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AN ESTIMATE FOR THE STEKLOV ZETA FUNCTION OF A
PLANAR DOMAIN DERIVED FROM A FIRST VARIATION
FORMULA

ALEXANDRE JOLLIVET AND VLADIMIR SHARAFUTDINOV

ABSTRACT. We consider the Steklov zeta function (g of a smooth bounded simply con-
nected planar domain  C R? of perimeter 2. We provide a first variation formula for
(o under a smooth deformation of the domain. On the base of the formula, we prove
that, for every s € (—=1,0) U (0, 1), the difference (o (s) — 2¢r(s) is non-negative and is
equal to zero if and only if 2 is a round disk ((g is the classical Riemann zeta function).
Our approach gives also an alternative proof of the inequality (o(s) — 2¢r(s) > 0 for
s € (—o00,—1] U (1, 00); the latter fact was proved in our previous paper [2018] in a dif-
ferent way. We also provide an alternative proof of the equality ((,(0) = 2{j(0) obtained
by Edward and Wu [1991].

1. INTRODUCTION

Let 2 be a simply connected planar domain bounded by a C*°-smooth closed curve 0f).
The Dirichlet-to-Neumann operator of the domain

Ag 1 C(09) = C=(99)

is defined by Aq f = % ’ a0 Where v is the outward unit normal to J€2 and w is the solution
to the Dirichlet problem

Au=0 in Q, wulsgo=7F
The Dirichlet-to-Neumann operator is a first order pseudodifferential operator. Moreover,
it is a non-negative self-adjoint operator with respect to the L?-product

(u,v) = /m—)ds,

o0

where ds is the Euclidean arc length of the curve 0f). In particular, the operator Ag has
a non-negative discrete eigenvalue spectrum

where each eigenvalue is repeated according to its multiplicity. The spectrum is called
the Steklov spectrum of the domain €2. Steklov eigenvalues depend on the size of €2 in the
obvious manner: A\ (cQ) = ¢ '\ (Q) for ¢ > 0. Therefore it suffices to consider domains
satisfying the normalization condition

Length(0Q2) = 2. (1.1)
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2 ALEXANDRE JOLLIVET AND VLADIMIR SHARAFUTDINOV

Under condition (1.1), Steklov eigenvalues have the following asymptotics [2, Theo-
rem 1]:

() = V:+1

TJ +O(l€_oo) as k — o0, (12)

where |z | stands for the integer part of x € R. Due to the asymptotics, the zeta function
of the domain 2

Gals) = TriAG") = 3 ()
k=1
is well defined for Rs > 1. Then (g extends to a meromorphic function on C with the
unique simple pole at s = 1. Moreover, the difference (o(s) — 2¢g(s) is an entire function
[2], where (g(s) = > 2, n* is the classical Riemann zeta function. Observe also that
Ca(s) is real for a real s.
The main result of the present paper is the following

Theorem 1.1. For a smooth simply connected bounded planar domain €2 satisfying the
normalization condition (1.1), the inequality

Cals) = 2¢r(s) 2 0 (1.3)
holds for every real s. Moreover, if the equality in (1.3) holds for some real s # 0, then
Q is the round disk of radius 1.

Inequality (1.3) was proved for a real s satisfying |[s| > 1 in [6, Theorem 1.1]. We
present a proof of Theorem 1.1 which is independent of [6] but heavily depends on the
compactness arguments of [7].

As a corollary of Theorem 1.1 and of the equality (o(0) — 2(g(0) = 0, we obtain an
alternative proof of the equality ((,(0) = 2(j(0) obtained in [4].

Now, we discuss an alternative approach to the same problem which is of a more
analytical character.

Let S = 0D = {e?} C C be the unit circle. The Dirichlet-to-Neumann operator of the
unit disk D = {(x,y) | 22 +y* < 1} will be denoted by A : C>=(S) — C>=(S), i.e., A = Ap.
The alternative definition of the operator is given by the formula Ae™® = |n|e™ for an
integer n. For a function b € C°°(S), we write b(f) instead of b(e?) and use the same
letter b for the operator b : C*°(S) — C*°(S) of multiplication by the function b.

Given a positive function a € C*(S), the operator A, = a'/?Aa'/? has the non-negative
discrete eigenvalue spectrum

Sp(Aa> = {0 = )\0(&) < )\1(&) < )\2(@) <.. }

which is called the Steklov spectrum of the function a (or of the operator A,).

Two kinds of the Steklov spectrum are related as follows. Given a smooth simply
connected planar domain €2, choose a biholomorphism ® : D — 2 and define the function
0 < ae C®S) by a(@) = |®(?). Let ¢ : S — IO be the restriction of ® to S.
Then A, = a '/2¢*Aq ¢*'a'/? and Sp(A,) = Sp(Q). Two latter equalities make sense
for an arbitrary positive function a € C*(S) if we involve multi-sheet domains into our
consideration. See [5, Section 3] for details. Theorem 1.1 is true for multi-sheet domains
as well. The normalization condition (1.1) is written in terms of the function a as follows:

2

1 [ do
%O/m =1 (1.4)
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The biholomorphism & of the previous paragraph is defined up to a conformal transfor-
mation of the disk D, this provides examples of functions with the same Steklov spectrum.
Two functions a,b € C*°(S) are said to be conformally equivalent, if there exists a confor-
mal or anticonformal transformation ¥ of the disk D such that b = |di/df| a0 ¢, where
the function ¢ () is defined by @ = W(e?) (¥ is anticonformal if ¥ is conformal). If
two positive functions a,b € C*°(S) are conformally equivalent, then Sp(a) = Sp(b).

Under condition (1.4), Steklov eigenvalues A;(a) have the same asymptotics (1.2). The
zeta function of a is defined by

G(s) = AT = 3 () ™ (1.5)
k=1
for R(s) > 1. It again extends to a meromorphic function on C with the unique simple
pole at s = 1 such that (,(s) — 2(r(s) is an entire function.
The analytical version of Theorem 1.1 sounds as follows:

Theorem 1.2. For a positive function a € C®(S) satisfying the normalization condition
(1.4), the inequality

Ca(s) — 2C¢r(s) >0 (1.6)
holds for every real s. Moreover, the equality in (1.6) holds for some real s # 0 if and
only if a is conformally equivalent to 1 (= the constant function identically equal to 1).

The second statement of the theorem is not true for s = 0 since (,(0) = 2{z(0) = —1 for
every positive function a € C*°(S) satisfying the normalization condition (1.4). Observe
also that (; = 2(R.

Theorems 1.1 and 1.2 are equivalent if multi-sheet domains are involved into Theo-
rem 1.1 (see [6] for instance).

We use the derivative D = —iL : C(S) — C>(S). The Hilbert space L*(S) is

considered with the standard scalar product

(1, v) = / w(0)0(8) db.
s
The Hilbert transform H is the linear operator on L*(S) defined by
H(1) =0, He™ =sgn(n)e™ for an integer n # 0.

(We emphasize that H differs from the operator H that is also called the Hilbert transform
in [7]. In particular, H is a unitary operator while H has the one-dimensional kernel
consisting of constant functions.)

Our proof of Theorem 1.2 is based on a clever deformation of the function a. A real
function a € C*((—¢,¢£) x S) is called a deformation (or variation) of a positive function
a € C(S) if «(0,0) = a(f). For such a deformation; the function o, € C*(S), defined by
a,(0) = a(r,0), is positive for sufficiently small |7|. Without lost of generality (choosing
a smaller ¢ > 0) we will assume that «, is positive for all 7 € (—¢,¢). Then the zeta
function (,, is well defined. In Sections 2-3 we will prove that (.. (z) smoothly depends
on (z,7) for 1 # z € C and will compute the derivative 84“8—;(2) (Lemma 3.6). We will also
prove that (,, (z) is continuous in 7 for 1 # z € C when «a, (belonging to C*°(S)) is only
continuous in 7. The rest of the paper is devoted to the proof of the following statement

Theorem 1.3. Given a positive function a € C*°(S) satisfying the normalization condi-
tion (1.4), there exists a deformation o, (0 < 7 < 00) of a such that
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(1) for every T € [0,00), the function o, is positive and satisfies the same normalization
condition

/0471(9) df = 2m; (1.7)
S
(2) the deformation satisfies the equation

oo,
or

(3) the derivative 84‘5—;(8) is mon-positive for every real s and every T € [0,00);

(4) a; converges to 1 as T — 0o in the C™-topology of C*(S).

Moreover, if 84‘5—;(5) = 0 for some 0 # s € R and for all T € [0,00), then a is
conformally equivalent to 1.

= —a,(Aar) + (Ha:)(Day)  for 7€ [0,00); (1.8)

Remark. The right-hand side of the formula

Pacl) _ D (¢, ()~ 26(s)

makes sense for any s € C since (,, — 2(p is an entire function. In virtue of the formula,
the derivative 8%—;(8) is well defined for all s € C although the zeta function (,_(s) is not
defined at the pole s = 1.

Theorem 1.2 follows from Theorem 1.3 as is shown in Section 4.

2. ASYMPTOTIC BEHAVIOR OF EIGENVALUES AND EIGENSPACES

2.1. Uniform asymptotics of the Steklov eigenvalues. For a positive function a €
C*(S), we introduce the operator D, = a*/?Da'/?. Recall also that A, = a*/?Aa'/?.

Let o, (—e < 7 < €) be a deformation of a positive function a € C*(S). Recall that
the function «, is assumed to be positive for every 7 € (—¢,¢). Smooth deformations
a € C“((—e,s) X S) are used in the most part of the paper. But in Section 4 for our
main results, we will need a continuous deformation o € C°((—¢,¢),C*(S)) which can
be not smooth. Therefore we assume now that o € C'((—¢,¢), C>(S)) with some integer
0 <1 < oo. We also assume that both a and «, satisfy the normalization conditions (1.4)
and (1.7) respectively.

Given a deformation a, of a function a, we introduce the operators

A=Al +I, B.=D2 +1, A=A —B,

where I is the identity operator. By [5, Section 5.4], the commutator [c,, H] is a smoothing
operator with the Schwartz kernel

6—0

K(r,0,0) = %(%(9) — a,(0)) cot

Therefore A, = oY QDH[&T,’H]Dai/ ? is also a smoothing operator with the Schwartz
kernel

K(r,0,0) = a}/2(6) (HQDQDQ,MT, 0, 9'))@2(9'). (2.1)
For n € Z and 7 € (—¢,¢), we define the function ¢, , € C*(S) by

bno(0) = )2 0) ™ exp [in [ 75105 2:2)
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By [6, Lemma 2.1], {¢y, - } ., 1s the orthonormal basis of L*(S) consisting of eigenfunctions
of the operator D, such that D, ¢, , = n¢, .. For | € N, let us denote uy , = ¢, and
Ugit1,r = $—1- and we also denote ug = ¢ -

Let Sp(Aa,) =4{0 = Xor < A1 < Aor < ...} be the eigenvalue spectrum of the opera-
tor A,,. We repeat Edward’s argument [2, Theorem 1] to prove the following statement.

Lemma 2.1. Let a € C°((—¢,e),C>(S)) be a continuous deformation of a positive
function a € C(S) such that every o, is also a positive function. Assume a and o,
to satisfy the normalization conditions (1.4) and (1.7) respectively. Then the following
uniform asymptotics holds for every e’ € (0,¢):

sup | Ao — L(k+1)/2]| =O0(k™) as k— oo.

TE[—€ €]

Proof. We recall the following min-max principle. For £ € N

(Ar¢, 0),

Not1= max min
) codim Ex=k ¢€Ek7||¢HL2(S):1

E+1)/2]*+1= max min B.o, ).
(4 D2P 4 1= e min (50,9

For ¢ € L*(S)
<AT¢7 ¢> = <B7—¢, ¢> + <AT¢7 ¢>

Therefore for any subspace Fj, of codimension &

A+ 1 > min B.o, o) + min AL, D).
k, pELy, H¢”L2(§>:1< ¢ gb) PELY, ||¢HL2<§):1< gb ¢>

Taking Ej, the subspace of codimension k spanned by the eigenvectors {u; };>x of B, we
obtain

M, Lk+D/22>  min (A6.0).

