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Abstract. Accurate radio signal based localization for Low Power Wide Area networks
enables ubiquitous positioning for the Internet of Things. Narrowband communication and
multipath propagation make precise localization challenging. Coherent multi-channel ranging
increases bandwidth and provides improved temporal resolution through the aggregation of
sequentially transmitted narrowband signals. This paper applies parametric estimators as well
as a deep learning technique to multi-channel measurements obtained with 10 kHz signals.
Ranging performances are compared via numerical simulations and real outdoor field trials,
where parametric estimation and deep learning achieve 60 m and 45 m accuracy in 90% of the
cases, respectively. Further work is required to study the impact of deep neural network training
with a combination of synthetic and real data. Future research may also include the adaptation
of multi-channel localization to differential network topologies.

Keywords: LPWA network localization, range estimation, frequency hopping, MUSIC, deep learning,
DNN

1 Introduction

Narrowband Low Power Wide Area (LPWA) networks based on radio technologies such as LoRa, Sigfox
and NB-IoT provide wireless connectivity to low data rate devices in the framework of the Internet of
Things (IoT) [1].

The localization of these devices enables new applications such as object tracking, allows adding
context information to device-generated data or can be used for enhanced network management [2].
While integrating a Global Navigation Satellite System (GNSS) module ensures meter-level positioning,
certain use cases exclude this option due to power, form factor or cost constraints. Extracting location
information from LPWA radio signals carrying the transmitted data addresses these issues. However,
obtaining precise position estimates from low data rate and narrowband signals, required for long-range
communication over several kilometers, remains challenging [3]. Low temporal resolution results in the
difficulty to accurately estimate the Time-of-Arrival (ToA) of the direct path in multipath scenarios.

A brief literature review on LPWA network ranging and localization techniques is given in the
following. In a mesh network, range estimates are obtained with a parametric signal path loss model
and Received Signal Strength (RSS) measurements [4]. Due to blockage and small-scale fading, it is
difficult to determine a valid model for RSS based ranging. To account for these shortcomings, RSS
measurements combined with fingerprinting algorithms [5] achieve, once a robust database has been
established, accuracy up to 500 m. Precision of ToA based ranging techniques is inverse proportional
to signal bandwidth [6]. LPWA networks implementing Time-Difference-of-Arrival (TDoA) techniques
obtain location estimates through hyperbolic trilateration with a 500 m precision [7].
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Coherent multi-channel ranging [6] aggregates multiple sequentially transmitted narrowband signals
on different frequencies to form a virtual increased bandwidth. This technique, similar to stepped
frequency radar, is compatible with LPWA transceivers and improves temporal resolution [8]. Various
implementations [9–12] have demonstrated a higher accuracy over single-channel time based ranging
techniques. However, these studies have focused on short-range technologies (i.e. WiFi, Zigbee, RDIF)
and mostly on indoor propagation scenarios.

Multi-channel range estimation is based on a sampled version of the channel transfer function.
The delay estimation problem can be addressed through MUltiple SIgnal Classification (MUSIC) [13],
allowing an improved resolution of multipath over Fourier transformation based techniques [14,15].

Recent advances in machine learning for wireless communications have opened up new horizons for
the design of more flexible algorithms [16]. For range estimation problems, some of these algorithms
are based upon Deep Neural Network (DNN) [17] or Convolutional Neural Network (CNN) [18] and
are trained either using synthetically generated data or real-life measurements. The resulting solutions
are shown to be competitive with respect to the state-of-art approaches while being flexible, as they
comprise straightforward calculations [17].

The contributions of this paper, on coherent multi-channel ranging, are:

• Formulation of the multi-channel ranging signal model for the high-resolution algorithm MUltiple
SIgnal Classification (MUSIC). Comparison of the direct channel impulse reconstruction by Inverse
Discrete Fourier Transform (IDFT) and a MUSIC based range estimator in a two-path propagation
scenario by numerical simulations.

• Design of a Deep Neural Network (DNN) based regression algorithm for range estimation, based
on synthetically generated multi-channel transfer function data. Ranging performance comparison
with IDFT and MUSIC by numerical simulations.

• Application and comparison of the parametric estimators (IDFT and MUSIC) as well as the deep
learning algorithm (DNN) on real outdoor narrowband LPWA ranging field trials.

