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Abstract The discrete element method (DEM) is a powerful tool for simulating
complex mechanical behaviors which discretizes the targeted medium with parti-
cles. The properties of particle assemblies used in DEM simulations directly impact
the behavior of the simulated medium. It is thus of critical importance to generate
particle assemblies so as to (1) avoid any bias induced by their fabric, and (2)
conform with the structural discontinuities of the medium under consideration.
The main objective of this work is to propose an algorithm, inspired by the space
filling Apollony fractal, to generate sphere packings in geological objects as a first
step toward their mechanical modeling with the DEM. In particular, we assess
the relevance of the generated packings for simulating the behavior of a rock-like
material, and we discuss the ability of the proposed approach to discretize geolog-
ical models. The algorithm ensures the tangential conformity of spheres with the
model boundaries (internal and external), and enables to adapt the particle size
distribution in the vicinity of structures of interest such as, fractures or faults.

Keywords Sphere packings · Adaptive refinement · Geological models · Discrete
Element Method

1 Introduction

The discrete element method (DEM) is a numerical technique now commonly
used for simulating the mechanical behavior of discontinuous media such as soils
or rocks [10,37,11,36]. Thanks to its ability to describe large deformations and
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Université de Lorraine, CNRS, GeoRessources, Nancy, France
E-mail: francois.bonneau@univ-lorraine.fr

L. Scholtès
Université de Lorraine, CNRS, GeoRessources, Nancy, France
E-mail: luc.scholtes@univ-lorraine.fr

H. Rambure
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associated fracturing phenomena, the DEM has been successfully applied to study
physical processes taking places at different scales in geologic media, such as fault
gouge mechanics [31], fracturing in rock masses [38], volcanic eruptions [24], caldera
collapses [15], or more general tectonic processes [13,47].

A DEM model represents the medium under consideration as an assembly
of particles interacting with one another following predefined contact laws. The
particle assembly, or “packing”, must comply with several geometric requirements
to provide accurate simulated behaviors. For geomaterials, and for rock materials
in particular, a crucial requirement is that the packing is polydisperse, presents a
relatively high density, and has an isotropic structure so as to avoid any bias related
to its fabric when subjected to mechanical loading [7,4,16]. Numerical solutions has
been recently proposed to perform large scale DEM simulations with non-spherical
particles [12]. Nonetheless, spherical particle models prevail for simulating the
mechanics of geological media due to the simplicity of their formulation as well as
to their lesser computational demands compared to non-spherical particle models
[37,15,13,24,47]. As a matter of fact, anyone aiming to simulate a large scale
boundary value problem with the DEM needs to go through the necessary step
of building sphere packings that conform with the geometry and the mechanical
behavior of the medium under consideration.

Many solutions exist for generating dense polydisperse sphere packings in pre-
defined volumes. They are usually classified into two categories: dynamic and con-
structive. The dynamic approaches consist in running physics-based simulations
to generate particle assemblies mechanically in equilibrium. The constructive ap-
proaches position particles in space based on pure geometric calculations. Both
approaches have advantages and drawbacks but the constructive approaches are
generally more efficient and more flexible than the dynamic ones [21,27].

Dynamic methods are based on three principal mechanical processes to pro-
duce dense particle packings: gravitational deposition of particles [41], isotropic
compression [43], and particle size expansion [25]. All three processes use New-
ton’s second law of motion to determine the trajectories and the final positions of
the particles. These processes can be simulated with the DEM. Hence, they can
be properly constrained to control the final packing properties if the DEM models
are correctly parametrized (e.g., the interparticle friction angle controls the final
porosity, the interparticle stiffnesses control the amount of particle overlap). Ac-
tually, dynamic methods can produce packings with higher densities than most
of the constructive methods. However, generating large scale DEM models can be
problematic with respect to the computational effort since a complete DEM simu-
lation has to be performed. In such cases, optimization techniques are required [8].
Also, except for the size growing technique, dynamic methods cannot be applied
to complex-shaped domains without specific adjustments.

Constructive methods are also known as geometric methods since they rely
on mathematical rules to place particles in space. Three main techniques have
been proposed for generating random polydisperse packings: mesh- or grid-based
methods [9,22], sedimentation techniques [17], and advancing front approaches
[1,2]. Among these solutions, the mesh-based methods and the advancing front
approaches seem to be the most popular. Recently, many works have focused
on these two approaches because they can (1) generate high density packings in
complex-shaped containers, and (2) consider large amounts of particles [23,46,27].
Most of these methods were developed with the aim to perform subsequent DEM



Generating mechanically sound sphere packings in geological models 3

simulations. However, to our knowledge, only few of them have been actually used
in DEM simulators [21]. Moreover, there is currently no available method that
offers the possibility to explicitly describe discontinuities such as fractures, faults,
or stratigraphic horizons which are ubiquitous in geological media.

