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Observer design for nonlinear systems with multi-rate
sampled outputs - Application to attitude estimation

Tristan Bonargent∗1,2, Tomas Ménard1, Eric Pigeon1, Mathieu Pouliquen1 and Olivier Gehan1

Abstract— The present paper proposes an observer for a
class of nonlinear systems with multi-rate sampled outputs.
Each output can have irregular and aperiodic sampling rate
independent of the others. This work extends previous studies
on high gain observer to permit the estimation of multi-rated
output systems. The stability is proved by using a Lyapunov
approach, providing that the sampling rates of each outputs
are respectively smaller than their associated upper bound. The
observer is then applied to the attitude estimation problem.

Index Terms— High gain observer, multi-rate observers, non-
linear systems, sampled-data observers, attitude estimation

I. INTRODUCTION
The observer design for nonlinear systems has been stud-

ied for several decades. Various ideas have been proposed to
address this problem. Among the many existing approaches,
one can mention but a few, such as high gain observers
[10], normal forms observers [4] or Lyapunov based ob-
servers [22], for example. Most of the existing observers in
the literature consider only continuous-time measurements,
while in practice, measurements are usually available only at
some discrete instants. Furthermore, when many sensors are
involved, several different sampling periods might have to be
considered: one for each measured output. Indeed, nonlinear
systems with multi-rate sampled outputs can be found in
many disciplines. For instance, inertial measurement units
use several sensors that may not have synchronous sampling
rates [21], asynchronous measurements can be desired to
reduce the energy use [19] or it can be also used for the fault
detection of plants purposes [6]. Two main approaches have
been explored when considering discrete time measurements:
one can either discretize the system, in order to use a
full discrete-time approach, or use an hybrid discrete-time
measurement continuous-time system in order to keep the
physical meaning of the continuous-time modeling of the
system.

Following the first full discrete-time approach, Kalman
filters are often used to deal with the considered problematic
[11], [15], [25]. The estimation is made in two steps: the
commonly called prediction and update stages. In [1], [2],
due to the discrete nature of the system, sampled data of
each output must be available at periodic instants. Two
Kalman filters have been used in [8], one for regular sample
and one for irregular samples. A multi-rate moving-horizon
optimization-based observer has been considered in [18] to
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reconstruct the state. An observer has been exposed in [20]
under the assumption that the samples of the different outputs
have a greatest common divisor. This efficient method can
be hard to set up especially due to the important choice
of the initialization. A sampler has been considered in [3],
[16] in order to compute the outputs between two samples.
These outputs estimates are then used to estimate the state.
This permits to not have the same hold value between two
samples.

The second approach estimates the state of the system in
continuous-time from discrete-time measurements. This can
be useful to implement a control law based on the continuous
model or for monitoring purposes. A constant gain observer
has been proposed in [17], using an exact linearization with
the Lyapunovs auxiliary theorem [13]. More precisely, the
authors use a continuous-time exact linearized differential
equation to estimate the state and update the output when
a data is sent by a sensor. The main drawback of this
approach is that most systems cannot be easily linearized
with the previous method due to the solving of partial
differential equations, furthermore the design of the observer
induces discontinuities of the estimated state that may not
be desirable when used for control purposes such as in
mechanical systems for instance. Another observer has been
designed in [23] for multi-rate systems with delayed samples.
The authors use a constant gain observer which avoid the
linearization problem, but the considered sampling periods
may be too small to be implemented in real conditions.
A combination of a high-gain observer and an extended
Kalman filter has been proposed in [9], which also estimate
the state in continuous-time. It combines the two noise
covariance matrices of a classic Kalman filter with some
high-gain parameters. This allows the authors to reduce the
noise impact while keeping the advantages of the high-
gain approach. Nevertheless, the estimated state is time-
discontinuous, which might be problematic when used to
feed a control law.

