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AN ESTIMATE FOR THE STEKLOV ZETA FUNCTION OF A
PLANAR DOMAIN DERIVED FROM A FIRST VARIATION

FORMULA

ALEXANDRE JOLLIVET AND VLADIMIR SHARAFUTDINOV

Abstract. We consider the Steklov zeta function ζΩ of a smooth bounded simply con-
nected planar domain Ω ⊂ R2 of perimeter 2π. We provide a first variation formula for
ζΩ under a smooth deformation of the domain. On the base of the formula, we prove
that, for every s ∈ (−1, 0) ∪ (0, 1), the difference ζΩ(s) − 2ζR(s) is non-negative and is
equal to zero if and only if Ω is a round disk (ζR is the classical Riemann zeta function).
Our approach gives also an alternative proof of the inequality ζΩ(s) − 2ζR(s) ≥ 0 for
s ∈ (−∞,−1] ∪ (1,∞); the latter fact was proved in our previous paper [2018] in a dif-
ferent way. We also provide an alternative proof of the equality ζ ′Ω(0) = 2ζ ′R(0) obtained
by Edward and Wu [1991].

1. Introduction

Let Ω be a simply connected planar domain bounded by a C∞-smooth closed curve ∂Ω.
The Dirichlet-to-Neumann operator of the domain

ΛΩ : C∞(∂Ω)→ C∞(∂Ω)

is defined by ΛΩf = ∂u
∂ν

∣∣
∂Ω

, where ν is the outward unit normal to ∂Ω and u is the solution
to the Dirichlet problem

∆u = 0 in Ω, u|∂Ω = f.

The Dirichlet-to-Neumann operator is a first order pseudodifferential operator. Moreover,
it is a non-negative self-adjoint operator with respect to the L2-product

〈u, v〉 =

∫
∂Ω

uv̄ ds,

where ds is the Euclidean arc length of the curve ∂Ω. In particular, the operator ΛΩ has
a non-negative discrete eigenvalue spectrum

Sp(Ω) = {0 = λ0(Ω) < λ1(Ω) ≤ λ2(Ω) ≤ . . . },
where each eigenvalue is repeated according to its multiplicity. The spectrum is called
the Steklov spectrum of the domain Ω. Steklov eigenvalues depend on the size of Ω in the
obvious manner: λk(cΩ) = c−1λk(Ω) for c > 0. Therefore it suffices to consider domains
satisfying the normalization condition

Length(∂Ω) = 2π. (1.1)
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Under condition (1.1), Steklov eigenvalues have the following asymptotics [2, Theo-
rem 1]:

λk(Ω) =

⌊
k + 1

2

⌋
+O(k−∞) as k →∞, (1.2)

where bxc stands for the integer part of x ∈ R. Due to the asymptotics, the zeta function
of the domain Ω

ζΩ(s) = Tr[Λ−sΩ ] =
∞∑
k=1

(
λk(Ω)

)−s
is well defined for <s > 1. Then ζΩ extends to a meromorphic function on C with the
unique simple pole at s = 1. Moreover, the difference ζΩ(s)− 2ζR(s) is an entire function
[2], where ζR(s) =

∑∞
n=1 n

−s is the classical Riemann zeta function. Observe also that
ζΩ(s) is real for a real s.

The main result of the present paper is the following

Theorem 1.1. For a smooth simply connected bounded planar domain Ω satisfying the
normalization condition (1.1), the inequality

ζΩ(s)− 2ζR(s) ≥ 0 (1.3)

holds for every real s. Moreover, if the equality in (1.3) holds for some real s 6= 0, then
Ω is the round disk of radius 1.

Inequality (1.3) was proved for a real s satisfying |s| ≥ 1 in [6, Theorem 1.1]. We
present a proof of Theorem 1.1 which is independent of [6] but heavily depends on the
compactness arguments of [7].

As a corollary of Theorem 1.1 and of the equality ζΩ(0) − 2ζR(0) = 0, we obtain an
alternative proof of the equality ζ ′Ω(0) = 2ζ ′R(0) obtained in [4].

Now, we discuss an alternative approach to the same problem which is of a more
analytical character.

Let S = ∂D = {eiθ} ⊂ C be the unit circle. The Dirichlet-to-Neumann operator of the
unit disk D = {(x, y) | x2 + y2 ≤ 1} will be denoted by Λ : C∞(S)→ C∞(S), i.e., Λ = ΛD.
The alternative definition of the operator is given by the formula Λeinθ = |n|einθ for an
integer n. For a function b ∈ C∞(S), we write b(θ) instead of b(eiθ) and use the same
letter b for the operator b : C∞(S)→ C∞(S) of multiplication by the function b.

Given a positive function a ∈ C∞(S), the operator Λa = a1/2Λa1/2 has the non-negative
discrete eigenvalue spectrum

Sp(Λa) = {0 = λ0(a) < λ1(a) ≤ λ2(a) ≤ . . . }
which is called the Steklov spectrum of the function a (or of the operator Λa).

Two kinds of the Steklov spectrum are related as follows. Given a smooth simply
connected planar domain Ω, choose a biholomorphism Φ : D→ Ω and define the function
0 < a ∈ C∞(S) by a(θ) = |Φ′(eiθ)|−1. Let φ : S → ∂Ω be the restriction of Φ to S.
Then Λa = a−1/2φ∗ΛΩ φ

∗−1a1/2 and Sp(Λa) = Sp(Ω). Two latter equalities make sense
for an arbitrary positive function a ∈ C∞(S) if we involve multi-sheet domains into our
consideration. See [5, Section 3] for details. Theorem 1.1 is true for multi-sheet domains
as well. The normalization condition (1.1) is written in terms of the function a as follows:

1

2π

2π∫
0

dθ

a(θ)
= 1. (1.4)
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The biholomorphism Φ of the previous paragraph is defined up to a conformal transfor-
mation of the disk D, this provides examples of functions with the same Steklov spectrum.
Two functions a, b ∈ C∞(S) are said to be conformally equivalent, if there exists a confor-
mal or anticonformal transformation Ψ of the disk D such that b = |dψ/dθ|−1a ◦ψ, where
the function ψ(θ) is defined by eiψ(θ) = Ψ(eiθ) (Ψ is anticonformal if Ψ̄ is conformal). If
two positive functions a, b ∈ C∞(S) are conformally equivalent, then Sp(a) = Sp(b).

Under condition (1.4), Steklov eigenvalues λk(a) have the same asymptotics (1.2). The
zeta function of a is defined by

ζa(s) = Tr[Λ−sa ] =
∞∑
k=1

(
λk(a)

)−s
(1.5)

for <(s) > 1. It again extends to a meromorphic function on C with the unique simple
pole at s = 1 such that ζa(s)− 2ζR(s) is an entire function.

The analytical version of Theorem 1.1 sounds as follows:

Theorem 1.2. For a positive function a ∈ C∞(S) satisfying the normalization condition
(1.4), the inequality

ζa(s)− 2ζR(s) ≥ 0 (1.6)

holds for every real s. Moreover, the equality in (1.6) holds for some real s 6= 0 if and
only if a is conformally equivalent to 1 (= the constant function identically equal to 1).

The second statement of the theorem is not true for s = 0 since ζa(0) = 2ζR(0) = −1 for
every positive function a ∈ C∞(S) satisfying the normalization condition (1.4). Observe
also that ζ1 = 2ζR.

Theorems 1.1 and 1.2 are equivalent if multi-sheet domains are involved into Theo-
rem 1.1 (see [6] for instance).

We use the derivative D = −i d
dθ

: C∞(S) → C∞(S). The Hilbert space L2(S) is
considered with the standard scalar product

〈u, v〉 =

∫
S
u(θ)v(θ) dθ.

The Hilbert transform H is the linear operator on L2(S) defined by

H(1) = 0, Heinθ = sgn(n)einθ for an integer n 6= 0.

(We emphasize thatH differs from the operator H that is also called the Hilbert transform
in [7]. In particular, H is a unitary operator while H has the one-dimensional kernel
consisting of constant functions.)

Our proof of Theorem 1.2 is based on a clever deformation of the function a. A real
function α ∈ C∞

(
(−ε, ε)×S

)
is called a deformation (or variation) of a positive function

a ∈ C∞(S) if α(0, θ) = a(θ). For such a deformation; the function ατ ∈ C∞(S), defined by
ατ (θ) = α(τ, θ), is positive for sufficiently small |τ |. Without lost of generality (choosing
a smaller ε > 0) we will assume that ατ is positive for all τ ∈ (−ε, ε). Then the zeta
function ζατ is well defined. In Sections 2–3 we will prove that ζατ (z) smoothly depends

on (z, τ) for 1 6= z ∈ C and will compute the derivative ∂ζατ (z)
∂τ

(Lemma 3.6). We will also
prove that ζατ (z) is continuous in τ for 1 6= z ∈ C when ατ (belonging to C∞(S)) is only
continuous in τ . The rest of the paper is devoted to the proof of the following statement

Theorem 1.3. Given a positive function a ∈ C∞(S) satisfying the normalization condi-
tion (1.4), there exists a deformation ατ (0 ≤ τ <∞) of a such that
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(1) for every τ ∈ [0,∞), the function ατ is positive and satisfies the same normalization
condition ∫

S

α−1
τ (θ) dθ = 2π; (1.7)

(2) the deformation satisfies the equation

∂ατ
∂τ

= −ατ (Λατ ) + (Hατ )(Dατ ) for τ ∈ [0,∞); (1.8)

(3) the derivative ∂ζατ (s)
∂τ

is non-positive for every real s and every τ ∈ [0,∞);
(4) ατ converges to 1 as τ →∞ in the C∞-topology of C∞(S).

Moreover, if ∂ζατ (s)
∂τ

= 0 for some 0 6= s ∈ R and for all τ ∈ [0,∞), then a is
conformally equivalent to 1.

Remark. The right-hand side of the formula

∂ζατ (s)

∂τ
=

∂

∂τ

(
ζατ (s)− 2ζR(s)

)
makes sense for any s ∈ C since ζατ − 2ζR is an entire function. In virtue of the formula,

the derivative ∂ζατ (s)
∂τ

is well defined for all s ∈ C although the zeta function ζατ (s) is not
defined at the pole s = 1.

Theorem 1.2 follows from Theorem 1.3 as is shown in Section 4.

2. Asymptotic behavior of eigenvalues and eigenspaces

2.1. Uniform asymptotics of the Steklov eigenvalues. For a positive function a ∈
C∞(S), we introduce the operator Da = a1/2Da1/2. Recall also that Λa = a1/2Λa1/2.

Let ατ (−ε < τ < ε) be a deformation of a positive function a ∈ C∞(S). Recall that
the function ατ is assumed to be positive for every τ ∈ (−ε, ε). Smooth deformations
α ∈ C∞

(
(−ε, ε) × S

)
are used in the most part of the paper. But in Section 4 for our

main results, we will need a continuous deformation α ∈ C0
(
(−ε, ε), C∞(S)

)
which can

be not smooth. Therefore we assume now that α ∈ C l
(
(−ε, ε), C∞(S)

)
with some integer

0 ≤ l ≤ ∞. We also assume that both a and ατ satisfy the normalization conditions (1.4)
and (1.7) respectively.

Given a deformation ατ of a function a, we introduce the operators

Aτ = Λ2
ατ + I, Bτ = D2

ατ + I, ∆τ = Aτ −Bτ ,

where I is the identity operator. By [5, Section 5.4], the commutator [ατ ,H] is a smoothing
operator with the Schwartz kernel

K̃(τ, θ, θ′) =
1

2π

(
ατ (θ)− ατ (θ′)

)
cot

θ − θ′

2
.

Therefore ∆τ = α
1/2
τ DH[ατ ,H]Dα

1/2
τ is also a smoothing operator with the Schwartz

kernel

K(τ, θ, θ′) = α1/2
τ (θ)

(
HθDθDθ′K̃(τ, θ, θ′)

)
α1/2
τ (θ′). (2.1)

For n ∈ Z and τ ∈ (−ε, ε), we define the function φn,τ ∈ C∞(S) by

φn,τ (θ) = (2π)−1/2
(
ατ (θ)

)−1/2
exp

[
in

∫ θ

0

α−1
τ (s) ds

]
. (2.2)
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By [6, Lemma 2.1],
{
φn,τ

}
n∈Z is the orthonormal basis of L2(S) consisting of eigenfunctions

of the operator Dατ such that Dατφn,τ = nφn,τ . For l ∈ N, let us denote u2l,τ = φl,τ and
u2l+1,τ = φ−l,τ and we also denote u0 = φ0,τ .

Let Sp(Λατ ) = {0 = λ0,τ < λ1,τ ≤ λ2,τ ≤ . . . } be the eigenvalue spectrum of the opera-
tor Λατ . We repeat Edward’s argument [2, Theorem 1] to prove the following statement.

Lemma 2.1. Let α ∈ C0
(
(−ε, ε), C∞(S)

)
be a continuous deformation of a positive

function a ∈ C∞(S) such that every ατ is also a positive function. Assume a and ατ
to satisfy the normalization conditions (1.4) and (1.7) respectively. Then the following
uniform asymptotics holds for every ε′ ∈ (0, ε):

sup
τ∈[−ε′,ε′]

∣∣λk,τ − b(k + 1)/2c
∣∣ = O(k−∞) as k →∞.

Proof. We recall the following min-max principle. For k ∈ N

λ2
k,τ + 1 = max

codimEk=k
min

φ∈Ek, ‖φ‖L2(S)=1
〈Aτφ, φ〉,

b(k + 1)/2c2 + 1 = max
codimEk=k

min
φ∈Ek, ‖φ‖L2(S)=1

〈Bτφ, φ〉.

For φ ∈ L2(S)

〈Aτφ, φ〉 = 〈Bτφ, φ〉+ 〈∆τφ, φ〉.

Therefore for any subspace Ek of codimension k

λ2
k,τ + 1 ≥ min

φ∈Ek, ‖φ‖L2(S)=1
〈Bτφ, φ〉+ min

φ∈Ek, ‖φ‖L2(S)=1
〈∆τφ, φ〉.

Taking Ek the subspace of codimension k spanned by the eigenvectors {ul}l≥k of Bτ , we
obtain

λ2
k,τ − b(k + 1)/2c2 ≥ min

φ∈Ek, ‖φ‖L2(S)=1
〈∆τφ, φ〉.

Since ∆τ is a smoothing operator, ∆τB
l
τ is a bounded operator for any l ∈ N and its

operator norm is bounded uniformly in τ ∈ [−ε′, ε′] by some constant Cl since its Schwartz
kernel is a continuous function on (−ε × ε) × S × S. Hence for any φ ∈ Ek satisfying
‖φ‖L2(S) = 1, ∣∣〈∆τφ, φ〉

∣∣ =
∣∣〈∆τB

l
τB
−l
τ φ, φ〉

∣∣ ≤ Cl‖B−lτ φ‖L2(S).

Then we use that, for a unit vector φ of the subspace Ek spanned by the eigenvectors
{ul}l≥k of Bτ , we have ‖B−lτ φ‖L2(S) ≤ 4k−2l.