In this work, we present a geometric-based algorithm inspired by the space fill-
ing Apollony fractal to generate polydisperse spherical particle assemblies [3]. The
algorithm is an offspring of the Protosphere algorithm [49] which we specifically
adapt to generate sphere packings in geological models so as to perform subse-
quent DEM simulations. The packings conform to geological structures described
through boundary representations [6]. Practically, the spheres are tangent to every
structures present in the model so as to ensure an explicit representation of the
object boundaries, either the external surface envelope of the model, or its inter-
nal discontinuities or cavities. The algorithm also offers the possibility to locally
adapt the resolution of the packing in the objective of reducing the total number
of spheres in the model while keeping sufficient level of details in areas of interest.

In the following, we first present and describe the algorithm we propose to gen-
erate sphere packings in boundary representations. Then, we assess the relevance
of the generated packings for modeling geomaterials by assessing their mechanical
behavior. Finally, we provide examples highlighting the capabilities of the algo-
rithm to fill up structurally complex media, emphasizing on its ability to deal with
internal boundaries and adaptive refinements.

2 Packing algorithm

The Protosphere algorithm [49] fills up arbitrary domains with polydisperse Apol-
lonian sphere packings. We modify it to produce packings suitable for DE modeling
of geomaterials.

2.1 The Protosphere algorithm

The Protosphere algorithm extends the method of Apollonian sphere packings to
arbitrary container objects. Apollonian packings [3] are fractal structures which
assemble spheres based on geometrical rules. An example of such packings is the
2D Apollonian gasket presented in Fig. 1 that can be built starting from a circle
containing three smaller circles circumscribed inside the bigger one. All subsequent
circles are positioned to be tangent to three other circles using the Soddy theorem
[48] and the self-similar property of the fractal makes it infinitely space-filling.

The Protosphere algorithm adds spheres in the considered domain following
an iterative procedure. First, it randomly picks an initial position for a potential
sphere center inside the domain. This position needs to be inside the volume of
interest and outside of the spheres previously placed. Then, an optimization pro-
cess maximizes the distance between the tested position and the closest boundary,
either the domain boundary or the previously embed spheres. In practice, (1) the
closest projection of the tested position onto the neighboring boundary is evalu-
ated, and (2) a step vector is defined to move the tested position away from this
boundary. A cooling function ensures the convergence of this process by reducing
the amplitude of the displacement when the number of iterations increases [26]. A
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Fig. 1 Apollonian sphere packings: (a) 2D Apollonian gasket where colors correspond to the
iteration steps of the filling process and (b) a sphere-filled cube showing the fractal Apollonian
property of the Protosphere algorithm (modified from Weller and Zachmann [49]).

sphere is added to the packing when the optimization process has converged. The
newly embed sphere center is assigned to that final position. Its radius is directly
computed from the distance between its center and the nearest boundary.

The Protosphere algorithm is attractive because it can generate dense sphere
packings inside arbitrary shapes. However, due to their fractal property, these
packings are certainly not adapted to perform relevant DEM simulations of geo-
materials (Fig. 1). Indeed, besides the particle size distribution which would most
probably compromise the relevance and representativeness of the material behav-
ior by itself, the generated packings present a highly heterogeneous fabric. These
packings would produce undesirable bias in DEM simulations as a result of their
strong anisotropy, as well as of the spatial distribution of their constitutive parti-
cles. For instance, an external load applied on the boundaries of the cube presented
in Fig. 1 would be exclusively borne by the biggest central particle of the packing,
hence annihilating the purpose of the modeling.

2.2 Enhancement to meet DE modeling requirements

We explain here the modifications and optimizations made on the Protosphere
algorithm to produce particle packings suitable for DE modeling of geomaterials.
In particular, we describe how to generate spheres with sizes belonging to a user
defined size range [rmin, rmax]. Indeed, it is important to be able to control and
limit the size ratio rmax

rmin
of the particles in DEM simulations. The polydispersity of

the packing ensures a representative behavior of the simulated medium but the size
ratio has an effect on the computational efficiency. In fact, the time step of a DEM
simulation is a direct function of the mass of the constitutive particles - i.e., their
size. Large particle size ratios tends to increase the computational time needed to
reach a given deformation stage as the smallest particles decrease the time step.
Moreover, rmax has to be carefully chosen as a function of the characteristic length
of the medium to model (e.g., grains, fractures, pores). Indeed, rmax should ensure
a discretization of the medium that does not influence the simulated behavior.



Generating mechanically sound sphere packings in geological models 5

implanted
 sphere

internal
 boundary

external
 boundary

rmin

rmin

rmin

Fig. 2 Potential sphere centers have to be inside the volume of interest and outside of the
spheres previously embed. To avoid useless convergence steps for centers located in volumes
which could not receive spheres belonging to the predefined size range [rmin, rmax], potential
sphere centers cannot be located in the gray areas. The new particle has to be nucleated in
the white area.
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Fig. 3 The optimization process considers two distances: dists(X̄) (Equation 1) that tends
to be minimized, and distb(X̄) (Equation 2) that tends to be maximized.