In this paper, we focus on a uniformly observable multi-
output class of systems. We propose an observer which
provides a continuous estimate of the state based on multi-
rate outputs. The design considered here is based on the
approach proposed in [7] for a class of uniformly observable
systems and extended in [5] for perturbed systems and in [12]
for a class of non-uniformly observable systems. A limitation
of the existing results is that multi-rate outputs cannot be
managed. An extension of these works is then presented in
this paper in order to consider systems with several outputs



each with different sampling.
The paper is organized as follows. In section II, the

considered problem is stated. The proposed observer is
described in section III with a proof of stability. Section IV
contains some simulation results of a nonlinear multi-rate
system in order to illustrate the behavior of the proposed
approach. Finally section V concludes this paper.

II. PROBLEM STATEMENT
In the present study, we consider a general class of nonlin-

ear multi-output systems with multi-rate sampled data, which
has been considered in [24] for the continuous outputs case
with no dynamic uncertainties. The state space is separated
into several blocks, each corresponding to an output. Each
block dynamic is given by

ẋi1(t) = xi2(t) + ϕi1(u(t), x(t))

ẋi2(t) = xi3(t) + ϕi2(u(t), x(t))

...

ẋiλi−1(t) = xiλi(t) + ϕiλi−1(u(t), x(t))

ẋiλi(t) = ϕiλi(u(t), x(t)) + εi(t)

yi = xi1

(1)

for i = 1, . . . , q, with xik ∈ Rpi , k = 1, . . . , λi, the
block sub-states and yi ∈ Rpi the block output. One further
denotes ni = λipi the dimension of the i-th block’s state
and n =

∑q
i=1 ni the dimension of the systems whole state.

One assumes that the nonlinear functions ϕik possess a
particular triangular structure according to each block and
between blocks, that is:

• ϕik(u, x) = ϕip(u, x
1, x2, . . . , xi−1, xi1, x

i
2, . . . , x

i
k)

for 1 ≤ k ≤ λi − 1
• ϕiλi(u, x) = ϕiλi(u, x

1, x2, . . . , xi)

The functions εi : R+ → Rpi represent the dynamic
uncertainties and can depend on the state or on unknown
parameters.
The outputs are assumed to be available only at some
sampling instants, that is

yi(tik) = xi1(tik) (2)
where the tik represent the sampling instants of the output of
the i-th block’s output and verify

0 ≤ ti0 < t01 < · · · < tik < tik+1 < . . . (3)
The time between two successive measurements of the i-th
block, denoted τ ik = tik+1− tik, can vary and can be different
for each block. In fact, each output can have irregular and
aperiodic sampling rates independent of the other outputs.
One further denotes τ iM = maxk τ

i
k the upper bound on the

set of sampling periods of the i-th block.
In the following, the dynamics of each block, i = 1, . . . , q
given by (1) will be written in an equivalent way in the
following compact form:{

ẋi(t) = Aix
i(t) + ϕi(u(t), x(t)) +Biεi(t)

yi(tik) = Cix
i(tik)

(4)

with xi =
[
(xi1)T (xi2)T . . . (xiλi)

T
]T ∈ Rni ,

ϕi(u, x) =
[
(ϕi1(u, x))T (ϕi2(u, x))T . . . (ϕiλi(u, x))T

]T
and Ai, Bi, Ci are the corresponding matrices, that is

Ai =


0 Ipi 0
...

. . .
0 . . . 0 Ipi
0 . . . 0 0

Bi =
[
0 . . . 0 Ipi

]T
Ci =

[
Ipi 0 . . . 0

]
The aim of the present study is to design an observer that
provides continuous-time estimate of the state of the MIMO
system (4) from the multi-rated output samples (2). The
conditions of convergence concerning the upper bounds of
the sampling rates as well as the observer structure will be
exposed in the next section.