We have thus obtained the estimate

−λ2
k,τ + b(k + 1)/2c2 ≤ 4Cl k

−2l.

We can transpose the roles played by Aτ and Bτ to obtain the estimate

λ2
k,τ − b(k + 1)/2c2 ≤ 4C ′l λ

−2l
k,τ ,

where C ′l stands for a uniform bound of the operator norm of ∆τA
l
τ . �
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2.2. Continuity of Steklov eigenvalues in τ . Eigenvalues of the compact self-adjoint
operator

Fτ = (Λατ + I)−1 : L2(S)→ L2(S)

are (λk,τ + 1)−1 ≤ 1 (k ∈ N). If one proved that the eigenvalues are continuous in τ , then
the Steklov eigenvalues λk,τ would be also continuous in τ . The proof relies on auxiliary
lemmas presented below. The lemmas deal with C l-regularity with respect to τ while
only the case l = 0 is needed for continuity of eigenvalues. However the lemmas will be
used in a broader context in next sections.

Given a C l-deformation ατ of a positive function a, the operator Λατ : C∞(S) →
C∞(S) depends C l-smoothly on τ . In the case of l ≥ 1, we differentiate the equality

Λατ = α
1/2
τ Λα

1/2
τ with respect to τ to obtain

∂Λατ

∂τ
=

1

2

∂ ln(ατ )

∂τ
Λατ +

1

2
Λατ

∂ ln(ατ )

∂τ
. (2.3)

Similar formulas hold for higher order derivatives ∂kΛατ
∂τk

for k ≤ l.
Recall that the Sobolev space Hs(S) can be defined for s ∈ R as the completion of

C∞(S) with respect to the norm ‖f‖Hs(S) = ‖(D2 + 1)s/2f‖L2(S). Let L
(
Hs(S), Hs′(S)

)
be

the Banach space of all bounded operators Hs(S) → Hs′(S) furnished with the operator
norm.

Lemma 2.2. Let l be either a non-negative integer or∞. Let α ∈ C l
(
(−ε, ε), C∞(S)

)
be a

deformation of a positive function a ∈ C∞(S) such that every ατ is also a positive function.
Assume a and ατ to satisfy the normalization conditions (1.4) and (1.7) respectively. Then

(1) For every real s and for every τ ∈ (−ε, ε), the operator Λατ belongs to the space
L
(
Hs(S), Hs−1(S)

)
and the function τ 7→ Λατ belongs to C l

(
(−ε, ε),L(Hs(S), Hs−1(S))

)
.

(2) Similarly, the operator-valued function Fτ ∈ L(Hs(S), Hs+1(S)) is of the class C l

in τ .

Proof. The operator Λατ is a partial case of more general operators of the form

f1(τ)Λf2(τ),

where fi ∈ C l
(
(−ε, ε), C∞(S)

)
(i = 1, 2). The operators of multiplication by fi(τ) can be

extended to bounded operators in any Hs(S) and these bounded operators are of class C l

in τ . Note also that Λ is a bounded operator from Hs(S) to Hs−1(S). Hence the family
of bounded operators Λατ ∈ L(Hs(S), Hs−1(S)) is of class C l in τ . In the case l ≥ 1, the
first derivative with respect to τ is expressed by the formula

∂f1(τ)

∂τ
Λf2(τ) + f1(τ)Λ

∂f2(τ)

∂τ
.

Now, we prove the second statement. The operator Fτ is the inverse of the operator
Λατ + I which belongs to L(Hs+1(S), Hs(S)) and is of the class C l in τ . Let us explain
why Fτ is a continuous operator-valued function (the case l = 0). This is based on the
inversion formula by Neumann series: If τ is close enough to τ0 ∈ (−ε, ε), then the norm
of the operator (Λατ − Λατ0

)Fτ0 : Hs(S)→ Hs(S) is less than 1 and

Λατ + I =
(
(Λατ − Λατ0

)Fτ0 + I
)
(Λατ0

+ I).

This gives

Fτ = Fτ0

∞∑
k=0

(−1)k
(
(Λατ − Λατ0

)Fτ0
)k
.
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This formula also provides that Fτ is of the class C l in τ when l ≥ 1, and its derivative is
given by the formula

∂Fτ
∂τ

= −Fτ
∂Λατ

∂τ
Fτ .

�

In the case of l = s = 0, we apply the min-max principle to the compact self-adjoint
operator Fτ in L2(S) to obtain the following1

Corollary 2.3. Under hypotheses of Lemma 2.2 with l = 0, Steklov eigenvalues λk,τ are
continuous in τ .

2.3. Asymptotics of the Steklov eigenvectors. We still consider a deformation ατ of
a positive function a ∈ C∞(S) satisfying hypotheses of Lemma 2.2 with some l ∈ N∪{∞}.
For every τ ∈ (−ε, ε), let {Ψk,τ}k∈N be an orthonormal basis of L2(S) consisting of Steklov
eigenvectors for Λατ such that ΛατΨk,τ = λk,τΨk,τ .

For a positive integer k, we denote by Pb k+1
2
c,τ the orthogonal projection of L2(S)

onto the two-dimensional eigenspace of |Dατ | spanned by the vectors φ±b k+1
2
c,τ that are

defined by (2.2). For k = 0, the operator P0,τ is the orthogonal projection onto the
one-dimensional space spanned by φ0,τ .

Lemma 2.4. Under hypotheses of Lemma 2.2 with some l ∈ N ∪ {∞}, the following
uniform asymptotics holds for every ε′ ∈ (0, ε) and for every s ∈ R:

sup
τ∈[−ε′,ε′]

‖Ψk,τ − Pb k+1
2
c,τΨk,τ‖Hs(S) = O(k−∞) as k →∞. (2.4)

Proof. It suffices to prove the statement for s = m ∈ N. We start with proving (2.4) for
s = 0.

The equality Ψk,τ =
∑

p∈N Pp,τΨk,τ can be written in the form

Ψk,τ − Pb k+1
2
c,τΨk,τ =

∑
p 6=b k+1

2
c

Pp,τΨk,τ .

Since summands on the right-hand side are orthogonal to each other,

‖Ψk,τ − Pb k+1
2
c,τΨk,τ‖2

L2(S) =
∑

p 6=b k+1
2
c

‖Pp,τΨk,τ‖2
L2(S). (2.5)

For any r ∈ N, ∆τ,r = Λ2r
ατ − D2r

ατ is a smoothing operator whose operator norm is
bounded uniformly in τ . We rewrite the identity Λ2r

ατΨk,τ = λ2r
k,τΨk,τ as follows:

∆τ,rΨk,τ =
∑
p∈N

(λ2r
k,τ − p2r)Pp,τΨk,τ . (2.6)

Since summands on the right-hand side are orthogonal to each other, (2.6) implies

‖∆τ,rΨk,τ‖2 = (λ2r
k,τ − b(k + 1)/2c2r)2‖Pb k+1

2
c,τΨk,τ‖2 +

∑
p 6=b k+1

2
c

(λ2r
k,τ − p2r)2‖Pp,τΨk,τ‖2

1We cannot get a better statement than continuity for the eigenvalues. Take for instance the family of

bounded operatorsGτ =

(
2 + cos(τ) 0

0 2 + sin(τ)

)
. The eigenvalues λ+(τ) = max(2+cos(τ), 2+sin(τ))

and λ−(τ) = min(2 + cos(τ), 2 + sin(τ)) are not derivable at τ = π/4 although the family Gτ is a smooth
family of bounded operators in τ . See also [8, Chapter 2, Section 5, example 5.9, p. 115].
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(all norms are L2(S)-norms). By Lemma 2.1, the first term on the right hand side is
bounded uniformly in τ ∈ [−ε′, ε′] for sufficiently large k. Hence there exist a rank N1

and constant C (independent of k) such that

sup
τ∈[−ε′,ε′]

∑
p 6=b k+1

2
c

(λ2r
k,τ − p2r)2‖Pp,τΨk,τ‖2 ≤ C for k ≥ N1. (2.7)

Let us represent the difference λ2r
k,τ − p2r in the form

λ2r
k,τ − p2r = (λk,τ − p)(λ2r−1

k,τ + λ2r−2
k,τ p+ · · ·+ p2r−1).

From this

(λ2r
k,τ − p2r)2 ≥ (λk,τ − p)2λ4r−2

k,τ .

By Lemma 2.1, the second factor on the right-hand side is close to (k/2)4r−2 for sufficiently
large k while the first factor is not less than 1 + O(k−1) for p 6= b(k + 1)/2c. In other
words, there exist a rank N2 and constant c > 0 (independent of k) such that

inf
τ∈[−ε′,ε′], p6=b k+1

2
c
(λ2r

k,τ − p2r)2 ≥ ck4r−2 for k ≥ N2. (2.8)

Combining (2.7) and (2.8), we see that

k4r−2 sup
τ∈[−ε′,ε′]

∑
p 6=b k+1

2
c

‖Pp,τΨk,τ‖2 ≤ c−1C.

Together with (2.5), this implies

k4r−2 sup
τ∈[−ε′,ε′]

‖Ψk,τ − Pb k+1
2
c,τΨk,τ‖2

L2(S) ≤ c−1C1.

Since r is arbitrary, the statement is proved for s = 0.
Now, we prove (2.4) for s = m ∈ N. Applying the operator D2m

ατ to both sides of (2.6),
we obtain

D2m
ατ ∆τ,rΨk,τ =

∑
p∈N

p2m(λ2r
k,τ − p2r)Pp,τΨk,τ .

Since summands on the right-hand side are orthogonal to each other, this implies

‖D2m
ατ ∆τ,rΨk,τ‖2 = b(k + 1)/2c4m(λ2r

k,τ − b(k + 1)/2c2r)2‖Pb k+1
2
c,τΨk,τ‖2

+
∑

p 6=b k+1
2
c

(λ2r
k,τ − p2r)2‖p2mPp,τΨk,τ‖2

(all norms are L2(S)-norms). Again D2m
ατ ∆τ,r is a smoothing operator whose operator

norm is bounded uniformly in τ , and b(k+1)/2c4m(λ2r
k,τ −b(k+1)/2c2r)2 is also uniformly

bounded in τ for sufficiently large k. Applying the same reasoning as above we obtain
that there exists a rank N and constant C such that

sup
τ∈[−ε′,ε′]

∑
p 6=b k+1

2
c

‖p2mPp,τΨk,τ‖2 ≤ Ck2−4r for k ≥ N,

i.e.,

sup
τ∈[−ε′,ε′]

‖D2m
ατ

(
Ψk,τ − Pb k+1

2
c,τΨk,τ

)
‖2
L2(S) ≤ Ck2−4r for k ≥ N. (2.9)

We conclude the proof as follows. Given m ∈ N, there exists a constant C1 such that

‖D2mφ‖2
L2(S) ≤ C1

(
‖D2m

ατ φ‖
2
L2(S) + ‖φ‖2

L2(S)

)
(2.10)
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for any φ ∈ C∞(S) and any τ ∈ [−ε′, ε′]. Combining estimates (2.9), (2.10) and the
statement for “m = 0”, we obtain the existence of N2 ∈ N and constant C2 such that

sup
τ∈[−ε′,ε′]

‖D2m
(
Ψk,τ − Pb k+1

2
c,τΨk,τ

)
‖2 ≤ C2k

2−4r for k ≥ N2.

Since r is arbitrary, the asymptotics (2.4) is proved for s = 2m. �

3. The Steklov zeta function ζατ and its first and second variations with
respect to τ

We again consider a deformation ατ of a positive function a ∈ C∞(S) satisfying hy-
potheses of Lemma 2.2 with some l ∈ N ∪ {∞}. Hypotheses of all statements in this
section coincide with that of Lemma 2.2. The hypotheses are not written explicitly for
brevity.

3.1. The resolvent operator on the positive semi-axis. For τ ∈ (−ε, ε), let P0,τ :
L2(S)→ L2(S) be the orthogonal projection onto the one-dimensional subspace spanned

by φ0,τ = (2π)−1/2α
−1/2
τ . Then P0,τ is the C l τ -smooth family of projectors. When l ≥ 1

its derivative with respect to τ is expressed by

∂P0,τ

∂τ
= −1

2

∂ ln(ατ )

∂τ
P0,τ −

1

2
P0,τ

∂ ln(ατ )

∂τ
. (3.1)

In particular, P0,τ ∈ C l((−ε, ε),L(Hs(S), Hs+1(S)) for any s ∈ R.

When l ≥ 1 the derivatives
∂Λ2

ατ

∂τ
and

∂D2
ατ

∂τ
are pseudodifferential operators of order 2

whose symbols are degenerate. Lemma 2.2, together with the equality

∂Λ2
ατ

∂τ
= Λατ

∂Λατ

∂τ
+
∂Λατ

∂τ
Λατ ,

implies that Λ2
ατ ∈ C l((−ε, ε),L(Hs+2(S), Hs(S)) for any s ∈ R. Similarly D2

ατ ∈
C l((−ε, ε),L(Hs+2(S), Hs(S)).

Observe that Λ2
ατ is a non-negative self-adjoint operator whose kernel coincides with

the one-dimensional space spanned by φ0,τ . Therefore, for every λ ≥ 0, the operator
Λ2
ατ + P0,τ + λ has the bounded inverse. We consider the family of positive bounded

operators
G(τ, λ) = (Λ2

ατ + P0,τ + λ)−1, (τ, λ) ∈ (−ε, ε)× [0,∞). (3.2)

We start with the following statement.

Lemma 3.1. For every s ∈ R and every τ ∈ (−ε, ε), the operator G(τ, λ) belongs to
L(Hs(S), Hs+2(S)) and the function

τ 7→
(
λ 7→ G(τ, λ)

)
belongs to C l

(
(−ε, ε), C∞([0,+∞),L(Hs(S), Hs+2(S)))

)
. Moreover,

∂G

∂λ
(τ, λ) = −

(
G(τ, λ)

)2
,

∂G

∂τ
(τ, λ) = −G(τ, λ)

∂(Λ2
ατ + P0,τ )

∂τ
G(τ, λ) if l ≥ 1. (3.3)

In addition, for every ε′ ∈ (0, ε),

sup
(τ,λ)∈[−ε′,ε′]×[0,∞)

‖G(τ, λ)‖L(Hs(S),Hs+2(S)) <∞ (3.4)

and

sup
(τ,λ)∈[−ε′,ε′]×[0,∞)

(1 + λ)
∥∥∥ ∂m1+m2G

∂τm1∂λm2
(τ, λ)

∥∥∥
L(Hs(S),Hs+2m2 (S))

<∞ (3.5)
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for all l ≥ m1 ∈ N and m2 ∈ N.

Proof. The proof of the smoothness and of identities (3.3) repeats essentially the argu-
ments used in the proof of Lemma 2.2 (here we deal with the operator Λ2

ατ + P0,τ ∈
L(Hs+2(S), Hs(S)) instead of the operator Λατ ∈ L(Hs+1(S), Hs(S)) in Lemma 2.2).

