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Small Scale Statistics of Turbulent
Fluctuations Close to a Stagnation Point

Peter D. Huck, Nathanael Machicoane and Romain Volk

Abstract Experimental data measured with a 3d Shadow-Particle Tracking
Velocimetry (S-PTV) setup in fully developed turbulence (Reλ = [175 − 225]) is
presented. The underlying flow is of the von Kármán type and as other similar flows,
its mean flow is bistable, the two states having the topology of a stagnation point
with one contracting and two dilating directions. Tracer particle trajectories permit
the investigation of the inhomogeneity and anisotropy of the smallest scales, namely
acceleration statistics. The local variance and time-scale of acceleration components
are shown to mimic the large scale properties of the flow, the time-scales being more
anisotropic than the variances. We explain the hierarchy of time-scales by investigat-
ing the Lagrangian Taylor micro-scale which is related to acceleration and velocity
variances, and discuss the very high Reynolds number regime.

1 Introduction

Inhomogeneity in fluid flows is inherent in natural and industrial contexts with exam-
ples in the free shear and convection of the planetary boundary layer [1] or rotation
in stirred chemical reactors [2] and compression in piston engines [3]. Among the
canonical flow types investigated in the literature, strain is an important mechanism
that has been used to investigate the link between the imposed mean-field and the
resulting anisotropy [4, 5] and theoretical formulation of the role of rapidly applied
strain to turbulence succeeded in providing a mechanism to predict anisotropy [6].

Recent experimental [7] and numerical [8] investigations have demonstrated that
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accurate prediction is limited to larger scales when applied deformation is not suffi-
ciently rapid to attain the small dissipative regions of the turbulence. Only recently
have simulations investigated the implications of strain on the small dissipative scales
of turbulence [9] demonstrating stronger root-mean-square (rms) acceleration in
compressed directions than in divergent directions in asymmetric strain. Interest-
ingly, recent study has not lead to conclusive explanations of the role such flow
conditions have on dissipative scale temporal dynamics.

In this contribution we build upon these concepts with an experimental Lagrangian
investigation of fully developed turbulence (Reλ = [175 − 225]). In particular, a
highly inhomogeneous and anisotropic von Kármán type flow is studied. Though
often thought to belong to the free-shear category [10], recent study has pointed to
the fundamental role of the stagnation point at the center of the flow [11]. By way
of analogy with the characterization of spatial velocity gradients (Eulerian Taylor
scale, λ) [12], the Lagrangian Taylor scale [13] is used to characterize high frequency
motions and provides a reasonably accurate estimation of acceleration anisotropy,
both in terms of temporal correlation and amplitude.

2 Experimental Set-Up

The device used in this investigation is the so-called von Kármán flow which consists
of a square cylindrical enclosure, 15 cm on each side, with two counter-rotating disks
of radius R = 7.1 cm driven at equal rotation frequencies by constant-current motors
that are separated by 20 cm, as depicted in Fig. 1a. Our experiments rely on a Shadow-
Particle Tracking Velocimetry [14] where two perpendicular collimated beams per-
mit the tracking of small objects over a large volume [11] approximately (6 cm)3

(Fig. 1b). Trajectories are reconstructed using typical particle tracking algorithms
[15] applied to films obtained with two high speed cameras (Phantom V.12, Vision
Research, 1Mpix@7 kHz) with a resolution 800 × 768 pixels, and a frame rate of
fs = 12 kHz.

