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Abstract

In this paper, we are interested in the problem of smoothing parameter selection in

nonparametric curve estimation under dependent errors. We focus on kernel estimation

and the case when the errors form a general stationary sequence of martingale difference

random variables where neither linearity assumption nor ”all moments are finite” are

required. We compare the behaviors of the smoothing bandwidths obtained by minimizing

three criteria: the average squared error, the mean average squared error and a Mallows-

type criterion adapted to the dependent case. We prove that these three minimizers are

first-order equivalent in probability. We give also a normal asymptotic behavior of the gap

between the minimizer of the average square error and that of the Mallows-type criterion.

Finally, we apply our theoretical results to a specific case of martingale difference sequence,

namely the Auto-Regressive Conditional Heteroscedastic (ARCH(1)) process. A Monte-

carlo simulation study, for this regression model with ARCH(1) process, is conducted.
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1 Introduction

This paper is about nonparametric regression model (known also as a machine learning func-

tion) which is used as a tool to describe and to analyse the trend between a response variable

and one or more explanatory random variables. This subject was studied by several authors
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since 1964 (Nadaraya, E. A. (1964), Watson, G. S. (1964)) and is still relevant, due to the

fact that nonparametric regression has a lot of applications in different fields, such as eco-

nomics, medicine, biology, physics, environment, social sciences, · · · , see for instance Hastie,

T., Tibshirani, R. and Friedman, J. (2009).

Several estimate of the nonparametric regression function are proposed in the literature such

as kernel smoothing, local polynomial regression, spline-based regression models, and regression

trees (see for instance Hastie, T., Tibshirani, R. and Friedman, J. (2009)). In this paper, we

are interested in kernel nonparametric estimations. These estimate depend on some smoothing

parameter h which has to be chosen according to some criteria. For independent observations,

two first criteria, to select h, are known as the Cross Validation (CV) criterion and its rotation-

invariant version called Generalized Cross-Validation (GCV) criterion. The GCV criterion

has different variants, see for instance Akaike, H. (1970), Craven, P. and Wahba, G. (1979),

Shibata, R. (1981), Rice, J. (1984), Mallows, C. L. (1973). We refer the reader to Härdle,

W., Hall, P. and Marron, J. S. (1988) who studied this problem in the case of independent,

equally spaced, observations. They gave, in particular, the behaviors of the minimizers over h

of the average squared errors, the mean average squared errors, the cross-validation score CV or

the generalized cross-validation GCV. They also studied the deviation between these selected

smoothing parameters.

In general, independence of the observations is, however, not a realistic modeling of ob-

served data since, in practice, they are often correlated. Autoregressive models, autoregressive

conditional heteroscedasticity models, Markov chains are examples of dependent models (see

for instance Doukhan, P. and Louhichi, S. (1999)). We focus, in this paper, on the case of

kernel nonparametric models with particular dependent errors, more precisely, the case when

the errors form a stationary sequence of martingale difference random variables (MDS). They

are, essentially, two reasons that motivated us to restrict our study of dependence to the case

of stationary MDS.

• The first reason is that, studying MDS is a promising step for studying the general case

of stationary dependent errors. In fact, MDS plays an important role in establishing the

results for arbitrary stationary sequences, see for instance Peligrad, M., Utev, S. and Wu,

W. B. (2007) (for moment inequalities purpose).

• The second reason is that MDS is not an abstract notion. Indeed, there are a lot of well

known stationary MDS models which are used in practice, such as ARCH(1) or more

general GARCH(1,1) stochastic volatility models.

We compare, in the case of nonparametric regression model with MDS errors, the behaviors

of the smoothing bandwidths obtained by minimizing three criteria: the average squared error,

the mean average squared error and a Mallows-type criterion adapted to our dependent case. We

prove that these three minimizers are first-order equivalent. We give also a normal asymptotic
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behavior of the gap between the minimizer of the average squared error and that of the Mallows-

type criterion. The obtained results generalize those under independent errors, as in Härdle,

W., Hall, P. and Marron, J. S. (1988), to MDS ones. Finally, we apply our results to a specific

case of MDS namely the ARCH(1) processes.