III. MAIN RESULTS
A. Observer’s design

The proposed observer is given by
˙̂xi(t) = Aix̂

i(t) + ϕi(u, x̂(t))

− θδi∆−1
i (θ)Γie−θ

δiΓi1(t−tik)(Cix̂
i(tik)− yi(tik)) (5)

for t ∈ [tik, t
i
k+1), i = 1, . . . , q, where x̂i ∈ Rni is the

estimate of xi. The diagonal matrix ∆i(θ) is defined as

∆i(θ) = diag

(
Ipi ,

1

θδi
Ipi , . . . ,

1

θδi(λi−1)
Ipi

)
(6)

with θ > 1 a tuning parameter of the high gain observer.
The powers δi of θ in the matrix ∆i(θ) are defined as

δi = λi+1δi+1, for i = 1, . . . , q − 1 and δq = 1 (7)
The gains Γi ∈ Rni are chosen such that Āi , Ai−ΓiCi is
Hurwitz. It should be noted that, given the particular block
structure of Ai and Ci, Γi can be chosen in the following
form

Γi = [Γi1Ipi Γi2Ipi . . .Γ
i
λiIpi ] (8)

with Γi1, . . . ,Γ
i
λi
∈ R.

Since the matrices Āi are Hurwitz, there exist positive-
definite matrices P i and positive reals µi such that

P iĀi + ĀTi P
i ≤ −2µiIλi , i = 1, . . . , q. (9)

The maximal and minimal eigenvalues of P i are denoted
respectively λiM and λim and λM = maxi λ

i
M , λm =

mini λ
i
m, σ =

√
λM
λm
, µ = mini µ

i.

Remark 1: The class of systems considered in this paper
is the same as the one presented in [24], but the powers δi
of θ don’t have the same definition. This is done to limit
the effects of the uncertainties on the performance of the
proposed observer.

B. Convergence analysis
Some assumptions must be first considered in order to

obtain a correct estimation of the continuous state.

A1 The whole state x =
[
(x1)T (x2)T . . . (xq)T

]T
is

bounded, that is, x(t) ∈ X, ∀t ≥ 0, where X is a
compact subset of Rn.

A2 The functions ϕi(u, x) are Li Lipschitz with respect to
x uniformly in u, i.e. there exists Li > 0 such that
for u ∈ U and x, x̄ ∈ Rn, ‖ϕi(u, x) − ϕi(u, x̄)‖ ≤
Li‖x− x̄‖. One further denotes L = maxi L

i.



A3 The functions εi are bounded, that is, there exists δiε > 0
such that ‖εi(t)‖ ≤ δiε for all t ≥ 0 .

A4 The input u is bounded, that is u(t) ∈ U, ∀t ≥ 0 where
U is a compact subset of Rs.

One can now states the convergence result.
Theorem 1: Consider system (4) subject to assumptions

A1, A2, A3 and A4. Assume that θ ≥ 1 satisfies
θδi

2
≥ Li

√
ni

µi
for i = 1, . . . , q (10)

with Li the Lipschitz constant of ϕi, ni the size of i-th
block state xi and µi defined by (9). Then, if, for each block
i = 1, . . . , q, the upper bound on the sampling periods τ iM
is chosen such that

τ iM < τ i0 for i ∈ [1, . . . , q] (11)

with τ i0 = min

(
(
√

2−1)
√
λim

4
√
λiM‖Γi‖(θδi+Li)

,

√
2λim
µi θ−δi

)
, λiM is the

maximum eigenvalue of P i and λm is defined in III-A, then
there exists ᾱi ≥ 0 and β̄i ≥ 0, with β̄i independent of
θ and the uncertainties, such that the following inequality
holds true for i = 1, . . . , q

‖xi(t)− x̂i(t)‖ ≤ ᾱie−
1
4 θ
δi t + β̄iθ

−δi
i∑

k=1

δkε (12)

Remark 2: Theorem 1 shows the exponential convergence
of the errors ‖xi(t) − x̂i(t)‖ toward a ball centered at the
origin, whose radius is proportional to θ−δi

∑i
k=1 δ

k
ε . In

other words, the effect of the uncertainties can be lessened
by increasing the parameter θ, as long as the inequality (11)
is respected.

Remark 3: Equation (11) represents the condition of con-
vergence with regard to the sampling rates. One can note
that if θ increases, then τ iM decreases. Thus, the faster the
observer, the smaller the sampling periods considered can
be.
Before starting with the proof of theorem 1, the following
result must be stated.