Initial picking of potential sphere centers: The original algorithm randomly picks
a sphere center within the volume defined by the domain boundaries, outside of
the spheres previously embedded. The modified algorithm rejects positions picked
in spaces that are too small to receive the smallest sphere defined by the user
through rmin. In other words, every sphere center located too close to either a
sphere or a boundary is rejected (Fig. 2).

Optimizing the positioning of the spheres: Contrary to the original cost function
that maximizes the distance between the sphere center and the closest boundary,
the positioning of the sphere center X̄ is optimized considering its targeted radius r
(Fig. 3). The modified cost function first minimizes the distance dists(X̄), defined
as:

dists(X̄) = |||(X̄ − X̄s)|| − (rs + r)|, (1)

with rs and X̄s the radius and the center of the closest neighboring sphere respec-
tively. Then, when the distance to the closest boundary distb(X̄) is smaller than
r, the cost function maximizes this distance defined as:

distb(X̄) = ||(X̄ − X̄b)||, (2)

with X̄b the orthogonal projection of X̄ on the closest boundary.

Setting the sphere sizes: Our algorithm does not allow a complete control of the
output sphere size distribution. For instance, it is not possible to reproduce a
predefined distribution. Nonetheless, it ensures that the sphere radii belong to the
range [rmin, rmax] defined by the user. As mentioned previously, the positioning
of the sphere is optimized with respect to the targeted radius r ∈ [rmin, rmax]. At
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the end of the optimization process, if the sphere center has converged toward a
position where the potential radius is smaller than rmin, the procedure stops and
restarts from the beginning (picking of sphere centers). Else, the embed sphere
radius rs is set to the maximum possible value within the range [rmin, r]. Several
options exist to set the targeted radius r. In this work, it is defined according to
the two following:

. Option 1: r is randomly picked inside a uniform distribution law defined by
rmin and rmax.

. Option 2: r = rmax.

Of course, choosing between options 1 and 2 will impact the final sphere size
distribution of the generated packings but also their solid fraction as discussed in
the following sections.

2.3 Convergence

To assess the convergence of our approach, we filled up a parallelepipedic domain
of dimensions 1x1x2 m with particles of sizes ranging from rmin = 0.0150 m to
rmax = 0.030 m. We consider the two options mentioned in the previous section.
In the first case, r is picked inside the predefined size distribution at each iteration
(option 1). In the second case, r is set to rmax at each iteration (option 2). For
both cases, we monitor the generation process considering the convergence index
(CI) defined as:

CI = na
4π

3

r3min
Vref

, (3)

where na is the number of attempts needed to insert a new sphere to the packing,
and Vref the overall volume of interest. CI is a dimensionless quantity character-
izing the proportion of the total volume Vref sampled by the process.

As shown in Fig. 4, three main phases can be identified. In the first phase
(light gray in Fig. 4 and 5), spheres are inserted efficiently within the domain. The
solid fraction (SF ) of the packing increases linearly as a function of the number of
inserted spheres. In the case of option 1, their sizes are homogeneously distributed
within the predefined range as illustrated in Fig. 5(a). In the case of option 2, their
sizes belong to the upper range of the predefined range, with smaller spheres being
inserted as the filling process progresses (Fig. 5(b)). In the second phase (mid gray
in Fig. 4 and 5), the available space inexorably reduces and the maximum size of
the inserted spheres decreases linearly as the filling process progresses. As a result,
the solid fraction increases less rapidly than during the first phase and the number
of attempts (CI) needed to insert a new sphere to the packing starts to increase.
In the third phase (dark gray in Fig. 4 and 5), the time (computational effort)
needed to insert a new sphere increases exponentially and the solid fraction tends
to saturate. The space between particles is so restricted at this stage that the
algorithm struggles to find positions where to insert new spheres.

We defined a criterion to keep the algorithm out of the third phase. In this
study, given the initial objective to generate packings as dense as possible, we
choose to stop the filling procedure when CI reaches a value of 4 to keep an
efficient and relatively short packing procedure.
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Fig. 4 Monitoring of the filling process: (a) r ∈ [rmin, rmax] and (b) r = rmax. The sphere
radius, the convergence index (CI), the time needed for insertion and the solid fraction of
the packing (SF ) are presented. Three phases can be identified. The light gray area where
the spheres reach the targeted size. The mid gray area where the maximum sphere radius
continuously decreases. The dark gray area where the time needed to insert spheres drastically
increases (CI > 4).
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Fig. 5 Sphere size distributions of packings generated considering two different options for
the targeted radius: (a) r ∈ [rmin, rmax] and (b) r = rmax. The color scale corresponds to the
one used in Fig. 4.

2.4 Packing properties

We compute classical geometric properties [33] to characterize the generated pack-
ings:

- The global solid fraction (SF ) defined as:

SF =

∑Ns

i Vs,i

Vref
, (4)

where Ns is the number of spheres within the packing, Vref is the overall
volume to be filled, and Vs,i the volume of each sphere of the packing. SF
measures the degree of solid occupation of the medium.
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Table 1 Macroscopic properties of the packings generated respectively such as r ∈
[rmin, rmax] and r = rmax (Fig. 4).