The adaptation to the dependent case from the independent one is not trivial and needs to

establish more theoretical and technical results such as maximal inequalities or limit theorems

for quadratic forms of dependent data. To establish our theoretical results, we make use of some

ingredients adapted to our case of dependent observations taken from Burkholder, D. L. (1988),

Doukhan, P. and Louhichi, S. (1999), McLeish, D. L. (1974) and Rio, E. (1993). Our proofs

are based, in particular, on maximal moment inequalities for quadratic forms for MDS that we

establish using Burkholder-type moment inequalities together with some chaining arguments.

Recall that chaining is a nice approach to approximate the supremum, over a non countable

set, of stochastic processes (used in the theory of empirical processes see for instance Andrews,

D. W. K. and Pollard, D. (1994), Louhichi, S. (2000), or Pollard, D. (1990)). A central limit

theorem for triangular arrays of quadratic forms for MDS is also needed for the proof of our

results. We prove this central limit theorem by checking the technical conditions of McLeish,

D. L. (1974).

Our paper is organized as follows. In Section 2, we introduce the regression model and the

different criteria for the selection of the smoothing parameter h. In Section 3, we state our

main results. We apply our theoretical results, in Subsection 3.1, to ARCH(1) processes. A

Monte-carlo simulation study is conducted in Subsection 3.2. The proofs of our results are

given in Section 4. Appendix A and B are dedicated to the proofs of the main tools needed

to establish our main results. Appendix C gives and proves some ingredients for MDS used

throughout the proofs of the main results.

2 Model and notations

Let (εi)i≥0 be a stationary sequence of centered random variables with finite second moment.

Let σ2 = Var(ε1) and R be the correlation matrix of the vector (ε1, · · · , εn). Consider the

following regression model, defined for i = 1, · · · , n, by

Yi = r(xi) + εi, xi =
i

n
, (1)

where r is an unknown regression function of class C2 and the xi’s are equally spaced fixed

design. We are interested in this paper by the Priestley-Chao estimator of r defined, for x ∈ IR,

by

r̂(x) =
n∑
i=1

li(x)Yi, with li(x) =
1

nh
K

(
x− xi
h

)
,
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where K is a compactly supported even kernel with class C1([−1, 1]) and h is a positive band-

width less than 1/2. The above curve estimator entails the following smoothing, in the matrix

form,

r̂ = LY,

with

r̂ = (r̂(x1), · · · , r̂(xn))t, Y = (Y1, · · · , Yn)t

and L = (lj(xi))1≤i,j≤n is known as the smoothing matrix or the hat matrix. Since the estimator

r̂ depends on some smoothing parameter h, we will need some procedure for choosing h. For

this, we recall some known criteria of selecting this parameter h.

In order to eliminate the boundary effects of the compactly supported kernel K, we intro-

duce, as was done in the literature (see for instance Gasser, T. and Muller, H.G. (1979)), a

known function supported on a subinterval of the unit interval. For this, suppose without loss

of generality that h < ε where ε is a fixed positive real number less than 1/2. Let u := uε be a

positive function, of class C1 and [ε, 1− ε]-compactly supported.

Define the average squared error

Tn(h) =
1

n

n∑
i=1

u(xi)(r̂(xi)− r(xi))2 =
1

n
‖U1/2(r̂ − r)‖2,

where U is the diagonal matrix U = diag(u(x1), · · · , u(xn)) and for any vector v, ‖v‖2 = vtv.

The following lemma (its proof is given in Appendix A.1) evaluates its mean, IE(Tn(h)), for

finite variance of stationary errors (εi)i∈IN.

Lemma 1. Suppose that
∑∞

k=1 k|Cov(ε0, εk)| <∞. Define,

Dn(h) =
h4

4

∫ 1

0

u(x)r
′′2(x)dx

(∫ 1

−1
t2K(t)dt

)2

+
1

nh
(

∫ 1

0

u(x)dx)

∫ 1

−1
K2(y)dy

(
σ2 + 2

∞∑
k=1

Cov(ε0, εk)

)
.

Then for any n ≥ 1 and h ∈]0, ε[,

IE(Tn(h)) = Dn(h) +O(
1

n
) + o(h4) +O(

1

n2h4
) +

γ(h)

nh
,

where O is uniformly on n and h, γ(h) depends on h (but not on n) and tends to 0 when h

tends to 0.