It remains to prove (3.4)–(3.5). We start with the following estimate: For every ε′ ∈
(0, ε) and every real s,

sup
τ∈[−ε′,ε′]

‖(D2 + 1)s(Λ2
ατ +P0,τ )

−s‖L(L2(S)) = sup
τ∈[−ε′,ε′]

‖(Λ2
ατ +P0,τ )

−s(D2 + 1)s‖L(L2(S)) <∞.

(3.6)
The estimate (3.6) follows from the τ -continuity of the family (Λ2

ατ+P0,τ )
s ∈ L(H2s(S), L2(S))

when s is an integer. Then it is obtained for any real s by interpolation theory. (The
τ -continuity is granted when s is an integer by composing (Λ2

ατ + P0,τ )
±1.)

We use the identity

(Λ2
ατ + P0,τ )

s+1G(τ, λ)(Λ2
ατ + P0,τ )

−s = (Λ2
ατ + P0,τ )G(τ, λ)

to obtain

‖(Λ2
ατ + P0,τ )

s+1G(τ, λ)(Λ2
ατ + P0,τ )

−s‖L(L2(S)) = ‖(Λ2
ατ + P0,τ )G(τ, λ)‖L(L2(S))

= sup
k≥1

λ2
k,τ

λ2
k,τ + λ

= 1.

Thus,

sup
(τ,λ)∈(−ε,ε)×[0,∞)

‖(Λ2
ατ + P0,τ )

s+1G(τ, λ)(Λ2
ατ + P0,τ )

−s‖L(L2(S)) = 1. (3.7)

By the definition of Hs(S)-norms,

‖G(τ, λ)‖L(Hs(S),Hs+2(S)) = ‖(D2 + 1)s/2+1G(τ, λ)(D2 + 1)−s/2‖L(L2(S)).

This can be written in the form

‖G(τ, λ)‖L(Hs(S),Hs+2(S)) = ‖(D2 + 1)s/2+1(Λ2
ατ + P0,τ )

−s/2−1×
× (Λ2

ατ + P0,τ )
s/2+1G(τ, λ)(Λ2

ατ + P0,τ )
−s/2×

× (Λ2
ατ +P0,τ )

s/2(D2 + 1)−s/2‖L(L2(S))

and implies the inequality

‖G(τ, λ)‖L(Hs(S),Hs+2(S)) ≤ ‖(D2 + 1)s/2+1(Λ2
ατ + P0,τ )

−s/2−1‖L(L2(S))×
× ‖(Λ2

ατ + P0,τ )
s/2+1G(τ, λ)(Λ2

ατ + P0,τ )
−s/2‖L(L2(S))×

× ‖(Λ2
ατ + P0,τ )

s/2(D2 + 1)−s/2‖L(L2(S)).

By (3.6)–(3.7), three factors on the right-hand side of the inequality are bounded uniformly
in (τ, λ) ∈ [−ε′, ε′]× [0,∞). This proves (3.4).

Since the first positive Steklov eigenvalue λ1,τ depends continuously on τ , there exists
a positive constant c0 < 1 such that

inf
τ∈[−ε′,ε′]

λ1,τ ≥ c0.

Obviously,

(1 + λ)‖(Λ2
ατ + P0,τ )

sG(τ, λ)(Λ2
ατ + P0,τ )

−s‖L(L2(S)) = sup
k≥1

1 + λ

λ2
k,τ + λ

≤ 1 + λ

λ2
1,τ + λ

≤ 1

c0

.
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We obtain

sup
(τ,λ)∈[−ε′,ε′]×[0,∞)

(1 + λ)‖(Λ2
ατ + P0,τ )

sG(τ, λ)(Λ2
ατ + P0,τ )

−s‖L(L2(S)) ≤ c−1
0 . (3.8)

In the same way as (3.4) was derived from (3.7), we derive from (3.8) with the help of
(3.6)

sup
(τ,λ)∈[−ε′,ε′]×[0,∞)

(1 + λ)‖G(τ, λ)‖L(Hs(S),Hs(S)) <∞.

We have thus proved (3.5) in the case of m1 = m2 = 0.
For every integer 0 ≤ k ≤ l, the estimates

sup
(τ,λ)∈[−ε′,ε′]×[0,∞)

∥∥∥∥∂k(Λ2
ατ + P0,τ )

∂τ k
G(τ, λ)

∥∥∥∥
L(Hs(S),Hs(S))

<∞, (3.9)

sup
(τ,λ)∈[−ε′,ε′]×[0,∞)

∥∥∥∥G(τ, λ)
∂k(Λ2

ατ + P0,τ )

∂τ k

∥∥∥∥
L(H−s(S),H−s(S))

<∞ (3.10)

follow from (3.4) taking the C l τ -smoothness of (Λ2
ατ + P0,τ ) ∈ L(Hs+2(S), Hs(S)) into

account.
Differentiating formulas (3.3), we obtain recurrent relations that express ∂m1+m2G

∂τm1∂λm2
through

lower order derivatives

∂m
′
1+m′2G

∂τm
′
1∂λm

′
2

(m′1 +m′2 < m1 +m2, m
′
1 < m1) and

∂k(Λ2
ατ + P0,τ )

∂τ k
(k ≤ m1).

With the help of (3.9)–(3.10), the recurrent relations imply the validity of (3.5) inductively
in m1 +m2. �

The family of positive bounded operators

G0(τ, λ) = (D2
ατ + P0,τ + λ)−1

(
τ ∈ (−ε, ε), λ ∈ [0,∞)

)
(3.11)

also satisfies the corresponding statements of Lemma 3.1 with appropriate changes.
For any (τ, λ) ∈ (−ε, ε)× [0,+∞) the operator (G−G0)(τ, λ) is smoothing as well as

all its derivatives. More precisely we have the following property.

Lemma 3.2. For every s ∈ R and every m ∈ N, the function τ 7→
(
λ 7→ (G−G0)(τ, λ)

)
belongs to C l

(
(−ε, ε), C∞([0,+∞),L(Hs(S), Hs+m(S)))

)
.

For every ε′ ∈ (0, ε) and every (m1,m2, j1, j2) ∈ N4 such that m1 ≤ l,

sup
(τ,λ)∈[−ε′,ε′]×(0,+∞)

(1 + λ)2

∥∥∥∥Dj1
∂m1+m2(G−G0)

∂τm1∂λm2
(τ, λ)Dj2

∥∥∥∥
L(L2(S))

<∞. (3.12)

Proof. We have the following identity:

(G−G0)(τ, λ) = −G(τ, λ)(Λ2
ατ −D

2
ατ )G0(τ, λ). (3.13)

We know that Λ2
ατ −D

2
ατ is a smoothing operator with the Schwartz kernel belonging to

C l((−ε, ε), C∞(S× S)), see (2.1). Therefore

Λ2
ατ −D

2
ατ ∈ C

l((−ε, ε),L(Hs′(S), Hs′+m′(S))) (3.14)

for any s′ ∈ R and any m′ ∈ N.
Let s ∈ R and m ∈ N. From Lemma 3.1 and its analog for G0, we know that

G0 ∈ C l((−ε, ε), C∞([0,+∞),L(Hs(S), Hs+2(S)))),

G ∈ C l((−ε, ε), C∞([0,+∞),L(Hs+m−2(S), Hs+m(S)))).
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The first statement of the lemma follows now from (3.13) and (3.14) for (s′,m′) = (s +
2,m− 4).

Inequality (3.12) also follows from (3.13), (3.14), (3.5) and the analog of (3.5) for
G0. �

3.2. Complex powers (Λατ + P0,τ )
−z for <z ∈ (0, 2). We use the following definition

of complex powers of a positive self-adjoint operator A : L2(S) → L2(S) with a discrete
eigenvalue spectrum (see for example [10]): If {ϕk}k∈N is an orthonormal basis of L2(S)
consisting of eigenvectors of A with associated eigenvalues λk > 0, then

Azf =
∑
k∈N

λzk〈f, ϕk〉ϕk for z ∈ C and f ∈ C∞(S),

where λzk = ez ln(λk) and ln(λk) ∈ R. The series converges at least for <z ≤ 0.
By Lemma 3.1 and (3.5) for k = 0, we can consider the (τ, z)-continuous family of

bounded positive operators∫ +∞

0

λ−zG(τ, λ) dλ,

∫ +∞

0

λ−zG0(τ, λ) dλ

for any z ∈ C satisfying 0 < <z < 1. One can use a basis of eigenvectors of Λατ to show
that

(Λατ + P0,τ )
−2z = γ(z)

∫ ∞
0

λ−zG(τ, λ) dλ for 0 < <z < 1, (3.15)

where

γ(z) =
(∫ ∞

0

λ−z(1 + λ)−1 dλ
)−1

=
sin πz

π
for 0 < <z < 1. (3.16)

The second equality in (3.16) follows from Euler’s integral. Indeed, changing the integra-
tion variable as x = (1 + λ)−1, one easily derives∫ ∞

0

λ−z(1 + λ)−1 dλ =

∫ 1

0

xz−1(1− x)−z dx = B(z, 1− z) =
π

sin πz
,

where B is Euler’s Beta-function.
Similarly

(|Dατ |+ P0,τ )
−2z = γ(z)

∫ ∞
0

λ−zG0(τ, λ) dλ for 0 < <z < 1. (3.17)

With the help of Lemma 3.1, we derive the following results.

Lemma 3.3. The family of operators (Λατ + P0,τ )
−2z belongs to

C l
(
(−ε, ε), C∞({z ∈ C | <z ∈ (0, 1)},L(L2(S)))

)
and its first derivative with respect to z is given by

∂

∂z
(Λατ + P0,τ )

−2z = (Λατ + P0,τ )
−2z d

dz
ln(γ(z))− γ(z)

∫ ∞
0

λ−z ln(λ)G(τ, λ) dλ.

In the case of l ≥ 1, the first derivatives with respect to τ is given by

∂

∂τ
(Λατ + P0,τ )

−2z = −γ(z)

∫ ∞
0

λ−zG(τ, λ)
∂(Λ2

ατ + P0,τ )

∂τ
G(τ, λ) dλ. (3.18)

Similarly, the family of bounded operators (|Dατ |+ P0,τ )
−2z belongs to

C l
(
(−ε, ε), C∞({z ∈ C | <z ∈ (0, 1)},L(L2(S)))

)
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and its first derivatives with respect to z is given by

∂

∂z
(|Dατ |+ P0,τ )

−2z = (|Dατ |+ P0,τ )
−2z d

dz
ln(γ(z))− γ(z)

∫ ∞
0

λ−z ln(λ)G0(τ, λ) dλ.

In the case of l ≥ 1, the first derivatives with respect to τ is given by

∂

∂τ
(|Dατ |+ P0,τ )

−2z = −γ(z)

∫ ∞
0

λ−zG0(τ, λ)
∂(D2

ατ + P0,τ )

∂τ
G0(τ, λ) dλ. (3.19)

3.3. The family of smoothing operators (Λατ + P0,τ )
z − (|Dατ |+ P0,τ )

z. For (τ, z) ∈
(−ε, ε)× C let us denote by H(τ, z) the operator from C∞(S) to C∞(S) defined by

H(τ, z) = (Λατ + P0,τ )
−z − (|Dατ |+ P0,τ )

−z. (3.20)

It is extended as a bounded operator on L2(S) when <z ≥ 0. In the case of <z ≥ −m (m ∈
N), it is extended as an operator from Hm(S) to L2(S). Actually we can improve the latter
statement.

Lemma 3.4. For every s ∈ R and every m ∈ N,

H ∈ C l
(
(−ε, ε), C∞(C,L(Hs(S), Hs+m(S)))

)
. (3.21)

For every compact K ⊂ C, every ε′ ∈ (0, ε) and every (j1, j2,m1,m2) ∈ N4 such that
m1 ≤ l,

sup
(τ,z)∈[−ε′,ε′]×K

∥∥∥Dj1
∂m1+m2H

∂τm1∂zm2
(τ, z)Dj2

∥∥∥
L(L2(S))

<∞. (3.22)

Proof. We start with the case when <z ∈ (0, 2). As is seen from (3.15) and (3.16),

H(τ, z) = γ(z/2)

∫ ∞
0

λ−z/2(G−G0)(τ, λ) dλ.

With the help of Lemma 3.2, this implies

H ∈ C l
(
(−ε, ε), C∞({z ∈ C | <z ∈ (0, 2)},L(Hs(S), Hs+m(S)))

)
for (s,m) ∈ R× N.

(3.23)
By (3.20),

(Λατ + P0,τ )
2H(τ, 1) = (Λατ + P0,τ )

2
(

(Λατ + P0,τ )
−1 − (|Dατ |+ P0,τ )

−1
)

= (Λατ + P0,τ )− (Λατ + P0,τ )
2(|Dατ |+ P0,τ )

−1.

We rewrite this in the form

(Λατ + P0,τ )
2H(τ, 1) =

(
(Λατ + P0,τ )− (|Dατ |+ P0,τ )

)
−
(

(Λατ + P0,τ )
2(|Dατ |+ P0,τ )

−1 − (|Dατ |+ P0,τ )
)

and again use (3.20) to obtain

(Λατ +P0,τ )
2H(τ, 1) = H(τ,−1)−

(
(Λατ +P0,τ )

2(|Dατ |+P0,τ )
−1−(|Dατ |+P0,τ )

)
. (3.24)

On using the equalities

(Λατ + P0,τ )
2 = Λ2

ατ + P0,τ , |Dατ |+ P0,τ = (D2
ατ + P0,τ )

1/2,
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we transform the second term on the right-hand side of (3.24) as follows:

(Λατ + P0,τ )
2(|Dατ |+ P0,τ )

−1 − (|Dατ |+ P0,τ ) =

= (Λ2
ατ + P0,τ )(D

2
ατ + P0,τ )

−1/2 − (D2
ατ + P0,τ )

1/2

=
(

(Λ2
ατ + P0,τ )− (D2

ατ + P0,τ )
)

(D2
ατ + P0,τ )

−1/2

= (Λ2
ατ −D

2
ατ )(D

2
ατ + P0,τ )

−1/2.

Substitute this value into (3.24)

(Λατ + P0,τ )
2H(τ, 1) = H(τ,−1)− (Λ2

ατ −D
2
ατ )(D

2
ατ + P0,τ )

−1/2. (3.25)

By (3.11), (D2
ατ + P0,τ )

−1/2 =
(
G0(τ, 0)

)1/2
, and (3.25) takes the form

(Λατ + P0,τ )
2H(τ, 1) = H(τ,−1)− (Λ2

ατ −D
2
ατ )
(
G0(τ, 0)

)1/2
. (3.26)

By (3.13),
(G−G0)(τ, 0) = −G(τ, 0)(Λ2

ατ −D
2
ατ )G0(τ, 0).

Express Λ2
ατ −D

2
ατ from this equality

Λ2
ατ −D

2
ατ = −

(
G(τ, 0)

)−1
(G−G0)(τ, 0)

(
G0(τ, 0)

)−1
.

Substitute this expression into (3.26)

(Λατ + P0,τ )
2H(τ, 1) = H(τ,−1) +

(
G(τ, 0)

)−1
(G−G0)(τ, 0)

(
G0(τ, 0)

)−1/2
. (3.27)

By (3.2), (
G(τ, 0)

)−1
= Λ2

ατ + P0,τ = (Λατ + P0,τ )
2.