T GEEL, ||¢HL2(S):1

Since A, is a smoothing operator, A, B! is a bounded operator for any | € N and its
operator norm is bounded uniformly in 7 € [—¢’, '] by some constant C} since its Schwartz
kernel is a continuous function on (—¢ x €) x S x S. Hence for any ¢ € Ej satisfying

10l z2s) = 1,
[(Arg,¢)| = [(A-B. B, ¢)| < Gl B ¢l 12s)-

Then we use that, for a unit vector ¢ of the subspace Fj spanned by the eigenvectors
{ul}lzk of BT, we have ||B;l¢|lL2(S) < 4k,
We have thus obtained the estimate
AL+ Lk +1)/2) <40 K2
We can transpose the roles played by A, and B, to obtain the estimate

where Cj stands for a uniform bound of the operator norm of A, AL. g
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2.2. Continuity of Steklov eigenvalues in 7. Eigenvalues of the compact self-adjoint
operator
F, = (Ao, + )71 L*(S) — L(S)

are (A, +1)7! <1 (k € N). If one proved that the eigenvalues are continuous in 7, then
the Steklov eigenvalues Ai . would be also continuous in 7. The proof relies on auxiliary
lemmas presented below. The lemmas deal with C'-regularity with respect to 7 while
only the case [ = 0 is needed for continuity of eigenvalues. However the lemmas will be
used in a broader context in next sections.

Given a C'-deformation «a, of a positive function a, the operator A,. : C®(S) —
C>=(S) depends C'-smoothly on 7. In the case of [ > 1, we differentiate the equality

A, = o *Aa¥? with respect to 7 to obtain

OA,,  10In(ar) 1, OJln(ar)
or 2 Or AaT+2AaT or

Similar formulas hold for higher order derivatives 82?,‘? for k <.

Recall that the Sobolev space H*(S) can be defined for s € R as the completion of
C>(S) with respect to the norm || f||zs(s) = [[(D* 4+ 1)*/2f||12(s). Let L(H*(S), H*(S)) be
the Banach space of all bounded operators H*(S) — H*(S) furnished with the operator
norm.

(2.3)

Lemma 2.2. Letl be either a non-negative integer or oo. Let o € CZ((—s, £), COO(S)) be a
deformation of a positive function a € C*(S) such that every c, is also a positive function.
Assume a and o to satisfy the normalization conditions (1.4) and (1.7) respectively. Then
(1) For every real s and for every T € (—e¢,¢), the operator A,. belongs to the space
L(H*(S), H7Y(S)) and the function T — A, belongs to C'((—¢, ), L(H*(S), H*71(S))).
(2) Similarly, the operator-valued function F, € L(H*(S), H*"Y(S)) is of the class C!
inT.

Proof. The operator A, is a partial case of more general operators of the form

S(T)Afa(7),
where f; € C'((—¢,¢),C>(S)) (i = 1,2). The operators of multiplication by f;(T) can be
extended to bounded operators in any H*(S) and these bounded operators are of class C'
in 7. Note also that A is a bounded operator from H*(S) to H*~!(S). Hence the family

of bounded operators A,. € L(H*(S), H*~(S)) is of class C! in 7. In the case [ > 1, the
first derivative with respect to 7 is expressed by the formula

9f1(7) 0f2(7)
5 Afo(T) + fi(T)A 5

Now, we prove the second statement. The operator F. is the inverse of the operator
A, + I which belongs to L(H*TL(S), H*(S)) and is of the class C' in 7. Let us explain
why F is a continuous operator-valued function (the case [ = 0). This is based on the

inversion formula by Neumann series: If 7 is close enough to 7y € (—¢,¢), then the norm
of the operator (Aa, — Ao, ) Fry 0 H*(S) — H*(S) is less than 1 and

Ao, +1 = ((Aa, = Ao, ) Fry + 1) (A, +1).

ar

This gives

F.=F, i(—l)k((AaT — A ) Fr)".

k=0
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This formula also provides that F is of the class C' in 7 when [ > 1, and its derivative is
given by the formula

OF, O\,
or = o i

g

In the case of | = s = 0, we apply the min-max principle to the compact self-adjoint
operator F, in L*(S) to obtain the following’

Corollary 2.3. Under hypotheses of Lemma 2.2 with | = 0, Steklov eigenvalues Ay . are
continuous in T.

2.3. Asymptotics of the Steklov eigenvectors. We still consider a deformation «, of
a positive function a € C*°(S) satisfying hypotheses of Lemma 2.2 with some [ € NU{oo}.
For every 7 € (—¢,¢), let { ¥}, }ren be an orthonormal basis of L*(S) consisting of Steklov
eigenvectors for A, such that Ay, Wy, = A Wy -

For a positive integer k, we denote by PL% I the orthogonal projection of L*(S)
onto the two-dimensional eigenspace of | D, | spanned by the vectors ¢ LB that are

defined by (2.2). For k = 0, the operator P, is the orthogonal projection onto the
one-dimensional space spanned by ¢ .

Lemma 2.4. Under hypotheses of Lemma 2.2 with some | € N U {oo}, the following
uniform asymptotics holds for every ' € (0,¢) and for every s € R:

mss) = O(k™) as k — oo. (2.4)

sup Wy — Pega ) W]

TE€[—¢e’ ]

Proof. 1t suffices to prove the statement for s = m € N. We start with proving (2.4) for
s =0.
The equality ¥y, = ZPGN P, ¥, can be written in the form

\Ijkﬂ' - PL%JJ\IJIC,T = Z Pp;r\llkﬂ“

p#| EEL
Since summands on the right-hand side are orthogonal to each other,
1y = Plesy Wi lfo = D 1P ¥irlliae): (2.5)
p# 55 ]

For any r € N, A, = Ai’; — ng; is a smoothing operator whose operator norm is
bounded uniformly in 7. We rewrite the identity A2 Wy . = AZ/ Wy - as follows:

Ay Upr = (N = PP Uy (2.6)
peN
Since summands on the right-hand side are orthogonal to each other, (2.6) implies

1Az Crrl? = AR = Lk + 1)/2) V1 Pasa ) Ter P+ Y (AR = 071 B W |

p#| 5 ]

'We cannot get a better statement than continuity for the eigenvalues. Take for instance the family of
2 + cos(T) 0
0 2 + sin(7)
and A_(7) = min(2 4+ cos(7), 2 + sin(7)) are not derivable at 7 = 7/4 although the family G is a smooth
family of bounded operators in 7. See also [8, Chapter 2, Section 5, example 5.9, p. 115].

bounded operators G, = ) . The eigenvalues A, (1) = max(2+cos(7), 2+sin(7))
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(all norms are L?*(S)-norms). By Lemma 2.1, the first term on the right hand side is
bounded uniformly in 7 € [—¢’,&'] for sufficiently large k. Hence there exist a rank N;
and constant C' (independent of k) such that

sup Y (A =P Ul P < C for k> Ny (2.7)
Tl e

Let us represent the difference A" — p*" in the form

)\z? P = (s _p)()\i? 1 >\2r 25 4o g p¥ L,
From this

(N =P7)* = (s = PPN
By Lemma 2.1, the second factor on the right-hand side is close to (k/2)* 2 for sufficiently

large k while the first factor is not less than 1+ O(k™1) for p # |(k + 1)/2]. In other
words, there exist a rank Ny and constant ¢ > 0 (independent of k) such that

inf (AN —p™ )2 >k for k> Ny (2.8)
Te[—e'e], pAEL]
Combining (2.7) and (2.8), we see that
K2 sup Z 1P Wk ||? < c'C.
el e
Together with (2.5), this implies
/{Z4T_2 sup ||\Ifk7— - PLkJrl \IJ]M—HLQ C Cl.

TE[—€' €]

Since r is arbitrary, the statement is proved for s = 0.
Now, we prove (2.4) for s = m € N. Applying the operator D2™ to both sides of (2.6),
we obtain
DiTAT,T\Ijk,T = szm()\%; - p2r)Pp,T\Ijk,T'
peEN
Since summands on the right-hand side are orthogonal to each other, this implies

IDST Ay Wi |* = [ (K + 1)/2J4m(A2’" — Lk +1)/2P) | Pl -

+ Z >‘ - Hp2mpp,qukﬂ"|2
p#AL )

(all norms are L*(S)-norms). Again D2"A., is a smoothing operator whose operator
norm is bounded uniformly in 7, and [ (k+1)/2]*™ (A, — [(k+1)/2/*")? is also uniformly
bounded in 7 for sufficiently large k. Applying the same reasoning as above we obtain
that there exists a rank N and constant C' such that

sup Z 1p*" P, U, |? < CK** for k> N,

mel=ehe] p# 5 ]

ie.,
sup ||DZ™ (U, — PLMJT\I/M)HLQ < CkK* for k> N. (2.9)

TE[—€ €]
We conclude the proof as follows. Given m € N, there exists a constant C such that

ID*" 125y < CLI D27 bllLas) + 0l Z2s) (2.10)
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for any ¢ € C*(S) and any 7 € [—¢’,&']. Combining estimates (2.9), (2.10) and the
statement for “m = 0", we obtain the existence of Ny € N and constant (5 such that
sup || D*" (Prr — Plas ) W) |I* < Cok®>™ for k> N,.
TE[—¢el €] '

Since r is arbitrary, the asymptotics (2.4) is proved for s = 2m. [l

3. THE STEKLOV ZETA FUNCTION Caf AND ITS FIRST AND SECOND VARIATIONS WITH
RESPECT TO T

We again consider a deformation «, of a positive function a € C*°(S) satisfying hy-
potheses of Lemma 2.2 with some | € NU {oco}. Hypotheses of all statements in this
section coincide with that of Lemma 2.2. The hypotheses are not written explicitly for
brevity.

3.1. The resolvent operator on the positive semi-axis. For 7 € (—¢,¢), let Py, :

L3(S) — L*(S) be the orthogonal projection onto the one-dimensional subspace spanned

by ¢or = (27r)_1/2a;1/2. Then P, is the C' 7-smooth family of projectors. When [ > 1
its derivative with respect to 7 is expressed by

o, 1 8ln(aT)P 1 Oln(a,)

or =3 o Dl

In particular, Py, € C'((—e¢,¢), L(H*(S), H*T1(S)) for any s € R.

When [ > 1 the derivatives mgéf and 8?‘} are pseudodifferential operators of order 2

whose symbols are degenerate. Lemma 2.2, together with the equality

ONZ ON,.  OA,,

or Mg T gr B
implies that A2 € C'((—¢,e), L(H*"*(S), H*(S)) for any s € R. Similarly D? €
CY(—¢,¢e), LIH*T2(S), H*(S)).

Observe that AiT is a non-negative self-adjoint operator whose kernel coincides with
the one-dimensional space spanned by ¢q .. Therefore, for every A > 0, the operator
AiT + Py + A has the bounded inverse. We consider the family of positive bounded
operators

. (3.1)

G(r,\) = (Ai +Por+ A7 (1)) € (—¢,¢) x [0,00). (3.2)
We start with the following statement.

Lemma 3.1. For every s € R and every 7 € (—¢,¢), the operator G(1,\) belongs to
L(H(S), H**2(S)) and the function

T ()\ — G(r, )\))
belongs to C'((—¢, ), C>([0, +00), L(H*(S), H**2(S)))). Moreover,

oG 2 O0G N2 + Py,) .
- - _ - = — —ar fi>1. .
() = (G SN = G )T NG( ) >1 (33)
In addition, for every ¢’ € (0,¢),
sup |G (7, Ml 2mss),m5+2(s)) < 0 (3.4)
(1,\)€[—¢’,e"]x[0,00)
and
amr‘rsz
su 1—1—)\H— T,AH < 00 3.5
(T,A)E[—E’B]X[O,oo)( ) 87—m1a)\m2< ) L(H*(S),H*T2m2(8)) ( )
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for alll > my € N and ms € N.

