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Free boundary limit of tumor growth model with nutrient

Noemi David∗ Benôıt Perthame†

June 24, 2020

Abstract

Both compressible and incompressible porous medium models are used in the literature to
describe the mechanical properties of living tissues. These two classes of models can be related
using a stiff pressure law. In the incompressible limit, the compressible model generates a free
boundary problem of Hele-Shaw type where incompressibility holds in the saturated phase.

Here we consider the case with a nutrient. Then, a badly coupled system of equations
describes the cell density number and the nutrient concentration. For that reason, the derivation
of the free boundary (incompressible) limit was an open problem, in particular a difficulty is
to establish the so-called complementarity relation which allows to recover the pressure using
an elliptic equation. To establish the limit, we use two new ideas. The first idea, also used
recently for related problems, is to extend the usual Aronson-Bénilan estimates in L∞ to an
L2 setting. The second idea is to derive a sharp uniform L4 estimate on the pressure gradient,
independently of space dimension.

2010 Mathematics Subject Classification. 35B45; 35K57; 35K65; 35Q92; 76N10; 76T99;
Keywords and phrases. Porous medium equation; Tumor growth; Aronson-Bénilan estimate; Free
boundary; Hele-Shaw problem;

Introduction

We consider a compressible mechanical model of tumor growth, where the cell motion is driven
by the pressure gradient according to Darcy’s law. The cell proliferation is governed by a bio-
mechanical form of contact inhibition, that prevents cell division when the total cell density exceeds
a critical threshold. The evolution of the cell population density n ≥ 0 and the concentration of
nutrients c ≥ 0 are described by the following type of system

∂tn− div(n∇p) = nG(p, c), x ∈ Rd, t ≥ 0,

∂tc−∆c+ nH(c) = (cB − c)K(p),

c(x, t)→ cB for x→∞.

(1)
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†Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions UMR7598, F-75005

Paris. Email : Benoit.Perthame@sorbonne-universite.fr

1



The pressure within the tissue is denoted by p, and in the compressible setting, we use for simplicity
the following law of state

p = nγ , γ > 1. (2)

The reaction term G(p, c) is the cell division rate and the lowest value of pressure that prevents cell
division is called homeostatic pressure, and we denote it by pH . The concentration cB > 0 is the
level of nutrients at the source, namely the network of blood vessels. Here, we consider the vascular
phase of tumor growth, after angiogenesis has occurred, therefore the vasculature is present both
outside and inside the tumor. The term K ≥ 0 is the rate of nutrient release, which decreases with
respect to the pressure. As clinical observation have shown, the mechanical stress generated by
the cells shrinks the vessels inside the tumor and effects the blood flow and, by consequence, the
nutrients delivery, see [25] for further details. Finally, the term H ≥ 0 is an increasing function of
c and represents the consumption rate of the nutrient by the tumor cells.

The specific form of the reaction term in the equation on c is not fully relevant for our analysis,
and we only need the possibility to derive some generic a priori estimates, mostly in L2. Our study
covers, for example, the terms in [27] where the authors take H = H(p, c), K = 0 and those in [28]
where K = 1{n=0}, since the authors are considering the avascular phase of tumor growth. For our
study, only some general conditions are needed, which are detailed in the next sections.

Motivation and previous works. Models of tumor growth, including (1), possibly with more
biological relevance, have been widely used recently. Several surveys are available, as [33]. Numeri-
cal schemes for the model at hand, with AP property (asymptotic preserving), have been proposed
in [21].

Mechanical models of tumor growth are focused on the effect of the internal pressure which
governs the dynamics of the cell population density. This kind of description was initiated in [19]
by Greenspan and further developed by Byrne and Chaplain, [6], Friedman, [18], and Lowengrub et
al., [23], among the others. The leading assumption is that the birth of a cell generates a mechanical
stress on the surrounding cells which start to move under a gradient of pressure. By consequence,
the motion of the cells is usually described by Darcy’s law

~v = −∇p, (3)

which relates the velocity to the pressure gradient. This type of models have been extensively used
to describe the early stage of tumor growth, the so-called avascular phase, see for example [3, 5, 34].
Models of tumor growth that include the effect of viscosity, [29, 14, 31], or more than one species
of tissue cells, [11, 22], are also well-developed. For a comprehensive review on this topic we refer
the reader to [18, 23, 30, 32].

The equation for the density in the system (1) is based on the continuous mechanical model
presented in [7], in which the dynamics of tumor growth are governed by competition for space and
contact inhibition. The homeostatic pressure is determined by the maximum level of stress that
the cells can tolerate, see [7] for further details on the individual-based model that leads to the
continuous one.

As explained above, this type of models are usually referred to as compressible, since they relate
the density and the pressure through a compressible constitutive law, in a fluid mechanical view.
A second class of models commonly used to describe tumor growth are free boundary problems,
[17]. They are also called geometric or incompressible models and describe the tumor as a moving
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domain where the density is constant. Free boundary problems arise also from the theory of mixture
applied to tumor growth, [8, 9].

Building a link between these two classes of models has attracted the attention of many re-
searchers in recent years. This result has first been achieved in [27] for a purely mechanical model,
passing to the so-called incompressible limit, as the pressure becomes stiff. Later, it has been stud-
ied for a lot of models, which included viscosity [29, 14], different laws of state [15] and more than
one species of cells [4]. In each case the limit model turns out to be a free boundary model of
Hele-Shaw type.