Substituting this value into (3.27), we finally obtain

(Λατ + P0,τ )
2H(τ, 1) = H(τ,−1) + (Λατ + P0,τ )

2(G−G0)(τ, 0)
(
G0(τ, 0)

)−1/2
. (3.28)

We write (3.28) in the form

H(τ,−1) = (Λατ + P0,τ )
2H(τ, 1)− (Λατ + P0,τ )

2(G−G0)(τ, 0)
(
G0(τ, 0)

)−1/2
. (3.29)

With the help of Lemmas 2.2 and 3.2 and of (3.23) for z = 1, (3.29) implies

H(τ,−1) ∈ C l
(
(−ε, ε),L(Hs(S), Hs+m(S))

)
for any (s,m) ∈ R× N. (3.30)

Now, we prove by induction on k ∈ N that

H ∈ C l
(
(−ε, ε), C∞({z ∈ C | <z ∈ (−k, k+ 2)},L(Hs(S), Hs+m(S)))

)
for (s,m) ∈ R×N.

(3.31)
For k = 0, (3.31) coincides with (3.23). Assume (3.31) to be valid for some 0 ≤ k ∈ N.

The recurrent relation

H(τ, z) = (Λατ + P0,τ )H(τ, z + 1) +H(τ,−1)(|Dατ |+ P0,τ )
−z−1 (3.32)

easily follows from the definition (3.20).
Together with Lemma 2.2, the induction hypothesis (3.31) implies that, for any (s,m) ∈

R× N,

(Λατ+P0,τ )H(τ, z+1) ∈ C l
(
(−ε, ε), C∞({z ∈ C | <z ∈ (−k−1, k+1)},L(Hs(S), Hs+m(S)))

)
.

(3.33)
The eigenbasis of |Dατ |+ P0,τ is given by the family {φl}l∈Z, see (2.2). The eigenvalue

associated to φl is max(|l|, 1). Therefore

(|Dατ |+ P0,τ )
−z−1 ∈ C l

(
(−ε, ε), C∞({z ∈ C, <z ∈ (−ρ, ρ)},L(Hs(S), Hs+1−ρ(S)))

)
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for any s ∈ R and ρ > 0. Together with (3.30), this gives

H(τ,−1)(|Dατ |+P0,τ )
−z−1 ∈ C l

(
(−ε, ε), C∞(C,L(Hs(S), Hs+m(S)))

)
for (s,m) ∈ R×N.

(3.34)
With the help of (3.33) and (3.34), the recurrent relation (3.32) gives for any (s,m) ∈

R× N

H ∈ C l
(
(−ε, ε), C∞({z ∈ C, <z ∈ (−k − 1, k + 1)},L(Hs(S), Hs+m(S)))

)
.

Uniting this with (3.31), we obtain for any (s,m) ∈ R× N

H ∈ C l
(
(−ε, ε), C∞({z ∈ C | <z ∈ (−k − 1, k + 2)},L(Hs(S), Hs+m(S)))

)
. (3.35)

The recurrent relation

H(τ, z) = (Λατ + P0,τ )
−1H(τ, z − 1) +H(τ, 1)(|Dατ |+ P0,τ )

−z+1 (3.36)

is proved similarly to (3.32). In the same way as (3.35) has been proven, the induction
hypothesis (3.31) implies with the help of (3.36) that

H ∈ C l
(
(−ε, ε), C∞({z ∈ C | <z ∈ (−k, k+ 3)},L(Hs(S), Hs+m(S)))

)
for (s,m) ∈ R×N.

(3.37)
Uniting (3.35) and (3.37), we obtain for any (s,m) ∈ R× N

H ∈ C l
(
(−ε, ε), C∞({z ∈ C | <z ∈ (−k − 1, k + 3)},L(Hs(S), Hs+m(S)))

)
.

This finishes the induction step.
Being valid for every k, (3.31) proves (3.21). �

3.4. Smoothness of ζατ (z). We recall that

ζατ (z) = 2ζR(z) + Tr
[
H(τ, z)

]
.

Lemma 3.5. The function ζατ (z) belongs to C l
(
(−ε, ε), C∞(C\{1})

)
and, for l ≥ 1,

∂m1+m2ζατ (z)

∂τm1∂zm2
= Tr

[ ∂m1+m2H

∂τm1∂zm2
(τ, z)

]
(3.38)

for any (τ, z) ∈ (−ε, ε)× (C\{1}) and any m1,m2 ∈ N such that 1 ≤ m1 ≤ l.

Proof. First we note that

ζατ (z) = 2ζR(z) + (2π)−1
∑
n∈Z

gn(τ, z),

where gn(τ, z) = 〈H(τ, z)einθ, einθ〉. Lemma 3.4 implies that gn ∈ C l((−ε, ε), C∞(C\{1}))
and, for m1 ≤ l,

∂m1+m2gn
∂τm1∂zm2

(τ, z) =
〈 ∂m1+m2H

∂τm1∂zm2
(τ, z)einθ, einθ

〉
.

With the help of (3.22), this implies for ε′ ∈ (0, ε) and n 6= 0∣∣∣∣ ∂m1+m2gn
∂τm1∂zm2

(τ, z)

∣∣∣∣ = n−2

∣∣∣∣〈D2 ∂
m1+m2H

∂τm1∂zm2
(τ, z)einθ, einθ

〉∣∣∣∣ ≤ Cn−2,

where C = supτ∈[−ε′,ε′] ‖D2 ∂m1+m2H
∂τm1∂zm2

(τ, z)‖L(L2(S)) < ∞. Using the classical fact on func-

tions series, we see that
∑

n∈Z gn ∈ C l
(
(−ε, ε), C∞(C\{1})

)
. This implies (3.38). �
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3.5. First variation of ζατ (z) with respect to τ . We assume l ≥ 1 in this subsection.

Lemma 3.6. For τ ∈ (−ε, ε) and any z ∈ C,

∂
(
ζατ (z)

)
∂τ

= −zTr
[
H(τ, z)

∂ ln(ατ )

∂τ

]
. (3.39)

At τ = 0 it reads as

∂
(
ζατ (z)

)
∂τ

∣∣∣∣∣
τ=0

= −zTr
[(

(Λa + P0)−z − (|Da|+ P0)−z
)
a−1β

]
, (3.40)

where β(θ) = ∂α
∂τ

(θ, 0) is the direction of the variation ατ .

Remark. The derivative ∂(ζατ (z))
∂τ

is well defined at any z ∈ C although the zeta
function ζατ (z) is not defined at the pole z = 1. See the remark after Theorem 1.3.

Proof. We reduce the computation to the case <z ∈ (0, 2) by holomorphy in z ∈ C. By
(3.38),

∂
(
ζατ (z)

)
∂τ

= Tr
[∂H
∂τ

(τ, z)
]
. (3.41)

Differentiate equality (3.20)

∂H

∂τ
=
∂(Λατ + P0,τ )

−z

∂τ
− ∂(|Dατ |+ P0,τ )

−z

∂τ
. (3.42)

By (3.18) and (3.19),

∂(Λατ + P0,τ )
−z

∂τ
= −γ(z/2)

∫ ∞
0

λ−z/2G(τ, λ)
∂(Λ2

ατ + P0,τ )

∂τ
G(τ, λ) dλ,

∂(|Dατ |+ P0,τ )
−z

∂τ
= −γ(z/2)

∫ ∞
0

λ−z/2G0(τ, λ)
∂(D2

ατ + P0,τ )

∂τ
G0(τ, λ) dλ.

Substitute these values into (3.42)

∂H

∂τ
(τ, z) = −γ(

z

2
)

∫ ∞
0

λ−
z
2

(
G(τ, λ)

∂(Λ2
ατ +P0,τ )

∂τ
G(τ, λ)−G0(τ, λ)

∂(D2
ατ +P0,τ )

∂τ
G0(τ, λ)

)
dλ.

(3.43)
Recall that, by (3.3),

∂G

∂τ
(τ, λ) = −G(τ, λ)

∂(Λ2
ατ +P0,τ )

∂τ
G(τ, λ). (3.44)

The similar formula for G0

∂G0

∂τ
(τ, λ) = −G0(τ, λ)

∂(D2
ατ +P0,τ )

∂τ
G(τ, λ)

is proved in the same way as (3.3). With the help of two last formulas, (3.43) takes the
form

∂H

∂τ
(τ, z) = γ(z/2)

∫ ∞
0

λ−z/2
∂(G−G0)

∂τ
(τ, λ) dλ, (3.45)

By Lemma 3.1, G(τ, λ) and G0(τ, λ) and their derivatives are trace class operators
in L2(S) at fixed (τ, λ) with an appropriate bound in λ given by (3.5). Hence we can
transpose the trace operator and integration over λ ∈ (0,+∞) on (3.45). In this way we
obtain

Tr
[∂H
∂τ

]
= γ(z/2)

∫ ∞
0

λ−z/2
{

Tr
[∂G
∂τ

]
− Tr

[∂G0

∂τ

]}
(τ, λ) dλ. (3.46)
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Formula (3.44) implies

Tr
[∂G
∂τ

(τ, λ)
]

= −Tr
[(
G(τ, λ)

)2 ∂(Λ2
ατ + P0,τ )

∂τ

]
. (3.47)

We have used the classical fact: Tr[AB] = Tr[BA] if A is a trace class operator and B is
a bounded operator, see [12, Theorem 3.1]. As easily follows from (2.3) and (3.1),

∂(Λ2
ατ + P0,τ )

∂τ
=

1

2

∂ ln(ατ )

∂τ
Λ2
ατ +

1

2
Λ2
ατ

∂ ln(ατ )

∂τ

+ Λατ

∂ ln(ατ )

∂τ
Λατ −

1

2

∂ ln(ατ )

∂τ
P0,τ −

1

2
P0,τ

∂ ln(ατ )

∂τ
.

We substitute this value into (3.47) and use again the classical property of the trace.
Besides this, the operators Λατ and P0,τ commute with G(τ, λ). In this way we obtain

Tr
[∂G
∂τ

(τ, λ)
]

= −2Tr
[(
G(τ, λ)

)2
Λ2
ατ

∂ ln(ατ )

∂τ

]
+ Tr

[(
G(τ, λ)

)2
P0,τ

∂ ln(ατ )

∂τ

]
.

On using the equality

Λ2
ατ =

(
G(τ, λ)

)−1 − P0,τ − λ
that follows from (3.2), we transform the previous formula to the form

Tr
[∂G
∂τ

(τ, λ)
]

= −2Tr
[
G(τ, λ)

∂ ln(ατ )

∂τ

]
+ 2λTr

[(
G(τ, λ)

)2
P0,τ

∂ ln(ατ )

∂τ

]
+ 3Tr

[(
G(τ, λ)

)2
P0,τ

∂ ln(ατ )

∂τ

]
.

(3.48)

As follows from (3.3),

∂

∂λ

{
− 2λTr

[
G(τ, λ)P0,τ

∂ ln(ατ )

∂τ

]}
= −2Tr

[
G(τ, λ)

∂ ln(ατ )

∂τ

]
+ 2λTr

[(
G(τ, λ)

)2
P0,τ

∂ ln(ατ )

∂τ

]
.

Therefore formula (3.48) takes its final form

Tr
[∂G
∂τ

(τ, λ)
]

=
∂

∂λ

{
− 2λTr

[
G(τ, λ)P0,τ

∂ ln(ατ )

∂τ

]}
+ 3Tr

[(
G(τ, λ)

)2
P0,τ

∂ ln(ατ )

∂τ

]
.

(3.49)
The similar formula for G0 is obtained in the same way:

Tr
[∂G0

∂τ
(τ, λ)

]
=

∂

∂λ

{
− 2λTr

[
G0(τ, λ)P0,τ

∂ ln(ατ )

∂τ

]}
+ 3Tr

[(
G0(τ, λ)

)2
P0,τ

∂ ln(ατ )

∂τ

]
.

(3.50)
Take the difference of equations (3.49) and (3.50). Taking the equality(

G0(τ, λ)
)2
P0,τ =

(
G(τ, λ)

)2
P0,τ

into account, we obtain

Tr
[∂(G−G0)

∂τ
(τ, λ)

]
=

∂

∂λ

{
− 2λTr

[
(G−G0)(τ, λ)

∂ ln(ατ )

∂τ

]}
. (3.51)

Next, we multiply equation (3.51) by λ−z/2 and integrate with respect to λ∫ ∞
0

λ−z/2 Tr
[∂(G−G0)

∂τ
(τ, λ)

]
dλ =

∫ ∞
0

λ−z/2
∂

∂λ

{
−2λTr

[
(G−G0)(τ, λ)

∂ ln(ατ )

∂τ

]}
dλ.
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We transform the right-hand side with the help of integration by parts. Since <z ∈ (0, 2),
the integrated term is equal to zero by (3.12) (with m1 = m2 = 0). In this way we obtain∫ ∞

0

λ−z/2 Tr
[∂(G−G0)

∂τ
(τ, λ)

]
dλ = −z

∫ ∞
0

λ−z/2 Tr
[
(G−G0)(τ, λ)

∂ ln(ατ )

∂τ

]
dλ.

Comparing this with (3.46), we see that

Tr
[∂H
∂τ

]
= −zγ(z/2)

∫ ∞
0

λ−z/2 Tr
[
(G−G0)(τ, λ)

∂ ln(ατ )

∂τ

]
dλ. (3.52)

By (3.20),
H(τ, z) = (Λατ + P0,τ )

−z − (|Dατ |+ P0,τ )
−z.

By (3.15) and (3.17),

(Λατ + P0,τ )
−z = γ(z/2)

∫ ∞
0

λ−z/2G(τ, λ) dλ,

(|Dατ |+ P0,τ )
−z = γ(z/2)

∫ ∞
0

λ−z/2G0(τ, λ) dλ.

Three last formulas imply

H(τ, z) = γ(z/2)

∫ ∞
0

λ−z/2(G−G0)(τ, λ) dλ.

Multiply this equality from the right by the operator of multiplication by the function
∂ ln(ατ )
∂τ

. The operator can be moved inside the integral since it is independent of λ. In
this way we obtain

H(τ, z)
∂ ln(ατ )

∂τ
= γ(z/2)

∫ ∞
0

λ−z/2(G−G0)(τ, λ)
∂ ln(ατ )

∂τ
dλ.

Take the trace of both part. Again, the trace operator can be moved inside the integral
and we get

Tr
[
H(τ, z)

∂ ln(ατ )

∂τ

]
= γ(z/2)

∫ ∞
0

λ−z/2 Tr
[
(G−G0)(τ, λ)

∂ ln(ατ )

∂τ

]
dλ.

The comparison of this formula with (3.52) gives

Tr
[∂H
∂τ

(τ, z)
]

= −zTr
[
H(τ, z)

∂ ln(ατ )

∂τ

]
.

Together with (3.41), this gives (3.39). �

3.6. Second variation of ζατ (z) with respect to τ . We assume l ≥ 2 in this subsection.
Repeating arguments from the proof of Lemma 3.5, we prove that the right-hand side of
(3.39) belongs to C l−1((−ε, ε), C∞(C)). Then, differentiating equation (3.39), we obtain
the following expression for the second derivative.