A vast literature exists on the bistable nature of the von Kármán flow (e.g. [16,
17]) measured primarily in round cylinder geometries. The present square cylinder
manifests another type of bistability for which the lifetime of the two states (charac-
terized from LDV measurements, not shown here) is much longer than the duration
of each movie. A explained in [14], it is possible to separate S-PTV data into two
ensembles, each one corresponding to one of the two states, using the kinetic energy
contained in each velocity component averaged over the ensemble of trajectories
measured in a single film. Such conditioning allows for a reconstruction of averaged
flow properties in 3D for each states such as the mean flow as shown in Fig. 1b for
the case of the x-dominant state. The topology of each state have a peculiar topology
(see [14] for more details): the x-dominant state, which will be investigated in the
following, presents a stagnation point near the origin with one stable direction (x) and
two unstable directions (y and z) as depicted in Fig. 1b, c, while x and y directions
are exchanged in the y-dominant state (Fig. 1d). We note that the volume over which
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Fig. 1 Experimental apparatus. a The square cylindrical enclosure of the von Kármán flow consists
of two counter rotating disks driven at equal rotational frequencies. b Reconstructed mean flow for
the x-dominant state. Left: arrows indicate (〈vx 〉, 〈vy〉) measured in the (xy) plane, the color coding
for 〈vz〉. Right: arrows indicate (〈vz〉, 〈vx 〉) measured in the (zx) plane, the color coding for 〈vy〉. c
Sketch of the mean flow orientation in the x-dominant state. d Sketch of the mean flow orientation
in the y-dominant state.

Table 1 Parameters of the flow. �, rotation rate of the discs; ε, dissipation rate obtained from
the power consumption of the motors. The kinematic viscosity of the water-UconTM mixture is
ν = 8.2 × 10−6 m2 s−1 with a density ρ = 1000 kg m−3. The dissipative time-scale and length-
scale are τη = √

ν/ε and η = (ν3/ε)1/4, the Taylor-based Reynolds number being estimated as

Reλ =
√

15v′4/νε with v′ =
√

(〈v′
x

2〉 + 〈v′
y

2〉 + 〈v′
z

2〉)/3 and Re = 2π R2�/ν

� (Hz) v′ (ms−1) τη (ms) η (μm) εm
(W kg−1)

Reλ (–) Re (–)

4.2 0.34 3.2 162 0.8 175 16,200

5.5 0.45 2.1 131 1.9 200 21,200

6.9 0.56 1.5 111 3.6 225 26,700

the statistics are computed is larger than the Eulerian integral scale L = v′3/ε = 4.8
cm, where v′ is the rms value of the fluctuating velocity, permitting an investigation
of their inhomogeneity. Various Eulerian statistics are given at the geometrical center
of the flow in Table 1.
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2.1 Inhomogeneity in the Acceleration Magnitude

The stagnation point is responsible for a large amplification of fluctuations in the
contracting direction (x) while attenuation is observed in the dilating directions [11].
As a consequence the total velocity fluctuations 〈v′2〉 increase as particles approach
the stagnation point (Fig. 2a), indicating spatial inhomogeneity, with an anisotropy
level 〈v′2

x 〉/〈v′2
z〉 which nearly doubles as the stagnation point is reached (Fig. 2a,

inset).
As displayed in Fig. 2b, the acceleration component magnitude (normalized by

its maximum value at the center to account its Reynolds number dependence) is also
found to increase when approaching the center. Such spatial profile of acceleration
fluctuations is reminiscent of the non homogeneity in average dissipation, which
was found maximum near the geometrical center [11]. This is because acceleration
variance is expected to depend on dissipation following the Heisenberg-Yaglom
relation 〈a2

i 〉 = a0,iε
3/2ν−1/2 [18], where a0,i is a non-dimensional function of the

Reynolds number. As opposed to the increasing anisotropy of velocity fluctuations,
the three components of the fluctuating acceleration increase in equal proportions
so that anisotropy is constant over the entire region of Fig. 2b with the hierarchy
〈ax

2〉 > 〈ay
2〉 > 〈az

2〉. This shows that the anisotropy observed in the large scale
quantities propagates down to the very small scales of turbulent fluctuations as was
observed in [15].