Let h∗n = argminh>0Dn(h). Clearly, if
∫ 1

0
u(x)r

′′2(x)dx 6= 0 then

h∗n = n−1/5

(
(
∫ 1

0
u(x)dx)

∫ 1

−1K
2(y)dy (σ2 + 2

∑∞
k=1 Cov(ε0, εk))∫ 1

0
u(x)r′′2(x)dx(

∫ 1

−1 t
2K(t)dt)2

)1/5

=: cn−1/5.
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Let, as in Hall, P., Lahiri, S. N. and Polzehl, J. (1995) and Rice, J. (1984), Hn be a neighborhood

of h∗n, i.e, Hn = [an−1/5, bn−1/5] for some fixed a < c < b. Define also,

hn = argminh∈HnIE(Tn(h)) and ĥn = argminh∈HnTn(h).

Of course these three “optimal” parameters hn, h∗n and ĥn depend on the unknown func-

tion r, since the criteria that they respectively minimise, depend themselves on the regression

function r. Many authors agree that, among these ones, ĥn should be the target (see Girard,

D. (1998), page 316). For this reason, an important literature considered minimizers of “good”

estimators of Tn(h) and studied their asymptotic behavior.

For i.i.d. errors (εi)1≤i≤n with all finite moments, this question is solved. A nearly unbiased

estimate of IE(Tn(h)) is constructed allowing to define a criterion that selects an observable

choice for h. The first criterion is known as the Cross Validation criterion which was extended

to Generalized Cross-Validation (GCV) criteria. All those different forms of the GCV criteria

are second order equivalent (in the sense defined below as a footnote) to the following:

Cp := Cp(h) =
1∑n

i=1 u(xi)

n∑
i=1

u(xi)(Yi − r̂(xi))2 + 2
ν

n
σ̂2, (2)

where,

σ̂2 =
1∑n

i=1 u(xi)

n∑
i=1

u(xi)(Yi − r̂(xi))2, ν := n
tr(UL)

tr(U)
=

1

h
K(0).

The above notation Cp (where ν is the “weighted” degree of freedom) is related to the Cp-

statistics introduced by Mallows, C. L. (1973) for variable selection in linear regression models.

Let ĥ be a minimizer over h ∈ Hn of the function Cp. Härdle, W., Hall, P. and Marron, J. S.

(1988) proved, in the context of i.i.d errors (εi)1≤i≤n with all finite moments, that ĥ, h∗n, ĥn, hn
are all equivalent in probability and that ĥ − ĥn, hn − ĥn are also close in distribution as n

tends to infinity.1

The above criteria can hardly be considered a priori as adapted to the case of dependent

errors since they take into account only the variance σ2 of the errors and not their overall

dependence structure. Several authors extended Mallow’s criterion to some cases of stationary

dependent errors. Wang, Y. (1988) and Han, Ch. and Gu, Ch. (2008), among others, general-

ized Mallow’s criteria in (2) (but for other purposes than ours) to stationary dependent errors

with known covariance matrix σ2R of the vector (ε1, · · · , εn)t, by

CL(h) = n−1‖U1/2(I − L)Y ‖2 + 2σ2n−1tr(URL), (3)

which is linked to the average squared error Tn(h) due to the following relation,

CL(h) = Tn(h) + δ2(h) + n−1‖U1/2(Y − r)‖2,
1The second order equivalence means that the asymptotic law of ĥ − ĥn is unchanged if Cp is replaced by

GCV.
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where

δ2(h) = 2n−1(Y − r)′U(r − r̂) + 2σ2n−1tr(URL). (4)

Let us consider, according to our purpose, ĥM to be the minimizer of the dependent version of

the Mallows criteria (3),

ĥM = argminh∈HnCL(h).

Recall that we are interested in the problem of selecting the parameter h when the errors

form a sequence of stationary and dependent random variables. As we mentioned in the in-

troduction, we consider through all this paper, the above regression model with stationary

MDS errors (defined in Assumptions (B) of Section 3 below). Since MDS is a sequence of non-

correlated and centered random variables, R, which represents the correlation of the errors, is

nothing else but the identity matrix. We restrict ourselves to the case where the variance of

the errors σ2 is known as is done in several works (see for instance Wang, Y. (1988)).