Lemma 3.7. For every z ∈ C,

∂2
(
ζατ (z)

)
∂τ 2

∣∣∣∣∣
τ=0

= −zTr
[∂H
∂τ

(0, z)a−1β
]

+ zTr
[(

(Λa + P0)−z − (|Da|+ P0)−z
)
a−2β2

]
− zTr

[(
(Λa + P0)−z − (|Da|+ P0)−z

)
a−2 ∂

2ατ
∂τ 2

∣∣∣∣
τ=0

]
,

(3.53)

where β(θ) = ∂α
∂τ

(θ, 0) is the direction of the variation ατ .
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In more generality, for a 2-parametric deformation ατ,s,

∂2
(
ζατ,s(z)

)
∂τ∂s

∣∣∣∣∣
(τ,s)=(0,0)

= −zTr
[∂H
∂s

(0, 0, z)a−1β
]

+ zTr
[(

(Λa + P0)−z − (|Da|+ P0)−z
)
a−2βγ

]
− zTr

[(
(Λa + P0)−z − (|Da|+ P0)−z

)
a−2 ∂

2ατ,s
∂τ∂s

∣∣∣∣
(τ,s)=(0,0)

]
,

where γ = ∂α0,s

∂s

∣∣∣
s=0

, β = ∂ατ,0
∂τ

∣∣∣
τ=0

.

3.7. Application: behavior near a = 1. Hereafter, {ûk}k∈Z are the Fourier coefficients
of a function u ∈ L2(S), i.e., u =

∑
k∈Z ûk e

ikθ.
We have the following result.

Proposition 3.8. Let ατ be a C2-smooth variation of the function a = 1 (the function
identically equal to 1). Then, for every z ∈ C,

∂
(
ζατ (z)

)
∂τ

∣∣∣∣∣
τ=0

= 0, (3.54)

∂2
(
ζατ (z)

)
∂τ 2

∣∣∣∣∣
τ=0

= 4z
∑

(n,p)∈N2
p>0, n>0

n−z − p−z

p2 − n2
pn |β̂p+n|2 + 2z2

∑
n>0

|n|−z |β̂2n|2, (3.55)

where β(θ) = ∂ατ (θ)
∂τ

∣∣∣
τ=0

.

Proof. The first variation formula (3.40) gives (3.54). Indeed, Λa = |Da| for a = 1.
The second variation formula (3.53) gives

∂2
(
ζατ (z)

)
∂τ 2

∣∣∣∣∣
τ=0

= −zTr
[∂H
∂τ

(0, z)β
]
. (3.56)

We use the trigonometric basis {(2π)−1/2einθ}n∈Z to compute the trace Tr
[
∂H
∂τ

(0, z)β
]
:

Tr
[∂H
∂τ

(0, z)β
]

= (2π)−1
∑
p∈Z

〈∂H
∂τ

(0, z)βeipθ, eipθ
〉
.

Substituting β =
∑

n∈Z β̂ne
inθ, we obtain

Tr
[∂H
∂τ

(0, z)β
]

= (2π)−1
∑
n,p∈Z

β̂n−p

〈∂H
∂τ

(0, z)einθ, eipθ
〉
. (3.57)

We have thus to compute
〈
∂H
∂τ

(0, z)einθ, eipθ〉. We reduce the computation to the case

<z ∈ (0, 1) by holomorphy in the z-variable.
With the help of the definition (3.20) of the operator H, Formulas (3.18) and (3.19)

give

∂H

∂τ
(τ, z) = −γ(

z

2
)

∞∫
0

λ−
z
2

(
G(τ, λ)

∂(Λ2
ατ +P0,τ )

∂τ
G(τ, λ)−G0(τ, λ)

∂(D2
ατ +P0,τ )

∂τ
G0(τ, λ)

)
dλ.
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Setting τ = 0 here and using the equalities

G(0, λ) = G0(0, λ) = (Λ2 + Pe0 + λ)−1,

we obtain

∂H

∂τ
(0, z) = −γ(z/2)

∫ ∞
0

λ−z/2(Λ2 + Pe0 + λ)−1 ∂(Λ2
ατ −D

2
ατ )

∂τ

∣∣∣∣
τ=0

(Λ2 + Pe0 + λ)−1 dλ,

where Pe0 is the orthogonal projection onto the line spanned by e0 = 1√
2π

1. Then

∂(Λ2
ατ −D

2
ατ )

∂τ
=

1

2

∂ ln(ατ )

∂τ
(Λ2

ατ −D
2
ατ ) +

1

2
(Λ2

ατ −D
2
ατ )

∂ ln(ατ )

∂τ

+Λατ

∂ ln(ατ )

∂τ
Λατ −Dατ

∂ ln(ατ )

∂τ
Dατ .

At τ = 0, this becomes

∂(Λ2
ατ −D

2
ατ )

∂τ

∣∣∣∣
τ=0

= ΛβΛ−DβD.

Hence
∂H

∂τ
(0, z) = −γ(z/2)

∫ ∞
0

λ−z/2(Λ2 + Pe0 + λ)−1(ΛβΛ−DβD)(Λ2 + Pe0 + λ)−1 dλ.

With the help of the last formula, we obtain〈∂H
∂τ

(0, z)einθ, eipθ
〉

=

= −γ(z/2)

∫ ∞
0

λ−z/2
〈
(ΛβΛ−DβD)(Λ2 + Pe0 + λ)−1einθ, (Λ2 + Pe0 + λ)−1eipθ

〉
dλ.

After elementary calculations, this becomes

〈∂H
∂τ

(0, z)einθ, eipθ
〉

=


0 if either n = 0 or p = 0,

−γ(z/2)
∫∞

0
λ−z/2(p2 + λ)−1(n2 + λ)−1 dλ×

×2π(|np| − np)β̂p−n otherwise.

(3.58)

For positive reals x and y (x 6= y),

(x+ λ)−1(y + λ)−1 =
1

y − x
(
(x+ λ)−1 − (y + λ)−1

)
.

With the help of (3.16), this gives

−γ(z/2)

∫ ∞
0

λ−z/2(x+ λ)−1(y + λ)−1 dλ =
x−z/2 − y−z/2

x− y
. (3.59)

In particular, when x→ y,

−γ(z/2)

∫ ∞
0

λ−z/2(y + λ)−2 dλ = −1

2
zy−z/2−1. (3.60)

Combining (3.58)–(3.60), we obtain

〈∂H
∂τ

(0, z)einθ, eipθ
〉

=


0 if np ≥ 0,

−4π np
|n|−z − |p|−z
n2 − p2 β̂p−n if np < 0 and n 6= −p,

−2π z|p|−zβ̂2p if n = −p 6= 0.

(3.61)

The formula is valid for all z ∈ C since right-hand sides are entire functions.
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We substitute (3.61) into (3.57) and use that β̂k = β̂−k (β is a real function)

Tr
[∂H
∂τ

(0, z)β
]

= −2
∑

np<0, n6=−p

np
|n|−z − |p|−z

n2 − p2
|β̂n−p|2 − z

∑
p6=0

|p|−z |β̂2p|2.

After the change p := −p of the summation index in the first sum, this becomes

Tr
[∂H
∂τ

(0, z)β
]

= 4
∑

n>0, p>0

np
|n|−z − |p|−z

n2 − p2
|β̂n+p|2 − 2z

∑
n>0

|n|−z |β̂2n|2.

Finally, substituting this expression into (3.56), we obtain (3.55). �

4. Proof of Theorem 1.2

The proof of Theorem 1.3 is postponed to Section 6. Here, assuming Theorem 1.3 to
be valid, we prove Theorem 1.2. The proof of the theorem is based on the first variation
formula applied to the deformation of Theorem 1.3. We start with some important pre-
liminaries that, besides the proof of Theorem 1.2, will play a key role in the construction
of the deformation of Theorem 1.3..

4.1. An alternative form of the first variation formula. Let a deformation ατ (−ε <
τ < ε) of a positive function a ∈ C∞(S) satisfy hypotheses of Lemma 2.2 with l = ∞.
Differentiating equation (1.7) with respect to τ , we obtain∫

S

∂α−1
τ

∂τ
dθ = −

∫
S
α−2
τ

∂ατ
∂τ

dθ = 0. (4.1)

Let us define the family of functions gτ ∈ C∞((−ε, ε), C∞(S)) by

ατg
′
τ − gτα′τ =

∂ατ
∂τ

,

∫
S
gτ = 0. (4.2)

In other words
(
gτ
ατ

)′
= −∂α−1

τ

∂τ
and

∫
S gτ = 0. Such a family exists and is unique due to

(4.1). We also denote

g = gτ |τ=0 , β =
∂ατ
∂τ

∣∣∣∣
τ=0

= ag′ − a′g. (4.3)

Let P0 : L2(S)→ L2(S) be the orthogonal projection onto the one-dimensional subspace
spanned by the vector φ0 = (2π)−1/2a−1/2 (compare with (2.2)). We emphasize that P0

depends on the function a although the dependance is not designated explicitly.

Theorem 4.1. Given a deformation ατ of a positive function a ∈ C∞(S) satisfying
hypotheses of Lemma 2.2 with l = ∞, let the function g ∈ C∞(S) be defined by (4.3).
Then, for every z ∈ C,

∂
(
ζατ (z)

)
∂τ

∣∣∣∣∣
τ=0

= −izTr
[
(Λa + P0)−z+1(I − P0)a−1/2[H, g]a−1/2

]
, (4.4)

where [H, g] is the commutator of the Hilbert transform H and the operator of multiplica-
tion by the function g. In the case when g = iHa, the formula simplifies to the following
one:

∂
(
ζατ (z)

)
∂τ

∣∣∣∣∣
τ=0

= zTr
[
(Λa + P0)−z−1(Λ2

a −D2
a)
]
. (4.5)
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See the remark after Theorem 1.3 concerning the value of the derivative
∂
(
ζατ (z)

)
∂τ

at the
pole z = 1. Right-hand sides of formulas (4.4) and (4.5) are entire functions of z since
[H, g] and Λ2

a −D2
a = a1/2D[H, a]HDa1/2 are smoothing operators.

The proof of Theorem 4.1 is postponed to Section 5.

4.2. The good sign. The example g = iHa is a right choice since we have the following
interesting properties.

Lemma 4.2. Let a deformation ατ of a positive function a ∈ C∞(S) satisfy hypotheses
of Theorem 4.1. Then

Tr
[
(Λa + P0)s−1(Λ2

a −D2
a)
]
≥ 0 when s > 0, (4.6)

Tr
[
(Λa + P0)s−1(Λ2

a −D2
a)
]
≤ 0 when s < 0. (4.7)

Additionally, the equality

Tr
[
(Λa + P0)s−1(Λ2

a −D2
a)
]

= 0

holds for some 0 6= s ∈ R if and only if a is conformally equivalent to the constant-valued
function 1.

The proof of the lemma is presented in Section 5. Combining Theorem 4.1 and Lemma
4.2, we obtain the following result.

Corollary 4.3. Under hypotheses of Theorem 4.1, assume that g = iHa (or equivalently
β = −a(Λa) + (Ha)(Da)). Then

∂
(
ζατ (s)

)
∂τ

∣∣∣∣∣
τ=0

≤ 0 (4.8)

for every real s. If the equality holds in (4.8) for some 0 6= s ∈ R, then a is conformally
equivalent to the constant-valued function 1.

4.3. Proof of Theorem 1.2. We start with proving (1.6). Let ατ (0 ≤ τ < ∞) be the
deformation from Theorem 1.3. Here α0 = a. By statement (3) of Theorem 1.3, ζατ (s) is
smooth and non-increasing in τ ∈ [0,∞) for any real s 6= 1. We would like to prove that

inf
τ∈[0,∞)

ζατ (s) = 2ζR(s) for 1 6= s ∈ R. (4.9)

Let us consider Γε = α1/ε (0 < ε <∞). By statement (4) of Theorem 1.3,

Γε → 1 in C∞(S) as ε→ 0+.

Setting Γ−ε = Γε for ε > 0 and Γ0 = 1, we have defined the continuous path

R→ C∞(S), ε 7→ Γε

consisting of positive functions. For a fixed 1 6= s ∈ R, the function ε 7→ ζΓε(s) is
continuous on R. Hence

inf
τ∈(0,τ0)

ζατ (s) = ζατ0 (s) = ζΓ
τ−1
0

(s)→ ζΓ0(s) = 2ζR(s) as τ0 →∞.

This implies (4.9). We have thus proved (1.6).
Now assume that ζa(s) − 2ζR(s) = 0 for some 0 6= s ∈ R. Since the function ζατ (s) −

2ζR(s) is non-increasing in τ , we conclude that

ζατ (s)− 2ζR(s) = 0 for all τ ∈ [0,∞).
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In particular the derivative ∂ζατ
∂τ

(s) at τ = 0 is zero and we can use Corollary 4.3 to deduce
that a is conformally equivalent to 1. Conversely, if a is conformally equivalent to 1, then
ζa = ζ1 = 2ζR. �

5. Proof of Theorem 4.1 and Lemma 4.2

We again consider a deformation ατ of a positive function a ∈ C∞(S) satisfying hy-
potheses of Lemma 2.2 with l =∞. Hypotheses of all statements in this section coincide
with that of Lemma 2.2. The hypotheses are not written explicitly for brevity.

5.1. Proof of Theorem 4.1. We are going to prove (4.4) for <z > 2. Then the validity
of (4.4) for all z ∈ C will follow by the unique continuation principle since both sides of
(4.4) are entire functions.

The equalities ΛaP0 = P0Λa = 0 immediately follow from definitions of these operators
(the definition of Λa is given in the Introduction and P0 is defined before Theorem 4.1).
We will widely use these equalities with no reference.

Note that (Λa + P0)−z and (|Da| + P0)−z are trace class operators for <z > 2. Hence
(3.40) implies that

∂
(
ζατ (z)

)
∂τ

∣∣∣∣∣
τ=0

= −zTr
[
(Λa + P0)−za−1β

]
+ zTr

[
(|Da|+ P0)−za−1β

]
. (5.1)

Recall that the functions φn,τ are defined in (2.2). Setting φn = φn,0, we have the
orthonormal basis {φn}n∈Z consisting of eigenfunctions of the operator Da such that
Daφn = nφn. This implies (|Da|+ P0)φn = max(|n|, 1)φn.

Let us demonstrate that

Tr
[
(|Da|+ P0)−za−1β

]
= 0. (5.2)

Indeed, for an arbitrary n ∈ Z,

〈(|Da|+ P0)−za−1βφn, φn〉 = 〈a−1βφn, (|Da|+ P0)−zφn〉 =
(

max(|n|, 1)
)−z〈a−1βφn, φn〉

= (2π)−1
(

max(|n|, 1)
)−z ∫

S
a−2β = 0.

The last equality of the chain is written on the base of (4.1) since β = ∂ατ
∂τ

∣∣
τ=0

. From
this,

Tr
[
(|Da|+ P0)−za−1β

]
=
∑
n∈Z

〈(|Da|+ P0)−za−1βφn, φn〉 = 0.