Our goal is to study the limit γ →∞ in the law of state (2), and prove that the limit solution
satisfies a free boundary problem. It has been proved in [27] that (the norms are specified in the
next section and we now use the notation nγ , pγ , cγ in place of n, p, c to indicate the dependency
upon γ)

nγ → n∞, pγ → p∞, cγ → c∞,

and the limits satisfy the system
∂tn∞ − div(n∞∇p∞) = n∞G(p∞, c∞), x ∈ Rd, t ≥ 0,

∂tc∞ −∆c∞ + n∞H(c∞) = (cB − c∞)K(p∞),

c∞(x, t)→ cB for x→∞,

(4)

with a graph relation between p∞ and n∞ given by

0 ≤ n∞ ≤ 1, p∞(n∞ − 1) = 0. (5)

A remarkable result is the uniqueness of the weak solutions of this system.
However, it was left open in [27] to establish the so-called complementarity condition, which

reads (in the sense of distributions)

p∞
(
∆p∞ +G(p∞, c∞)

)
= 0 in D′(Rd × (0,∞)), (6)

which follows formally from the equation on n written for the pressure, namely

∂tpγ = γpγ
(
∆pγ +G(pγ , cγ)

)
+ |∇pγ |2. (7)

The complementarity condition is fundamental because it relates the weak solutions defined by
the equations (4) and (5) to the geometric form of the Hele-Shaw problem, where the set O(t) :=
{x; p(x, t) > 0} evolves with the speed determined by the normal component of ∇p∞. The limit
pressure is a solution to the elliptic equation with Dirichlet boundary conditions

−∆p∞ = G(p∞, c∞) in O(t) = {x; p∞(x, t) > 0}.

The Hele-Shaw problem is a widely studied free boundary model. Although we are only interested
in the weak formulation, the regularity of the boundary is also a challenging issue, see [10, 16, 26].
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Difficulties and strategies. To handle this problem, we make use of two new estimates which
hold because the cell population density satisfies a Porous Medium Equation, which reads

∂tnγ −
γ

γ + 1
∆nγ+1

γ = nγG(pγ , cγ). (8)

• The first estimate results from the famous Aronson-Bénilan (AB in short) inequalities for the
porous media, [1, 13], which have been extended in various contexts (see [24] for another example).
It was used in the purely mechanical case, [27], and it gives the lower bound ∆pγ(t) +G(pγ(t)) ≥
−C/γt, with C positive constant. Here, unlike in the case without nutrients, it cannot hold. In
fact, as shown in [28], where a semi-explicit travelling wave solution was found, there exists a region
where p is constantly equal to zero and G is negative.

Therefore, we show a weaker, but still sufficient, condition∫ T

0

∫
Rd
|min(0,∆pγ)|3 ≤ C(T ).

This is proved by working in L2, rather than with a sub-solution, as it has been recently initiated
in [20, 4]. This method has the advantage to be compatible with the L2 estimates on cγ and its
derivatives. We recall here that ∆p∞ is a bounded measure due to the free boundary of the set
O(t) where the pressure is positive.
• The second new estimate is an L4 bound on ∇pγ , independent of the dimension d. In the
simple case, where G depends only on p, it results from the kinetic energy relation combined to
the AB inequality in L∞, which is wrong here. We have a new and more general way to derive it,
independently of the AB inequality.

Plan of the paper. The paper is organized as follows. The next section is devoted to explain
the notations and assumptions and to state the main result of the paper, namely that the com-
plementarity condition holds. The rest of the paper is dedicated to prove this result. We begin in
Section 2 presenting standard bounds which are useful for deriving the main new estimates that
are stated and proved in Section 3. Finally, in Section 4 we give the proof of the complementarity
relation.

1 Notations, assumptions and main result

Notations. We denote Q = Rd × (0,∞), and for T > 0 we set QT = Rd × (0, T ). We frequently
use the abbreviation form n(t) := n(x, t), p(t) := p(x, t), c(t) := c(x, t). We denote

sign+ {w} = 1{w>0} and sign− {w} = −1{w<0}.

We also define the positive and negative part of w as follows

|w|+ :=

{
w, for w > 0,

0, for w ≤ 0,
and |w|− :=

{
−w, for w < 0,

0, for w ≥ 0.
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Assumptions. Considering the growth/reaction terms, the functions G, H and K are assumed
to be smooth and we make the following assumption. There exist positive constants β, pH , pB
(reference pressure of blood vessels) such that

∂pG < −β, ∂cG ≥ 0, G(p, cB) ≤ 0, for p ≥ pH , (9)

K ′(p) ≤ 0, 0 ≤ K(p) ≤ 1, K(p) = 0, for p ≥ pB, (10)

H ′(c) ≥ 0, 0 ≤ H(c), H(0) = 0, (11)

Furthermore, for a given pressure p, G(p, c) < 0 for c small enough. This assumption indicates that
the tumor cells die by necrosis when the concentration of nutrients is below a survival threshold.

Some standard choices for the reaction terms are

G(p, c) = g(p)(c+ c1)− c2, H(c) = c, K(p) =

∣∣∣∣1− p

pB

∣∣∣∣
+

,

where c1,2 are positive constants and g is a decreasing function of p, see [12, 25, 27].

Initial data. The system (1) is completed with initial data. We assume that for some n0, c0, the
initial data n0

γ , c
0
γ satisfy

0 ≤ n0
γ ≤ nH := p

1/γ
H , ‖n0

γ − n0‖L1(Rd) −−−→γ→∞
0, n0 ∈ L1

+(Rd), (12)

0 ≤ c0
γ ≤ cB, ‖c0

γ − c0‖L1(Rd) −−−→γ→∞
0, c0 − cB ∈ L1

+(Rd). (13)

We also assume that there is a positive constant C such that

‖∇p0
γ‖L2(Rd) + ‖∆p0

γ‖L2(Rd) ≤ C, (14)

‖(∂tnγ)0‖L1(Rd) + ‖(∂tcγ)0‖L1(Rd) ≤ C, (15)

‖∇c0
γ‖L2(Rd) ≤ C. (16)

Set these conditions on the initial data, we give the definition of weak solution of the system (1)
as follows.

Definition 1.1. Given T > 0, a weak solution of the system (1) is a triple (nγ , pγ , cγ) such that,

nγ , pγ , cγ ∈ L∞((0, T ), Lp(Rd)) ∀p ≥ 1, ∇cγ , ∇pγ ∈ L2(Rd × (0, T )),

and for all ϕ ∈ C1
comp(Rd × [0, T )),∫ T

0

∫
Rd

(−nγ∂tϕ+ nγ∇pγ∇ϕ− nγG(pγ , cγ)ϕ) =

∫
Rd
n0
γϕ(0),∫ T

0

∫
Rd

(−cγ∂tϕ+∇cγ∇ϕ+ nγH(cγ)ϕ− (cB − c)K(p)ϕ) =

∫
Rd
c0
γϕ(0).