(a) (b)

Fig. 2 Velocity fluctuations statistics at Reλ = 200. a Overall increase in velocity fluctuations
(〈v′2〉 = (〈v′

x
2〉 + 〈v′

y
2〉 + 〈v′

z
2〉)/3) normalized by its value at the origin. Inset: anisotropy

between the converging (〈v′
x

2〉) and diverging (〈v′
z

2〉) fluctuations. b Acceleration magnitude statis-
tics. ◦ : Reλ = 175, � : Reλ = 200, � : Reλ = 225. a Normalized acceleration variance where
qa = (〈ax

2〉 + 〈ay
2〉 + 〈az

2〉) is evaluated at (0, 0, 0).
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2.2 Acceleration Time Scales and Anisotropy

We now investigate the temporal dynamics at small scale and focus on the auto-
correlation function of the acceleration components Ri

a(τ ) = 〈ai (t)ai (t + τ)〉/〈a2〉.
Because the flow is non homogeneous, we restrict to trajectories passing through a
ball of 1 cm in diameter whose center is located at the origin (0, 0, 0). Figure 3a plots
the auto-correlation function versus normalized time τ/τη where τη = (ν/ε)1/2 takes
the Reynolds number dependence into account and permits a collapse of the three
curves. The plots show that the temporal dynamics is anisotropic since the curves
do not have the same zero crossing time t0. In order to get a robust estimate of the
acceleration characteristic time, we measure the integral time τa,i = ∫ t0

0 Ri
a

(
τ
)

dτ

for each component i = x, y, z.
The inset of Fig. 3a displays the normalized acceleration integral time obtained

for different locations of the ball center along the x axis. As stagnation point is
approached, the integral time τa,i decreases. This is consistent with an increase of
dissipation close to the geometrical center as this time scale is expected to be propor-
tional to τη = √

ν/ε as shown in homogeneous and isotropic turbulence (HIT) [19].
However, we observe τa,i become increasingly anisotropic and attain a maximum
at the flow geometric center with the hierarchy τa,x/τa,z > 1 whereas 〈ax

2〉 > 〈az
2〉.

This observation is somewhat counter-intuitive when considering τa � √
ν/ε which

would suggest a scaling law τa ∝ (ν/〈a2〉)1/3. However, the opposite is observed;

(a) (b)

Fig. 3 Acceleration auto-correlation and spectra at the stagnation point. ◦ : Reλ = 175, � : Reλ =
200, � : Reλ = 225. a Acceleration correlation function (ax , blue, az green) near the stagnation
point for all Reynolds numbers. Inset: acceleration integral time normalized by the dissipative
time-scale τη = √

ν/ε. The black curves are averages of the three Reynolds numbers to serve as a
reference. b Unfiltered acceleration spectra at the stagnation point normalized using the dissipation
(ax , blue, az green).
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the strongest component (x) has the largest acceleration time whereas the weakest
component (z) has the smallest time-scale.

In order to understand how acceleration variance and time-scale are influenced by
the large scales, we display in Fig. 3b the acceleration spectra of ax and az , computed
directly from the raw acceleration trajectories. The spectra are related to the auto-
correlation functions by the following relationship:

φa,i (ω) = 2

π

∫ ∞

0
Ri

a(τ ) cos(ωτ)dτ. (1)

They have been normalized by επ−1 which has been used in the literature to account
for Reλ dependence [20, 21]. This figure shows that anisotropy is contained in the low
frequencies below ωτη � 1 while higher frequencies in the deep dissipative region
(ωτη > 1) become isotropic. It is seen from this figure that integral quantities such
as acceleration variance 〈ai

2〉 = ∫ ∞
0 φa,i (ω)dω and acceleration time-scale have a

contribution from low frequencies, i.e. from scales larger than the dissipative scales,
which are non isotropic.