This proves (5.2).
In virtue of (5.2), formula (5.1) simplifies to the following one:

∂
(
ζατ (z)

)
∂τ

∣∣∣∣∣
τ=0

= −zTr
[
(Λa + P0)−za−1β

]
. (5.3)

Let the function g ∈ C∞(S) be defined by (4.2). Looking at a, g and β as multiplication
operators, we have the equality β = i(aDg − gDa) which implies

(Λa + P0)−za−1β = (Λa + P0)−za−1/2βa−1/2

= i(Λa + P0)−za1/2Dga−1/2 − i(Λa + P0)−za−1/2gDa1/2.
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For <z > 2, both (Λa + P0)−za1/2Dga−1/2 and (Λa + P0)−za−1/2gDa1/2 are trace class
operators and we obtain

Tr
[
(Λa + P0)−za−1β

]
= iTr

[
(Λa + P0)−za1/2Dga−1/2

]
− iTr

[
(Λa + P0)−za−1/2gDa1/2

]
.

(5.4)
Recall that the operators D, Λ and H are related by the equalities HD = DH = Λ

and HΛ = ΛH = D. From this,

a1/2D = Λaa
−1/2H, Da1/2 = Ha−1/2Λa.

The last of these equalities immediately gives

Tr
[
(Λa + P0)−za−1/2gDa1/2

]
= Tr

[
(Λa + P0)−za−1/2gHa−1/2Λa

]
. (5.5)

Using additionally the relation (Λa + P0)−zΛa = (Λa + P0)−z+1(I − P0), we easily derive

Tr
[
(Λa + P0)−za1/2Dga−1/2

]
= Tr

[
(Λa + P0)−z+1(I − P0)a−1/2Hga−1/2

]
. (5.6)

Rewriting the trace on the right hand side of (5.5) in terms of a basis of Steklov
eigenvectors (eigenvectors of the operator Λa + P0) and again using the relation Λa(Λa +
P0)−z = (Λa + P0)−z+1(I − P0), we obtain

Tr
[
(Λa + P0)−za−1/2gHa−1/2Λa

]
= Tr

[
Λa(Λa + P0)−za−1/2gHa−1/2

]
= Tr

[
(Λa + P0)−z+1(I − P0)a−1/2gHa−1/2

]
.

(5.7)

Collecting (5.4), (5.6) and (5.7), we see that

Tr
[
(Λa + P0)−za−1β

]
= iTr

[
(Λa + P0)−z+1(I − P0)a−1/2[H, g]a−1/2

]
.

Together with (5.3), this gives (4.4).
We need following easy statement.

Lemma 5.1. For a function f ∈ C∞(S), the operator equalities

[H,Hf ] = H[H, f ] + F0 f − f̂0 F0 (5.8)

and
Λ[H,Hf ]Λ = ΛfΛ−DfD (5.9)

hold, where the operator F0 maps a function u to the constant-valued function û01.

The proof of the lemma is given at the end of this subsection. With the help of the
lemma, we now prove (4.5) for g = iHa. Substituting this value into (4.4), we obtain

∂
(
ζατ (z)

)
∂τ

∣∣∣∣∣
τ=0

= zTr
[
((Λa + P0)−z+1(I − P0)a−1/2[H,Ha]a−1/2

]
. (5.10)

Writing the trace on the right hand side of (5.10) in terms of an orthonormal basis
consisting of eigenvectors of the operator Λa + P0, one easily obtains

T
[
((Λa + P0)−z+1(I−P0)a−1/2[H,Ha]a−1/2

]
= Tr

[
((Λa + P0)−z−1Λaa

−1/2[H,Ha]a−1/2Λa

]
= Tr

[
((Λa + P0)−z−1a1/2Λ[H,Ha]Λa1/2

]
.

(5.11)
Using (5.9) with f = a, we see that

Tr
[
((Λa + P0)−z−1a1/2Λ[H,Ha]Λa1/2

]
= Tr

[
((Λa + P0)−z−1a1/2(ΛaΛ−DaD)a1/2

]
= Tr

[
((Λa + P0)−z−1(Λ2

a −D2
a)
]
.

(5.12)
Combining (5.10)–(5.12), we arrive to (4.5). �
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Proof of Lemma 5.1. The alternative definition of the Hilbert transform is as follows: two
real functions u, v ∈ C∞(S) satisfy iv = Hu if and only if v has the zero mean value and
u + iv admits a holomorphic extension to the unit disk. Thus, for two real functions
u, v ∈ C∞(S), the product

(u+Hu)(v +Hv) = uv + (Hu)(Hv) + [uHv + vHu]

admits a holomorphic extension to the unit disk. The function in the bracket has the zero
mean value as is seen from∫

S

(uHv + vHu) =
∑

n∈Z\{0}

ûnsgn(−n)v̂−n +
∑

n∈Z\{0}

v̂nsgn(−n)û−n = 0.

We have thus proved the product formula

H
(
uv + (Hu)(Hv)

)
= uHv + vHu. (5.13)

Being proved for real smooth functions, the formula is valid for all u, v ∈ L2(S) since all
terms on (5.13) are bilinear in (u, v).

Setting v = Hf in (5.13), we have

H((Hf)u)− (Hf)(Hu) = (H2f)u−H((H2f)(Hu)).

Since H2f = f − f̂01, the formula becomes

[H,Hf ]u = fu−H(f(Hu))− f̂0u+ f̂0(H2u).

Substituting the expressions fu = H2(fu) + (f̂u)01 and H2u = u− F0u, we obtain

[H,Hf ]u = H2(fu)−H(f(Hu)) + (f̂u)01− f̂0(F0u).

This can be written in the form

[H,Hf ]u = H[H, f ]u+ (f̂u)01− f̂0 F0u.

We have thus proved (5.8).
Now, we multiply (5.8) by Λ from both sides and use the obvious equalities F0Λ =

ΛF0 = 0 to obtain
Λ[H,Hf ]Λ = ΛH[H, f ]Λ.

This can be written in the form

Λ[H,Hf ]Λ = ΛH2fΛ− ΛHfHΛ.

On using the equalities ΛH2 = Λ and ΛH = HΛ = D, we obtain (5.9). �

5.2. Proof of Lemma 4.2. If a is conformally equivalent to a constant function, then
it is of the form

a(θ) = â0 + â1e
iθ + â−1e

−iθ.

This fact can be easily derived from the definition of conformally equivalent functions and
it also follows from [7, Theorem 1.2]. On using this representation, one easily proves that

(ΛaΛ−DaD)einθ = 0 for all n ∈ Z,
i.e. ΛaΛ−DaD = 0. In the case of a positive function a ∈ C∞(S), this implies Λ2

a−D2
a = 0

and Tr
[
(Λa + P0)z(Λ2

a −D2
a)
]

= 0 for any z ∈ C. This proves the “if” part of the second
statement of Lemma 4.2.

Our proof of Lemma 4.2 is based on some elementary convexity arguments that are
actually well known. For the sake of completeness, we present the proof of the following
statement.
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Lemma 5.2. Let A : H → H be a linear operator in a Hilbert space. Assume that there
is an orthonormal basis {ek}k∈N of H consisting of eigenvectors of the operator A, i.e.,
Aek = λkek with positive eigenvalues λk satisfying λk ≤ C(k + 1)M with some constants
C and M .

Let u and v be two vectors from H. Expand them in the basis u =
∑

k∈N〈u, ek〉 ek,
v =

∑
k∈N〈v, ek〉 ek. Assume that the coefficients of the expansions rapidly decay, i.e.,

|〈u, ek〉|+ |〈v, ek〉| ≤ CN(k + 1)−N for every N ∈ N. Assume also that

〈u, ek〉〈ek, v〉 ≥ 0 for every k ∈ N (5.14)

and

〈u, v〉 =
∑
k∈N

〈u, ek〉〈ek, v〉 = 1. (5.15)

Then
(1) 〈Aru, v〉 ≥ 〈Au, v〉r for every r ≥ 1;
(2) 〈Aru, v〉 ≤ 〈Au, v〉r for every r ∈ [0, 1).
If, additionally, A is an invertible operator, then
(3) 〈Aru, v〉 ≥ 〈Au, v〉r for every r < 0.

Proof. Let f : (0,+∞)→ (0,+∞) be a convex function. Then

〈f(A)u, v〉 =
∑
k∈N

f(λk)εk,

where εk = 〈u, ek〉〈ek, v〉 ≥ 0 and
∑

k∈N εk = 1. We apply the convexity of the function f
to obtain

〈f(A)u, v〉 =
∑
k∈N

f(λk)εk ≥ f
(∑
k∈N

λkεk
)

= f(〈Au, v〉).

In the case of a concave function f , we have the opposite inequality

〈f(A)u, v〉 ≤ f(〈Au, v〉).

The function fr : (0,+∞) → (0,+∞), fr(x) = xr is convex for r ∈ (−∞, 0] ∪ [1,∞)
and is concave for r ∈ [0, 1]. �

We use the orthonormal basis {φn}n∈Z of L2(S) which was introduced after formula
(5.1). Recall that Daφn = nφn. Recall also that P0 : L2(S) → L2(S) is the orthogonal
projection onto the one-dimensional subspace spanned by the vector φ0. Then {φn}n∈Z is
the orthonormal basis consisting of eigenfunctions of the invertible operator Da +P0 with
positive eigenvalues. Recall also that [6, Lemma 2.1]

〈Λaφn, φn〉 ≥ |n|, (5.16)

〈(Λa + P0)−1φn, φn〉 ≥ |n|−1 (n 6= 0). (5.17)

The proof of Lemma 4.2 consists of 6 parts.

Part 1. Let s ≥ 2. Fix an integer n 6= 0. Set A = (Λa + P0)s−1 : L2(S) → L2(S),
u = v = φn and r = s+1

s−1
≥ 1 in Lemma 5.2. Hypotheses of the Lemma are satisfied since

(Λa +P0)s−1 is a positive self-adjoint operator and φn is a unit vector in L2(S). Applying
statement (1) of Lemma 5.2, we obtain

〈(Λa+P0)s+1φn, φn〉 ≥ 〈(Λa+P0)s−1φn, φn〉
s+1
s−1 = 〈(Λa+P0)s−1φn, φn〉〈(Λa+P0)s−1φn, φn〉

2
s−1 .

(5.18)
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Then we set A = Λa + P0, u = v = φn and r = s − 1 ≥ 1 in Lemma 5.2. By the same
statement (1) of Lemma 5.2,

〈(Λa + P0)s−1φn, φn〉 ≥ 〈Λaφn, φn〉s−1.

With the help of (5.16), this gives

〈(Λa + P0)s−1φn, φn〉 ≥ |n|s−1. (5.19)

We combine (5.18) and (5.19) to obtain

〈(Λa + P0)s+1φn, φn〉 ≥ 〈(Λa + P0)s−1φn, φn〉n2 = 〈(Λa + P0)s−1D2
aφn, φn〉.

This inequality holds for every n ∈ Z \ {0}. It implies

Tr((Λa + P0)s−1(Λ2
a −D2

a)) =
∑
n6=0

[
〈(Λa + P0)s+1φn, φn〉 − 〈(Λa + P0)s−1D2

aφn, φn〉
]
≥ 0.

(5.20)
We have thus proved (4.6) for s ≥ 2.

The equality in (5.20) holds if and only if each summand on the right-hand side is zero.
In such a case, the equality in (5.16) must hold for every n ∈ Z \ {0}. In particular,
setting n = 1 in (5.16), we have 〈Λaφ1, φ1〉 = 1. We can now use [6, Lemma 2.5] to obtain
that a is conformally equivalent to the constant function 1.

Part 2. Let s ≤ −2. Here our arguments repeat that of Part 1 with one exception:
(Λa + P0)−1 now plays the role of Λa + P0. By Lemma 5.2 and (5.17),

〈(Λa + P0)s−1φn, φn〉 ≥ 〈(Λa + P0)s+1φn, φn〉
s−1
s+1

≥ 〈(Λa + P0)s+1φn, φn〉−
2
s+1 〈(Λa + P0)s+1φn, φn〉

≥ n−2〈(Λa + P0)s+1φn, φn〉,
i.e.

〈(Λa + P0)s+1φn, φn〉 ≤ n2〈(Λa + P0)s−1φn, φn〉 = 〈(Λa + P0)s−1D2
aφn, φn〉.

We have used that s + 1 ≤ −1, −2/(s + 1) > 0, (s − 1)/(s + 1) ≥ 1. We conclude as in
Part 1.

Part 3. Let 1 ≤ s ≤ 2. Fix an integer n 6= 0. We first set A = Λa + P0, u = v = φn
and r = s− 1 ∈ (0, 1) in Lemma 5.2. By statement (2) of Lemma 5.2,

〈(Λa + P0)s−1φn, φn〉 ≤ 〈Λaφn, φn〉s−1. (5.21)

Then we set A = Λa + P0, u = v = φn and r = s + 1 ≥ 2 in Lemma 5.2. Applying
statement (1) of Lemma 5.2, we obtain

〈(Λa + P0)s+1φn, φn〉 ≥ 〈Λaφn, φn〉s+1 = 〈Λaφn, φn〉s−1〈Λaφn, φn〉2.
With the help of (5.16), this gives

〈(Λa + P0)s+1φn, φn〉 ≥ n2〈Λaφn, φn〉s−1. (5.22)

Inequalities (5.21) and (5.22) imply

Tr((Λa +P0)s−1(Λ2
a−D2

a)) =
∑

n∈Z\{0}

(
〈(Λa +P0)s+1φn, φn〉−n2〈Λs−1

a φn, φn〉
)
≥ 0. (5.23)

We have thus proved (4.6) for s ∈ (1, 2).
Again the equality in (5.23) means that each summand on the right-hand side is zero.

In such a case, the equality in (5.16) must hold for every n ∈ Z \ {0}. In particular,
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setting n = 1 in (5.16), we have 〈Λaφ1, φ1〉 = 1. We use again [6, Lemma 2.5] to obtain
that a is conformally equivalent to 1.

Part 4. Let −2 ≤ s ≤ −1. Here our arguments repeat that of Part 3 with the
exception: (Λa + P0)−1 now plays the role of Λa + P0. With the help of Lemma 5.2 and
of (5.17), we obtain the estimates

〈(Λa + P0)s+1φn, φn〉 ≤ 〈(Λa + P0)−1φn, φn〉−s−1

and
〈(Λa + P0)s−1φn, φn〉 ≥ 〈(Λa + P0)−1φn, φn〉1−s

= 〈(Λa + P0)−1φn, φn〉−1−s〈(Λa + P0)−1φn, φn〉2

≥ n−2〈(Λa + P0)−1φn, φn〉−1−s.

Hence

Tr((Λa + P0)s−1(Λ2
a −D2

a)) =
∑
n∈Z

(
〈(Λa + P0)s+1φn, φn〉 − n2〈(Λa + P0)s−1φn, φn〉

)
≤ 0.

This proves (4.7) for s ∈ (−2,−1).
Again the equality implies 〈(Λa+P0)−1φ1, φ1〉 = 1 and we use [6, Lemma 2.5] to obtain

that a is conformally equivalent to 1.