From [35] we know that a weak solution exists for all T > 0.
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Compact support. Because our arguments rely on technical calculations, we first simplify the
setting assuming that there exists a smooth bounded open domain Ω0 ⊂ Rd, independent of γ,
such that for all γ > 1

supp(n0
γ) ⊂ Ω0.

Unlike the solutions of the heat equation, the PME’s solutions have a finite speed of propagation, see
[35]. This means that, for all T > 0, there exists a smooth bounded open domain ΩT independent
of γ such that

supp(nγ(t)) ⊂ ΩT , ∀t ∈ [0, T ],

see Appendix A for the proof. From now on, we consider a solution (nγ , pγ) with compact support
for all γ > 1. In the Appendix B, we show how to extend the result to more general solutions.

Main result. We now state the main result of the paper, namely the weak formulation of the
complementarity relation.

Theorem 1.2 (Estimates and complementarity relation). With all the previous assumptions, the
limit pressure p∞ satisfies the relation (6), that means, for all test functions ζ ∈ D(Q), we have∫∫

Q

(
−|∇p∞|2ζ − p∞∇p∞∇ζ + p∞G(p∞, c∞)ζ

)
= 0.

Furthermore the following estimates hold uniformly in γ∫ T

0

∫
ΩT

|∆pγ +G(pγ , cγ)|3− ≤ C(T ),

∫ T

0

∫
ΩT

|∇pγ |4 ≤ C(T ).

2 Preliminary Estimates

Let (nγ , pγ , cγ) be a weak solution to the system (1). We recall some standard preliminary bounds
on nγ , pγ , cγ and their derivatives, gathered in the following Proposition.

Proposition 2.1 (Direct estimates). Given (nγ , pγ , cγ) a weak solution of the system (1) for γ > 1,
and T > 0, there exists a constant C(T ), independent of γ, such that for all 0 ≤ t ≤ T

0 ≤ nγ ≤ nH , 0 ≤ pγ ≤ pH , 0 ≤ cγ ≤ cB, (17)

‖nγ(t)‖L1(Rd) ≤ C(T ), ‖pγ(t)‖L1(Rd) ≤ C(T ), ‖cγ(t)− cB‖L1(Rd) ≤ C(T ), (18)

‖∇cγ(t)‖L2(Rd) ≤ C(T ), ‖∆cγ‖L2(QT ) ≤ C(T ), ‖∂tcγ‖L2(QT ) ≤ C(T ), (19)

‖∂tnγ‖L1(QT ) ≤ C(T ), ‖∂tpγ‖L1(QT ) ≤ C(T ), ‖∂tcγ‖L1(QT ) ≤ C(T ), (20)

‖∇cγ‖L4(QT ) ≤ C(T ), ‖∇pγ‖L2(QT ) ≤ C(T ). (21)

For the sake of completeness, we now recall the derivation of these bounds.

L∞ bounds for nγ , pγ , cγ. The L∞ bounds are just consequences of our assumptions on G using
the comparison principle.
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L1 bounds on nγ , pγ , cγ. These are also standard estimates, noting that

‖p(t)‖L1(Rd) = ‖n(t)p(t)
γ−1
γ ‖L1(Rd) ≤ p

γ−1
γ

H ‖n(t)‖L1(Rd).

L2 bounds for the derivatives of cγ. We now prove the L2 bounds for ∇cγ ,∆cγ and ∂tcγ . We
multiply the equation for cγ by −∆cγ and we integrate in space and time

−
∫ t

0

∫
Rd
∂tcγ∆cγ +

∫ t

0

∫
Rd
|∆cγ |2 =

∫ t

0

∫
Rd

(nγH(cγ)− (cB − c)K(pγ))∆cγ .

Integrating by parts and using Young’s inequality we obtain∫ t

0

∫
Rd
∂t(∇cγ)∇cγ +

∫ t

0

∫
Rd
|∆cγ |2 ≤

∫ t

0

∫
Rd

|nγH(cγ)− (cB − c)K(pγ)|2

2
+

∫ t

0

∫
Rd

|∆cγ |2

2
.

Hence, we have

1

2

∫
Rd
|∇cγ(t)|2 +

1

2

∫ t

0

∫
Rd
|∆cγ |2 ≤ C

∫ t

0

(
‖nγ(s)‖2L1(Rd) + ‖cγ(s)− cB‖2L1(Rd)

)
ds+

1

2
‖∇c0

γ‖2L2(Rd),

where C is a positive constant depending on nH , cB and the L∞ norms of H and K.
Finally, using the L1 bounds (18), we obtain∫

Rd
|∇cγ(t)|2 +

∫ t

0

∫
Rd
|∆cγ |2 ≤ C(T ) + ‖∇c0

γ‖2L2(Rd),

for 0 < t ≤ T , and thanks to (16) we conclude the proof of the first and second estimates in (19).
At last, considering the equation for cγ

∂tcγ = ∆cγ − nγH(cγ) + (cB − cγ)K(pγ),

and using the previous bounds on nγ , cγ and ∆cγ we conclude that ∂tcγ ∈ L2(QT ).

L1 bounds for the time derivatives of nγ and pγ. We differentiate the equation for nγ and
we multiply it by sign {∂tnγ}

∂t|∂tnγ | − γ∆(nγγ |∂tnγ |) ≤ |∂tnγ |G+ nγ∂pG|∂tpγ |+ nγ∂cG∂tcγ sign{∂tnγ}. (22)

We integrate in space using the monotonicity of G

d

dt
‖∂tnγ(t)‖L1(Rd) ≤ ‖G‖L∞(QT )‖∂tnγ(t)‖L1(Rd) + ‖∂cG‖L∞(QT )‖nγ(t)‖L2(Rd)‖∂tcγ(t)‖L2(Rd).