Proof. The proof of the smoothness and of identities (3.3) repeats essentially the argu-
ments used in the proof of Lemma 2.2 (here we deal with the operator A2 + P, €
L(H*T(S), H%(S)) instead of the operator A,, € L(H**(S), H*(S)) in Lemma 2.2).

It remains to prove (3.4)—(3.5). We start with the following estimate: For every &' €
(0,¢) and every real s,

?up } H(D2+1)S(Ai7 +P0,T)7SH£(L2(S)) = ?up ] H(Ai_r +PO,T)is(DQ—Fl)SHL(LQ(S)) < 0.
TE[—€l e’ TE[—¢e gl
(3.6)

The estimate (3.6) follows from the 7-continuity of the family (A2 +Fy,)® € L(H?*(S), L*(S))
when s is an integer. Then it is obtained for any real s by interpolation theory. (The
T-continuity is granted when s is an integer by composing (Aif + Py )*)

We use the identity

(A2 4+ P, )P 'G(T, N (A2 + Poy) ™ = (AL + Por)G(T,\)

to obtain
[(AZ. + Por)"P'G(m, A (M2, + Por)*lleeesy) = (AL, + Por)G(T, Mlleas)
\2
gt
Thus,
sup (A2 + Po )T G(m, A (A2 + Po) ™"l reesy) = 1 (3.7)

(7,\)E(—¢€,e) x[0,00)
By the definition of H*(S)-norms,
G, Mlzas©).m0+2)) = 1(D? + 1) G (7, N(D* + 1) £12s)).-
This can be written in the form
|G (7, M| s (), me+2(5)) = |(D* + 1)8/2+1(AiT + PO,T)*S/2’1><
X (A2 + Pos) PG, N)(AL, + Pos) %X
X (A2 +Por) A (D* + 1) )
and implies the inequality
G (7, Ml s ).+ < 1D+ 1AL+ Por) ™ Y| o2y
X |[(AZ, + Por) P TIG (T, N) (AL, + Por) || czasy) %
X (A2 + Por)*/2(D? + 1)7| (s

By (3.6)—(3.7), three factors on the right-hand side of the inequality are bounded uniformly
in (1,\) € [—¢',€'] x [0,00). This proves (3.4).

Since the first positive Steklov eigenvalue \; . depends continuously on 7, there exists
a positive constant ¢y < 1 such that

inf )\177- 2 Co.

TE[—e' ]

Obviously,

1+ A 1+ A 1
L+ M|[(A2 4+ Py )*G(r, N (A2 +Py)~ = < < =
LA, + For)'Gn A Aa, + For) ey = sup M FA T AN T
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We obtain
sup L+ MIAZ, + Por ) G(r, N (AL + Por)*lleesy < ¢ (3.8)
(r,A)€[—¢’,e']x[0,00)
In the same way as (3.4) was derived from (3.7), we derive from (3.8) with the help of
(3.6)
sup (L4 NG Al @), 156y < 00

(T, N €[—¢’,e’]x[0,00)
We have thus proved (3.5) in the case of m; = mg = 0.
For every integer 0 < k <[, the estimates

(A2 + Py,)

sup ' - G(1,\) < 00, (3.9)
(T \)€l—¢/ '] [0,00) or C(H*(8),H5(5))
OF(A2 + P,
sup ‘G(T, A) (Ao, - b) < 0 (3.10)
(rA)El<" ] x[0,00) ar L(H=5(S),H5(5))

e
follow from (3.4) taking the C' 7-smoothness of (A2 + B, ;) € L(H*"*(S), H*(S)) into
account.

Differentiating formulas (3.3), we obtain recurrent relations that express % through
lower order derivatives

omitma @ OF(A2 + Py,
(m} +my < my+mg, mi <my;) and (Ao, + Por)

With the help of (3.9)—(3.10), the recurrent relations imply the validity of (3.5) inductively
in m; + ms. O

The family of positive bounded operators
Go(T,A) = (D2 4+ P+ A" (1€ (—¢,¢), A€[0,00)) (3.11)

also satisfies the corresponding statements of Lemma 3.1 with appropriate changes.

For any (7, ) € (—¢,¢) x [0, 400) the operator (G — Gy)(7, A) is smoothing as well as
all its derivatives. More precisely we have the following property.
Lemma 3.2. For every s € R and every m € N, the function 7 +— (X (G — Go)(7,\))
belongs to C'((—¢, ), C>([0,4+00), L(H*(S), H**™(S)))).

For every €' € (0,¢) and every (my, ma, j1, j2) € N* such that m; <1,
omrm (G — Gy)

D
O™ O ™2

sup (14 N)?
(m,\)€[—¢’,e’]x(0,400)

(1, \) D7 < oo. (3.12)

L(L2(8))

Proof. We have the following identity:
(G = Go)(7, \) = —G(r, (AL, — D2 )Go(r, \). (3.13)

We know that AiT — D2 _is a smoothing operator with the Schwartz kernel belonging to
Cl((—¢,¢),C>=(S x 8S)), see (2.1). Therefore

A2 —D? € CY(—¢,e), L(H(S), HT™(S))) (3.14)

for any s’ € R and any m’ € N.
Let s € R and m € N. From Lemma 3.1 and its analog for G, we know that

Go € C'((—¢,2),C([0, +00), L(H*(S), H***(S)))),
G € C'((—¢,2),C™([0, +00), LIH™2(S), H™(S)))).
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The first statement of the lemma follows now from (3.13) and (3.14) for (s',m’) = (s +

2,m —4).
Inequality (3.12) also follows from (3.13), (3.14), (3.5) and the analog of (3.5) for
Go. O

3.2. Complex powers (A, + Py ;) * for Rz € (0,2). We use the following definition
of complex powers of a positive self-adjoint operator A : L*(S) — L?(S) with a discrete
eigenvalue spectrum (see for example [10]): If {¢g}ren is an orthonormal basis of L*(S)
consisting of eigenvectors of A with associated eigenvalues Ay > 0, then

A f =" Xlf,pe)pr for z€ Cand f € C(S),

keN

where \i = ¢#™() and In()\;) € R. The series converges at least for Rz < 0.
By Lemma 3.1 and (3.5) for £ = 0, we can consider the (7, z)-continuous family of
bounded positive operators

+00 +oo
/ NG ) d, / A=2Gio(m, A) dA
0 0

for any z € C satisfying 0 < Rz < 1. One can use a basis of eigenvectors of A,_ to show
that

(Ao, + Por) % = v(z)/ ATFG(T, A dN for 0 <Rz <1, (3.15)
0

where

00 1 .
(z) = (/0 A1 4 ) d)\) = Smﬁ” for 0<®Rz< 1. (3.16)

The second equality in (3.16) follows from Euler’s integral. Indeed, changing the integra-
tion variable as = (1 + \)™!, one easily derives

fo'e) 1
A1+ N A= [ 21— 2)Fde = B(z,1— 2) = —~
| oaen o= [t e e - B -0 - I
where B is Euler’s Beta-function.
Similarly
(| Do, | + Por) % = ’y(z)/ A Go(T,\)dN for 0 <Rz < 1. (3.17)
0

With the help of Lemma 3.1, we derive the following results.
Lemma 3.3. The family of operators (Ao, + Po,)~% belongs to
C'((—e,e),C*({z € C | Rz € (0,1)}, L(L*(S))))

and its first deriwvative with respect to z is given by

0 d >
5o+ Por) ™ = (Ao + Fo) 2 9(2) = 2(2) [ A () G(r, A
z dz 0

In the case of | > 1, the first derivatives with respect to T is given by
) O(AZ, + Por)

. A P 7222_ > —z
S, + P = —1() [ A G SR

Similarly, the family of bounded operators (|Da.,| + Po.)"2* belongs to
C((~¢,¢), C*({z € C | R= € (0,1)}, LX)

G(r, ) d\. (3.18)
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and its first derivatives with respect to z is given by

0 d e
5 (1Da]  Pos) 3 = (1D |+ Por) ™ £ In(2(2) = 2(2) [ A 1n(3) Go(r, A
0

In the case of | > 1, the first derivatives with respect to T is given by

8(D§T + PO,T)
or

3.3. The family of smoothing operators (A,, + Py;)* — (|Da.| + Fo-)?. For (7,2) €
(—e,e) x C let us denote by H(T, 2z) the operator from C*(S) to C*°(S) defined by

H(t,2) = (Ao, + Por) " — (| Do, | + Por) "7 (3.20)

a o0
E(|DQT| + Pyr) % = —7(2)/ AGo(T, N) Go(T, \) dA. (3.19)
0

It is extended as a bounded operator on L*(S) when Rz > 0. In the case of Rz > —m (m €
N), it is extended as an operator from H™(S) to L?(S). Actually we can improve the latter
statement.

Lemma 3.4. For every s € R and every m € N,
H e Cl((—g,a),Coo((C,E(HS(S),Hs+m(S)))). (3.21)

For every compact K C C, every ¢ € (0,¢) and every (ji,j2, m1,my) € N* such that

my S l7

. gmatme [1

J1
oTmQzm2

(1,2)D” < 0. (3.22)

L(L2(S))

sup HD
(r,2)€[—¢€’,e']x K

Proof. We start with the case when Rz € (0,2). As is seen from (3.15) and (3.16),

H(r,2) = ~(2/2) /OOO A2(G = Go) (T, \) dA.

With the help of Lemma 3.2, this implies

H e C'((—e,e),C*({z € C| Rz € (0,2)}, LH*(S), H*™(S)))) for (s,m) € RxN.
(3.23)
By (3.20),

(Ao, + Por) H(r,1) = (Aa, + Por)*((Ba, + Por) ™ = (1Da,| + Poy) ")
= (Ao, + Por) = (Ao + Pos)*(| Do, | + Por)
We rewrite this in the form
(Aa, + Por*H(r,1) = ((Aa, + Pos) = (1Da | + Por))
~ (A, + Por)(1Da | + Por) ™ = (Do | + Por))
and again use (3.20) to obtain
(Ao + Py, 2 H(7,1) = H(r,—1)— ((AQT + Py )2(|Da |+ Poy) "t — (\DQTHPOJ)). (3.24)
On using the equalities

(AaT + PO,T)2 = AiT + PO,Ta |D0c7| + PO,T = (DiT + P07T)1/2’



14 ALEXANDRE JOLLIVET AND VLADIMIR SHARAFUTDINOV

we transform the second term on the right-hand side of (3.24) as follows:
(Ao, + Por)*(|1Da, | + Por) ™" = (|1 Do | + Por) =
= (A2, + Py ) (D + Por) V2 = (DL + Py )"
(A2, + Pos) = (D2, + Po) ) (D2, + Pos) /2
= (A, — D2 (D3, + Ror) 2

T

Substitute this value into (3.24)
(Ao, + Pos)*H(1,1) = H(1,—1) — (A2 — D2 )(D2_ + PRy,)" "2 (3.25)
By (3.11), (D + Py,)~'/% = (Go(r, O))l/Z, and (3.25) takes the form

(Ao, + Poo)?H(7,1) = H(7,—1) — (A2 — D2 )(Go(r,0))"*. (3.26)
By (3.13),
(G - GU)(Ta O) = _G(Ta 0) (Aif - DiT)GU(T7 O)
Express A2 — D2 _from this equality
A2 — D2 = —(G(7,0)) (G — Go)(,0)(Go(r,0)) .
Substitute this expression into (3.26)
(Aa, + Po,)2H(7,1) = H(7,—1) + (G(7,0)) (G = Go)(7,0)(Go(r,0)) "% (3.27)
By (3.2),
(G(r.0) " = A% + Por = (Ao, + Por)’.
Substituting this value into (3.27), we finally obtain
(Ao, + Pos)?H(7,1) = H(1,—1) + (Aa, + Po)*(G — Go)(7,0)(Go(T, 0))‘1/2. (3.28)
We write (3.28) in the form
H(r,—1) = (A, + Po,)2H(7,1) = (A, + Por)*(G — Go)(7,0)(Go(,0)) ">, (3.29)

With the help of Lemmas 2.2 and 3.2 and of (3.23) for z = 1, (3.29) implies
H(r,—-1) € C'((—¢,¢), L(H*(S), H**™(S))) for any (s,m)€ R x N. (3.30)
Now, we prove by induction on k € N that
H e C'((—e,e),C*({z € C| Rz € (—k,k+2)}, L(H*(S), H*T™(S)))) for (s,m) € Rx N.
For k =0, (3.31) coincides with (3.23). Assume (3.31) to be valid for some 0 < k E(?;\T?)l)
The recurrent relation
H(r,z) = (Ao, + Pos)H(1, 2+ 1) + H(1,=1)(|Dg. | + Po) " (3.32)

easily follows from the definition (3.20).
Together with Lemma 2.2, the induction hypothesis (3.31) implies that, for any (s, m) €
R x N,
(Ao, +Po-)H (1, 241) € C'((¢,¢),C™({z € C | Rz € (-k—1,k+1)}, L(H*(S), H*"™(S)))).
(3.33)

The eigenbasis of |D,, |+ Py is given by the family {¢;}ez, see (2.2). The eigenvalue
associated to ¢, is max(|l|,1). Therefore

(I1Da, | + Pos) 771 € C'((—€,2), C*({z € C, Rz € (—p,p)}, LUH*(S), H*T'77(8))))
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for any s € R and p > 0. Together with (3.30), this gives

H(1,=1)(|Da, |+ Por) " € C'((—¢,),C™(C, L(H*(S), H*™(S)))) for (s,m) € R x N.