Range estimation through the IDFT technique i.e. as in [10] serves throughout this work as state of
the art baseline approach in order to establish a fair comparison with MUSIC and DNN based ranging
in the context of narrowband LPWA networks.

This paper is organized as follows. Section 2 introduces the multi-channel signal model and presents
the range estimators. Comparison of the range estimation approaches is given by numerical simulation
in Section 3. The multi-channel ranging transceiver testbed and the application of the range estimation
techniques to real outdoor field trial measurements is discussed in Section 4. Section 5 concludes with
perspectives.

2 Coherent Multi-Channel Ranging

2.1 Signal model

The basic transmission signal model including transmitter, radio channel and receiver is depicted in
Fig. 1a. The energy normalized narrowband LPWA baseband signal s0 is up-converted to transmit
frequency f0 resulting in the transmit signal

sTX(t) = R
{
s0

(
t[T ](t)

)
e
j
(

2πf0t
[T ](t)+φ

[T ]
R

)}
, (1)

where the transmitter local time t[T ](t) is function of global time t applying to both baseband signal
and up-conversion operation and R(·) is the real part. After passing through the radio channel, the
received signal in global time t can be described by

sRX(t) = sTX(t) ∗ h(t), (2)
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Fig. 1: Coherent multi-channel ranging.

with convolution operator ∗ and energy normalized channel impulse response, combining P multipath
components

h(t) =

P−1∑
p=0

αpδ(t− τp) c s H(f) =

P−1∑
p=0

αpe
−j2πfτp , (3)

where d = c0τ0 is the direct path and speed of light c0 = 3 · 108 m/s. After down-conversion, the low
pass filtered received baseband signal is given by

sBB(t) = sRX (t) e
−j

(
2πf0t

[R](t)+φ
[R]
R

)
+ n[R](t), (4)

where t[R](t) is the receiver local time applying to the down-conversion operation only and Additive
White Gaussian Noise (AWGN) n of variance σ2 = 1/ (2Es/N0).

Combining (1), (2) and (4) results in the general received baseband signal

sBB(t) =

[
s0

(
t[T ](t)

)
e
j
(

2πf0t
[T ](t)+φ

[T ]
R

)
∗ h(t)

]
e
−j

(
2πf0t

[R](t)+φ
[R]
R

)
+ n[R](t). (5)

In the following, a time offset t0 between node 1 and node 2 and a zero Sampling/Carrier Frequency
Offset (SFO/CFO) is assumed. Assigning node 1 as reference node, local to global time relations are
expressed by

t[T1](t) = t[R1](t) = t, (6a)

t[T2](t) = t[R2](t) = t+ t0. (6b)

For a transmission from node 1 to node 2, the resulting received signal according to (5) and (6) is
given by

s
[T1,R2]
BB (t) =

[
s0 (t) e

j
(

2πf0t+φ
[T1]

R

)
∗ h(t)

]
e
−j

(
2πf0(t+t0)+φ

[R2]

R

)
+ n[R2](t). (7)

The frequency domain representation of (7), without noise n, can be written as

S
[T1,R2]
BB (f) = S0(f)H(f + f0)e−j2πf0t0e

j
(
φ
[T1]

R −φ[R2]

R

)
. (8)
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Assuming normalization S0(f = 0) = 1 and evaluating3 (8) at f = 0, results in

H [T1,R2]
c =

(
S

[T1,R2]
BB (0)

)∣∣∣
(f0=fR+c∆f)

= H(f0)e−j2πf0t0e
j
(
φ
[T1]

R −φ[R2]

R

)
. (9)

For time synchronized nodes i.e. t0 = 0, a sampled estimation of the channel transfer function H(f) can
be obtained by performing narrowband transmissions from node 1 to node 2 according to Fig. 1b at
frequencies f0 = fR + c∆f with c ∈ [0 . . . C − 1]. This one-way transmission, generally called channel
estimation, is not sufficient for range estimation between unsynchronized nodes (t0 6= 0) as the delay τ
of the radio channel, i.e. h(t) = αδ(t− τ) and t0 are linearly dependent. A two-way exchange with
a transmission from node 2 to node 1 results in s[T2,R1]. Equivalent to (9), the frequency domain
representation is given by

H [T2,R1]
c = H(f0)ej2πf0t0e

j
(
φ
[T2]

R −φ[R1]

R

)
. (10)

Combining (9) and (10) eliminates the unknown time reference t0

H̃c = H [T1,R2]
c H [T2,R1]

c = H2(fR + c∆f)e
j
(
φ
[T1]

R −φ[R2]

R +φ
[T2]

R −φ[R1]

R

)
. (11)

This sampled version of the channel transfer function serves as input to the range estimators discussed
in Section 2.2.