Part 5. Let 0 < s ≤ 1. First of all, on using the equality Da = Λaa
−1/2Ha1/2 we write

Tr((Λa + P0)s−1(Λ2
a −D2

a)) =

=
∑

n∈Z\{0}

(
〈(Λa + P0)s+1φn, φn〉 − 〈(Λa + P0)s−1Λaa

−1/2Ha1/2Daφn, φn〉
)

=
∑

n∈Z\{0}

(
〈(Λa + P0)s+1φn, φn〉 − n〈(Λa + P0)sa−1/2Ha1/2φn, φn〉

)
.

(5.24)

The first term of each summand on the right-hand side of (5.24) is real since (Λa +P0)s+1

is a self-adjoint operator. We will see that the second term is also real, although it is not
quite obvious.

By statement (1) of Lemma 5.2 and by (5.16),

〈(Λa + P0)s+1φn, φn〉 ≥
(
〈Λaφn, φn〉

)s+1 ≥ |n|s〈Λaφn, φn〉. (5.25)

Let {Ψk}k∈N be the orthonormal basis of L2(S) consisting of eigenfunctions of the
operator A = Λa + P0 (it is the partial case, for τ = 0, of the basis {Ψk,τ}k∈N that was

used in Section 2.3). Then (Λa + P0)Ψk = λ̃kΨk for k ∈ N, where λ̃0 = 1, Ψ0 = φ0, and

λ̃k = λk for k > 0 (λk being the Steklov eigenvalues of the function a).
Let us fix an integer n 6= 0. To estimate the second term of the summand on the

right-hand side of (5.24), we use Lemma 5.2 with

ek = Ψk, A = Λa + P0, u = δ−1
n a−1/2Ha1/2φn, v = sgn(n)φn, r = s ∈ (0, 1),

(5.26)
where the positive constant δn will be chosen later.

We have to check the hypotheses (5.14)–(5.15) of Lemma 5.2. To this end we write

〈u,Ψk〉〈Ψk, v〉 = δ−1
n sgn(n)〈a−1/2Ha1/2φn,Ψk〉〈Ψk, φn〉.
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In the case of k = 0, the right-hand side is equal to zero since 〈e0, φn〉 = 0. In the case of
k > 0, we use the equalities ΛaΨk = λkΨk and Daφn = nφn to obtain

〈u,Ψk〉〈Ψk, v〉 = δ−1
n sgn(n)λ−1

k 〈a
−1/2Ha1/2φn,ΛaΨk〉〈Ψk, φn〉

= δ−1
n sgn(n)λ−1

k 〈Λa a
−1/2Ha1/2φn,Ψk〉〈Ψk, φn〉

= δ−1
n sgn(n)λ−1

k 〈Daφn,Ψk〉〈Ψk, φn〉
= δ−1

n sgn(n)nλ−1
k 〈φn,Ψk〉〈Ψk, φn〉

= δ−1
n |n|λ−1

k |〈φn,Ψk〉|2 ≥ 0.

This proves (5.14). Equality (5.15) looks now as follows:

〈u, v〉 =
∑
k∈N

〈u,Ψk〉〈Ψk, v〉 = δ−1
n |n|

∑
k>0

λ−1
k |〈φn,Ψk〉|2 = 1.

To satisfy this hypothesis, we set

δn = |n|
∑
k>0

λ−1
k |〈φn,Ψk〉|2.

Observe also that

δn ≥ 1. (5.27)

Indeed, as we have seen

|n|λ−1
k |〈φn,Ψk〉|2 = sgn(n)λ−1

k 〈a
−1/2Ha1/2φn,Λa Ψk〉〈Ψk, φn〉

= sgn(n)〈a−1/2Ha1/2φn,Ψk〉〈Ψk, φn〉.
Therefore

δn =
∑
k>0

|n|λ−1
k |〈φn,Ψk〉|2 = sgn(n)

∑
k>0

〈a−1/2Ha1/2φn,Ψk〉〈Ψk, φn〉

= sgn(n)
〈
a−1/2Ha1/2φn,

∑
k>0

〈φn,Ψk〉Ψk

〉
= sgn(n)〈a−1/2Ha1/2φn, φn〉
= |n|−1〈a−1/2Ha1/2φn, Daφn〉
= |n|−1〈Daa

−1/2Ha1/2φn, φn〉.

Since Daa
−1/2Ha1/2 = Λa, we obtain

δn = |n|−1〈Λaφn, φn〉. (5.28)

With the help of (5.16), this gives (5.27).
Thus, hypotheses of of Lemma 5.2 are satisfied. Applying statement (2) of Lemma 5.2,

we obtain

sgn(n)δ−1
n 〈(Λa + P0)sa−1/2Ha1/2φn, φn〉 = 〈Asu, v〉 ≤ 〈Au, v〉s. (5.29)

Next, we compute on the base of (5.26)

〈Au, v〉 = δ−1
n 〈(Λa + P0)a−1/2Ha1/2φn, sgn(n)φn〉

= δ−1
n 〈a−1/2Ha1/2φn, sgn(n)(Λa + P0)φn〉

= δ−1
n 〈a−1/2Ha1/2φn, sgn(n)Λaφn〉

= δ−1
n 〈Λaa

−1/2Ha1/2φn, sgn(n)φn〉,
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i.e.,

〈Au, v〉 = δ−1
n 〈Λaa

−1/2Ha1/2φn, sgn(n)φn〉. (5.30)

Since

Λaa
−1/2Ha1/2φn = Daφn = nφn,

equality (5.30) simplifies to the following one:

〈Au, v〉 = δ−1
n |n|‖φn‖2 = δ−1

n |n|. (5.31)

From (5.29) and (5.26), we obtain

sgn(n)〈(Λa + P0)sa−1/2Ha1/2φn, φn〉 ≤ δ1−s
n |n|s.

Multiplying this inequality by |n|, we have

n〈(Λa + P0)sa−1/2Ha1/2φn, φn〉 ≤ δ1−s
n |n|s+1 =

( |n|
δn

)s
|n|δn.

With the help of (5.27) and (5.28), this gives

n〈(Λa + P0)sa−1/2Ha1/2φn, φn〉 ≤ |n|s〈Λaφn, φn〉. (5.32)

Inequality (5.32) holds for every n ∈ Z \ {0}. Together with (5.25), it means that
all summands on the right-hand side of (5.24) are non-negative. This proves (4.6) for
s ∈ (0, 1).

Equality in (4.6) implies that each summand in (5.24) is zero, which means equality in
(5.25). For n = 1 it implies 〈Λaφ1, φ1〉 = 1 and we conclude as before.

Part 6. Let s ∈ (−1, 0). We repeat our arguments of Part 5. Formula (5.24) is still
valid. But instead of (5.25) we have now the opposite inequality

〈(Λa + P0)s+1φn, φn〉 ≤ 〈Λaφn, φn〉s+1. (5.33)

Indeed, since 0 ≤ s+ 1 ≤ 1, we have to apply statement (2) of Lemma 5.2.
All our formulas in between (5.24) and (5.29) remain valid. But instead of (5.29) we

have now the opposite inequality

sgn(n)δ−1
n 〈(Λa + P0)sa−1/2Ha1/2φn, φn〉 = 〈Asu, v〉 ≥ 〈Au, v〉s. (5.34)

Indeed, we have to apply statement (3) of Lemma 5.2.
Formula (5.31) is still valid. From (5.31) and (5.34), we obtain

sgn(n)〈(Λa + P0)sa−1/2Ha1/2φn, φn〉 ≥ δ1−s
n |n|s.

Multiplying this inequality by |n|, we have

n〈(Λa + P0)sa−1/2Ha1/2φn, φn〉 ≥ δ1−s
n |n|s+1 =

( δn
|n|

)−s
|n|δn.

Substituting the value |n|δn = 〈Λaφn, φn〉 from (5.28), we arrive to the inequality

n〈(Λa + P0)sa−1/2Ha1/2φn, φn〉 ≥ |n|sδ−sn 〈Λaφn, φn〉.

Then, substituting the value δ−sn = |n|s〈Λaφn, φn〉−s from (5.28), we obtain

n〈(Λa + P0)sa−1/2Ha1/2φn, φn〉 ≥ |n|2s〈Λaφn, φn〉1−s.

We rewrite this in the form

n〈(Λa + P0)sa−1/2Ha1/2φn, φn〉 ≥ |n|2s〈Λaφn, φn〉s+1〈Λaφn, φn〉−2s
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and use the inequality 〈Λaφn, φn〉−2s ≥ |n|−2s that follows from (5.16) (recall that−2s > 0)
to obtain

n〈(Λa + P0)sa−1/2Ha1/2φn, φn〉 ≥ 〈Λaφn, φn〉s+1. (5.35)

Inequality (5.35) holds for every n ∈ Z \ {0}. Together with (5.33), it means that
all summands on the right-hand side of (5.24) are non-positive. This proves (4.7) for
s ∈ (−1, 0).

Equality in (4.7) implies that each summand in (5.24) is zero, which means equality in
(5.25). For n = 1 it implies 〈Λaφ1, φ1〉 = 1 and we conclude as before.

6. Proof of Theorem 1.3

6.1. A compactness lemma. Our proof of Theorem 1.3 heavily relies on invariance of
compact sets in C∞(S) under the flow of the equation (1.8). The compact sets can be
determined in terms of the Steklov zeta function and the determination takes its roots
from [7]. We have the following result.

Theorem 6.1. Let c = {ck}k∈N be a sequence of positive reals. The subset Kc of C∞(S),
defined by

Kc =
{

0 < b ∈ C∞(S) |
∫
S
b−1 =2π, b̂0 ≤ c0, ζb(−1) ≤ c1, ζb(−2m) ≤ cm+1, (m=1, 2, . . . )

}
,

(6.1)
is compact in C∞(S). In particular, there exists εc > 0 dependent on c0 and c1 such that

εc ≤ b ≤ ε−1
c for any b ∈ Kc. (6.2)

Additionally, for any positive integer m,

sup
b∈Kc
‖b‖Cm(S) ≤ Cm, sup

b∈Kc
‖Hb‖Cm(S) ≤ Cm (6.3)

with a constant Cm that depends on c0, . . . , cm+2 only.

The values Zm(b) = ζb(−2m) (m = 1, 2, . . . ) are the so-called zeta invariants of the
function b introduced in [11].

Proof. The proof mostly follows that of [7, Lemma 5.3] on the compactness of a Steklov
isospectral family of planar domains. We will stress only the differences between the latter
proof and the current proof of Theorem 6.1.

The main difference between the two proofs is the first step where one needs to control
the zeroth Fourier coefficient b̂0 and the uniform norm ‖ ln(b)‖∞. This was done by
Edward [3] and repeated in [7, Lemmas 5.1 and 5.2].

Here we provide details of the first step. The control of the zeroth Fourier coefficient is
granted by the definition of Kc:

0 ≤ b̂0 ≤ c0 for b ∈ Kc. (6.4)

Now we recall Kogan’s formula [9]:

ζb(−1) =
1

12π

2π∫
0

((b′(θ))2

b(θ)
− b(θ)

)
dθ = −1

6
b̂0 +

1

12π

2π∫
0

(
b′(θ)

)2

b(θ)
dθ, (6.5)

for a smooth positive function b on S.
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Now let b ∈ Kc. Combining (6.4), (6.5) and the definition (6.1) of Kc, we obtain

2π∫
0

(
b′(θ)

)2

b(θ)
dθ = 12π(ζb(−1) + b̂0/6) ≤ 2π(6c1 + c0). (6.6)

Then by Bunyakovsky-Cauchy-Schwarz inequality we have∫
S

| ln(b)′| =
∫
S

|b′|
b1/2

b−1/2 ≤
(∫

S

(b′)2

b

)1/2(∫
S
b−1

)1/2

≤ 2π(6c1 + c0)1/2.

We have used (6.6) and the normalization condition
∫
S b
−1 = 2π satisfied by any b ∈ Kc.

Then we prove a uniform control of the L1-norm of ln(b) with respect to the constants
c0 and c1. As in [3] we can conclude that

‖ ln(b)‖∞ ≤ 2π(6c1 + c0)1/2.

Indeed, the normalization condition also tells us that there exists θ0 ∈ [0, 2π) such that
b(θ0) = 1. We can assume without lost of generality that θ0 = 0, and we have

ln
(
b(θ)

)
=

∫ θ

0

ln(b)′(s) ds, | ln(b)(θ)| ≤ 2π(6c1 + c0)1/2
(
θ ∈ [0, 2π)

)
.

The first step is completed. Note also that the bound on ‖ ln(b)‖∞ provides the right
value for εc. Here εc = exp

(
− 2π(6c1 + c0)1/2

)
would fit in the second statement of the

theorem.
The second step is a repetition of the proof of [7, Lemma 5.3]. In the latter proof,

zeta invariants Zm(b) = ζb(−2m) have fixed values for b belonging to a specific subset
of C∞(S). Now we use that the zeta invariants of a function b ∈ Kc are bounded:
Zm(b) = ζb(−2m) ≤ cm+1. This is enough to conclude that

sup
b∈Kc
‖b‖Hm(S) ≤ Cm

for any m ∈ N with some constant Cm depending on c0, . . . , cm+1. We also observe that
‖Hb‖Hm(S) ≤ ‖b‖Hm(S) for any positive integer m and any b ∈ C∞(S). Then we use the
embedding of Hm+1(S) into Cm(S) to obtain (6.3). �

6.2. Basic properties of the flow (1.8). We will use the following basic statement for
the quadratic form on the right-hand side of (1.8).

Lemma 6.2. For a real function b ∈ C∞(S), define

B(b) = −b(Λb) + (Hb)(Db).
Then

B(b) = −4<(b+(Λb̄+)), (6.7)

where

b+(θ) =
b̂0

2
+
∑
k≥1

b̂ke
ikθ.

If b̂k = 0 for |k| > N with some N ∈ N, then also

(B̂(b))k = 0 for |k| > N (6.8)

and

(B̂(b))k = −k b̂0 b̂k +
∑

1≤l,m≤N, l−m=k

(l +m) b̂l b̂m (0 ≤ k ≤ N). (6.9)
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(By convention, a sum over an empty set is zero.)

Proof. Since b is a real function, b = b+ + b̄+, Hb = b+ − b̄+ and

−b(Λb) + (Hb)(Db) = −b(Λb) + (Hb)ΛHb
= −(b+ + b̄+)Λ(b+ + b̄+) + (b+ − b̄+)Λ(b+ − b̄+)

= −2b+Λb̄+ − 2b̄+Λb+ = −4<(b+(Λb̄+)).

This proves (6.7).

Assume now that b̂k = 0 for |k| > N . This means that

b+(θ) =
b̂0

2
+

N∑
k=1

b̂ke
ikθ, b̄+(θ) =

b̂0

2
+

N∑
k=1

b̂−ke
−ikθ

and we have

B(b) = −4<
[ b̂0

2

N∑
k=1

k b̂−k e
−ikθ +

∑
1≤k,l≤N

k b̂−kb̂l e
i(l−k)θ

]
.

Now (6.8) and (6.9) are obvious. �

We will also use the following property of the flow (1.8).