(3.34)

With the help of (3.33) and (3.34), the recurrent relation (3.32) gives for any (s,m) €
R x N

HeC'((—¢,6),C*({z€C, Rz € (—k—1,k+1)}, L(H*(S), H™(S)))).
Uniting this with (3.31), we obtain for any (s,m) € R x N
HeC'(—¢,6),C*({z € C| Rz € (—k — 1,k +2)}, L(H*(S), HT™(S)))). (3.35)
The recurrent relation
H(t,2) = (Mo, + Por) 'H(1, 2 = 1) + H(7,1)(| Do, | + Por) ! (3.36)

is proved similarly to (3.32). In the same way as (3.35) has been proven, the induction
hypothesis (3.31) implies with the help of (3.36) that

He CZ((—e,s), C*({z € C| Rz € (—k,k+3)}, L(H*(S), H**™(S)))) for (s,m) € Rx N.

(3.37)
Uniting (3.35) and (3.37), we obtain for any (s,m) € R x N
HeC'((—e,e),C*({z € C| Rz € (—k — 1,k + 3)}, L(H*(S), H*'™(S)))).
This finishes the induction step.
Being valid for every k, (3.31) proves (3.21). O

3.4. Smoothness of (,_(z). We recall that
Ca, (2) = 2¢R(2) + Tx[H(7, 2)].
Lemma 3.5. The function (. (z) belongs to C'((—¢,¢), C*(C\{1})) and, forl>1,

am1+m2<’a_r 2 omitme fr
aTmlazm(z ) G (77 (3:38)

for any (1,z) € (—¢e,¢) x (C\{1}) and any my,ms € N such that 1 < m; <.

:Tr[

Proof. First we note that

Car (2) = 20R(2) + (27) 1> gu(T,2),
nez
where g,(7,2) = (H(7,2)e™?, ¢™). Lemma 3.4 implies that g, € C'((—¢,¢), C=(C\{1}))
and, for m; <1,

Hmitmz " omitme [r ) .
g ( : ):< (7_7 Z)ezn97€m0>‘

oTm1Qzm2 ormiQzm2
With the help of (3.22), this implies for ¢’ € (0,¢) and n # 0
gmtmag, ) o O™ H inf _ind -2
Srmgama (1,2)| =n <D g (1,2)e™ e > <Cn™ 7,
where C' = sup._;__, ./ DQW—MT T, 2) |22y < oo. Using the classical fact on func-
Te[—¢ ¢’ O1™M19z™M2 (LA(S))

tions series, we see that Y., g, € C'((—¢,¢), C=(C\{1})). This implies (3.38). O
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3.5. First variation of ¢, (z) with respect to 7. We assume [ > 1 in this subsection.

Lemma 3.6. For T € (—¢,¢) and any z € C,

W =—zTr [H(T, 2) 811(;?”] . (3.39)
At 7 =0 it reads as
GO | N T I NY

where B(0) = %2(6,0) is the direction of the variation a..

Remark. The derivative (C"T(z)) is well defined at any z € C although the zeta
function (,.(z) is not defined at the pole z = 1. See the remark after Theorem 1.3.

Proof. We reduce the computation to the case Rz € (0,2) by holomorphy in z € C. By

(3.38),
9(Ca, (2))
or

Tr[%];[ (r, z)]. (3.41)

Differentiate equality (3.20)
aH _ a(AaT + POJ—)_Z _ 8(l‘DO‘T| + POaT)_Z

o _ - - (3.42)
By (3.18) and (3.19),
s 0o A2 By,
a(AaT + PO,T) _ _7(2/2) / )\7z/2G(7—, )\)MG(T, )\) d)\,
or 0 or

. 0o D? By -
(| Do | + Pos)~* _ _7(2/2)/ A6 (r, )\)MGO(T, A) dA.
or 0 or

Substitute these values into (3.42)

=) /0 vt (a2t o) g gy e ) ),

2 or or
(3.43)
Recall that, by (3.3),
oG O(AN%2 +Py.,)
- - _ Yo ) . 44
2 0 = ~0(r ) TR ) g7 ) (3.44)
The similar formula for G
6G0 a(‘Dg{T +P0,T)

—(1,A) = —=Go(1, ) G(T,\)

or or
is proved in the same way as (3.3). With the help of two last formulas, (3.43) takes the
form

o 2 =:/2) /O TG (3.45)

By Lemma 3.1, G(7,\) and Gy(7,\) and their derivatives are trace class operators
in L*(S) at fixed (7,\) with an appropriate bound in A given by (3.5). Hence we can
transpose the trace operator and integration over A € (0,+00) on (3.45). In this way we

obtain
Tr[%—]j] = 7(2/2) /O )FZ/Q{T [gﬂ Tr[aacio]}(ﬂ A) dA. (3.46)
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Formula (3.44) implies

Tr [%(7, )\)} = —Tl"[(G(T, )\))2 W .

We have used the classical fact: Tr[AB] = Tr[BA] if A is a trace class operator and B is
a bounded operator, see [12, Theorem 3.1]. As easily follows from (2.3) and (3.1),

O(A2 + Fy;) _ lﬁln(aT)Ai N lAi dln(a;)
or 2 O0r T2 % Or
Oln(a;) 10In(a,) 1 Oln(a;)
Roe =g e =3y Mol
We substitute this value into (3.47) and use again the classical property of the trace.
Besides this, the operators A, and F, commute with G(7,\). In this way we obtain

Tr[é;—f(T, | = -2 (G, A))aAialg(TaT)

On using the equality

(3.47)

0 ln(aT)] ‘

] +TI"[(G<T, A))QPOJ 57

A2 = (G(r, ) = Pyr— A
that follows from (3.2), we transform the previous formula to the form

Tr [8—G(7‘, )\)] = —2Tr [G(T, A) 0 hég_aT)

or
0 ln(aT)] .

81n(a7)]

|+ 231 [ (Gtr ) R 5

(3.48)

43T [(G(r, M) Pos

As follows from (3.3),

a%{ — 2T [G(r, A)Po,Tah(‘;(TO‘T)]} = —2Te[G(r, A)alg(:”)]

+2XTr | (G, V)P, 2 lg(f”)] .

Therefore formula (3.48) takes its final form

Tr[%(@ A)} - a%{ T [G(T, VR, e

0 ln(aT)} '

or
(3.49)

|} +31e[ (G 0) o

The similar formula for GG is obtained in the same way:

oG 0 O0ln(a,)

TG N] = 5 or

3111(0(7)].

or
(3.50)

{ = 2Te[Go(m, N Ry |} + 31 (Gotr, ) o

Take the difference of equations (3.49) and (3.50). Taking the equality
(Go(m, M)’ Poy = (G(1, ) Py

into account, we obtain

W(T, V| = —2m|G -G A)ahgio‘f)] 3 (3.51)

Next, we multiply equation (3.51) by A™*/# and integrate with respect to A

/OO A2 Ty [E)(Ga—_c;(’)(T, A)] ) = /oo A2/ 3{ ATy [(G —Go)(7, \) aln(%)} } d).

0

o

z/2

T o\ or
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We transform the right-hand side with the help of integration by parts. Since Rz € (0, 2),
the integrated term is equal to zero by (3.12) (with m; = mg = 0). In this way we obtain

/OO A2 Tr[w&, A)] A\ = —» /Oo A2 Ty [(G — Gy)(r, A)ah(;@”)} d.

T T

Comparing this with (3.46), we see that

Tr[aa—];]} = —2zv(z/2) /000 A2/ Tr[(G — Go)(T, A)ﬁlg(TaT)] dA. (3.52)

By (3.20),

H(7,2) = (A, + Pos)"" — (|Da.| + Por) >
By (3.15) and (3.17),

(Aa. + Pos)~* = 7(2/2) / A6 (r ) dA,
0

(| Do, |+ Por) % = 7(2/2)/ )\*Z/ZGO(T, A) dA.
0

Three last formulas imply
H(r, z) = 7(2’/2)/ A2(G = Go)(T, \) dA.
0

Multiply this equality from the right by the operator of multiplication by the function
9ln(ar) = he operator can be moved inside the integral since it is independent of A. In
this way we obtain

alna—(f”) = 2(2/2) /0 h NG = Go)(r, A)alg(:”) A,

Take the trace of both part. Again, the trace operator can be moved inside the integral
and we get

H(t, z)

. z)al‘;f”)] —(2/2) /0 T ATy (@ -cor, A)alg(f‘”} dx.

The comparison of this formula with (3.52) gives

Tr [%—Ij(ﬂ z)} =—zTr |:H(T, z)alg(:[T)} :

Together with (3.41), this gives (3.39). O

3.6. Second variation of (,_(z) with respect to 7. We assume [ > 2 in this subsection.
Repeating arguments from the proof of Lemma 3.5, we prove that the right-hand side of
(3.39) belongs to C'1((—¢,¢),C®(C)). Then, differentiating equation (3.39), we obtain
the following expression for the second derivative.

Lemma 3.7. For every z € C,

0* (Ga- (%))

5.2 = —2Tr [8—H(0, z)a_lﬁ]

or
7=0
+2Te[((Ag + Po) ™ — (|Da| + Po)™*)a 287 (3.53)
-2 82057'
J

_ zTr[((Aa +Po) 7 = (1Dal + o))

T=

where B(0) = %%(6,0) is the direction of the variation a..
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In more generality, for a 2-parametric deformation o g,

0 (Cars (%))

S — _Tr [8—H(o, 0, z)a*lﬁ}

s
(1,5)=(0,0)
+ zTr[((Aa + Py) " — (|Do| + PO)_Z)a_2Bﬂ
D,

010s

|

(,5)=(0,0)

—Tr [((Aa + Py) " — (|Dal + Py))a 2

1o}
where y = =52

_ Oarp
o P=

3.7. Application: behavior near a = 1. Hereafter, {4y, }xez are the Fourier coefficients
of a function u € L*(S), i.e., u =Y, , Uy ™.

We have the following result.

7=0 .