3 Main results and applications

The following two assumptions are required to establish our main results.

Assumptions (A). Suppose that both the functions h 7−→ Tn(h) and h 7−→ CL(h) have

continuous first derivatives, that T ′n(ĥn) = 0 and CL′(ĥM) = 0 almost surely. Suppose also that

the function h 7−→ IE(Tn(h)) is twice differentiable with continuous second derivative and that
∂2

∂h2
IE(Tn(h)) = IE(T ′′n (h)).

Assumptions (B). Assume that the errors (εi)i≥0 form a stationary MDS with respect to

some natural filtration (Fi)i≥1, i.e, for any i > 0, εi is Fi-measurable and IE(εi|Fi−1) = 0.

Suppose also that IE(ε2p1 ) <∞ for some p > 8.

Our first result states that for MDS errors, the bandwidths hn, h
∗
n, ĥn and ĥM are first-order

equivalent in probability (and the CL enjoys the ”asymptotic optimality” property).

Proposition 1. Suppose that Assumptions (A) and (B) are satisfied. Then

h∗n
hn
,
ĥn
hn
,
ĥM
hn

all converge in probability to 1 as n tends to infinity.

Notice that Hall, P., Lahiri, S. N. and Polzehl, J. (1995) gave two theorems for two bandwidth

selection methods (precisely a block-bootstrap method and the classical leave-k-out technique)

under a rather general dependence assumption on the error sequence, namely the Rosenblatt
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mixing condition (see their Section 2.2). Each of these two theorems is a first-order optimality

like Proposition 1 above, and it could be applied, in particular, to certain stationary MD

sequences. However we point out that these two theorems also require that all moments of the

marginal law of the errors are finite. Thus the results of Hall, P., Lahiri, S. N. and Polzehl, J.

(1995) cannot be applied to any ARCH process except the trivial one (α = 0 in the notation

of Section 3.1).

Our second result gives, under an additional dependence condition, the rate at which ĥn − ĥM
converges in distribution to a centered normal law, and furthermore states that the martingale

difference dependence doesn’t impact ĥn − ĥM up to second-order.

Theorem 1. Suppose that Assumptions (A) and (B) are satisfied. Moreover, suppose that

there exists a positive decreasing function Φ defined on IR+ satisfying

∞∑
s=1

s4Φ(s) <∞,

and for any positive integer q ≤ 6, 1 ≤ i1 ≤ · · · ≤ ik < ik+1 ≤ · · · ≤ iq ≤ n such that

ik+1 − ik ≥ max1≤l≤q−1(il+1 − il),

|Cov(εi1 · · · εik , εik+1
· · · εiq)| ≤ Φ(ik+1 − ik). (5)

Then

n3/10(ĥn − ĥM)

converges in distribution to a centered normal law with variance Σ2 given by

Σ2 =
4σ6/5

52A8/5B2/5
(

∫
t2K(t)dt)2

∫ 1

0

u2(x)r′′2(x)dx

+
8σ6/5

52A3/5B7/5

∫ 1

0

u2(x)dx

∫
(K −G)2(u)du,

where σ2 = IE(ε21), G is the function defined for any x ∈ IR by G(x) = −xK ′(x) and

A =

∫ 1

0

u(x)r′′2(x)dx

(∫
t2K(t)dt

)2

, B =

∫ 1

0

u(x)dx

∫
K2(t)dt.

Remarque 1. The control of the covariance quantity |Cov(εi1 · · · εik , εik+1
· · · εiq)| appearing in

(5) is well known in the literature. It was used, for instance in Doukhan, P. and Louhichi, S.

(1999), in order to obtain Marcinkiewicz-Zygmund type moments inequalities of an even order of

the partial sum
∑n

i=1 εi. If the sequence (εn)n is strongly mixing with mixing coefficients (αs)s∈IN,

then it is proved (Rio, E. (1993), see also Lemma 9 in Doukhan, P. and Louhichi, S. (1999))

that, for 1 ≤ i1 ≤ · · · ≤ ik < ik+1 ≤ · · · ≤ iq ≤ n such that s := ik+1−ik ≥ max1≤l≤q−1(il+1−il),

|Cov(εi1 · · · εik , εik+1
· · · εiq)| ≤ 4

∫ αs

0

Qq(u)du,

where Q is the quantile function of |ε1|, i.e. the inverse of the tail function t 7−→ IP(|ε1| > t).