Thanks to (18) and (19), Gronwall’s lemma gives

‖∂tnγ(t)‖L1(Rd) ≤ C(T )‖(∂tnγ)0‖L1(Rd) ≤ C(T ),

where in the last inequality we used (15).
By integrating in Qt := Rd × (0, t) the equation (22), we obtain

‖∂tnγ(t)‖L1(Rd) + min |∂pG|
∫∫

Qt

nγ |∂tpγ | ≤ C(T ),
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thanks to (15) and the L1 bounds proved above. Then, for the time derivative of the pressure it
holds

‖∂tpγ‖L1(QT ) ≤
∫∫

QT∩{nγ≤1/2}
γnγ−1

γ |∂tnγ |+ 2

∫∫
QT∩{nγ≥1/2}

nγ |∂tpγ | ≤ C(T ).

We differentiate the equation for cγ and multiply it by sign {∂tcγ}

∂t|∂tcγ | −∆(|∂tcγ |) ≤ −∂tnγH sign{∂tcγ} − nγH ′|∂tcγ | − |∂tcγ |K + (cB − c)K ′∂tpγ sign{∂tcγ}.

Integrating in space we obtain

d

dt
‖∂tcγ(t)‖L1(Rd) ≤‖H‖L∞(QT )‖∂tnγ(t)‖L1(Rd) + nH‖H ′‖L∞(QT )‖∂tcγ(t)‖L1(Rd)

+ cB‖K ′‖L∞(QT )‖∂tp(t)‖L1(Rd),

and thanks to the previous bounds and Gronwall’s lemma we have

‖∂tcγ(t)‖L1(Rd) ≤ C(T )‖(∂tcγ)0‖L1(Rd) ≤ C(T ),

and this concludes the proof of (20).

L4 bound for the gradient of cγ. Now, we prove that the gradient of cγ is bounded in L4.
Integration by parts gives∫

Rd
|∇cγ |4 = −

∫
Rd
cγ∆cγ |∇cγ |2 −

∫
Rd
cγ∇cγ · ∇(|∇cγ |2).

We use Young’s inequality on the first term of the RHS and we get

1

2

∫
Rd
|∇cγ |4 ≤

1

2

∫
Rd
c2
γ |∆cγ |2 −

∫
Rd
cγ∇cγ · ∇(|∇cγ |2).

We write the last term as

−
∫
Rd
cγ∇cγ · ∇(|∇cγ |2) = −2

∑
i,j

∫
Rd
cγ ∂icγ ∂jcγ ∂

2
i,jcγ

≤ 1

4

∫
Rd
|∇cγ |4 + 4c2

B

∫
Rd

∑
i,j

(∂2
i,jcγ)2

=
1

4

∫
Rd
|∇cγ |4 + 4c2

B

∫
Rd
|∆cγ |2.

Thus, we have
1

4

∫
Rd
|∇cγ |4 ≤

(
1

2
+ 4

)
c2
B

∫
Rd
|∆cγ |2.

and the L4 estimate is proved.
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L2 bound for the pressure gradient. Since the pressure satisfies the equation (7), integrating
it in space we get

d

dt

∫
Rd
pγ(t) = −γ

∫
Rd
|∇pγ(t)|2 + γ

∫
Rd
pγ(t)G(pγ(t), cγ(t)) +

∫
Rd
|∇pγ(t)|2.

Then, we integrate in time

(γ − 1)

∫ T

0

∫
Rd
|∇pγ |2 = ‖pγ(0)‖L1(Rd) − ‖pγ(T )‖L1(Rd) + γ

∫ T

0

∫
Rd
pγG(pγ , cγ),

(γ − 1)

∫ T

0

∫
Rd
|∇pγ |2 ≤ C0 + γC(T ),

and this gives, since γ > 1, ∫ T

0

∫
Rd
|∇pγ |2 ≤ C(T ).

3 Stronger a priori estimates on pγ

To establish the complementarity condition (6) is equivalent to prove the strong compactness of
|∇pγ |2. One step towards this goal is to prove compactness in space using the classical AB estimate,
[1, 13]. Here, major difficulties arise. As explained in the Introduction, since the reaction term can
change sign the usual Aronson-Bénilan lower bound cannot hold true, see [27, 28]. Moreover, we
cannot apply the comparison principle because of the bad coupling in the system (1). Since the
L∞ bound from below in the AB estimate is missing, we prove an L3 version, adapting the method
presented in [20]. Then, we show that the gradient of the pressure is bounded in L4(QT ), which
gives the compactness needed to pass to the limit.

Our first goal is to prove the AB estimate on the functional

w := ∆pγ +G(pγ , cγ), (23)

which is a variation of the Laplacian in order to take into account the source term, at the same
order of ∆pγ , in equation (7).

Theorem 3.1 (Aronson-Bénilan estimate in L3). With the assumptions of Section 1 and with
γ > max(1, 2− 4

d), for all T > 0 there is a constant C(T ) depending on T and the previous bounds
and independent of γ such that∫ T

0

∫
ΩT

|w|3− ≤ C(T ),

∫ T

0

∫
Rd
|∆pγ | ≤ C(T ). (24)

Let us point out that because the free boundary is where p∞ vanishes, it is important that w
itself is controlled and not merely pw as in the next estimate.

Theorem 3.2 (L4 estimate on the pressure gradient). With the same assumptions as before, given
T > 0, it holds

(γ − 1)

∫ T

0

∫
ΩT

pγ |∆pγ +G|2 +

∫ T

0

∫
ΩT

pγ
∑
i,j

(∂2
i,jpγ)2 ≤ C(T ), (25)
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∫ T

0

∫
ΩT

|∇pγ |4 ≤ C(T ), (26)

where C depends on T and previous bounds and is independent of γ.

We recall that in the model independent of c, [27], the AB estimate is much stronger and
gives ∆pγ(t) + G(pγ(t)) ≥ − 1

γt , and the major difficulty is the control of ∆pγ which is provided

by Theorem 24. As proved in [26], the L4 estimate follows from the total energy control when
G = G(p), but this uses the strong form of the AB estimate. Therefore, we have invented another
proof, which is reminiscent of the energy control, but uses a different treatment of the ’dissipation’
terms.