2.2 Range estimators

Three major issues need to be considered for range estimation based on (11):

• The sum-difference of local oscillator phases ∆φR = φ
[T1]
R − φ[R2]

R + φ
[T2]
R − φ[R1]

R needs to be
constant over the set of frequencies fR + c∆f . This requirement can be achieved by an
appropriate transceiver architecture, i.e. a common local oscillator (LO) for transmitter and

receiver φ
[Tx]
R = φ

[Rx]
R yielding ∆φR = 0 or numerical intermediate frequency mixing c∆f for both

transmitter Tx and receiver Rx and continuous operation of the radio frequency LO at fR leading
to ∆φR = const. [8].

• The combination of (9) and (10) in (11) to eliminate unknown time reference t0, results in the
square of the channel transfer function H2(f). Due to the 2π ambiguity of phase measurements,
recovering Hc with the square-root operation introduces a 1π ambiguity per channel. Techniques to
estimate the resulting 2C-state error function under certain hypothesis and conditions are studied in
[11]. For the general case, range estimation can be based on H̃c, considering supplementary virtual
paths in the convoluted channel impulse response h ∗ h. For example, in a scenario with P = 2,
peaks will appear at 2τ0, τ0 + τ1 and 2τ1 with amplitudes α2

0, 2α0α1 and α2
2 respectively.

• For such a processing scheme, the 2π ambiguity translates to a range ambiguity Rmax = c0
2·∆f and

the virtual bandwidth BWvirt = (C − 1)∆f limits range resolution ∆R = c0
2·BWvirt

[6].

In the following, four range estimators based on (11) are studied.

Phase slope For a single propagation path (P = 1), the estimated channel transfer function (11) is
given by H̃c = α2

0e
−j2πc∆f2τ0 . Range information can be extracted from the slope of the argument

of H̃c

d̂slope = τc0 = − c0
4π∆f

∆ arg
(
H̃c

)
∆c

. (12)

3 In practice, evaluation is performed by cross correlation with s0 in time domain [8].
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Inverse Discrete Fourier Transform In multipath scenarios (P > 1), the reconstructed channel
transfer function (11) can be converted to an estimate of the convoluted channel impulse response h ∗ h
by Inverse Discrete Fourier Transform (IDFT)

h̃k = IDFT
{
H̃c

}
. (13)

In order to detect the first/direct path in multipath scenarios with possibly stronger secondary paths,

the following first path detection scheme is applied. The range estimate d̂IDFT is taken as the first
local maximum above a certain threshold γ relative to and in a certain range Rfirst before the global
maximum in the estimated channel impulse response h̃k. Sufficient zero padding ensures fine time and
hence range granularity. However, range resolution remains bound by the virtual bandwidth BWvirt.

MUltiple SIgnal Classification The estimation of amplitudes αp and delays τp in the reconstructed
channel transfer function can be formulated as a spectral estimation problem to which high-resolution
techniques such as MUltiple SIgnal Classification (MUSIC) can be applied [13]. Therefore (11) with (3)
is expanded and rewritten as

H̃c =

P̃−1∑
p=0

α̃pe
−j2π(fR+c∆f)τ̃p , (14)

where P̃ , τ̃p and α̃p account for the notation after expansion. Analog to [13], defining an imaging vector

φC (τ̃p) =
[
1 e−j2π∆fτ̃p . . . e−j2π(C−1)∆fτ̃p

]T
(15)

and

ΦC =
[
φC (τ̃0) φC (τ̃1) . . . φC

(
τ̃P̃−1

)]
, (16)

allows reformulating (14) in matrix form as

H̃ =
[
H̃0 . . . H̃C−1

]T
= ΦCα̃+ Ñ , (17)

with amplitude α̃ =
[
α̃0 α̃1 . . . α̃P̃−1

]T
and noise Ñ .