Lemma 1: Let w : [−τ,+∞) → R be a C1 function
verifying the following inequality
d

dt
(w2(t)) ≤ −aw2(t) + b

∫ t

t−τ
w2(s)ds+ ce−dt + k (13)

with a > 0, b ≥ 0, τ > 0, c ≥ 0, d > 0, k ≥ 0 and τ <

min
(√

2−1
2

a
b ,

1√
2a

)
. Then there exists ᾱ ≥ 0 such that the

following inequality holds true

w(t)2 ≤ ᾱe−β̄t +
2k

a
(14)

where β̄ = min
(
a
2 , d
)
.

Sketch of proof 1 (of Lemma 1): Let us denote α = a√
2

,
β = b

a

(
eατ−1
α

)
and γ = 1 − β. Then, one can prove that

β ∈
(

0, 1− 1√
2

)
, which directly implies that γ ∈

(
1√
2
, 1
)

.
Let us now define the following candidate Lyapunov function

Θ(wt) = w2(t) + b

∫ τ

0

∫ t

t−s
eγα(ν−t+s)w2(ν)dνds (15)

where wt(s) = w(t + s), s ∈ [−τ, 0]. Then, its derivative

can be over-valued in the following way
Θ̇(wt) ≤ −

a

2
Θ(wt) + ce−dt + k (16)

Finally applying the comparison lemma [14, lemma 3.4
p102] concludes the proof.

Proof 1 (of Theorem 1):
The proof is divided into three main parts. In part 1),
the derivatives of the errors between the state and the
estimated state are exposed together with a suitable change
of coordinates. Then, some candidate Lyapunov functions
are considered and an over-valuation of their derivatives are
derived in part 2). Finally, an induction reasoning is used, in
part 3), to conclude.

1) Error dynamics:
Let t ∈ R and define ki ∈ N as

ki = max{k ∈ N | tik < t}, i = 1, . . . , q. (17)
The observation error dynamics of the i-th block, defined by
x̃i(t) = x̂i(t)− xi(t), can be written as follows.

˙̃xi(t) = Aix̃
i(t) + Φi(u(t), x̂(t), x(t))

− θδi∆−1
i (θ)Γie−θ

δiΓi1(t−tiki )Cix̃
i(tiki)−Biε

i(t) (18)
where Φi(u(t), x̂(t), x(t)) = ϕi(u(t), x̂(t))−ϕi(u(t), x(t)).
One denotes now x̄i = θ−σi∆i(θ)x̃

i, with σi = λ1δ1 −
λiδi then, using the equalities ∆i(θ)Ai∆

−1
i (θ) = θδiAi and

Ci∆
−1
i (θ) = Ci yields

˙̄xi(t) = θδiĀix̄
i(t) + θ−σi∆i(θ)Φ

i(u(t), x̂(t), x(t))

+ θδiΓizi(t)− θ−σi∆i(θ)Biε
i(t) (19)

with zi(t) = Cix̄i(t)− e−θ
δiΓi1(t−tiki )Cix̄i(tiki).

2) Lyapunov function:
Consider the candidate Lyapunov functions V i(x̄i) =
(x̄i)TP ix̄i. For t ∈ [tiki , t

i
ki+1[, the derivative of V i(x̄i(t))

can be over-valued as follows

V̇ i(x̄i) ≤ −2θδiµi‖x̄i‖2 +2‖P ix̄i‖ ‖θ−σi∆i(θ)Φ
i(u, x̂, x)‖

+ 2θδi‖P ix̄i‖ ‖Γi‖ ‖zi‖+ 2θ−σi‖P ix̄i‖ ‖∆i(θ)Biε
i‖ (20)

Since ‖P ix̄i‖ ≤
√
λiM
√
V i(x̄i), one obtains

V̇ i(x̄i) ≤− 2θδi
µi

λim
V i(x̄i)