Targeted radius Nb. of spheres Solid fraction Coord. nb. Fabric tensor eigenval.
r Ns SF CN (EV1, EV2, EV3)

r ∈ [rmin, rmax] 24,478 0.512 4.082 (0.338, 0.332, 0.330)
r = rmax 15,867 0.574 5.474 (0.336, 0.332, 0.330)

- The coordination number (CN) defined as:

CN =
1

Ns

Ns∑
i

ci, (5)

where ci is the number of contacts for each sphere contained within the pack-
ing. CN quantifies the number of contacts per particle in the material and
gives an idea of the degree of connectivity within the system.

- The eigen values (EV1, EV2, EV3) of the fabric tensor F whose components are
defined as:

Fαβ =
1

Nc

Nc∑
i

niαn
i
β , (6)

where Nc is the total number of contacts within the packing, n̄i = (ni1, n
i
2, n

i
3)

is the unit normal vector of each contact such that (α, β) ∈ {1, 2, 3}2 are the
spatial directions. F is a second-order Cartesian tensor that represents the
distribution of the orientations of contacts in the packing. According to Morfa
et al. [30], 3|EVi−1/3| < 0.05 is characteristic of isotropic packings, a common
prerequisite for DE modeling of geomaterials.

The solid fractions, particle and coordination numbers of both packings at
the final stage of the filling process as well as the eigen values of their respec-
tive fabric tensors are presented in Table 1. Both packings can be characterized
as isotropic as suggested by the eigen values of their fabric tensors which are all
approximately equal to 1/3 with a maximum relative error 3|EVi − 1/3| < 0.02.
Both packings have global solid fractions SF > 50% as commonly observed for ge-
ometrically generated packings with such size distributions [14,22,2,46]. However,
the global solid fraction computed from Equation 4 tends to underestimate the
actual solid fraction of the packings as mentioned in [46]. For instance, computing
SF following the method proposed in [46], one would obtain respectively 0.529
and 0.596 for both of our packings, the latter value showing that our method can
compete with some of the most efficient constructive methods for generating high
volume fraction sphere packings (see [46] for details). Interestingly, the packing
containing the largest number of particles built such as r ∈ [rmin, rmax] has a
smallest solid fraction, meaning that it is less dense than the other one built such
as r = rmax. Although counterintuitive, this is related to the fact that not maxi-
mizing the particle size throughout the filling process tends to leave smaller spaces
between particles which are then difficult to fill in with subsequent spheres. This
is actually confirmed by the coordination numbers which suggest that spheres are
less connected within the least dense packing.
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3 Mechanical behavior

To assess the relevance of the proposed approach to produce packings suitable
for DE modeling of geomaterials, we compare the mechanical behaviors of the
two packings generated using the constructive method described in Sect. 2 with a
third reference packing generated using the compression method currently imple-
mented in the YADE DEM software [42]. The dynamic method chosen here was
previously utilized to generate packings which have been used in several works
to study the behavior of rocks (see for instance [38,39,34,29]). The dynamically
generated packing behavior thus constitutes a benchmark in the present study.
In the following, the dynamically generated packing is referenced as Pref . The
packings generated using our algorithm such as r ∈ [rmin, rmax] and r = rmax are
referenced as Pr and Prmax respectively.

3.1 Dynamically generated packing

We generated Pref by hydrostatically compacting a cloud of 20,000 particles ran-
domly positioned inside a parallelepiped of dimensions 1× 1× 2 m bounded by 6
frictionless rigid walls. This cloud of particles presents a uniform size distribution
such as rmin

rmax
= 2. The compression was applied through the progressive growth of

the particle radii so as to reach the desired macroscopic pressure p on all 6 walls.
We prefer the growing technique instead of the walls displacement technique to
control the final dimensions of the packing. During the compaction process, spheres
interact with one another according to elastic-plastic force displacement laws based
on Coulomb friction law. We choose the interparticle friction angle equal to 1◦ so
as to optimize the compacity of the packing and to facilitate convergence toward
mechanical equilibrium. We choose the contact stiffnesses with respect to p so as
to ensure minimal sphere-to-sphere overlap. Mechanical equilibrium is evaluated
by computing the unbalanced force during the simulation. The unbalanced force is
equal to the ratio between the average force per particle over the average force per
interaction. We stop the compaction process when the unbalanced force is inferior
to 0.01 and the computed pressure equal to p ± 0.001 on all walls.

The resulting packing presents a solid fraction SF = 0.63, a coordination
number CN = 6.606 and the eigenvalues of its fabric tensor (EV1, EV2, EV3) are
respectively equal to (0.339 0.330 0.330). Pref is about 9% denser than Prmax ,
the densest packing generated using our constructive algorithm (Table 1). This
difference might be partly related to the overlap of particles, which is needed in
DEM simulations. This feature actually relates to the values of CN which is 17%
larger for Pref compared to Prmax . Pref shows an isotropic structure similar to
the ones obtained with the constructive method as suggested by the eigenvalues
of F.