Proposition 3.8. Let o, be a C*-smooth variation of the function a = 1 (the function
identically equal to 1). Then, for every z € C,

0(Ca, ()
—— =0 (3.54)
7=0
02(Ca. (2 = _pr .
% =4z Z %pn |Bpn]? + 227 Z [n]=% | Banl?, (3.55)
=0 (n,p)EN? n>0

p>0, n>0

where 3(0) = Ma;fg)‘ :
7=0

Proof. The first variation formula (3.40) gives (3.54). Indeed, A, = |D,| for a = 1.
The second variation formula (3.53) gives

0*(Ca. (2))

= - —zTr[a—H(O, z),@]. (3.56)

or
T7=0

We use the trigonometric basis {(27)~1/2¢™},,cz to compute the trace Tr [6—H(0, z)ﬁ]:

T

Tr {%—f(o, z)ﬁ} =0y <%—f(o, 2)Be, eip9>.

PEL
Substituting 5 =", ., Bne™™ | we obtain
OH — -1 2 OH ind _ipd
Tr [E(O’ Z)ﬁ} = (2m) n%;z 5”—P<E(O’ z)e™ e > (3.57)

We have thus to compute <%—f(0, 2)e? %) We reduce the computation to the case
Rz € (0,1) by holomorphy in the z-variable.

With the help of the definition (3.20) of the operator H, Formulas (3.18) and (3.19)
give

N O +Py.) I(D? +Py,)
S (r2) = —7(5)//\ (G N Z=E5 =G 7 ) = Gol(r, ) =25 G, ) .
0
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Setting 7 = 0 here and using the equalities
G(0,A) = Go(0,\) = (A* + Py + N) 7!

we obtain

OH . L 0(AZ, - D7) -
—(O,Z) = —7(Z/2)/0 A /2(A2+P60+>‘) B L (A2+P€0+>‘> 1d>‘7

7=0

or or
where P, is the orthogonal projection onto the line spanned by ey = \/%71. Then

I(N2 —D?) 101In(a,) 1 JOln(a,)
or or _ = T A2 _D2 _ A2 _D2 T
or 2 07 (Aa, o) 2( ar o) or
YA, 8ln(aT)Aa D, 8ln(aT)Da |
Tor T To0r T
At 7 = 0, this becomes
O(A\%2 — D?
—( s o) = ABA — DBD.
or 7=0
Hence
OH > —2/2( A2 -1 2 -1
E(O’ z) = —v(2/2) AN A+ Py + N (ABA = DBD)(A* + P, + X)) dA.
0
With the help of the last formula, we obtain
8H ind _ipd \ __
< g (0:2)e e > -

_7(2/2)/ )\fz/2<(AﬁA — DBD)(A® + P, + \) "t (A2 + P, + )\)716@9> d\
0

After elementary calculations, this becomes
0 if either n =0 or p = 0,
(O Z) ind ezp9> — —y 2/2 fo z/2 p _|_)\) <n2 +)\)—1 d)\X (358)

x 27 (|np| — np)By—n otherwise.

0
(o

For positive reals = and y (z # y),

4+ N g+ N = %((:c ST (e,

With the help of (3.16), this gives

) Ifz/Q _ ,yfz/Q
—7(,2/2)/ A2+ NNy +N)Hd) = p— (3.59)
; _
In particular, when =z — v,
o0 1
—v(2/2) / A2y + N)72dN = —3 2y (3.60)
0
Combining (3.58)—(3.60), we obtain
0 ifnp>0,
oH

< - (0 Z) ind zp0> — —Amnp uﬂp o if np <0 and n 7£ —p, (361)

—27 z|p|*zﬁgp 1f n=—p#0.

The formula is valid for all z € C since right-hand sides are entire functions.
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We substitute (3.61) into (3.57) and use that 3, = f_x (8 is a real function)

oH n| =" —p[™ -
Tr[a (0, z)ﬁ] =Y npn—wn o2 =23 I Bl

np<0, nF#—p p#0

After the change p := —p of the summation index in the first sum, this becomes

OH p
Tr[a (0, 2) } =4 Z npl ‘ | ~ |6n+p|2—222|n| | Ban |-

n>0, p>0 n>0

Finally, substituting this expression into (3.56), we obtain (3.55). O

4. PROOF OF THEOREM 1.2

The proof of Theorem 1.3 is postponed to Section 6. Here, assuming Theorem 1.3 to
be valid, we prove Theorem 1.2. The proof of the theorem is based on the first variation
formula applied to the deformation of Theorem 1.3. We start with some important pre-
liminaries that, besides the proof of Theorem 1.2, will play a key role in the construction
of the deformation of Theorem 1.3..

4.1. An alternative form of the first variation formula. Let a deformation o, (—¢ <
T < €) of a positive function a € C*(S) satisfy hypotheses of Lemma 2.2 with [ = co.
Differentiating equation (1.7) with respect to 7, we obtain

-1
00 g — — /a;2 s 10— 0. (4.1)
S 87— S 87_
Let us define the family of functions g, € C*((—¢,¢), C*(S)) by
O
g — gral = ——, ;= 0. 4.2
Argr = grly = - /S 9 (4.2)
In other words (i—:)/ = —8351 and fS g- = 0. Such a family exists and is unique due to
(4.1). We also denote
80@
9=9rleo, B= =ag —dy. (4.3)
T7=0

Let Py : L*(S) — L?(S) be the orthogonal projection onto the one-dimensional subspace
spanned by the vector ¢y = (27)"*/2a"1/2 (compare with (2.2)). We emphasize that P,
depends on the function a although the dependance is not designated explicitly.

Theorem 4.1. Given a deformation o, of a positive function a € C®(S) satisfying
hypotheses of Lemma 2.2 with | = oo, let the function g € C*(S) be defined by (4.3).
Then, for every z € C,

8(Caf <Z>)

5 = —iz Tr[(Ag + Po) "I — Po)a™*[H, gla™'/?], (4.4)
-

=0

where [H, g] is the commutator of the Hilbert transform H and the operator of multiplica-
tion by the function g. In the case when g = tHa, the formula simplifies to the following

| (Car (2))

5 =2 Tr[(A, + Po) > '(AZ = D2)]. (4.5)

7=0
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O\ Car (2
See the remark after Theorem 1.3 concerning the value of the derivative (C aT( )) at the
pole z = 1. Right-hand sides of formulas (4.4) and (4.5) are entire functions of z since
[H,g] and A2 — D? = a'/2D[H, a]H Da'/? are smoothing operators.

The proof of Theorem 4.1 is postponed to Section 5.

4.2. The good sign. The example g = iHa is a right choice since we have the following
interesting properties.

Lemma 4.2. Let a deformation «, of a positive function a € C®(S) satisfy hypotheses
of Theorem 4.1. Then

Tr[(Ag+ Po)* "(A2 = D2)] >0 when s >0, (4.6)

Tr[(Ae + Po)* (A2 = D2)] <0 when s <O0. (4.7)
Additionally, the equality
Te[(Aa+ Ro)* (AL = D7)] =0
holds for some 0 # s € R if and only if a is conformally equivalent to the constant-valued

function 1.

The proof of the lemma is presented in Section 5. Combining Theorem 4.1 and Lemma
4.2, we obtain the following result.

Corollary 4.3. Under hypotheses of Theorem 4.1, assume that g = iHa (or equivalently
B = —a(Aa) + (Ha)(Da)). Then

0(Ca, (5))

< 4.
or <0 (4.8)

7=0
for every real s. If the equality holds in (4.8) for some 0 # s € R, then a is conformally
equivalent to the constant-valued function 1.

4.3. Proof of Theorem 1.2. We start with proving (1.6). Let a,; (0 < 7 < 00) be the
deformation from Theorem 1.3. Here oy = a. By statement (3) of Theorem 1.3, ¢, (s) is
smooth and non-increasing in 7 € [0, 00) for any real s # 1. We would like to prove that

'[I&f )CaT (s) =2Cr(s) for 1#seR (4.9)

TE
Let us consider I'. = /. (0 < e < 00). By statement (4) of Theorem 1.3,
I.—1 in C®S) as e—0".
Setting I'_. =T, for ¢ > 0 and 'y = 1, we have defined the continuous path
R — C™(S), e—1T.

consisting of positive functions. For a fixed 1 # s € R, the function ¢ — (r_(s) is
continuous on R. Hence

i Car(5) = Cary (5) = Cr 0 (8) = Cro(5) = 2n(s) a5 70 = 00

7€(0,70

This implies (4.9). We have thus proved (1.6).
Now assume that (,(s) — 2¢g(s) = 0 for some 0 # s € R. Since the function (,, (s) —
2Cr(s) is non-increasing in 7, we conclude that

Ca,(8) —2Cg(s) =0 forall 7€ ]0,00).
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In particular the derivative ag%(s) at 7 = 0 is zero and we can use Corollary 4.3 to deduce
that a is conformally equivalent to 1. Conversely, if a is conformally equivalent to 1, then

Ca = Cl = 2CR ]

5. PROOF OF THEOREM 4.1 AND LEMMA 4.2

We again consider a deformation a, of a positive function a € C*(S) satisfying hy-
potheses of Lemma 2.2 with [ = co. Hypotheses of all statements in this section coincide
with that of Lemma 2.2. The hypotheses are not written explicitly for brevity.

5.1. Proof of Theorem 4.1. We are going to prove (4.4) for Rz > 2. Then the validity
of (4.4) for all z € C will follow by the unique continuation principle since both sides of
(4.4) are entire functions.

The equalities A, Py = PyA, = 0 immediately follow from definitions of these operators
(the definition of A, is given in the Introduction and Fp is defined before Theorem 4.1).
We will widely use these equalities with no reference.

Note that (A, + Py)~* and (|D.| + Py)~* are trace class operators for z > 2. Hence
(3.40) implies that

8(@57(2)) = —z Tr[(Aa + PO)—Za—lﬁ} + ZTI"[(|Da| + PO)_ZG_IB]. (5'1)

7=0

Recall that the functions ¢, , are defined in (2.2). Setting ¢, = ¢n0, we have the
orthonormal basis {¢, }nez consisting of eigenfunctions of the operator D, such that
D,¢,, = ng,. This implies (|D,| + Fy)dn = max(|n|, 1)dy.

Let us demonstrate that

Tr[(|Dal + Po)*a™'] = 0. (5.2)
Indeed, for an arbitrary n € Z,
{(I1Da] + Po)*a™ Bn, ) = (¢ Bn, (|Dal + Po) *¢n) = (max(|n[, 1)) " (a™" Bdn, dn)
= (2m) ! (max(|n[,1)) " /SaQB = 0.

The last equality of the chain is written on the base of (4.1) since § = 2= .o+ From
this,
TrmDa’ + PO)izailm = Z<<|Da‘ + PO)izailﬁ(bm ¢n) = 0.
neZ
This proves (5.2).
In virtue of (5.2), formula (5.1) simplifies to the following one:
9(Ca
w = —zTr[(Aa + Po) *a'B]. (5.3)
-
7=0

Let the function g € C*(S) be defined by (4.2). Looking at a, g and § as multiplication
operators, we have the equality 5 = i(aDg — gDa) which implies
(Aa + Po)fz&flﬂ _ (Aa + Po)fzafl/ZBaflﬂ
= (A + P))"*a?Dga™? —i(Ay + Py)Fa V29 Dal/?.
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For Rz > 2, both (A, + Py)~*a*?Dga="? and (A, + Py)~*a~"2gDa'/? are trace class
operators and we obtain
Tr[(Ag + Po) Za '] = i Tr[(Ag + Po) Za?Dga™""?] — i Tr[(A, + PO)_Za_l/QgDal/Q} :
(5.4)
Recall that the operators D, A and H are related by the equalities HD = DH = A
and HA = AH = D. From this,
a'?D = Aya ™ Y*H, Da'? = Ha V?A,.