Proof of Theorem 3.1. For the sake of simplicity we forget the index γ in this proof. We
compute the time derivative of w and obtain

∂tw = ∆(|∇p|2) + γ∆(pw) + ∂pG(|∇p|2 + γpw) + ∂cG∂tc.

The first term is

∆(|∇p|2) = 2
∑
i,j

(∂2
i,jp)

2 + 2∇p · ∇(∆p) ≥ 2

d
(∆p)2 + 2∇p · ∇(∆p).

By definition of w we have

2∇p · ∇(∆p) = 2∇p · ∇(w −G) = 2∇p · ∇w − 2∂pG|∇p|2 − 2∂cG∇p · ∇c.

Hence, the time derivative satisfies

∂tw ≥
2

d
(w −G)2 + 2∇p · ∇w − ∂pG|∇p|2 − 2∂cG∇p · ∇c (27)

+ γ∆(pw) + γpw ∂pG+ ∂cG∂tc.

Multiplying (27) by −|w|−, we obtain

−∂tw |w|− ≤−
2

d
|w|3− −

4

d
G|w|2− −

2

d
G2|w|− +∇p · ∇|w|2− + ∂pG|∇p|2|w|−

+ 2∂cG∇p · ∇c|w|− + γ∆(p|w|−)|w|− + γp ∂pG|w|2− − ∂cG∂tc|w|−.

Hence, using the fact that ∂pG < −β from (9), we integrate in space to obtain

d

dt

∫
ΩT

|w|2−
2
≤− 2

d

∫
ΩT

|w|3− −
2

d

∫
ΩT

G2|w|− − β
∫

ΩT

|∇p|2|w|−

− 4

d

∫
ΩT

G|w|2− +

∫
ΩT

[
∇p · ∇|w|2− + γ∆(p|w|−)|w|−

]
︸ ︷︷ ︸

A

−
∫

ΩT

∂cG∂tc|w|−︸ ︷︷ ︸
B

+ 2

∫
ΩT

∂cG∇p · ∇c|w|−︸ ︷︷ ︸
C

,
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where C is a positive constant depending on ‖G‖∞ and d. Now we proceed integrating by parts
each term.

A = −
∫

ΩT

[
∆p|w|2− + γ∇p∇|w|−|w|− + γp|∇|w|−|2

]
=

∫
ΩT

|w|3− +

∫
ΩT

G|w|2− +
γ

2

∫
ΩT

∆p|w|2− − γ
∫

ΩT

p|∇|w|−|2

=
(

1− γ

2

)∫
ΩT

|w|3− +
(

1− γ

2

)∫
ΩT

G|w|2− − γ
∫

ΩT

p|∇|w|−|2.

Next, using (19) and the Cauchy-Schwarz inequality, we obtain

B ≤ C

∫
ΩT

|w|2− + C.

Thanks to Young’s inequality and (21), we compute

C ≤ β

2

∫
ΩT

|∇p|2|w|− + C

∫
ΩT

|∇c|4 + C

∫
ΩT

|w|2−

≤ β

2

∫
ΩT

|∇p|2|w|− + C

∫
ΩT

|w|2− + C.

We may now come back to the control of d
dt

∫
ΩT

|w|2−
2 . Gathering all the previous bounds, we get

the following estimate

d

dt

∫
ΩT

|w|2−
2
≤ −

(
2

d
− 1 +

γ

2

)∫
ΩT

|w|3− −
β

2

∫
ΩT

|∇p|2|w|− + C(γ + 1)

∫
ΩT

|w|2− + C.

Hence integrating in time we have(
2

d
− 1 +

γ

2

)∫ T

0

∫
ΩT

|w|3− ≤ C (γ + 1)

∫ T

0

∫
ΩT

|w|2− +

∫
ΩT

|w0|2−
2

+ C(T )

≤ C (γ + 1)

(∫ T

0

∫
ΩT

|w|3−
) 2

3

+ C(T ),

where we used the assumption (14) and C represents different constants depending on T , |Ω(T )|
and previous bounds. This is the place where we strongly use the compact support assumption.

At last, with our assumption that γ is large enough, we obtain∫ T

0

∫
ΩT

|w|3− ≤ C
(∫ T

0

∫
ΩT

|w|3−
) 2

3

+ C(T ),

and hence we have proved our main result, that is the first estimate of (24),∫ T

0

∫
ΩT

|w|3− ≤ C(T ).

11



To prove the second estimate, we argue as follows. Since∫ T

0

∫
ΩT

(∆p+G) ≤ C(T ),

we can also control the positive part of w∫ T

0

∫
ΩT

|w|+ ≤ C(T ) +

∫ T

0

∫
ΩT

|w|− ≤ C(T ) + C

(∫ T

0

∫
ΩT

|w|3−
) 1

3

.

Thus it holds ∫ T

0

∫
ΩT

|∆p+G| ≤ C(T ).

Hence, we finally obtain the L1 estimate for the Laplacian of the pressure∫ T

0

∫
ΩT

|∆p| ≤ C(T ),

that concludes the proof of Theorem 3.1.

Proof of Theorem 3.2. We consider the equation for the pressure (7), we multiply it by −(∆pγ+
G(pγ , cγ)) and integrate in space. We find successively

−
∫

ΩT

∂tpγ∆pγ −
∫

ΩT

∂tpγ G = −γ
∫

ΩT

pγ |∆pγ +G|2 −
∫

ΩT

|∇pγ |2∆pγ −
∫

ΩT

|∇pγ |2G,

d

dt

∫
ΩT

|∇pγ |2

2
−
∫

ΩT

∂tpγG+ γ

∫
ΩT

pγ |∆pγ +G|2 +

∫
ΩT

|∇pγ |2∆pγ ≤ ‖G‖L∞‖∇pγ(t)‖2L2 .

We integrate by parts the last term of the LHS and obtain∫
ΩT

|∇pγ |2∆pγ =

∫
ΩT

pγ∆(|∇pγ |2)

= 2

∫
ΩT

pγ∇pγ · ∇(∆pγ) + 2

∫
ΩT

pγ
∑
i,j

(∂2
i,jpγ)2

= −2

∫
ΩT

pγ |∆pγ |2 − 2

∫
ΩT

|∇pγ |2∆pγ + 2

∫
ΩT

pγ
∑
i,j

(∂2
i,jpγ)2.