3.2 Stress-strain responses

We run a series of mechanical tests on all the three packings presented in Fig. 6 so
as to compare their emergent behaviors. We use the bonded particle model (BPM)
proposed in [39] and available in YADE DEM to define interparticle behavior. We
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Fig. 6 Packings obtained respectively using (a) the compression method implemented in
YADE DEM (Pref ), (b) the proposed constructive method with r ∈ [rmin, rmax] (Pr) and,
(c) the proposed constructive method with r = rmax (Prmax ).

Table 2 Bonded particle model parameters used to simulate a generic rock material (see [39]
for details and definitions).

Bonds/particle Elastic modulus Stiffnesses ratio Tensile strength Cohesion Friction angle
K Eeq (GPa) kn/ks t (MPa) c (MPa) φ (◦)

8 10 10 12 12 7

set the interparticle parameters to produce a macroscopic behavior representative
of a generic rock material.

At first, we simulate uniaxial compression tests using the reference set of pa-
rameters (Table 2) so that the differences in the simulated behaviors only result
from the packing characteristics. To be consistent with the BPM formulation, we
ensure that the average number of bonds per particle K = 8 for all packings. K is
a fundamental feature of the BPM which enhances the degree of grain interlocking
within the sample by generating bonds between non strictly contacting particles
when the following equation is fulfilled:

||(X̄p1 − X̄p2)|| ≤ γint(Rp1 +Rp2), (7)

with X̄pi and Rpi the center and the radius of the particle pi; and, γint ≥ 1 (see
[39] for details). Obviously, K is directly related to CN and we increase γint to
compensate for the lesser degree of connectivity of the constructive packings. Here,
to ensure K = 8, we set γint to 1.080 for Pref and to 1.393 and 1.171 for Pr and
Prmax respectively.
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Fig. 7 Uniaxial compression test simulations performed on Pref , Pr and Prmax : (a) using the
same set of interparticle properties for all packings (2), (b) using adjusted sets of interparticle
properties (3). The Young’s moduli E as well as the uniaxial compressive strengths UCS of
the packings were estimated from these curves as illustrated on Fig. 7(b).

Table 3 Calibrated values of the bonded particle model parameters to adjust the macroscopic
mechanical properties of the constructive packings Pr and Prmax .

Packing Elastic modulus Stiffnesses ratio Tensile strength Cohesion Friction angle
Pi Eeq (GPa) kn/ks t (MPa) c (MPa) φ (◦)

Pr 12.6 10 16.6 16.6 12
Prmax 11.6 10 13.8 13.8 12

The stress-strain curves corresponding to the uniaxial compression test simu-
lations are presented in Fig. 7(a). Overall, the emergent behaviors of all packings
are qualitatively very similar and typical of what is expected for a brittle rock ma-
terial [20]. Nonetheless, as reported in a previous study dedicated to characterize
the effect of porosity on the behavior of rocks [40], the smaller SF is, the weaker
the simulated medium is. Both constructive packings Pr and Prmax show smaller
Young’s moduli and uniaxial compressive strengths compared to Pref . This is not
really problematic since we can easily compensate for this reduced macroscopic
properties by increasing the interparticle properties accordingly as illustrated in
Fig. 7(b) where the same simulations were run using the parameters given in Ta-
ble 3. With such adjusted parameters, all three packings show the same emergent
properties when subjected to uniaxial compression.

At this stage, it is however important to make sure that the behavior of each
packing is not loading-path dependent since geological media can be subjected to
various stress and strain states. Indeed, only considering a uniaxial compression
test for characterizing the behavior of a DEM model, even though repeatedly done
in the literature, is not sufficient to ensure that it is representative of the material
to model (i.e., a rock). We thus simulate a series of triaxial compression tests
under 2, 5, 10, 20 and 40 MPa confining pressures, as well as uniaxial tension tests
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Fig. 8 Mechanical characterization of the generated packings: stress-strain responses of Pr
(a) and Prmax (b) subjected to triaxial compression tests performed under confining pressures
σ3 equal respectively to 2, 5, 10, 20 and 40 MPa; and complete failure envelopes of Pr (c)
and Prmax (d), encompassing their triaxial compressive strengths as well as their uniaxial
compressive strength (UCS), and their uniaxial tensile strength (UTS).

on all three packings to assess their mechanical behavior more systematically. The
results of all these tests are summarized in Fig. 8.

Firstly, both Pr and Prmax reproduce the tensile strength of Pref as shown
by the intersection of the envelope with the horizontal axis (Fig. 8(c) and 8(d)).
Secondly, while Prmax reproduces relatively well the behavior of Pref for every
confining pressures tested here, Pr fails to do so (Fig. 8(a)). In fact, due to its rel-
atively lower SF , Pr tends to collapse under higher compressive stresses (20 and
40 MPa), similarly to what can be observed with high porosity rocks. Even though
of potential interest in such a specific case, this result highlights a limitation of Pr
since it cannot reproduce the benchmark behavior of Pref at high confining pres-
sures. Consequently, the failure envelope of Pr deviates from the envelope of Pref
when σ3 > 10 MPa, making thus Pr irrelevant to perform DEM simulations under
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such conditions. In a lesser degree, the behavior of Prmax starts to deviate from the
reference under 40 MPa of confinement (Fig. 8(b) and 8(d)). Prmax does not col-
lapse abruptly like Pr during the simulation but it shows a compressive behavior
instead of the dilative behavior expected and predicted by Pref in the post-peak
regime. These drawbacks cannot be identified if only uniaxial compression test
simulations are considered to characterize the behavior of the packings.