8



3.1 Application to ARCH(1) processes

We consider the regression model defined in (1) with an ARCH(1) error process (εn)n≥1 defined,

for n ≥ 1, by the following stochastic difference equation,

εn = ηn

√
σ2(1− α) + αε2n−1, 0 ≤ α < 1, σ2 > 0 (6)

where (ηn)n≥1 is an i.i.d. centered sequence distributed as a standard normal law and such

that ηn is independent of (ε1, · · · , εn−1).

Proposition 2. Let (εn)n≥1 be a strictly stationary ARCH(1) process as defined in (6) with α

such that α8
∏8

i=1(2i− 1) < 1 (this is equivalent to α < 0.162796). Suppose that Assumptions

(A) are satisfied. Then the conclusions of Proposition 1 and Theorem 1 hold.

Proof of Proposition 2. We first recall the following well known properties in the literature

(see for instance Engle, R. F. (1982), Lindner, A.M. (2009) and the references therein).

Lemma 2. Consider the process (εn)n as defined in (6). Then

1. (εn)n is a geometric ergodic homogeneous Markov chain with a unique stationary distri-

bution π. The stationary distribution π is continuous and symmetric.

2. (εn)n is strongly mixing with mixing coefficients (αl)l>0

αl := sup
A∈σ(εs, s≤0), B∈σ(εs, s≥l)

|Cov(1IA, 1IB)| = O(ρl),

for some ρ ∈]0, 1[.

3. IE(ε2r1 ) <∞, for r ∈ IN∗, if and only if αr
∏r

i=1(2i− 1) < 1.

4. IP(|ε1| > x) ∼ cx−κ as x tends to infinity2, for some c > 0 and κ is given as the unique

positive solution to ακ/2IE(|η1|κ) = 1.

Letting Fi = σ(η1, · · · , ηi), then εi is Fi-measurable and

IE(εi|Fi−1) =
√
σ2(1− α) + αε2i−1IE(ηi|Fi−1) = 0.

The sequence (εn)n is then a martingale-difference. Since it is strongly mixing with αs ≤ Cρs,

we get, from Remark 1, (5) with

Φ(s) = 4

∫ αs

0

Qq(u)du ≤ 4

∫ Cρs

0

Qq(u)du.

2In all this paper the notation a(x) ∼ b(x) means that limx→∞
a(x)
b(x) = 1.
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We deduce from IP(|ε1| > x) ∼ cx−κ as x tends to infinity that Q(u) = O(u−1/κ), q < κ (since

IE(|ε1|q) <∞) and ∫ Cρs

0

Qq(u)du = O(ρs(1−q/κ)).

Consequently, for some positive constant C,

∞∑
s=1

s4Φ(s) ≤ 4
∞∑
s=1

s4
∫ Cρs

0

Qq(u)du ≤ C

∞∑
s=1

s4ρs(1−q/κ) <∞, since ρ ∈]0, 1[.

3.2 A Monte-carlo simulation study for a “trend plus ARCH(1)

process”

0 100 200 300 400 500
-2

-1

0

1

2

3
{330, 1.01221}

0 100 200 300 400 500
-2

-1

0

1

2

3
{333, 0.985434}

Figure 1 : n = 29. Each of these 2 panels displays one data set Y and the “smooth” deterministic

trend r(x). The 2 panels only differ by α = 0.577 (left) and α = 0.9 (right)

For our experiments, we consider an example of regression function, the “deterministic

trend” here, which is very often used (e.g. Rice, J. (1984), Härdle, W., Hall, P. and Marron, J.