Lemma 6.3. Let I be a real interval and let α ∈ C∞(I, C∞(S)) be a real solution to (1.8).
Then the mean value

∫
S ατ is a non-increasing function of τ ∈ I and

∂

∂τ

∫
S
ατ = −4〈ατ,+,Λατ,+〉 (τ ∈ I). (6.10)

Additionally, if ∂
∂τ

∫
S ατ = 0 for some τ ∈ I, then ατ = (α̂τ )0 = const.

Proof. We average (1.8) and use (6.7) to obtain

∂

∂τ

∫
S
ατ = −4<

∫
S

(
ατ,+Λατ,+

)
= −4〈ατ,+,Λατ,+〉 ≤ 0.

The equality here holds if and only if ατ,+ is a constant function. �

The normalization condition (1.4) is preserved by the flow.

Lemma 6.4. Let α ∈ C∞(I, C∞(S)) be a solution to (1.8) on a real interval such that ατ
is a positive function for any τ ∈ I. Then

∫
S α
−1
τ is independent of τ .

Proof. We derive from (1.8)

∂α−1
τ

∂τ
= −α−2

τ

∂ατ
∂τ

= α−2
τ (ατΛατ −HατDατ ) = −α−2

τ (ατg
′
τ − gτα′τ ) = −

( gτ
ατ

)′
,

where gτ = iHατ . Averaging over S, we obtain

∂

∂τ

∫
S
α−1
τ =

∫
S

∂

∂τ
α−1
τ = −

∫
S

( gτ
ατ

)′
= 0.

�
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6.3. Reduction to a system of ODE’s. We prove here a weaker version of Theorem
1.3 such that the initial data for equation (1.8) have a finite amount of nonzero Fourier
modes.

Theorem 6.5. Assume a positive function a ∈ C∞(S) to satisfy the normalization con-
dition (1.4) and to be such that âk = 0 for |k| > N with some N ∈ N. Then there exists
a unique smooth path α ∈ C∞([0,∞), C∞(S)) of positive functions such that

α0 = a, (6.11)

∂ατ
∂τ

= −ατ (Λατ ) + (Hατ )(Dατ ) for τ ∈ [0,∞), (6.12)

(α̂τ )k = 0 for τ ∈ [0,∞) and |k| > N. (6.13)

Additionally, if Kc is a compact set in C∞(S) defined by (6.1) for some sequence {ck}k∈N
of positive reals such that

c0 ≥ â0, c1 ≥ ζa(−1), cm+1 ≥ ζa(−2m) (m ∈ N\{0}),

then ατ ∈ Kc for any τ ∈ [0,∞).

Proof. Of course a ∈ Kc and we denote by εc the constant that appears in (6.2).
Now, let v ∈ Kc be such that v̂k = 0 for |k| > N . We consider the differential equation

(6.12) with the initial data v. Due to (6.9), we translate (6.12) into the system of ODE’s
for Fourier coefficients of the smooth path α:

∂αk,τ
∂τ

= −k α0,ταk,τ +
∑

1≤l,m≤N, l−m=k

(l +m)αl,τ αm,τ (0 ≤ k ≤ N, τ ∈ R) (6.14)

with the initial conditions

αk,0 = v̂k (0 ≤ k ≤ N). (6.15)

Observe that (6.14) is a Riccati type system, i.e., its right-hand side is quadratic in the
unknowns. Standard facts of ODE’s theory give us the following statement on the local
existence of a solution:

Lemma 6.6. Given an integer N ∈ N and εc > 0, there exists δN = δN(εc) > 0 such that
the following statement is true.

For every sequence ρ = (ρk)0≤k≤N ∈ CN+1 satisfying sup0≤k≤N |ρk| ≤ ε−1
c , system (6.14)

has a unique solution

α̃ρ = (α̃0,τ,ρ, . . . , α̃N,τ,ρ) ∈ C∞((−δN , δN),CN+1)

satisfying the initial condition α̃ρ(0) = ρ.

The dependance of δN on εc is not designated explicitly since εc is fixed in our further
arguments.

We apply Lemma 6.6 to ρ = (v̂k)0≤k≤N and then define

ατ,v(θ) = α̃0,τ,ρ +
N∑
k=1

(α̃k,τ,ρ e
ikθ + α̃k,τ,ρ e

−ikθ).

The path ατ,v belongs to C∞((−δN , δN), C∞(S)) and α0,v = v. The path satisfies (6.13)
for τ ∈ (−δN , δN). Due to Lemma 6.2, the path also satisfies equation (6.12) for τ ∈
(−δN , δN).
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We are going to prove that ατ,v ∈ Kc for any τ ∈ (0, δN). First we use Lemma 6.3 to
obtain ∫

S
ατ,v ≤

∫
S
α0,v =

∫
S
v ≤ c0.

Then we set Tv = sup{s ∈ (0, δN) | αs,v is a positive function}. By Lemma 6.4,∫
S
α−1
τ,v =

∫
S
α−1

0,v =

∫
S
v−1 = 2π

for τ ∈ [0, Tv). Then we can apply Corollary 4.3 to obtain

ζατ,v(−1) ≤ ζv(−1) ≤ c1, ζατ,v(−2m) ≤ ζv(−2m) ≤ cm+1 (m ∈ N).

Therefore ατ,v ∈ Kc for τ ∈ (0, Tv). In particular, by (6.2),

ατ,v ≥ εc for τ ∈ (0, Tv).

Hence we necessarily have Tv = δN .
Now, we are going to prove that the solution ατ,v can be extended to all positive times

τ . To this end we introduce the one-parametric family of continuous maps

ϕτ : Kc ∩ FN → Kc ∩ FN , v 7→ ατ,v (0 ≤ τ < δN),

where FN denotes the (2N + 1)-dimensional subspace of C∞(S) consisting of smooth

functions f such that f̂k = 0 for |k| > N . By the well known group property of a solution
to the Cauchy problem for ODE’s,

ϕτ1+τ2 = ϕτ1 ◦ ϕτ2 for τ1, τ2 ∈ [0, δN), τ1 + τ2 < δN .

Now, representing an arbitrary τ ≥ 0 as τ = τ1 + · · · + τp with τi ∈ [0, δN) (1 ≤ i ≤ p),
we define

ϕτ = ϕτ1 ◦ · · · ◦ ϕτp : Kc → Kc.
Then ατ,v = ϕτ (v) is well defined for all τ ≥ 0.

Uniqueness of the solution α to the Cauchy problem (6.11)–(6.13) follows from the local
uniqueness of Lemma 6.6. �

6.4. Convergence as τ → +∞.

Theorem 6.7. Let a positive function a ∈ C∞(S) satisfy the normalization condition
(1.4). Let α ∈ C∞([0,∞), C∞(S)) be a deformation of a satisfying equation (1.8). Let Kc
be a compact set in C∞(S) defined by (6.1) for a sequence c = {ck}k∈N of positive reals
such that

c0 ≥ â0, c1 ≥ ζa(−1), cm+1 ≥ ζa(−2m) (m ∈ N\{0}).
Then α possesses the following properties:

(1) for all k,m ∈ N the estimate

sup
τ∈[0,+∞)

∥∥∥∥∂kατ∂τ k

∥∥∥∥
Cm(S)

≤ Cm,k (6.16)

holds with a constant Ck,m that depends on k,m and the constants c0, . . . , ck+m+2;
(2) ατ converges to the constant function 1 in C∞(S) as τ → +∞.

Proof. Repeating our arguments from the proof of Lemma 6.6, we prove that ατ ∈ Kc
for any τ ∈ [0,+∞). Therefore (6.16) holds for k = 0. A similar estimate holds for Hατ
in place of ατ . Then we prove the estimate (6.16) for any k by induction on k and by
iterative differentiation of the equation (6.12).
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Now we prove the second property. Let {τk}k∈N be an increasing sequence of positive
reals such that τk → +∞ as k → +∞. Since Kc is a compact in C∞(S), there exists a
subsequence {τkn}n∈N such that ατkn converges in C∞(S) to some function α∞. We are
going to prove that α∞ = 1. Since the limit α∞ is then unique, this would prove the
second statement of the theorem.

Since ατ > 0 and
∫
S α
−1
τ = 2π for any τ ≥ 0, we have by the Bunyakovsky-Cauchy-

Schwarz inequality

1 ≤ (2π)−2

∫
S
α−1
τ

∫
S
ατ = (2π)−1

∫
S
ατ .

Therefore

η = inf
τ∈[0,+∞)

∫
S
ατ ≥ 2π. (6.17)

We also recall that
∫
S ατ is a non-increasing function of τ (see Lemma 6.3). Hence

η = lim
k→+∞

∫
S
ατnk =

∫
S
α∞.

First assume that α∞ is not a constant function. Then

〈α∞,+,Λα∞,+〉 > 0.

Hence, by (6.10),

∂
∫
S ατ

∂τ

∣∣∣∣
τ=τnk

= −4〈ατnk ,+,Λατnk ,+〉 → −4〈α∞,+,Λα∞,+〉 < 0 as k →∞. (6.18)

Then using (6.16) we obtain that

sup
τ∈(0,∞)

∣∣∣∂2
∫
S ατ

∂τ 2

∣∣∣ ≤ C (6.19)

with some positive constant C that depends on Kc.
Estimates (6.18) and (6.19) prove the existence of k0 ∈ N, δ > 0 and r > 0 such that∫

S
ατnk+δ ≤

∫
S
ατnk − r

for any k ≥ k0. Hence η = −∞ since
∫
S ατ is non-increasing in τ . This contradicts (6.17).

We have proved that α∞ is a constant function. The normalized condition (1.4) is
preserved along the path α, and we obtain α∞ = 1. �

6.5. Final step. We prove Theorem 1.3. Let a positive function a ∈ C∞(S) satisfy the
normalization condition (1.4).

Let us recall the algebraic definition [11] of zeta invariants ζb(−2m) (m = 1, 1, . . . ) for
a positive function b ∈ C∞(S):

ζb(−2m) =
∑

j1+···+j2m=0

Nj1...j2m b̂j1 b̂j2 . . . b̂j2m ,

where, for j1 + · · ·+ j2m = 0,

Nj1...j2m =
∞∑

n=−∞

[
|n(n+ j1)(n+ j1 + j2) . . . (n+ j1 + · · ·+ j2m−1)|

− n(n+ j1)(n+ j1 + j2) . . . (n+ j1 + · · ·+ j2m−1)
]
.

(6.20)
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There is only a finite number of nonzero summands on the right-hand side of (6.20) since
the expression

f(n) = n(n+ j1)(n+ j1 + j2) . . . (n+ j1 + · · ·+ j2m−1)

is a polynomial of degree 2m in n which takes positive values for sufficiently large |n|.
Now the function a is positive. Hence there exists N0 ∈ N such that for N ≥ N0∑

|n|≤N

âke
ikθ > 0 (θ ∈ R).

We set
a(N)(θ) = cN

∑
|n|≤N

âke
ikθ (N ≥ N0), (6.21)

where cN is determined by the normalized condition∫
S

( ∑
|n|≤N

âke
ikθ
)−1

= 2πcN . (6.22)

We also recall that âk = O(|k|−∞) as k →∞ since a is a smooth function.
By Kogan’s formula (6.5), (6.22) and the algebraic definition (6.20) of zeta invariants,

lim
N→+∞

ζa(N)(−1) = ζa(−1), lim
N→+∞

ζa(N)(−2m) = ζa(−2m) (m = 1, 2, . . . ). (6.23)

Let N1 ≥ N0 be large enough. By (6.23) we can choose δN1 > 0 such that

(̂a(N))0 ≤ c0 = â0 + δN1 ,

ζa(N)(−1) ≤ c1 = ζa(−1) + δN1 ,

ζa(N)(−2m) ≤ cm+1 = ζa(−2m) + δN1

for 1 ≤ m ≤ 2N1 and N ≥ N0.
Now, consider the compact set K(N)

c in C∞(S) defined by the sequence (c
(N)
m )m∈N that

is defined as follows:

c(N)
m = cm for 0 ≤ m ≤ 2N1 and c

(N)
k+1 = ζa(N)(−2k) for k ≥ 2N1 + 1. (6.24)

We apply Theorem 6.5 to a(N) and K(N)
c : There exists a path α(N) ∈ C∞([0,∞), C∞(S))

that converges in C∞(S) to 1 as τ → +∞ and satisfies (6.12)–(6.13) with the initial

condition α
(N)
0 = a(N). Additionally, the estimate

sup
τ∈[0,+∞)

∥∥∥∂kα(N)
τ

∂τ k

∥∥∥
CN1−1(S)

≤ CN1,k (6.25)

holds for any 0 ≤ k ≤ N1 − 1, where the constant CN1,k depends on N1, k and constants

c0, . . . , c2N1+1 given in the definition of K(N)
c .

Estimate (6.25) shows the existence of a subsequence (α(Nk))k∈N that converges to some
α ∈ CN1−2([0,∞), CN1−2(S)) in the space CN1−2([0,∞), CN1−2(S)). Passing to the limit
in (1.8), we see that α solves (1.8) with the initial condition

lim
N→∞

α(N)(0) = lim
N→∞

a(N) = a

(the limits are taken in CN1−2(S)). Since N1 is arbitrary and since the α(N)’s do not
actually depend on N1, we obtain that

α ∈ C∞([0,∞), C∞(S)).

The solution α satisfies all statements of Theorem 1.3. �
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7. Concluding remarks

In our previous work [6], the inequality ζa(s) − 2ζR(s) ≥ 0 was proved for all real s
satisfying |s| ≥ 1. The proof was based on inequalities (5.16)–(5.17) and essentially used
the convexity of the function x 7→ xs (x ≥ 0) for s ≥ 1. Together with (5.16)–(5.17), the
convexity gives

〈(Λa + P0)sφn, φn〉 ≥ |n|s, 〈(Λa + P0)−sφn, φn〉 ≥ |n|−s (n ∈ Z\{0}, s ≥ 1).

These inequalities are definitely wrong for s ∈ (0, 1). Otherwise we would have

〈ln(Λa + P0)φn, φn〉 = ln |n| (n ∈ Z\{0}).
But a computations in a neighborhood of a = 1 shows that the inequalities do not hold
in the general case.

In the current work, we have developed an alternative approach for proving the inequal-
ity ζa(s)− 2ζR(s) ≥ 0 for all s ∈ R.

Let us reproduce equation (1.8)

∂ατ
∂τ

= −ατ (Λατ ) + (Hατ )(Dατ ) (7.1)

together with the initial condition
α0 = a. (7.2)

Observe that (7.1) is a Riccati type equation with non-local quadratic terms. We have
proved the global existence of a solution to the Cauchy problem (7.1)–(7.2) at least for a
positive function a ∈ C∞(S). But the corresponding uniqueness question remains open.

Another Riccati type equation with non-local quadratic terms is well known in the layer
stripping method for Electrical Impedance Tomography, see [1] and references therein. To
our knowledge, the uniqueness and global existence of a solution to the Cauchy problem
for the latter equation are proved in the radially symmetric case only. Nevertheless,
in more general cases, some numerical methods are developed which are based on the
equation.
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