To sum up, both constructive packings can be used with confidence to repro-
duce typical rock behaviors under low confining pressures (c.f., uniaxial tension
and uniaxial compression). Under higher confining stresses, the representativeness
of the packings has to be assessed through systematic mechanical testing (e.g.,
triaxial compressions at different confining pressures to identify the stress level at
which their structural characteristics influence the simulated behavior). Clearly, we
show here that packings with high SF are necessary to perform DEM simulations
under high stress levels and avoid bias induced by their fabric. In the eventuality
that the packings generated with the proposed algorithm are not dense enough
for the considered application, it would potentially be possible to further compact
them dynamically by running a dedicated DEM simulation where, for example,
an expansion of the particles could be applied. This result must be kept in mind
when applying the DEM to geomechanical problems involving high depths or large
scale lengths (e.g., tectonics, reservoir or petroleum engineering).

3.3 Failure mechanisms

A fundamental feature of DEM models lies in their ability to explicitly describe
progressive failure mechanisms at stake in geomaterials like, for instance, the initi-
ation, coalescence, and propagation of cracks which lead rock materials to failure
[37,38]. Since materials’ microstructures can influence such mechanisms [18], it is
essential to assess the potential of our algorithm to produce packings relevant with
regards to this aspect. We thus monitor the failure mechanisms occurring during
the uniaxial compression test simulations presented in the previous section and
compare the outputs obtained with all three packings (Fig. 9).

As classically observed in rocks, failure develops in all three packings as a result
of the progressive increase of damage (cracking) inside the material. In a BPM,
cracks result from the breakage of interparticle bonds when they cannot bear any-
more the load they are subjected to (uniaxial compression here). As illustrated by
the rate of cracking, the kinetics of damage is qualitatively similar for all packings
except that less cracks are induced in Prmax as it contains less particles, hence
less interparticle bonds likely to break. At failure (after the stress peak), strain
softening is associated to a drastic increase of the cracking rate and to strain local-
ization materializing inside all three packings through shear bands. These bands
show slightly different morphologies in each case since each packing has its own
microstructure. Nevertheless, all three bands share similar orientation with respect
to the loading direction, proving that they all share the same mechanical origin.
Note nonetheless that the failure pattern obtained with Pr is different from the
two others since two bands developed at both extremities of the specimen. These
suggest that failure might occur as a result of preferential compaction close to
the boundaries where the loading is applied as a result of the lowest SF of the
packing. Actually, this is probably related to the post-peak response of Pr which



14 François Bonneau et al.

Fig. 9 Failure mechanisms obtained respectively on (a) Pref , (b) Pr and (c) Prmax when
subjected to uniaxial compression tests: (top) stress-strain responses and associated cracks,
and (bottom) deformation field (norm of the deviatoric strain) at the end of the test.

is slightly less brittle than for the other two packings (see the curvature of both
the stress and cracks curves before the residual state is reached).

These results confirm that packings with higher SF ensure the soundness of
the simulated behavior. Prmax thus appears to be the most suitable packing for
performing DE modeling of rock materials. Even though its particle size distribu-
tion is slightly peculiar (Fig. 5), we have shown that, similarly to Pref , it can be
used with confidence to simulate the mechanisms at stake in rock materials.

4 Packing spheres in geological models

Geological processes create complex environments that contain sedimentary, me-
chanical or diagenetic heterogeneities of various sizes. Considering the crucial im-
pact of such heterogeneities on rock physical behavior, they need to be explicitly
considered in numerical models aiming to simulate geological processes. Given the
potential of the DEM for studying such processes (e.g., large deformations, frac-
turing), the ability to discretize structurally complex objects with mechanically
sound particle packings if thus of great interest.

In the following sections, we illustrate the algorithm capabilities to generate
packings that honor both outer and inner boundaries of surface-based geological
models [6], as well as its ability to produce adaptive particle packings in cases
where structures of interest need to be finely discretized. We built the packings
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Particle radius (m)

1.50x10-2 3.00x10-2(a)

Particle radius (m)

5.00x10-3 1.00x10-2(b)

1.00 m 

0.1 m 

Fig. 10 Conformity of packings with surface boundaries: (a) a cylindrical sample containing
a throughgoing fault. The packing is composed by 18,782 spheres, 9,476 spheres are in the
upper part of the core (above the discontinuity) and 9306 are in the bottom part of the core
(below the discontinuity). (b) an arbitrary shaped pore within an homogeneous medium. The
packing contains 407,131 spheres, 637 spheres inside the pore and, 406,494 spheres outside the
pore.

presented in this study from boundary representations of geological models pro-
vided by the RINGMesh library [35]. For all cases, we use the option r = rmax to
produce as dense as possible packings since they seem to be more appropriate for
geomechanical studies as demonstrated in Sect 3.