The last of these equalities immediately gives

Tr[(Aq + PO)_za_1/2gDa1/2] =Tr[(A, + Pg)_za_1/2gHa_l/2Aa] . (5.5)
Using additionally the relation (A, + Py) A, = (A, + Po)* (I — By), we easily derive
Tr[(Ay + Py) *a'?Dga™""?] = Tr[(As + By) " (I — Py)a " /*Hga*/?]. (5.6)

Rewriting the trace on the right hand side of (5.5) in terms of a basis of Steklov
eigenvectors (eigenvectors of the operator A, + Fy) and again using the relation A, (A, +
Py = (Ay + Py)*"(I — P), we obtain

Tr[(Aq + PO)’Zafl/Qchfl/QAa} = Tr[Aa(Ao + PO)’Zafl/Qg”Ha’l/Q}

= Tr[(Ag + Ro) (I — Po)a—l/zg;,_[a—l/z] (5.7)
Collecting (5.4), (5.6) and (5.7), we see that
Tr[(Aa + Po)_za_lﬁ} = iTr[(Aa + Py) (I — Po)a_l/Q[H, g]a_l/ﬂ.
Together with (5.3), this gives (4.4).
We need following easy statement.
Lemma 5.1. For a function f € C*®(S), the operator equalities
[H,Hf) =HH, fl+ Fo f - fo Fo (5.8)
and
AH, HfIN=AfA—DfD (5.9)

hold, where the operator Fy maps a function u to the constant-valued function tgl.

The proof of the lemma is given at the end of this subsection. With the help of the

lemma, we now prove (4.5) for ¢ = iHa. Substituting this value into (4.4), we obtain

0((,. (2

w =2 Tr[((Aa + Po) 7T (1 — Py)a '*[H, ’Ha]a_l/Q] : (5.10)

-
7=0

Writing the trace on the right hand side of (5.10) in terms of an orthonormal basis
consisting of eigenvectors of the operator A, + Fp, one easily obtains

T[((Aa + PO)—Z-i-l(]—PO)a—l/Z [H, Ha]a—l/Q] _ TI"[((Aa + PO)—Z—lAaa—l/Z [7‘[, ’Ha]a_lﬂAa}
_T[((Ae + R)~aV2A[H, HalAa.

(5.11)
Using (5.9) with f = a, we see that

Tr[((Aa + Bo) " 'a'?A[H, Ha]Aa'?] = Tr[((Ay + Py) > 'a'*(AaA — DaD)a'/?

= Tr[((Aa + Po) > (A2 — D2)].
(5.12)
Combining (5.10)—(5.12), we arrive to (4.5). O
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Proof of Lemma 5.1. The alternative definition of the Hilbert transform is as follows: two
real functions u,v € C™(S) satisfy iv = Hu if and only if v has the zero mean value and
u + tv admits a holomorphic extension to the unit disk. Thus, for two real functions
u,v € C°(S), the product

(u+ Hu)(v + Hv) = uwv + (Hu)(Hv) + [uHv + vHu]

admits a holomorphic extension to the unit disk. The function in the bracket has the zero
mean value as is seen from

/(u’Hv +vHu) = Z Upsgn(—n)o_, + Z Upsgn(—n)i_, = 0.
S neZ\{0} neZ\{0}
We have thus proved the product formula
H(wv + (Hu)(Hv)) = uHo + vHu. (5.13)

Being proved for real smooth functions, the formula is valid for all u,v € L*(S) since all
terms on (5.13) are bilinear in (u,v).
Setting v = Hf in (5.13), we have
H((Hf)u) — (Hf)(Hu) = (H* flu — H((H*f)(Hu)).
Since H2f = f — fol, the formula becomes
(M, HfJu = fu—H(f(Hw) = fou+ fo(H?u).
Substituting the expressions fu = H?*(fu) + (ﬁ)ol and H?*u = u — Fyu, we obtain

[, H flu = H2(fu) — H(F(Hu)) + (Fu)ol — fo Fou).
This can be written in the form
[H, Hflu = H[H, flu+ (fu)ol — fo Fou.

We have thus proved (5.8).
Now, we multiply (5.8) by A from both sides and use the obvious equalities FyA =
AFy = 0 to obtain
A[H, HfIA = AH[H, f]A.

This can be written in the form
A[H, HFIA = AH? fA — AHFHA.
On using the equalities AH?> = A and AH = HA = D, we obtain (5.9). O

5.2. Proof of Lemma 4.2. If a is conformally equivalent to a constant function, then
it is of the form

a(0) = o + a1 +a_1e7.
This fact can be easily derived from the definition of conformally equivalent functions and
it also follows from [7, Theorem 1.2]. On using this representation, one easily proves that

(AaA — DaD)e™ =0 forall n € Z,

i.e. AaA—DaD = 0. In the case of a positive function a € C*(S), this implies A2—D? = 0
and Tr[(A, + Pp)*(A2 — D?)] = 0 for any z € C. This proves the “if” part of the second
statement of Lemma 4.2.

Our proof of Lemma 4.2 is based on some elementary convexity arguments that are
actually well known. For the sake of completeness, we present the proof of the following
statement.
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Lemma 5.2. Let A: H — H be a linear operator in a Hilbert space. Assume that there
is an orthonormal basis {ex}ren of H consisting of eigenvectors of the operator A, i.e.,
Aey, = \peyp with positive eigenvalues Ny, satisfying Ny < C(k + 1) with some constants
C and M.

Let w and v be two vectors from H. Ezpand them in the basis u = ), (u,er) ek,
v = enlv,en) en. Assume that the coefficients of the expansions rapidly decay, i.e.,
[(u, er)| + [{(v,er)| < Cn(k+1)"N for every N € N. Assume also that

(u,ex)(ex,v) >0 for every k € N (5.14)
and
(u,0) = (uex)(ex, v) = 1. (5.15)
keN
Then

(1) (A"u,v) > (Au,v)" for everyr > 1;

(2) (A"u,v) < (Au,v)" for every r € [0,1).

If, additionally, A is an invertible operator, then
(3) (A™u,v) > (Au,v)" for every r < 0.

Proof. Let f:(0,400) — (0,+00) be a convex function. Then

(F(A)u,0) = f(A)es,

keN

where e, = (u, eg){eg,v) > 0 and >, er = 1. We apply the convexity of the function f
to obtain

(A ) = 37 FOwer > 130 Mer) = F({Au ).
keN keN
In the case of a concave function f, we have the opposite inequality

(f(A)u,v) < f({Au,v)).

The function f, : (0,+00) — (0,400), f.(z) = 2" is convex for r € (—o0,0] U [1, 00)
and is concave for r € [0, 1]. O

We use the orthonormal basis {@, }nez of L*(S) which was introduced after formula
(5.1). Recall that D,¢, = n¢,. Recall also that Py : L*(S) — L*(S) is the orthogonal
projection onto the one-dimensional subspace spanned by the vector ¢g. Then {, }nez is
the orthonormal basis consisting of eigenfunctions of the invertible operator D, + Py with
positive eigenvalues. Recall also that [6, Lemma 2.1]

(Nan, dn) > Inl, (5.16)
(Aa+ Bo) ' bn,dn) > In|™" (n#£0). (5.17)

The proof of Lemma 4.2 consists of 6 parts.

Part 1. Let s > 2. Fix an integer n # 0. Set A = (A, + Py)¥ ! : L*(S) — LA(S),
u=v=¢,and r = % > 1 in Lemma 5.2. Hypotheses of the Lemma are satisfied since
(A, + Py)*~! is a positive self-adjoint operator and ¢, is a unit vector in L*(S). Applying
statement (1) of Lemma 5.2, we obtain

<(Aa+PO)S+1¢n7 ¢n> 2 <(Aa+P0)S_1¢n7 ¢n>% - <(AQ+PO)S_1¢7M ¢n><(Aa+PO>S_1¢n7 ¢EL> 521)‘
5.18
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Then we set A=A, + P, u =v=¢, andr =s—1 2> 1 in Lemma 5.2. By the same
statement (1) of Lemma 5.2,
(Ao + Po)* ™ fn, dn) > (Nathn, @)
With the help of (5.16), this gives
(Mo 4 Po)" 'y ) > Inf* . (5.19)
We combine (5.18) and (5.19) to obtain

<(Aa + P0)5+1¢na ¢n> Z <(Aa + PO)S_1¢na ¢n>n2 = <(Aa + PO)S_1D2¢7M ¢n>
This inequality holds for every n € Z \ {0}. It implies

Tr(Aa + Po) (A2 = D2) = 37 [{(Aa + Bo) 0, 60 = ((Aa + P)* " D26, 00)| 2 0.
n#0
(5.20)
We have thus proved (4.6) for s > 2.

The equality in (5.20) holds if and only if each summand on the right-hand side is zero.
In such a case, the equality in (5.16) must hold for every n € Z \ {0}. In particular,
setting n = 1 in (5.16), we have (A 01, #1) = 1. We can now use [6, Lemma 2.5] to obtain
that a is conformally equivalent to the constant function 1.

Part 2. Let s < —2. Here our arguments repeat that of Part 1 with one exception:
(A, + Py)~! now plays the role of A, + Py. By Lemma 5.2 and (5.17),

(Mo + Po)* "on, 6n) = (Mg + Po)* b, ) 571

> (Ao + Po)* 6, 6n) 51 (A + Po)* b, )
Z n72<(Aa + P(])SJrl(bna ¢n>7
i.e.
<(Aa + PO)S+1¢na ¢n> S n2<(Aa + PO)S_1¢na ¢n> - <(Aa + PO)S_lngSna ¢n>

We have used that s +1 < —1, —=2/(s+1) >0, (s —1)/(s + 1) > 1. We conclude as in
Part 1.

Part 3. Let 1 < s < 2. Fix an integer n # 0. We first set A = A, + Py, u = v = ¢,
and r =s—1¢€ (0,1) in Lemma 5.2. By statement (2) of Lemma 5.2,
<(Aa + PO>S_1¢7L’ ¢n> S <Aa¢n7 ¢n>s_1- (521)
Then we set A = A, + Py, u = v = ¢, and r = s+ 1 > 2 in Lemma 5.2. Applying
statement (1) of Lemma 5.2, we obtain
<(Aa —"_ PO)S+1¢TL7 ¢')’L> 2 <Aa¢n7 ¢n>s+1 - <Aa¢n7 ¢n>s_1<ACL¢TL7 ¢n>2
With the help of (5.16), this gives
(Ao + Po) b, dn) > n*(Aan, dn)* (5.22)
Inequalities (5.21) and (5.22) imply
Tr((Aa_FPO)Sil(A?L — Ds)) = Z (<(Aa —|-P0)5+1¢m¢n> —n2<AZ*1¢m¢n>) > 0. (523)
neZ\{0}

We have thus proved (4.6) for s € (1,2).
Again the equality in (5.23) means that each summand on the right-hand side is zero.
In such a case, the equality in (5.16) must hold for every n € Z \ {0}. In particular,
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setting n = 1 in (5.16), we have (A,¢1,¢1) = 1. We use again [6, Lemma 2.5] to obtain
that a is conformally equivalent to 1.

Part 4. Let —2 < s < —1. Here our arguments repeat that of Part 3 with the
exception: (A, + Py)~! now plays the role of A, + Py. With the help of Lemma 5.2 and
of (5.17), we obtain the estimates

<(Aa + P0)5+1¢m ¢n> S <(Aa + PO)_1¢n7 ¢n>_8_1

and
(Ao + Po)* b, ) = (Aa 4 Po) b )~
= (Ao + Po) " n, )~ (Aa + Po) 'y 6)°
>} (Ao + Po) " by ).
Hence
Tr((Ag + FPo)* (A7 — Z (Ao + Po) ", dn) — 0 (Mo + Po)* ' dny b)) <0
€z

This proves (4.7) for s € (=2, —1).
Again the equality implies ((A + PBy) "1, ¢1) = 1 and we use [6, Lemma 2.5] to obtain
that a is conformally equivalent to 1.

Part 5. Let 0 < s < 1. First of all, on using the equality D, = A,a™?Ha'/? we write
Tr((Ag + Po)* ' (A = D7) =

= 3 (A + R 00, 00) = (Ao + B Aua™ *Ha Do, 00) )
nez\{0} (5.24)

= > (et R0 00) = nl(Ae + B)'a P Ha' 201, 6,)).

nez\{0}

The first term of each summand on the right-hand side of (5.24) is real since (A, + Fp)**™!
is a self-adjoint operator. We will see that the second term is also real, although it is not
quite obvious.

