffert, Ciuciu, Kahn and Weiss [2014]. 

Furthermore, the developed CS algorithm is not specific to optical coherence tomography 

modality but can also be used in different 3D imaging methods such as MRI or CT-scan. As 

a consequence, we evaluated the CS algorithm with 3D sensing matrices more compatible 

with the acquisition scheme of this type of imaging devices (i.e., MRI and CT). 



Although the proposed methods and materials are intended to improve the acquisition 

frame-rate of an OCT imaging system, there are still improvements/optimizations to be 

considered. For instance, some parts of the CS algorithm consume much computation time, 

in particular those relating to the Fourier transform and its inverse. These parts can be 

implemented directly on a GPU Blanchard and Tanner [2013] to save up to 10 times more 

computing time. 

5. Conclusion 

In this paper, in order to overcome the limitations of an FD-OCT acquisition system, we 

proposed a new compressed sensing paradigm. The developed methodology consisted of four 

main parts: 1) design of different continuous scanning trajectories (off-line), 2) rasterize the 

subsampling trajectories to meet the physical conditions (off-line), 3) transform the OCT 

measurements in the shearlet supports for sparsifying, and 4) recover the entire OCT data 

using only few k-sparse data (on-line). 

Figure 12: Experimental validation using a part of grape as biological sample (30% of 

measurements). 

The proposed compressed sensing algorithm was successfully validated numerically and 

experimentally. First, this algorithm was evaluated: 1) quantitatively using various 

subsampling rate (from 10% to 70%) obtained thanks to the designed continuous scanning 

trajectories (e.g., spiral, rosette, and Lissajous), and 2) qualitatively using similarity scores 

such as PSNR and SSIM computed for each scenario (OCT image, subsampling rate, 

scanning trajectory type, etc.). 

As claimed, the CS algorithm was also implemented directly on a commercial FD-OCT 

system. This means that, the galvanometer mirrors that equip the OCT system were 

controlled directly (using the xy coordinates of the scanning trajectories as inputs on the 

control loop) to acquire a limited number of A-scans. This data was then used to recover the 

whole OCT volume. 

The obtained results in both simulation and experiments showed promising performance 

in terms of quality of the reconstructed OCT images and volumes. This fact is also confirmed 

by comparing the obtained reconstruction with the ground-truth data. 

Future work will consist of the optimization of the CS code to improve its execution time. 

Actually, several parts of the algorithms were scripted without optimization in a MatLab 

framework. The ideal would be to implement the current scripts in C++ or in GPU (Graphic 

Processing Unit) for the direct and inverse shearlet transform. 
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Table 1 

Quality evaluation of the validation tests on both the retina of a fish eye and the Shepp-Logan phantom images  

using different subsampling rates and scanning trajectories. 

image type 

 subsampling rate (%)   continuous trajectory type retina of a fish eye Shepp-Logan phantom image 

             PSNR (db)     SIMM             PSNR (db)            SSIM 

               10% 

rosette       

spiral     

Lissajous 

38.944  

39.059 

37.825 

0.834 

0.833 

0.859 

40.771 

41.440 

40.908 

0.973 

0.974 

0.973 

               20% 

rosette 

spiral 

Lissajous 

39.902  

39.961 

38.911 

0.849 

0.847 

0.882 

41.730 

42.171 

41.790 

0.976 

0.978 

0.977 

              30% 

rosette 

spiral 

Lissajous 

41.048 

41.129 

40.103 

0.868 

0.870 

0.910 

42.472 

42.827 

42.420 

0.980 

0.982 

0.981 

             50% 

rosette 

spiral 

Lissajous 

43.361 

43.767 

42.006 

0.898 

0.903 

0.945 

44.043 

44.891 

44.004 

0.987 

0.989 

0.988 

            70% 

rosette 

spiral 

Lissajous 

45.921 

45.893 

44.202 

0.917 

0.917 

0.969 

45.278 

45.436 

45.073 

0.991 

0.991 

0.991 
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