Hence, we conclude that∫
ΩT

|∇pγ |2∆pγ = −2

3

∫
ΩT

pγ |∆pγ |2 +
2

3

∫
ΩT

pγ
∑
i,j

(∂2
i,jpγ)2.

Thus, we have

d

dt

∫
ΩT

|∇pγ |2

2
−
∫

ΩT

∂tpγ G︸ ︷︷ ︸
I1

+ γ

∫
ΩT

pγ |∆pγ +G|2 − 2

3

∫
ΩT

pγ |∆pγ |2︸ ︷︷ ︸
I2

+
2

3

∫
ΩT

pγ
∑
i,j

(∂2
i,jpγ)2 ≤ C(T ).

(28)
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We can define the function G = G(pγ , cγ) =
∫ pγ

0 G(q, cγ)dq and then

∂tpγ G(pγ , cγ) = ∂tG(pγ , cγ)− ∂tcγ ∂cG(pγ , cγ).

Using this relation the term I1 can be written as

I1 = −
∫

ΩT

∂tG+

∫
ΩT

∂cG∂tcγ ≥ −
∫

ΩT

∂tG− C

thanks to the L2 bound on ∂tcγ in (19) and because |∂cG| ≤ Cpγ . We can estimate the term I2

from below as follows

I2 ≥ (γ − 1)

∫
ΩT

pγ |∆pγ +G|2 − C
∫

ΩT

pγ |G|2.

Therefore

I1 + I2 ≥ (γ − 1)

∫
ΩT

pγ |∆pγ +G|2 −
∫

ΩT

∂tG− C(T ). (29)

Combining (28) and (29), we obtain

d

dt

∫
ΩT

[
|∇pγ |2

2
−G

]
+ (γ − 1)

∫
ΩT

pγ |∆pγ +G|2 +
2

3

∫
ΩT

pγ
∑
i,j

(∂2
i,jpγ)2 ≤ C(T ).

Finally, integrating in time, we obtain the estimate (25) and this proves the first step of Theorem 3.2.
Furthermore, this bound also implies

(γ − 1)

∫ T

0

∫
ΩT

pγ |∆pγ |2 ≤ C(T ). (30)

Now, we compute the L4 norm of the gradient of pγ , as we did for the gradient of cγ .∫
ΩT

|∇pγ |4 = −
∫

ΩT

pγ∆pγ |∇pγ |2 −
∫

ΩT

pγ∇pγ · ∇(|∇pγ |2).

Applying Young’s inequality to the first term, we obtain

1

2

∫
ΩT

|∇pγ |4 ≤
1

2

∫
ΩT

p2
γ |∆pγ |2 − 2

∑
i,j

∫
ΩT

pγ ∂ipγ ∂jpγ ∂
2
i,jpγ .

The last term can be upper bounded by

1

4

∫
ΩT

|∇pγ |4 + 4

∫
ΩT

p2
γ

∑
i,j

(∂2
i,jpγ)2.

Therefore, we obtain

1

4

∫
ΩT

|∇pγ |4 ≤
1

2

∫
ΩT

p2
γ |∆pγ |2 + 4

∫
ΩT

p2
γ

∑
i,j

(∂2
i,jpγ)2.

Since p ≤ pH , by (25) and (30) we conclude∫ T

0

∫
ΩT

|∇pγ |4 ≤C(T ),

and this completes the proof of Theorem 3.2.
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4 Complementarity relation

Thanks to the bounds provided by Theorem 3.1 and Theorem 3.2, we may obtain the desired
compactness on the pressure gradient. This allows us to pass to the incompressible limit and prove
the complementarity relation as we state it now.

Theorem 4.1 (Complementarity relation). With the assumptions of Theorem 3.1, the complemen-
tarity condition (6) holds. More precisely, for all test functions ζ ∈ D(Q), the limit pressure p∞
satisfies ∫∫

Q

(
−|∇p∞|2ζ − p∞∇p∞ · ∇ζ + p∞G(p∞, c∞)ζ

)
= 0. (31)

This result is related to the geometric form of the Hele-Shaw free boundary problem (while (4)
is the weak form). It tells us that the limit solution satisfies{

−∆p∞ = G(p∞, c∞) in O(t) := {x; p∞(x, t) > 0},
p∞ = 0 on ∂O(t),

where, for every t > 0, the set O(t) represents the region occupied by the tumor. Moreover, in the
limit, the pressure and the cell population density satisfy the relation

p∞(1− n∞) = 0. (32)

In fact, we may expect that the set O(t) coincides a.e. with the set where n∞ = 1, hence the
classification of incompressible model. See [26] for the proof in the case without nutrient. It is not
obvious to extend the result in the case at hand.

Proof of Theorem 4.1. Thanks to the bounds in (19), (20) and (21), pγ and cγ are locally
compact and thus, after the extraction of sub-sequences,

pγ → p∞ strongly in L1(QT ), cγ → c∞ strongly in L1(QT ),

when γ → ∞, for all T > 0. From Theorem 3.2, we also recover the weak convergence of the
gradient of the pressure, up to a sub-sequence,

∇pγ ⇀ ∇p∞ weakly in L4(QT ).