4.1 Conformity to boundaries

To illustrate the capability of the algorithm to ensure spheres to be tangent to both
external and internal boundaries, we consider two different models presented in
Fig. 10. First, a cylindrical sample containing a throughgoing fault is discretized
with spheres with sizes defined such that rmax/rmin = 2, with rmax = L/10,
L being the sample diameter in this case (Fig. 10(a)). Similarly to the external
boundaries, the fault is explicitly represented by particles perfectly tangent to
both sides of its surface. Considering discontinuities in DEM models is commonly
done through the used of the smooth joint (SJ) approach [19,38] which actually
does not require particles to be tangent to the discontinuity surfaces. Although
very useful in practice since the SJ approach can be used without any geometrical
constraints on the packing used (the discontinuity surfaces are simply overlapped
on the particles as illustrated in Fig. 11(a)), this feature relies on the possibility for
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Fig. 11 DEM simulation of a discontinuity surface under shear with the smooth joint (SJ)
approach [19,38]: (a) using a non-conform packing, (b) using a conform packing. The non-
conform packing does not ensure mass conservation during deformation due to a large overlap
between particles.

the spheres located on both sides of the interface to go across one another under
shear, hence not ensuring mass (volume) conservation when the medium deforms
(Fig. 11(a)). The possibility of generating packings with spheres exactly tangent
to the interface guarantees mass conservation during deformation and constitutes
therefore a certain benefit with respect to this aspect as depicted in Fig. 11(b).

Of course, this capability to ensure tangency of spheres along surfaces is not
restricted to plane surfaces as illustrated in Fig. 10(b) where the algorithm is used
to discretize a homogeneous medium containing an irregular cavity (pore). For
illustration purpose, both the matrix and the pore have been filled with particles.
All particles, located either in the matrix or in the pore, honor a tangential contact
with the pore boundary, even though the latter present a very tortuous surface.

4.2 Spatial refinements

Running DEM simulations on large scale models can be computationally expen-
sive. This is particularly true if these models present a high level of details due to
the presence of structures (e.g., discontinuities, cavities); and if these structures
present a relatively small characteristic length compared to the model size. Indeed,
it is important to adapt the resolution of the packing to the characteristic length
of the structure of interest to ensure a good approximation of the phenomenon
at stake. For instance, when modeling geomaterials with the DEM, a representa-
tive elementary volume of length L must be discretized with particles of average
radius equal to at least L/10 [5]. Under such a condition, geological objects that
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classically contains many features with different length scales would require a sub-
sequent amount of particles to be modeled with the DEM. Of course, the DEM
can be parallelized quite easily to enhance its efficiency with regards to this aspect
[32,45]. Nonetheless, it is worth considering the possibility to locally adapt parti-
cle resolution according to the spatial organization of structures, specially if large
scale geological objects are to be modeled. This is commonly done in the Finite
Element Method simulations in order to minimize the computational cost in areas
where a high accuracy is not needed so as to reduce the global simulation time.
Spatial particle size variations have been used in DEM simulations with the same
purpose [28] but the radius variation seemed to be discontinuous and the filling
method defined manually.

The proposed algorithm is able to produce adaptive packings by locally varying
the targeted radius r using a progressive and controlled manner. The smallest
characteristic length L of the model is given as an input to define the particle
size range [rmin, rmax] needed to capture the structures of interest (e.g., rmax =
L/10). Then, the structures that need to be captured with the highest resolution
are identified within the geological model and a distance range d is setup from
these discontinuities. d is combined with two additional inputs that weight the
particle radii. The user defines (1) the maximum weighting factor wmax to apply
on the initial particle size range and (2) the number of sphere Ntspheres that
will be used to accommodate the transition between both the minimum and the
maximum particle size ranges. Finally, the weighting factor w to apply is evaluated
(Equation 8) considering d and the two thresholds dmin = Ntspheres × rmax and
dmax = wmax × dmin:

w =


1.0 if d < dmin

1.0 + (wmax − 1.0)× d−dmin

dmax−dmin
if dmin < d < dmax

wmax if d > dmax.