It is not evident from the acceleration spectrum to estimate the acceleration
time-scale, but its hierarchy may be understood by computing the Lagrangian Tay-
lor scale τL (not to be confused with the eulerian Taylor microscale λ), which
is defined from the short time evolution of the velocity auto-correlation function
1/τ 2

L
= −1/2 dRL/dτ 2(0). Indeed, this time scale can be linked to the acceleration

and velocity variances through the relationship

〈ai
2〉Ri

a(τ ) = −〈v′
i
2〉 d2

dτ 2
Ri

L(τ ), (2)

which is valid for statistically stationary signals. The Lagrangian Taylor time-scale
of component i then writes τ 2

L ,i = 2〈v′
i
2〉/〈ai

2〉, which shows that this time-scale is
influenced both by large and small scales. Although τL is not the same as τa , the latter
is only slightly larger than the former, i.e. in the central region τai � [1.25 − 1.45]τη

and τL ,i � [4 − 6]τη depending on the component observed. As such, τL falls squarely
in the region of frequencies most strongly contributing to the anisotropy as seen in the
spectra of Fig. 3b. Anisotropy can thus be estimated: τa,x/τa,z � 1.13 as measured by
the integral time scales in Fig. 3(a inset) while τL ,x/τL ,z � 1.33 as estimated from
τ 2

L ,i = 2〈v′
i
2〉/〈ai

2〉. The Taylor timescale over predicts the anisotropy by roughly
20% and explains why acceleration time-scales are less isotropic than acceleration
variances.

In a similar flow velocity anisotropy ratio has been shown to decay slowly to
just below v′

x/v′
z � 1.5 at Reλ � 1000 [22] while the ratio of acceleration rms

decays to nearly 1.1. However, as shown above, time scales imply interaction of
both large (velocity) and small (acceleration) scales. Consequently, the persistent
anisotropy in the large scales resulting from the presence of the stagnation point
inhibit isotropization of time scales at large Reynolds numbers. Indeed, Lagrangian

nmachico@uw.edu



Small Scale Statistics at a Turbulent Stagnation Point 131

measurements spanning Reλ = [450 − 810] indicate very little evolution in τax/τaz

[23].

3 Conclusion

This article presented an experimental investigation of Lagrangian data in the fully
developed turbulence of a von Kármán flow. The flow presents a bistability and each
state can be investigated separately by conditioning on the kinetic energy contained in
each component. Restricting the data analysis to only one state, the turbulent velocity
fluctuations were seen to be strongly inhomogeneous close to the stagnation point.
Additionally, anisotropy measured between the converging and weakest diverging
direction increased monotonically. The turbulent dissipation rate was observed to be
dominated by the converging direction and mirrored the evolution of the turbulent
velocity fluctuations. Interestingly, the acceleration variance followed the tendency
of the turbulent dissipation and velocity fluctuations to increase, though unlike the
latter, acceleration anisotropy remained almost constant.

Although the relationship small scale anisotropy can be linked to the large scales,
this relationship is incapable of predicting anisotropy among the acceleration time-
scales. The hierarchy of time-scales was explained by investigating the Lagrangian
Taylor scale τL = √

2v′2/a2. The presence of v′ in this relationship suggests an influ-
ence from lower frequencies, which is confirmed from the inspection of acceleration
spectra. Frequencies close to ω = 2π/τL contribute most strongly to anisotropy in
the acceleration magnitude whereas the deep dissipative region (ωτη > 1) becomes
isotropic. Similar behavior is apparent in the acceleration auto-correlation which by
consequence lead to anisotropic measurements of its integral scale τa .

The literature contains sparse discussion of the anisotropy of small scale statistics
and this study proposes a framework in which they may be understood. The deriva-
tion of τL follows from the kinematic relationship between velocity and acceleration
auto-correlation functions and is expected to not only hold for the fluid particle trac-
ers studied here, but for particles whose dynamics are dominated by their inertia.
Further study into the effects of inhomogeneity and anisotropy for these particle
classes is of great interest for the atmospheric dispersion of pollutants [18, 24] and
the process of rain and ice formation.
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