+2
√
λiM
√
V i(x̄i)‖θ−σi∆i(θ)Φ

i(u, x̂, x)‖

+2θδi
√
λiM
√
V i(x̄i) ‖Γi‖ ‖zi(t)‖

+2θ−σi−δi(λi−1)
√
V i(x̄i)

√
λiM‖ε

i(t)‖ (21)

One now gets an over-valuation of ‖θ−σi∆i(θ)Φ
i‖ and

‖zi(t)‖:
On one hand, one has

‖zi(t)‖ ≤ θδi + Li√
λim

∫ t

t−τ iM

√
V i(x̄i(s))ds

+
Li√
λm

∫ t

t−τ iM

i−1∑
k=1

√
V k(x̄k(s))ds (22)

On the other hand, using classical high-gain techniques with
θ ≥ 1 leads to

‖θ−σi∆i(θ)Φ
i(u, x̂, x)‖



≤
√
niL

i

√
λm

(
i−1∑
k=1

√
V k(x̄k)

)
+

√
niL

i√
λim

√
V i(x̄i) (23)

Thus, by using inequalities (21), (22) and (23), denoting

Ci0 = µi√
λim

, Ci1 =
√
ni√
λm

, Ci2 =
√
ni√
λim

, Ci3 =

√
λiM‖Γ

i‖√
λim

and

Ci4 =

√
λiM‖Γ

i‖√
λm

and choosing θ verifying −θδiCi0 +LiCi2 ≤
−Ci0 θ

δi

2 , one obtains

d

dt
(
√
V i) ≤ −Ci0

θδi

2

√
V i(x̄i) + LiCi1

(
i−1∑
k=1

√
V k(x̄k)

)

+ Ci4θ
δiLi

∫ t

t−τ iM

i−1∑
k=1

√
V k(x̄k(s))ds

+ Ci3θ
δi
(
θδi + Li

) ∫ t

t−τ iM

√
V i(x̄i(s))ds

+ θ−σi−δi(λi−1)
√
λiMδ

i
ε (24)

3) Induction reasoning:
One proceeds by induction to prove that there exist ᾱi ≥ 0
and β̄i ≥ 0 such that√

V i(x̄i(t)) ≤ ᾱie−
1
4 θ
δi t + θ−δ1λ1 β̄i

i∑
k=1

δiε (25)

for i = 1, . . . , q, where β̄i is independent of θ, and provided
that each upper bound on the sampling period τ iM verifies
τ iM < τ i0 with τ i0 = min

(
(
√

2−1)Ci0
4Ci3(θδi+Li)

,
√

2 θ
−δi

Ci0

)
.

Let us first consider the case i = 1. One can directly apply
the lemma 1 with a = C1

0
θδ1

2 , b = C1
3θ
δ1(θδ1 + L1), c = 0

and k = θδi−δ1λ1
√
λ1
Mδ

1
ε . Then there exists ᾱ1 ≥ 0 such as√

V 1(x̄1(t)) ≤ ᾱ1e
− 1

4 θ
δ1 t + θ−δ1λ1 β̄1δ

1
ε (26)

with β̄1 = 4
√
λ1
M , provided that τ1

M < τ1
0 .

Let us now consider the general case i = 2, . . . , q.
One assumes that there exist ᾱk ≥ 0 and β̄k ≥ 0 such as√

V k(x̄k(t)) ≤ ᾱke−
1
4 θ
δk t + θ−δ1λ1 β̄i−1

k∑
j=1

δjε (27)

provided that τkM < τk0 , for k = 1, . . . , i− 1.
The following over-valuations directly follows from the
induction hypothesis and the fact that δk = δk+1λk+1 for
k = 1, . . . , q − 1

i−1∑
j=1

√
V j(x̄j(t)) ≤ ᾱe− θ

δi−1

4 t + β̄θ−δ1λ1

i−1∑
k=1

δkε (28)

∫ t

t−τ iM

i−1∑
j=1

√
V j(x̄j(s))ds ≤ ν̄e− θ

δi−1

4 t + ς̄θ−δ1λ1

i−1∑
k=1

δkε

where ᾱ =
∑i−1
k=1(ᾱk), β̄ =

∑i−1
k=1(β̄k), ν̄ =

ᾱ

(
1−e−

1
4
θ
δi−1τiM

1
4 θ
δi−1

)
and ς̄ = β̄τ iM .