From Theorem 3.1, we know that ∆pγ is bounded in L1. Then, we have local compactness in space
for the pressure gradient. To gain compactness in time we use the Aubin-Lions lemma. From the
equation for the pressure (7), we have

∂t(∇pγ) = ∇[γpγ(∆pγ +G) + |∇pγ |2],

where the RHS is a sum of space derivatives of functions bounded in L1. In fact, since by (20) and
(21), ∂tpγ and |∇pγ |2 are in L1, from (7) the term γpγ(∆pγ +G) is also bounded in L1. Thus, we
can extract a sub-sequence such that

∇pγ → ∇p∞ strongly in Lq(QT ), for 1 ≤ q < d

d− 1
.
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After extraction of a sub-sequence we obtain convergence almost everywhere for ∇pγ . Then, using
the L4 bound of Theorem 3.2, we have

∇pγ → ∇p∞ strongly in Lq(QT ), for 1 ≤ q < 4,

hence, in particular, also for q = 2.
Let ζ ∈ D(Q) be a test function. We consider the equation for pγ

∂tpγ = γpγ(∆pγ +G(pγ , cγ)) + |∇pγ |2,

we multiply it by ζ and we integrate in Q

−1

γ

∫∫
Q

(
pγ∂tζ + |∇pγ |2ζ

)
=

∫∫
Q

(
−|∇pγ |2ζ − pγ∇pγ · ∇ζ + pγG(pγ , cγ)ζ

)
(33)

Hence, passing to the limit for γ →∞ we obtain the complementarity relation∫∫
Q

(
−|∇p∞|2ζ − p∞∇p∞ · ∇ζ + p∞G(p∞, c∞)ζ

)
= 0. (34)

This is equivalent to ∫∫
Q
p∞ (∆p∞ +G(p∞, c∞)) ζ = 0,

which means
p∞ (∆p∞ +G(p∞, c∞)) = 0, in D′(Q),

and the proof of Theorem 4.1 is complete.
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Appendix A Compact support property

We now give the proof of the finite speed of propagation property of the solutions of system (1).
Our goal is to show that if the initial data satisfy

supp(n0
γ) ⊂ Ω0, ∀γ > 1,

with Ω0 independent of γ, then the solutions nγ(t), pγ(t) are compactly supported, uniformly in γ
and t ∈ [0, T ], for all T > 0. This means that there exists a bounded open domain ΩT independent
of γ such that

supp(nγ(t)) ⊂ ΩT , ∀γ > 1, ∀t ∈ [0, T ].

For every γ > 1, the pressure pγ is a sub-solution to the equation

∂tpγ ≤ |∇pγ |2 + γpγ(∆pγ +G(0, cB)), (35)
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therefore, finding a super-solution with compact support we can control the supports of pγ and nγ .
We consider the function

Π(x, t) = G(0, cB)

∣∣∣∣S(t)− |x|
2

2

∣∣∣∣
+

,

where we choose the function S such that it satisfies

S′(t) ≥ 2G(0, cB)S(t).

We compute the derivatives of Π and we find

∂tΠ(x, t) = G(0, cB)S′(t)1
{S(t)≥ |x|

2

2
}
,

∇Π(x, t) = −G(0, cB)x1
{S(t)≥ |x|

2

2
}
, ∆Π(x, t) ≤ −dG(0, cB)1

{S(t)≥ |x|
2

2
}
.

Therefore Π satisfies

∂tΠ− |∇Π|2 − γΠ(∆Π +G(0, cB)) ≥ (G(0, cB)S′(t)−G(0, cB)2x2)1
{S(t)≥ |x|

2

2
}

+ γΠG(0, cB)(d+ 1)

≥ (2G(0, cB)2S(t)−G(0, cB)2x2)1
{S(t)≥ |x|

2

2
}

≥ 0.

Hence, we have proved that for all T > 0

supp(pγ(t)) ⊂ supp(Π(t)) ⊂ BT , ∀γ > 1,∀t ∈ [0, T ],

where BT is the open ball with radius
√

2S(T ).

Appendix B Removing the compact support assumption

The proof of the main result of the paper is built on the compact support assumption stated
in Section 1. Our goal is to generalize the result removing this condition. Let us note that it is
sufficient to extend the Theorem 3.1, since it is the only one for which we used the compact support
assumption. Moreover, let us notice that Proposition 2.1 holds true in this framework. We define
the functional w as in (23) and we state the following result.

Proposition B.1 (Aronson-Bénilan generalized estimate in L3). Let Φ be a test function in
C2
comp(Rd). With the assumptions from (9) to (16), and with γ > max(1, 2− 4

d), for all T > 0 there
exists a constant C(T ) depending on the previous bounds and independent of γ such that∫ T

0

∫
Rd
|w|3−Φ ≤ C(T ),

∫ T

0

∫
Rd
|∆pγ |Φ ≤ C(T ). (36)

Proof. Computing the time derivative of the negative part of w, we have

−∂t
(
|w|2−

2

)
≤− 4

d
|w|3− −

2

d
G|w|2− −

2

d
G2|w|− +∇|w|2− · ∇p+ ∂pG|∇p|2|w|−

+ 2∂cG∇p · ∇c|w|− + γ∆(p|w|−)|w|− − ∂cG∂tc|w|−.
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as in the proof of Theorem 3.1. We multiply the inequality by Φ and integrate in space

d

dt

∫
ΩT

|w|2−
2

Φ ≤− 2

d

∫
ΩT

|w|3−Φ− 2

d

∫
ΩT

G2|w|−Φ− β
∫

ΩT

|∇p|2|w|−Φ (37)

− 4

d

∫
ΩT

G|w|2−Φ +

∫
ΩT

[
∇p · ∇

(
|w|2−

)
Φ + γ∆(p|w|−)|w|−Φ

]
︸ ︷︷ ︸

A

−
∫

ΩT

∂cG∂tc|w|−Φ︸ ︷︷ ︸
B

+ 2

∫
ΩT

∂cG∇p · ∇c|w|−Φ︸ ︷︷ ︸
C

.

Now we proceed computing each term.

A =

∫
Rd
∇p · ∇

(
|w|2−

)
Φ− γ

∫
Rd
∇(p|w|−) · ∇|w|−Φ− γ

∫
Rd
|w|−∇(p|w|−) · ∇Φ

=−
∫
Rd

∆p|w|2−Φ−
∫
Rd
|w|2−∇p∇Φ− γ

∫
Rd
|w|−∇p∇|w|−Φ

− γ
∫
Rd
p|∇|w|−|2Φ + γ

∫
Rd
p|w|2−∆Φ + γ

∫
Rd
p∇
(
|w|2−

2

)
· ∇Φ

=−
∫
Rd

∆p|w|2−Φ−
∫
Rd
|w|2−∇p · ∇Φ +

γ

2

∫
Rd

∆p|w|2−Φ +
γ

2

∫
Rd
|w|2−∇p · ∇Φ

− γ
∫
Rd
p|∇|w|−|2Φ +

γ

2

∫
Rd
p|w|2−∆Φ− γ

2

∫
Rd
|w|2−∇p · ∇Φ

=
(

1− γ

2

)∫
Rd
|w|3−Φ +

(
1− γ

2

)∫
Rd
G|w|2−Φ− γ

∫
Rd
p|∇|w|−|2Φ +A1,

with

A1 =
γ

2

∫
Rd
p|w|2−∆Φ−

∫
Rd
|w|2−∇p · ∇Φ.