The construction of the Hankel matrix

K =


H̃0 H̃1 · · · H̃C−L−1

H̃1 H̃2 · · · H̃C−L
...

...
...

...

H̃L H̃L+1 · · · H̃C−1

 , (18)

with 1 ≤ L < C, allows the application of MUSIC to a single snapshot of the channel transfer function
estimates H̃ [13]. The singular value decomposition of the Hankel matrix (18) is given by

K = [US UN ] diag
(
λ0 λ1 . . . λP̃−1 0 . . . 0

)
[V S V N ]

∗
, (19)

with singular values λ0 ≥ λ1 ≥ . . . ≥ λP̃−1 ≥ 0 and complex conjugate (·)∗.
The set of delays τ̃p can be obtained as the peaks in the imaging function Y , defined by the

orthogonal projection of the imaging vector φL to the noise subspace UN

Y (τ) =
∥∥∥φL (τ)

∥∥∥
2

/ ∥∥∥U∗
Nφ

L (τ)
∥∥∥

2
. (20)

The range estimate d̂MUSIC is obtained by applying the first path detection to (20).
In contrast to the IDFT approach, delay estimation by the MUSIC algorithm can achieve arbitrary

high resolution for sufficiently low noise [13].
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Deep Neural Network based regression approach The problem considered so far can be
viewed as determining a function fθ : CC → R parameterized by θ, which computes the range based
on channel measurements. To find this function, thus the parameters θ, a Deep Neural Network

(DNN) based regression algorithm is conducted on an expert database D =
{

({H̃c,i}C−1
c=0 ; di)

}N
i=1

,

where N = |D| is the database size. Each entry i in the database consists of a collection of channel
measurements {H̃c,i}C−1

c=0 and the associated true range value di. During the training, the network
parameters θ are updated via a gradient descend algorithm to minimize the loss function

L(θ) = E
[
(fθ({H̃c,i}C−1

c=0 )− di)2
]
. (21)

During the exploitation phase, the range estimation d̂DNN for a given channel measurement {H̃c}C−1
c=0

is obtained from the network parameter estimates θ̂ as d̂DNN = f θ̂({H̃c}C−1
c=0 ).

3 Numerical Simulations

3.1 Parametric estimators

Numerical simulations are conducted to evaluate the performance of the presented range estimators
on synthetic data. Simulations consider a two-path propagation scenario with a direct and a multipath
component, where β = α1/α0 and ∆τ = τ1 − τ0. The reconstructed channel transfer function
estimates H̃c are obtained by (11) with C = 16 and ∆f = 200 kHz leading to BWvirt = 3 MHz,

∆R = 50 m and Rmax = 750 m. AWGN of variance σ2 is added to each channel estimate H
[T,R]
c .

First path detection is performed on (13) and (20) with the optimized parameters Rfirst = 300 m
and γ = −7 dB. MUSIC requires PMUSIC = P̃ = 3 for two-path propagation. For each channel
parameter configuration (Es/N0, β,∆τ), 5000 Monte Carlo simulations are performed.

Fig. 2a, Fig. 2c and Fig. 2e compare the maximum ranging error in 90% of the cases for the
IDFT d̂IDFT and MUSIC d̂MUSIC estimator as function of the path delay difference ∆τ . For a path
delay difference approximately equal to the multi-channel range resolution (∆τ ≈ ∆R), a maximum
error is observed as overlapping main lobes form a larger lobe. The precision gain of MUSIC
over the IDFT technique is most pronounced for path delay differences ∆τ > 100 m as MUSIC
resolves multiple propagation paths and precision asymptotically attains single path precision. Range
estimation degrades as the path amplitude ratio β increases, which makes the detection of a weak
first path difficult. For β = 10 dB, first path detection does no longer find the first path below the
threshold γ. Ranging errors then grow linearly with delay difference ∆τ . These findings are confirmed
at high Es/N0, where MUSIC clearly outperforms the IDFT approach as depicted in Fig. 2b, Fig. 2d
and Fig. 2f.