Then, using inequality (24) with (28), one can apply
lemma 1 with a = Ci0

θδi

2 , b = Ci3θ
δi
(
θδi + Li

)
,

c = LiCi1ᾱ + Ci4θ
δiLiν̄, d = θδi−1

4 and k =

Li
(
Ci1β̄ + Ci4θ

δi ς̄
)
θ−δ1λ1

(∑i−1
k=1 δ

k
ε

)
+ θδi−δ1λ1

√
λiMδ

i
ε.

Then there exists ᾱi ≥ 0 such that√
V i(x̄i(t)) ≤

√
λim

θδiλi
ᾱie
− 1

4 θ
δi t +

4k

θδi
(29)

since δi−1 ≥ δi and provided that τ iM < τ i0.
Then, on gets√
V i(x̄i(t)) ≤

√
λim

θδiλi
ᾱie
− 1

4 θ
δi t+

√
λimβ̄iθ

−δ1λ1

i∑
k=1

δiε (30)

with β̄i = 1√
λim

max
{(
LiCi1β̄ + Ci4L

iς̄
)
,
√
λiM

}
.

Finally, using the inequality ‖x̃i‖ ≤ θσi+δi(λi−1)√
λim

√
V i(x̄i(t))

and the equality σi = λ1δ1 − λiδi yields

‖x̃i(t)‖ ≤ ᾱie−
1
4 θ
δi t + β̄iθ

−δi
i∑

k=1

δkε (31)

which concludes the proof.

IV. ATTITUDE ESTIMATION
A. Presentation of the model

The proposed observer is applied through simulations to
the attitude estimation problem. The aim is to estimate the
attitude of a rigid body using the measurements commonly
found in inertial measurement units i.e. acceleration, mag-
netic field and angular velocity.
The desired attitude will be represented by the time varying
matrix R(t) ∈ SO(3). This matrix represents the rotation
from an inertial reference frame to a body fixed frame. In the
following, the geometric structure of SO(3) will be omitted
for the estimate, which means that the estimate of R will
belong to R3×3 and not necessarily to SO(3).
The acceleration and the magnetic field measurements are
then given by

a(t) = RT (t)g0 and m(t) = RT (t)m0 (32)

where g0 =
[
0 0 G

]T
is the standard gravity and m0 =[

ma mb mc

]T
the earth magnetic field. One further as-

sumes that these two vectors are non-collinear. Thus, the
cross product between a and m, given by c(t)=a(t)×m(t),
is non zero for all t ≥ 0 and the vector observations v(t),
defined by

v(t) =
(
aT (t) mT (t) cT (t)

)T
(33)

is made up of three independent vectors.
The last measured signal is the angular velocity ω(t). It is
given from a gyroscope which is assumed to be bias free.
The dynamic of R(t) is hence given by

Ṙ(t) = R(t)(ω(t))× (34)
where ω× ∈ R3×3 is the skew-symmetric matrix associated
to ω =

(
ω1 ω2 ω3

)T ∈ R3, which is defined by

ω× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (35)

B. Observer design
In order to apply the observer presented in this paper to

the attitude estimation problem, one first need to re-write
system (33)-(34) into the form (1). The state of the system
will be composed by the angular velocity and its first two



derivatives on one part and by the vector observation v on
the other part. The dynamic of the first block, related to the
angular velocity, is given by

ẋ1
1 = x1

2

ẋ1
2 = x1

3

ẋ1
3 = ε

y1 = x1
1 = ω

(36)

where x1
1, x

1
2, x

1
3 ∈ R3 represent, respectively, the angular

velocity, its first and second derivatives, ε ∈ R3 represents
the uncertainty on the dynamic and y1 the measured output.
The dynamic of the second block, related to the acceleration
and magnetic measurement is given by{