By the Cauchy-Schwarz inequality we have

B ≤
∫
Rd
|w|2−Φ + C

∫
Rd
|∂tc|2Φ ≤

∫
Rd
|w|2−Φ + C.

Using Young’s inequality and (21), we find

C ≤ β

2

∫
Rd
|∇p|2|w|−Φ + C

∫
Rd
|∇c|2|w|−Φ

≤ β

2

∫
Rd
|∇p|2|w|−Φ + C

∫
Rd
|∇c|4Φ + C

∫
Rd
|w|2−Φ

≤ β

2

∫
Rd
|∇p|2|w|−Φ + C

∫
Rd
|w|2−Φ + C.

It remains to treat the term containing the derivatives of Φ

A1 = −
∫
Rd
|w|2−∇p · ∇Φ +

γ

2

∫
Rd
p|w|2−∆Φ.

17



We choose a positive function Φ with exponential decay, such that |∇Φ| ≤ CΦ and |∆Φ| ≤ CΦ.
Now, we integrate by parts and use Young’s inequality

A1 = 2

∫
Rd
p|w|−∇|w|− · ∇Φ +

(
1 +

γ

2

)∫
Rd
p|w|2−∆Φ

≤ 1

2

∫
Rd
p|∇|w|−|2Φ + C(γ + 1)

∫
Rd
|w|2−Φ.

Finally, the inequality (37) can be written as follows

d

dt

∫
Rd
|w|2−Φ +

(
2

d
+
γ

2
− 1

)∫
Rd
|w|3−Φ +

β

2

∫
Rd
|∇p|2|w|−Φ ≤ C(γ + 1)

∫
Rd
|w|2−Φ + C,

then, for γ > 2− 4
d , integrating in time we have

∫ T

0

∫
Rd
|w|3−Φ ≤

(∫ T

0

∫
Rd
|w|3−Φ

) 2
3

+ C(T ),

and then we have proved ∫ T

0

∫
Rd
|w|3−Φ ≤ C(T ).

By consequence ∫ T

0

∫
Rd
|w|2−Φ ≤ C(T ),

∫ T

0

∫
Rd
|w|−Φ ≤ C(T ).

Since Φ is a smooth function with compact support∫ T

0

∫
Rd

(∆p+G)Φ ≤ C,

and then also ∫
Rd

Φ|∆p+G|+ =

∫
Rd

Φ(∆p+G) +

∫
Rd

Φ|∆p+G|− ≤ C(T ).

Therefore we recover the local L1 estimate for the Laplacian of the pressure∫ T

0

∫
Rd
|∆p|Φ ≤ C.

Appendix C Optimality of the bound ∇p ∈ L4

In Theorem 3.2, we have established the uniform bound ∇p ∈ L4, see (26). Here, we aim to
show that the exponent 4 cannot be increased. We use the so-called focusing solution from [2]
that we adapt to the limit γ → ∞, i.e., the Hele-Shaw problem. We recall that, for the porous
medium equation, the focusing solution consists in a spherical hole filling which generates a stronger
singularity than the Barenblatt solution, see [35].
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Consider α > 0 such that ∇p ∈ Lα(QT ), where p is a solution of the Hele-Shaw problem with
Dirichlet boundary conditions in a spherical shell {R(t) < |x| < R1}, for a given R1 > 0 and R(0)
small enough. Then, to simplify the problem, we fix the external radius R1 and let p satisfy

−∆p = 1, for R(t) < |x| < R1,

p(x) = 0, for |x| = R(t) or |x| = R1,

R′(t) = −∇p · ~n, for |x| = R(t).

(38)

Here, ~n denotes the inner normal to the ball BR(t)(0). As in [2], R(t) diminishes and vanishes in
finite time, generating a singularity |∇p| → ∞. The power 4 turns out to be the highest possible
integrability in time at this singular time. We treat the case of dimension 2. In higher dimension
the radial solutions are more regular and the worse singularity would be obatined for a cylinder
with a 2 dimensional basis.

Case d = 2. With spherical symmetry, we set p := p(r), r = |x| and equation (38) reads

1

r
(rp′)′ = 1.

Integrating once, we get, for some a(t)

p′ = −r
2

+
a(t)

r
,

and the second integration yields

p = −r
2

4
+ a(t) ln r + b(t).

Imposing p(R1) = p(R(t)) = 0, we find

b(t) =
R2

1

4
− a(t) lnR1,

R(t)2

4
− a(t) lnR(t) =

R2
1

4
− a(t) lnR1.

Hence for R(t) ≈ 0, we have

a(t) ≈ − R2
1

4 lnR(t)
, R′(t) ≈ 1

R(t) lnR(t)
. (39)

Therefore there is T > 0 when R(T−) = 0 and as t ≈ T , we compute∫ T

0

∫
BR1

(0)
|∇p(x)|αdxdt =

∫ T

0

∫ R1

R(t)
|p′(r)|αrdrdt ≈

∫ T

0

∫ R1

R(t)

|a(t)|α

rα−1
drdt.

The singularity at T is thus driven by∫ T

0

|a(t)|α

R(t)α−2
dt ≈

∫ T

0

1

| lnR(t)|αR(t)α−2
dt ≈

∫ R(0)

0

1

| lnR|α−1Rα−3
dR

by the change of variable R = R(t) and using equation (39). We recall that we have chosen R(0)
small enough.

This integral is finite for 1 ≤ α ≤ 4 and infinite for α > 4.
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