By statement (1) of Lemma 5.2 and by (5.16),

(Ao + Po) 60, 0n) > (Mo, 30))"" > [n]*(Madin, bn). (5.25)

Let {Ux}ren be the orthonormal basis of L*(S) consisting of eigenfunctions of the
operator A = A, + Fy (it is the partial case, for 7 = 0, of the basis { Uy, }ren that was
used in Section 2.3). Then (A, + Fy)¥; = MU for k € N, where Ay = 1, ¥y = ¢y, and
A\ = M\, for k>0 (Ax being the Steklov eigenvalues of the function a).

Let us fix an integer n # 0. To estimate the second term of the summand on the
right-hand side of (5.24), we use Lemma 5.2 with

er=V,, A=A,+PFP), u= (5;1(1_1/27%@1/%”, v=sgn(n)p,, r=sec(0,1),
(5.26)
where the positive constant §,, will be chosen later.
We have to check the hypotheses (5.14)—(5.15) of Lemma 5.2. To this end we write

(u, W) (Ui, v) = 8, sgn(n){a™*Ha' 26y, Ui) (Uk, dn).
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In the case of k = 0, the right-hand side is equal to zero since (eg, ¢,,) = 0. In the case of
k > 0, we use the equalities A,V = A\ ¥, and D,¢,, = neo, to obtain

(u, U ) (T, v) = 5, tsgn(n) A, Ha 2 Ha 2 h, Ay ) (T, 6,,)
= 6, 'sen(n)Ay (Aa ™ 2 Ha 2 g, Ui) (T, bn)
=0, 'sgn(n) A, (D, Vi) (Ui, dn)
= 6, sgn(n)nA; (6, Vi) (i, on)
=0, ' [n|Ag (@, Ti)[* > 0.

This proves (5.14). Equality (5.15) looks now as follows:

(u,v) = D (u, W) (W, 0) = 6, 0] D A (g W) = 1.

keN k>0

To satisfy this hypothesis, we set

E>0
Observe also that
6y > 1. (5.27)

Indeed, as we have seen
[N (B, W) = sgn(m) A (o™ PHa 0, Ay Ui ) (W, 60)
= sgn(n)(a”*Ha' > pn, W) (U, 6n)-
Therefore
On =Y 1A (dn, ©R)* = sgn(n) > (a7 *Ha' g, W) (T, 6)

k>0 k>0

= sgn(n) <a‘1/27-[a1/2¢n, Z(Qbm ‘1’k>‘1’k>

k>0
= sgn(n)(a"*Ha' ¢y, $n)
= |n[""{a™*Ha"*¢,, Datn)
= |n|"(Daa™*Ha' P h, h).
Since D,a"'?*Ha'/? = A,, we obtain
S = [n]" {(Natbn, ) (5.28)

With the help of (5.16), this gives (5.27).
Thus, hypotheses of of Lemma 5.2 are satisfied. Applying statement (2) of Lemma 5.2,
we obtain

sgn(n)o, (Mg 4+ Po)aY?Ha 2, ¢n) = (A%u,v) < (Au,v)®. (5.29)
Next, we compute on the base of (5.26)
(Au,v) = 0, (A + Po)a*Ha'?¢,,, sgn(n)éy,)
2 a7 P Ha' P, sgn(n) (Aa + Po)én)
o™ P Ha P, sgn(n) Audn)
o (Maa™ P Ha 2, sgn(n)dn),
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ie.,
(Au,v) = 6, " (Aga *Ha' ¢y, sgn(n)dy). (5.30)

Since

Aaa™PHa' Py = Doy = nipr,
equality (5.30) simplifies to the following one:

(Au,v) = 6, |n][|gnll* = 6,7 [n]. (5.31)

From (5.29) and (5.26), we obtain
sgn(n)((Aa + Po)*a”/*Ha' 26y, ¢n) < 6,7 [n]".

Multiplying this inequality by |n|, we have

n((Aa+ Po)a™ P Ha' 2, ¢n) < 6,7 nf" = (@)Slnlén-

With the help of (5.27) and (5.28), this gives
n((Aa + Po)*a™ P Ha' P, dn) < [n]*(Natn, dn). (5.32)

Inequality (5.32) holds for every n € Z\ {0}. Together with (5.25), it means that
all summands on the right-hand side of (5.24) are non-negative. This proves (4.6) for
s € (0,1).

Equality in (4.6) implies that each summand in (5.24) is zero, which means equality in
(5.25). For n =1 it implies (A,¢1, $1) = 1 and we conclude as before.

Part 6. Let s € (—1,0). We repeat our arguments of Part 5. Formula (5.24) is still
valid. But instead of (5.25) we have now the opposite inequality

(Aa+ Bo)* s ) < (Ao, d)* (5.33)

Indeed, since 0 < s+ 1 < 1, we have to apply statement (2) of Lemma 5.2.
All our formulas in between (5.24) and (5.29) remain valid. But instead of (5.29) we
have now the opposite inequality

sgn(n)0,  ((Aq + Po)a™Y*Ha 2 p,,, ) = (A%u,v) > (Au,v)*. (5.34)

Indeed, we have to apply statement (3) of Lemma 5.2.
Formula (5.31) is still valid. From (5.31) and (5.34), we obtain

sgn(n) (Ao + Po)*a™ PHa' p,, @) > 6175 n|".
Multiplying this inequality by |n|, we have

TL((Aa +P0)Sa_1/27-[a1/2¢n,¢n) > 571L_8|n|8+1 _ (%>s|n|5n

Substituting the value |n|d,, = (Au¢n, ¢n) from (5.28), we arrive to the inequality
(Ao + Po)*a™ "Ha' P, dn) > [n]*6,* (Radn, 6n).

Then, substituting the value d,° = [n|*(Aydn, ¢n) ~° from (5.28), we obtain
(Ao + Po)a” P Ha 2, dn) > nf* (Nadon, dn)' ™

We rewrite this in the form

n{(Aa + Po)*a™ PHa g, dn) 2 (0] (Matn, d0)* (Ko, 0) ™
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and use the inequality (Ay¢,,, @,) 2 > |n|~2* that follows from (5.16) (recall that —2s > 0)
to obtain

n{(Aa + Po) a*Ha' ¢y, n) > (Matbn, dn) . (5.35)

Inequality (5.35) holds for every n € Z \ {0}. Together with (5.33), it means that
all summands on the right-hand side of (5.24) are non-positive. This proves (4.7) for
s € (—=1,0).

Equality in (4.7) implies that each summand in (5.24) is zero, which means equality in
(5.25). For n =1 it implies (Ay¢1, ¢1) = 1 and we conclude as before.

6. PROOF OF THEOREM 1.3

6.1. A compactness lemma. Our proof of Theorem 1.3 heavily relies on invariance of
compact sets in C*°(S) under the flow of the equation (1.8). The compact sets can be
determined in terms of the Steklov zeta function and the determination takes its roots
from [7]. We have the following result.

Theorem 6.1. Let ¢ = {ci}ren be a sequence of positive reals. The subset K. of C*(S),
defined by

]CC = {O <be COO(S) ’ Sb71:27'(',[;0 S Co, Cb<_1) S cl,Cb(—Qm) S Cm+1, (m:1,2, Ce )},
(6.1)

is compact in C(S). In particular, there exists €. > 0 dependent on ¢y and c; such that
e.<b<e ' forany b€K.. (6.2)
Additionally, for any positive integer m,

sup ||b]|ems) < Cr,  sup [[Hb|ems) < Cp, (6.3)
beK, beke

with a constant C,, that depends on cq, . .., Cpio only.

The values Z,,(b) = (,(—2m) (m = 1,2,...) are the so-called zeta invariants of the
function b introduced in [11].

Proof. The proof mostly follows that of [7, Lemma 5.3] on the compactness of a Steklov
isospectral family of planar domains. We will stress only the differences between the latter
proof and the current proof of Theorem 6.1.

The main difference between the two proofs is the first step where one needs to control
the zeroth Fourier coefficient by and the uniform norm ||In(b)||ls. This was done by
Edward [3] and repeated in [7, Lemmas 5.1 and 5.2].

Here we provide details of the first step. The control of the zeroth Fourier coefficient is
granted by the definition of /C.:

0< ZA?O <c¢y for bel,. (64)

Now we recall Kogan'’s formula [9]:

2 2

0= g3z | (Vg —0) =g+ g [ g 109

0

[e=]

for a smooth positive function b on S.
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Now let b € K.. Combining (6.4), (6.5) and the definition (6.1) of K., we obtain

/ (bll)((?)) df = 127(G(—1) + bo/6) < 27 (61 + c). (6.6)

Then by Bunyakovsky-Cauchy-Schwarz inequality we have

[ GRS R -
| 1 | = b1/2 < _b b < 27'[‘(661 + C()) .
S S

We have used (6.6) and the normalization condition [, b~ = 2 satisfied by any b € K.
Then we prove a uniform control of the L'-norm of In(b) with respect to the constants
co and ¢;. As in [3] we can conclude that

1) < 27(6c1 + c)'/2.

Indeed, the normalization condition also tells us that there exists 6y € [0,27) such that
b(0y) = 1. We can assume without lost of generality that 6, = 0, and we have

In (b(6)) —/0 In(b)'(s)ds, |In(b)(0)| < 27 (61 + o) (0 € [0,27)).

The first step is completed. Note also that the bound on || In(b)||« provides the right
value for .. Here . = exp ( —27(6¢y + co)l/ 2) would fit in the second statement of the
theorem.

The second step is a repetition of the proof of [7, Lemma 5.3]. In the latter proof,
zeta invariants Z,,(b) = (,(—2m) have fixed values for b belonging to a specific subset
of C*(S). Now we use that the zeta invariants of a function b € K. are bounded:
Zm(b) = ((—2m) < ¢ppp1. This is enough to conclude that

sup ||l gm(s) < O
bel.

for any m € N with some constant C,, depending on ¢y, ..., 1. We also observe that
|Hb|| prm sy < ||b]| m(s) for any positive integer m and any b € C*°(S). Then we use the
embedding of H™(S) into C™(S) to obtain (6.3). O

6.2. Basic properties of the flow (1.8). We will use the following basic statement for
the quadratic form on the right-hand side of (1.8).

Lemma 6.2. For a real function b € C*(S), define
B(b) = —b(Ab) + (Hb)(DD).

Then B
B(b) = —4R(b4(Aby)), (6.7)
where .
b() 7 _ik6
be(0) = 5 + > bge
E>1
If by, = 0 for |k| > N with some N € N, then also
(BO)=0 for |k >N (6.8)
and - L
(B(b))x = —k by by, + > (+m)bb, (0<E<N). (6.9)

1<i;m<N, l—-m=k



ESTIMATE OF THE STEKLOV ZETA FUNCTION ON (-1,1) 33
(By convention, a sum over an empty set is zero.)
Proof. Since b is a real function, b = by + b,, Hb= b, — by and

_b(AD) + (HB)(Db) = —b(Ab) + (Hb)AHD
= —(by + b )A(Dy +by) + (by — by )A(Dy —by)
= —2b,Ab, —2b,Ab, = —4R(b,(AD,)).

This proves (6.7).
Assume now that by = 0 for |k| > N. This means that

o N 5 N
by (0) = 50 + b bi(9) = 50 +> by

k=1 k=1

and we have
;N o
B(b) = —4%[50 S kb ™+ ST kbob el(l*’f)@].

k=1 1<kI<N

Now (6.8) and (6.9) are obvious. O

We will also use the following property of the flow (1.8).

Lemma 6.3. Let I be a real interval and let o« € C*°(1,C(8)) be a real solution to (1.8).
Then the mean value fg ar 1S a non-increasing function of T € I and

0

ar . ar = —4a,; 4, Ao, ) (T €1). (6.10)

Additionally, if % Jsar =0 for some T € I, then a,; = (@;)o = const.