3.2 DNN based range estimation algorithm

The database D is generated via Monte Carlo simulations. Table 1 summarizes the parameters used
during simulations. Fig. 3 shows the DNN architecture, which comprises three hidden layers of 128
units. Each neuron has a Rectifier Linear Unit activation (ReLU) except the final layer. For a practical
representation, each channel measurement is unpacked into real and imaginary part, thus, the input of
the DNN is of size 2C. During the learning phase, a minibatch of 32 samples is randomly taken every
iteration from the database on which the gradient descend is performed with an empirical step size or
learning rate α = 0.001. Fig. 2 shows that the resulting DNN algorithm has comparable performance
with respect to both IDFT and MUSIC algorithms. While for β < 0 dB it slightly performs less than the
parametric methods, for β ≥ 0 dB, the precision of the DNN algorithm takes over when ∆τ < 100 m
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(b) Es/N0 = 50 dB, β = −30 dB (-), −3 dB (•).
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(c) Es/N0 = 25 dB, β = 0 dB.
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(d) Es/N0 = 50 dB, β = 0 dB.
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(e) Es/N0 = 25 dB, β = 3 dB (-), 10 dB (•).
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(f) Es/N0 = 50 dB, β = 3 dB (-), 10 dB (•).

Fig. 2: Simulated ranging error for IDFT, MUSIC and DNN estimators in a two-path propagation
scenario.

and at low Es/N0 but still remains lower than MUSIC technique when ∆τ increases. In addition,
it is worth to highlight that the proposed DNN algorithm is less sensitive to the variation of the
parameters β, ∆τ , and Es/N0. In fact, the range estimation error almost remains constant (≈ 25 m)
when these parameters vary, demonstrating therefore the robustness of the DNN algorithm.
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Fig. 3: Illustration of the DNN architecture for
multi-channel range estimation.

Table 1: DNN training data generation
parameters.

Parameter Symbol Value

Path
amplitude
ratio

β = α1/α0
−30 : 5 : −5,−3,−1,

0, 1, 3, 5, 10 dB

Path delay
difference

∆τ = τ1 − τ0 0 : 10 : 200 m

Signal-to-
noise ratio

Es/N0 −30 : 5 : 50 dB

Monte
Carlo runs

1500

Software defined radio
T
R

Circulator

GNSS module

GNSS antenna

Battery

866.5MHz ISM band filter

1400MHz low pass filter

868MHz ISM antenna

(a) Transceiver testbed comprising a SDR, radio
frequency components, a GNSS module and a power
supply.
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Fig. 4: Multi-channel ranging field trials.

4 Application to Field Trials

4.1 LPWA ranging transceiver testbed

The transceiver testbed [8] illustrated in Fig. 4a comprises a Software Defined Radio4 (SDR), radio
frequency components and a Global Navigation Satellite System (GNSS) module.

Digital intermediate frequency up-/down-mixing stages are implemented into the SDR, allowing to
coherently process a 10 MHz bandwidth by sequentially selecting 1 MHz channels. Inphase/quadrature
(IQ) samples are stored for offline processing by a dedicated software.

4 Analog Devices AD9361 2 × 2TRX radio front end and a Zynq-045 Xilinx System on chip FPGA with
integrated dual Cortex-A9 ARM processor.
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Two transceiver testbeds perform a multi-channel two-way ranging protocol according to Fig. 1,
exchanging a Binary Phase Shift Keying (BPSK) preamble of chip rate Rc ≡ BWsym = 10 kHz
following a Gold code of chip length Nc = 256 in the 868 MHz Industrial Scientific Medical
(ISM) band. From Tg = 3 ms and Tp = Nc/BWsym = 25.6 ms follows a total two-way multi-channel
duration TMC = 2C (Tp + Tg) = 915.2 ms.

The transceiver testbed comprises a uBlox GNSS module5 for the purpose of providing a ranging
ground truth reference. In the following field trials, GNSS position estimates show a standard
deviation σGNSS < 1 m. Therefore, GNSS position errors are neglected and GNSS estimates are directly
used to establish LPWA narrowband ranging errors.

4.2 Outdoor field trial

Outdoor field trials are performed between a node on the roof of a four-story building and a mobile
node on the ground. GNSS reference positions for the measurements are depicted in Fig. 4b. A total
of 900 valid measurements in stationary conditions is processed for range estimation. As indicated on
the map in Fig. 4b, multipath propagation is possible due to surrounding buildings on the semi-urban
industrial site.

4.3 Ranging results and discussion

In contrast to simulation, where H
[T,R]
c are generated directly, field trial channel estimates H

[T,R]
c for

the construction of (11) are obtained by cross correlation of the received signals s
[T,R]
BB,c at the channel

frequencies c∆f with the transmit waveform s0 H
[T,R]
c [8].