ẋ2
1 = −S3(x1

1)x2
1

y2 = x2
1 = v

(37)

where S3(ω) = diag(ω×, ω×, ω×) ∈ R9×9.
It should be noted that the state of the second block is not
R(t), indeed, one first estimate here v(t) in continuous time
from the discrete time measurements, the rotation matrix is
then estimated in a second step using the following relation

R(t) = C−1
2 x2

1(t) (38)
where C2 is a constant and non singular matrix defined by

C2 =

 0 0 GI3
maI3 mbI3 mcI3
−GmbI3 GmaI3 0

 . (39)

The proposed observer applied to this example can then be
written as follows

˙̂x1(t) =
[
(x̂1

2)T (x̂1
3)T 0

]T
− θδ1∆−1

1 (θ)Γ1e−θ
δ1Γ1

1(t−t1k)(ŷ1(t)− y1(t))

ŷ1(t) = x̂1
1(t)

˙̂x2(t) = −S3(x̂1
1(t))x̂2

1(t)

− θδ2∆−1
2 (θ)Γ2e−θ

δ2Γ2
1(t−t2k)(ŷ2(t)− y2(t))

ŷ2(t) = x̂2
1(t)

(40)

with δ1 = 1, δ2 = 1, ∆1(θ) = diag
(
I3,

1
θ I3,

1
θ2 I3

)
and

∆2(θ) = I9.

C. Simulation results
Two different simulations will be exposed in this sec-

tion. For both simulations, the constant reference vec-
tors are taken as g0 =

[
0 0 9.81

]T
and m0 =[

0.434 −0.0091 0.908
]T

. The gains Γ1 and Γ2 are cho-
sen such that all the poles of (A1−Γ1C1) and (A2−Γ2C2)
are located to −1, that is

Γ1 =
(
3I3 3I3 I3

)T
and Γ2 = I9. (41)

The observer parameter θ has been fixed to 1.2. The evolution
of the angular velocity is depicted on figure 1. The sampling
periods are chosen such that τ1

m ≤ τ1
k ≤ τ1

M and τ2
m ≤

τ2
k ≤ τ2

M , for all k ∈ N, with τ1
m = 0.1s, τ1

M = 0.2s,
τ2
m = 0.5s and τ2

M = 0.75s. The sampling periods for both
simulations are shown on figure 2. For the first simulation,
the outputs are supposed to be available without noise. The
errors between the reconstructed and real states are depicted
on figure 3 a), b) and c), the error ‖R(t) − R̂(t)‖ on
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Fig. 1. Evolution of the angular velocity
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Fig. 2. Sampling periods of the outputs y1 (left) and y2 (right)

figure 3 d) and the corresponding original and reconstructed
Euler angles on figure 5 a), b) and c). As expected, the
errors don’t converge exactly to zero due to the uncertainties
present in the first block, but it can be set as low as desired
by increasing the parameter θ. For the second simulation,
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Fig. 3. Errors between the real and estimated outputs for the first simulation
one assumes that the output v(t), shown on figure 4, is
corrupted by a centered white noise. In fact the added white
noises have respectively a variance of σa = 0.125m/s2

for the acceleration measurement and σm = 0.0625µT
for the magnetic field measurement. The estimated Euler
angles, depicted on figure 5 d), e) and f) point out the good
performances of the observer despite the noise. The errors
between the real states and the estimated ones are exposed
on figures 6. While the white noise present on the outputs
induce higher bounds on the errors, compared to the first
simulation, it should be noted that they are still satisfactory.

V. CONCLUSION
The problem of observer design for a large class of MIMO

uniformly observable systems with multi-rate outputs has
been considered in this paper. The proposed approach is
based on an high-gain design which allow simple gain tuning.

The main feature of the observer is that each output can
have independent and irregular sampling instants. Further-
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Fig. 4. Acceleration and magnetic field with the added noise
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Fig. 5. Real and estimated Euler angles for both simulations

more, an analysis of the convergence is provided based on a
Lyapunov approach and the effectiveness of the observer has
been validated through simulations to the attitude estimation
problem of a rigid body.
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