Proof. We average (1.8) and use (6.7) to obtain

0
_/ar = _4%/ (O‘T,-I—Aa’r,+) - _4<a7+’AaT+> <0.
87— S S ’ ’
The equality here holds if and only if «, ; is a constant function. O

The normalization condition (1.4) is preserved by the flow.

Lemma 6.4. Let o € C°(1,C(S)) be a solution to (1.8) on a real interval such that o,
15 a positive function for any T € I. Then fS a; ! is independent of T.

Proof. We derive from (1.8)

Oa ! oo, -\
g; = _047_2 8074_ = a;2(047A047 — Ha,Da;) = _04;2(0479/7 —gr) = — (g_) )

where g, = iHa,. Averaging over S, we obtain

%/Sa;lz/ggaT‘l:—/s(g—:)/:O-
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6.3. Reduction to a system of ODE’s. We prove here a weaker version of Theorem
1.3 such that the initial data for equation (1.8) have a finite amount of nonzero Fourier
modes.

Theorem 6.5. Assume a positive function a € C*(S) to satisfy the normalization con-
dition (1.4) and to be such that a = 0 for |k| > N with some N € N. Then there ezists
a unique smooth path o € C*°([0,00),C>(S)) of positive functions such that

ap = a, (6.11)
%O: — —a(Aas) + (Hao)(Day) for 7€ [0,00), (6.12)
(a7)p =0 for 7€[0,00) and |k|> N. (6.13)

Additionally, if IC.. is a compact set in C*(S) defined by (6.1) for some sequence {cy}ren
of positive reals such that

Co = do, ¢ 2 Ca<_1)7 Cm+1 > (a(_Qm) (m < N\{O})7
then o, € K. for any 7 € [0, 00).

Proof. Of course a € K. and we denote by ¢, the constant that appears in (6.2).

Now, let v € K. be such that v, = 0 for |k| > N. We consider the differential equation
(6.12) with the initial data v. Due to (6.9), we translate (6.12) into the system of ODE’s
for Fourier coefficients of the smooth path «:

T — _kagrag, + > (+ma,an, (0<E<N7TeR)  (6.14)
1<l,m<N, l-m=k
with the initial conditions
ago=10 (0<k<N). (6.15)
Observe that (6.14) is a Riccati type system, i.e., its right-hand side is quadratic in the

unknowns. Standard facts of ODE’s theory give us the following statement on the local
existence of a solution:

Lemma 6.6. Given an integer N € N and €. > 0, there exists 6y = dny(e.) > 0 such that
the following statement is true.

For every sequence p = (pr)o<i<n € CNTL satisfying supger<y |pr] < €21, system (6.14)
has a unique solution o

ap = (G0 ps-- -+ ANrp) € C((—0p, 6y), CVTY
satisfying the initial condition &,(0) = p.

The dependance of d on e, is not designated explicitly since e, is fixed in our further
arguments.
We apply Lemma 6.6 to p = (0 )o<k<y and then define

N

rp(0) = Go,rp + Z(dkmp e 4 Gy, e ).
k=1

The path a., belongs to C*((—0n,dn),C®(S)) and ag, = v. The path satisfies (6.13)
for 7 € (—dn,0n). Due to Lemma 6.2, the path also satisfies equation (6.12) for 7 €
(—dn,0n).
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We are going to prove that o, € K. for any 7 € (0,dy). First we use Lemma 6.3 to

obtain
/aT,US/ao,U:/USCO'

Then we set T, = sup{s € (0,dy) | s, is a positive function}. By Lemma 6.4,

[ st [

for 7 € [0,T,). Then we can apply Corollary 4.3 to obtain

Coro (1) S Go(=1) 1, Cap o (=2m) < Go(=2m) < Cmya (m € N).
Therefore o, € K. for 7 € (0,7,). In particular, by (6.2),
Qrp >e. for 7€(0,T,).

Hence we necessarily have T,, = dy.
Now, we are going to prove that the solution a;, can be extended to all positive times
7. To this end we introduce the one-parametric family of continuous maps

K. NFy = K.NFy, vi=ar, (0<717<0n),

where Fy denotes the (2N + 1)-dimensional subspace of C°(S) consisting of smooth

functions f such that fk = 0 for |k| > N. By the well known group property of a solution
to the Cauchy problem for ODE’s,

SDTH—TQ :spﬁogpm for T, T2 € [0,5]\[), 7—1+7—2<5N'
Now, representing an arbitrary 7 > 0 as 7 =7 +---+ 7, with 7, € [0,0n) (1 < i < p),
we define
=Mt o-r0p™: K. — K.
Then a,, = ¢7(v) is well defined for all 7 > 0.

Uniqueness of the solution a to the Cauchy problem (6.11)—(6.13) follows from the local
uniqueness of Lemma 6.6. [

6.4. Convergence as 7 — +00.

Theorem 6.7. Let a positive function a € C*(S) satisfy the normalization condition
(1.4). Let o € C*([0,00),C>*(S)) be a deformation of a satisfying equation (1.8). Let K.
be a compact set in C°(S) defined by (6.1) for a sequence ¢ = {ck}ren of positive reals
such that

co > Go, 12> GCa(—1),  Cmi1 = Ca(—2m) (m € N\{0}).

Then o possesses the following properties:
(1) for all k,m € N the estimate

0o,
sup ' p < Conk (6.16)
ref04+00) || OT cm(S)
holds with a constant C,,,, that depends on k,m and the constants co, ..., Crtrm+2;

(2) a converges to the constant function 1 in C°(S) as T — +o0.

Proof. Repeating our arguments from the proof of Lemma 6.6, we prove that «, € K,
for any 7 € [0,400). Therefore (6.16) holds for k£ = 0. A similar estimate holds for Ha.,
in place of a.. Then we prove the estimate (6.16) for any k by induction on k and by
iterative differentiation of the equation (6.12).
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Now we prove the second property. Let {7x}ren be an increasing sequence of positive
reals such that 7, — +o00 as k — +o0. Since K, is a compact in C*°(S), there exists a
subsequence {7, }nen such that a; —converges in C*°(S) to some function a.. We are
going to prove that a,, = 1. Since the limit a., is then unique, this would prove the
second statement of the theorem.

Since a; > 0 and [;a;' = 27 for any 7 > 0, we have by the Bunyakovsky-Cauchy-

Schwarz inequality
1< (27r)2/0471/a7 = (27r)1/a7.
s S S

n= inf /ozT > 2. (6.17)

7€[0,+00)

Therefore

We also recall that [, a, is a non-increasing function of 7 (see Lemma 6.3). Hence

1= fo~ fon
First assume that a., is not a constant functlon. Then
(oo 43 Aavoo ) > 0.
Hence, by (6.10),

0 |« or
g% = —4ar, 4, Mg, ) = —Hae 4, Mgy ) < 0as k — oo, (6.18)
T=Tn,,
Then using (6.16) we obtain that
9 (.o,
sup ‘ fS2 <C (6.19)
7€(0,00) T

with some positive constant C' that depends on /C..
Estimates (6.18) and (6.19) prove the existence of ky € N, § > 0 and r > 0 such that

/OzmkH < /amk -
S S

for any k > ko. Hence = —oco since [ @, is non-increasing in 7. This contradicts (6.17).
We have proved that o, is a constant function. The normalized condition (1.4) is
preserved along the path «, and we obtain a,, = 1. O

6.5. Final step. We prove Theorem 1.3. Let a positive function a € C*(S) satisfy the
normalization condition (1.4).

Let us recall the algebraic definition [11] of zeta invariants (,(—2m) (m = 1,1,...) for
a positive function b € C*(S):

G(=2m) = > Njijon bjsbiy - b,
it +i2m =0

where, for j; + -+« + jo, = 0,

e}

Nir o = [\n(nﬂl)(nﬂl+j2)...(n+j1+---+j2m,1>!
e (6.20)

—n(n+j1)(n+ 5 +j2)~~-(n+j1+"'+j2m—1)]-



ESTIMATE OF THE STEKLOV ZETA FUNCTION ON (—1,1) 37

There is only a finite number of nonzero summands on the right-hand side of (6.20) since
the expression

fn)=nn+j)n+ji+j2) ... (n+ 1+ + jom-1)

is a polynomial of degree 2m in n which takes positive values for sufficiently large |n|.
Now the function a is positive. Hence there exists Ny € N such that for N > N

> e >0 (0 eR).
In|<N

We set '
a™(0) =cy > ae™ (N = Ny, (6.21)

where cy is determined by the normalized condition

/S ( 3 akeikg) oy (6.22)

In|<N
We also recall that a, = O(|k|~>°) as k — oo since a is a smooth function.
By Kogan’s formula (6.5), (6.22) and the algebraic definition (6.20) of zeta invariants,
lim Cn(=1) =G(=1), lim (m(=2m) =(u(=2m) (m=1,2,...).  (6.23)
—+00 N—+oco

Let Ny > Ny be large enough. By (6.23) we can choose dy, > 0 such that

(a™)y < co=ag+ 0N,
Cam(=1) < 1 = C(—=1) + 0y,
Car(=2m) < gy = Gu(=2m) + O,
for 1 <m <2N; and N > N,.

Now, consider the compact set K& in C>°(S) defined by the sequence (c%v ))meN that
is defined as follows:

AN =, for 0 <m < 2N, and ) = Cun (—2k) for k> 2N, + 1, (6.24)

N

We apply Theorem 6.5 to a®™) and K™: There exists a path ™) € C>([0,00),C>(S))
that converges in C*(S) to 1 as 7 — 400 and satisfies (6.12)-(6.13) with the initial

condition Oé(()N) = a®™). Additionally, the estimate

A ah)
=¢ 6.25
Te[sol,lfoo) H otk ‘ oNI-1(s) T Nik ( )

holds for any 0 < k£ < N; — 1, where the constant C'y,  depends on N;, k and constants

Co, - - -, Can,+1 given in the definition of ICEN).

Estimate (6.25) shows the existence of a subsequence (a(¥*)),cy that converges to some
a € CM72(]0,00), CM~2(S)) in the space CM~2([0,00), CM~%(S)). Passing to the limit
in (1.8), we see that « solves (1.8) with the initial condition

lim o™ (0) = lim o™ =q
N—o0 N—o00

(the limits are taken in C™~2(S)). Since Nj is arbitrary and since the a™)’s do not
actually depend on Np, we obtain that

a € 0%([0, 00), C=(S)).

The solution « satisfies all statements of Theorem 1.3. O
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7. CONCLUDING REMARKS

In our previous work [6], the inequality (,(s) — 2(r(s) > 0 was proved for all real s
satisfying |s| > 1. The proof was based on inequalities (5.16)—(5.17) and essentially used
the convexity of the function x +— z* (z > 0) for s > 1. Together with (5.16)—(5.17), the
convexity gives

(Ao + P0)° s dn) = [n)°, (Ao + Fo)Pn, dn) = [0 (n € Z\{0}, s > 1).
These inequalities are definitely wrong for s € (0,1). Otherwise we would have
(In(Ay + Py)dn, ¢n) =1In|n| (n € Z\{0}).

But a computations in a neighborhood of a = 1 shows that the inequalities do not hold
in the general case.

In the current work, we have developed an alternative approach for proving the inequal-
ity Cu(s) —2¢r(s) > 0 for all s € R.

Let us reproduce equation (1.8)

da,
aO; = —a,(Aay) + (Ha,)(Da,) (7.1)
together with the initial condition
ap = a. (7.2)

Observe that (7.1) is a Riccati type equation with non-local quadratic terms. We have
proved the global existence of a solution to the Cauchy problem (7.1)—(7.2) at least for a
positive function a € C*°(S). But the corresponding uniqueness question remains open.

Another Riccati type equation with non-local quadratic terms is well known in the layer
stripping method for Electrical Impedance Tomography, see [1] and references therein. To
our knowledge, the uniqueness and global existence of a solution to the Cauchy problem
for the latter equation are proved in the radially symmetric case only. Nevertheless,
in more general cases, some numerical methods are developed which are based on the
equation.
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