(8)

The procedure ensures a progressive transition between zones of high resolu-
tion close to the identified structures and zones of low resolution elsewhere. For
this application, the convergence index CI (Equation 3) needs to be adjusted by
multiplying rmin with wmax in Equation 9 to avoid an underestimation of the
volume sampled:

CI = na
4π

3

(wmax × rmin)3

Vref
. (9)

To illustrate the proposed approach, we consider the model presented in Fig. 12.
A packing generated without any spatial refinement is presented for reference
(Fig. 12(b)). Two packings are generated with the same weighting factors wmax =
2.0 but different Ntspheres. The packings built respectively with Ntspheres = 10
(Fig. 12(c)) and with Ntspheres = 20 (Fig. 12(d)) contain respectively 71% and
46% less particles than the reference packing while keeping the same discretiza-
tion around the fracture. To go further a sensitivity analysis could be performed to
actually assess whether all these packings have similar mechanical behaviors. Nev-
ertheless, the proposed approach shows a great potential for reducing the computa-
tional effort needed for DEM simulations and opens the path toward the modeling
of large scale geological models with the DEM.
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(a) (b) (c) (d)

Particle radius (m)
9.0x10-3 3.6x10-2

1
.0

 m

Fig. 12 Spatial refinement capacity of the algorithm: (a) model to be filled with particles
(parallelepiped of dimensions 1.0× 2.0× 0.2 m containing a fracture of dimensions 0.4× 0.2 m
dipping at 45◦), (b) homogeneous packing containing 14,989 spheres with rs ∈ [0.009, 0.018],
(c) adaptive packings defined such as wmax = 2.0 andNtspheres = 10, containing 4,284 spheres
and, (d) adaptive packings defined such as wmax = 2.0 and Ntspheres = 20, containing 8,061
spheres.

4.3 Case of a geological model

We illustrate here the ability of the algorithm to generate adaptive sphere packings
for DE modeling of realistic geological settings by considering a model of dimen-
sions 17×10×5 km that integrates two stratigraphic horizons and two faults. One
fault crosses entirely the model and the other stops within its bulk. The model
and the packing are presented in Fig. 13.

We set rmax to be equal to one tenth of the minimal characteristic length
L of the model which, in this case, corresponds to the distance between the two
horizons (≈ 1000m). rmax is thus equal to 100 m. We decided to fix the particle size
ratio such as rmax/rmin = 2, meaning that rmin = 50 m. These values define the
packing resolution around the faults. To illustrate the refinement capacity of the
algorithm, we vary the resolution while getting away from the faults using wmax =
3 and Ntspheres = 20. The algorithm efficiently deals with all the constraints, i.e.,
particle size variation in between faults and tangency of spheres with all boundaries
(Fig.13).

5 Conclusion

The ability to pack particles in geological objects opens great potential for their
mechanical modeling with the DEM. In such context, we propose an algorithm
inspired by the space filling Apollony fractal that is able to fill geological models
such that:

- the produced packings are mechanically sound when utilized in DEM simula-
tions;
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(d)(c)

(b)(a)

100 m

Particle radius (m)
5.0x101 3.0x102

Fig. 13 Sphere packing generated in a 3D geological model considering both surface confor-
mity and spatial refinement: (a) structural model with two horizons and two faults, (b) and
(c) inside views of the packing (the particles are smaller close to the faults and tangent to
all boundaries), (d) global view of the packing. The resulting packing contains 97,303 spheres
with radii rs ∈ [50, 300] m.

- the produced packings are conform with the surface boundaries of the models,
either external or internal (fractures, cavities);

- spatial variations of the packing resolution can be achieved around structures
of interest.

The proposed algorithm is an offspring of the Protosphere algorithm that en-
ables to restrict the particle sizes to a predefined range defined by the user, e.g.,
as a function of the characteristic length of the model. Two options can be used
to control the particle size distribution of the produced packings. One maximizes
the particle sizes during the generation process while the other distributes the
particle sizes more homogeneously over the predefined size range. Both options
were assessed through a systematic characterization of both the geometric and
mechanical properties of one of their productions. Both packings present isotropic
structures. The size-maximized packing is denser than the size-distributed one.
Mechanical testing of both packings revealed that the densest packing is mechan-
ically the soundest since it can reproduce rock-like material behaviors under dif-
ferent loading paths (e.g., uniaxial and triaxial compressions, uniaxial tension).
The size-distributed packing shows undesirable behaviors when subjected to high
compressive stresses: due to its higher porosity, its structure collapses on itself
under load. Such a behavior might be problematic in large scale DEM simulations
were discrete elements are used as a mean to represent large volumes of materials
and not actual grains.
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Through dedicated examples, we have shown the capabilities of the algorithm
to fill in 3D models representing geological objects of different shapes and contain-
ing embedded discontinuities. We have illustrated its ability to ensure the tangency
of spheres with both external and internal boundaries. We also have highlighted its
capability to generate adaptive packings which could be relevant for large scale DE
modeling where emphasis has to be put on mechanisms taking place in identified
localized areas (e.g., around faults).

The filling capabilities of the proposed algorithm are promising for performing
DE modeling of geological systems that we are currently considering as a direct
continuation of this work. Of course, there is still room for improvement. The ef-
ficiency of the algorithm could be enhanced either by parallelizing the generation
procedure or by using the acceleration techniques proposed in [44] for the Proto-
sphere algorithm. Another improvement would consist in generating packings with
non-spherical particles to integrate an explicit description of anisotropic structures
in DEM simulations. This may be useful for modeling particular rock formations
that present strong anisotropies caused by the shape of their constitutive particles
like, for instance, shale or clay rocks.
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