Fig. 5 shows the ranging errors for the different range estimation strategies. IDFT ranging
precision in Fig. 5a is below 30 m, however for certain positions large biases (> 100 m) are observed.
Processing the field trial measurements with the MUSIC algorithm in Fig. 5b does not decrease these
biases, despite the high-resolution capacity. Possible causes are insufficient signal-to-noise ratio Es/N0

(compare Fig. 2) or the mismatch between the hypothesis of a two-path channel (P̃ = 3) and the real
propagation channel.

Regarding the DNN approach, when trained on synthetic data and then applied on field trial data,
the DNN algorithm (S-DNN) slightly performs less than the two parametric estimators (Fig. 5c). This
is again because the hypothesis of a two-path channel is no longer valid in real environment, leading
to channel measurements that were not seen in the synthetic database. The Cumulative Distribution
Functions (CDF) in Fig. 6 summarize the ranging accuracy of the performed field trial.

In order to overcome the weakness of an incomplete database, training can be performed on a
portion of the real field trial data (Fig. 5d). Fig. 7 shows the CDF (R-DNN) when trained on 2/3 and
applied to the remaining 1/3 of the real field trial data in comparison to the performances when the
synthetically-only trained DNN is applied to the same 1/3 (S-DNN).

Furthermore, better results can be obtained by taking advantage of synthetic data, by using these
data to pre-train the DNN and then refine it with some field trial data (M-DNN) [19], thus reducing
the need of an extensive geo-referenced channel measurements database. Fig. 5e and Fig. 7 show the
results for this approach. The resulting M-DNN has better performance than both S-DNN and R-DNN,
therefore demonstrating the benefit of taking into consideration both real and synthetic data for a
robust algorithm.

In conclusion, parametric estimators and synthetic data trained deep learning achieve a ranging
error below 60 m to 80 m in 90% of the cases and mixed data trained deep learning attains 45 m.

5 uBlox C94-M8P application board.
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(a) Ranging error on IDFT d̂IDFT.
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(b) Ranging error on MUSIC d̂MUSIC.
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(c) Ranging error on synthetic data trained DNN d̂S-DNN.
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(d) GNSS ground truth (white = training data for DNN, gray = range estimation with DNN).
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(e) Ranging error on synthetically and field trial data (mixed) trained DNN d̂M-DNN.

Fig. 5: Multi-channel narrowband ranging errors for the 900 field trial measurements with 10 kHz
bandwidth signals.

5 Conclusion

Multi-channel narrowband LPWA ranging accuracy has been evaluated by numerical simulations
in a two-path propagation scenario. Parametric range estimation through MUSIC outperforms the
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Fig. 6: Cumulative Distribution Functions (CDF) for field trial multi-channel narrowband range
estimation with 10 kHz bandwidth signals on all 900 measurements.
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Fig. 7: CDFs for field trial multi-channel narrowband range estimation with 10 kHz bandwidth signals
on 1/3 of the measurements (Fig. 5d, gray).

state of the art Inverse Discrete Fourier Transform approach, due to its high-resolution property.
For sufficient large Es/N0, MUSIC achieves more accurate range estimates for close multipath than
the IDFT technique in numerical simulations. Applied to real outdoor field trials, MUSIC and IDFT
estimators show comparable performances (60 to 80 m in 90% of the cases).

The deep learning based range estimation algorithm shows high robustness to multipath, with 25 m
error in simulation and 45 m in 90% of the cases on the field trial data, when trained on mixed data.
Multi-channel measurements provide improved temporal resolution through sequentially increased
bandwidth. Combined with deep learning techniques they are potential enablers for precise LPWA
localization due to appropriated signal processing, especially for unknown and dense multipath
propagation scenarios. Yet, generalization of these findings to other scenarios remains open.

Further work may consider training deep neural networks assuming more complex channel models.
Extensive field trials will provide a comprehensive database for training with mixed synthetic and real
data.

Future studies may investigate the combination of multi-channel ranging with beamforming
strategies to mitigate multipath as well as Time-Difference-of-Arrival (TDoA) like approaches to
address the complexity of the two-way signaling scheme and to ensure compatibility with the star
topology of LPWA networks.
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