S. (1988)) and a noise level for which the noise-to-signal ratio is “moderate” (precisely 0.322).

So, the chosen trend function is

r(x) = (4x(1− x))3,

and we use an equispaced design for simulating data sets with an ARCH(1) noise as defined

in the above Subsection 3.1. That is, each data set is the sum of this trend r(x) evaluated

at xi = i/n, i = 1, · · · , n, plus an ARCH(1) sequence with a “persistence” parameter α. We

consider 6 settings for the ARCH(1) noise, precisely

α ∈ {0.01, 0.162, 0.577, 0.75, 0.9, 0.98}
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with a common value σ = 0.32. The first value of α nearly corresponds to i.i.d. normal

observation noises (this setting will be referred to as the “quasi-iid-normal” case) and the last

one generates noise sequences for which a strong serial correlation is always present when the

sequence is squared. Recall that the moment of order 16 no longer exists as soon as α is slightly

above 0.162, but the moment of order 4 still exists for α <
√

1/3 ≈ 0.57735.

The kernel function we used here is the classical biweight K(x) = (15/8)(1−4x2)21[−.5,.5](x).

As is well known, its precise specification, among possible positive “bell shaped” kernels, has a

weak impact on the behavior of bandwidth selection techniques.

The data sets size n was chosen in {29, 212, 215} = {512, 4096, 32768}. We generated 1000

replicated data sets for each of these 3× 6 settings. For each data set, the minimizer of Tn(h)

and the one of CL(h) were numerically computed by a simple grid-search over the domain

[0.019, 1.30], the grid-step being chosen fine enough so that the “granularity” in the 2000 com-

puted h’s has a very weak impact on the conclusions.

As in Rice, J. (1984) and Härdle, W., Hall, P. and Marron, J. S. (1988), a periodic version

of the Priestley-Chao kernel estimate was considered (see e.g. Härdle, W., Hall, P. and Marron,

J. S. (1988) for details). This is appropriate because r is “smoothly” periodic with period 1.

We used u(t) ≡ 1 as a weight function, which is possible in this periodic setting. Notice that

the computational cost of the simulation study (CPU time) is then greatly reduced by using

fast Fourier transforms.

The “a.o.” property. First, let us analyze the asymptotic optimality (a.o.) result. As is

well known, a result like Proposition 1 generally stems from a uniform relative accuracy result

which states that CL(h)−n−1‖U1/2(Y − r)‖2 uniformly approximates Tn(h) (or its expectation

MASE(h)) with a small (in probability and in sup norm over the domain of candidate h’s)

error, “small” being defined relatively to MASE(h).

We resume in Figure 2 that a uniform relative accuracy is well observed and, above all, this

accuracy in the case α = 0.162 is of the same order as the accuracy observed in the quasi-iid-

normal case (α = 0.01). Furthermore, an interesting observation is that this accuracy is not

deteriorated when α = 0.577. However there is clearly a deterioration for larger α, especially

for α = 0.98.
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Figure 2 : n = 215. These 6 panels only differ by α varying in {0.01, 0.162, 0.577, 0.75, 0.9, 0.98}. In

each panel, the dashed blue curve is “empirical MASE”, precisely the average (over the 1000 replicates)

of the Tn(h) curves. Each of the 21 boxplots (located at 21 discrete values for h) are built from the

1000 replicates of CL(h)− n−1‖U1/2(Y − r)‖2.

It may be thus conjectured that, at least for ARCH(1) processes, the restriction p > 8 of

our Assumptions (B) could be weakened to p > 2. However, the poor behavior of CL (even

with quite large n) in cases α = 0.75, 0.9 or 0.98, leads us to conjecture that p > 2 should be

considered as a necessary condition for the a.o. of CL under general MDS observation errors.

Asymptotic normal distribution. Now, let us look at the usefulness of the asymptotic

normal approximation stated in Theorem 1. By inspecting Figure 3, we clearly see, in the

left-bottom panel, that this asymptotic approximation fits very well for n = 215 and α = 0.577.
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We have also made such a comparison for α = 0.01 and α = 0.162 (not shown in Figure 3),

and, as expected by Theorem 1 and Section 3.1, the fit is also very good. For settings with

the much smaller n = 512, the fit is still surprisingly good for α = 0.577, but this is no longer

true for α = 0.75 or α = 0.9 (and the fit is even worse for α = 0.98, not shown in Figure 3).

Notice that, as expected, the range of the abscissae (h-differences) increases by moving from

n = 215 (bottom) to n = 29 (top). It is good news that Theorem 1 is thus useful also with

α = 0.577, since this gives support to the conjecture that Theorem 1 could be extended to an

ARCH process under the only existence of the fourth moment of the marginal law.

��������������������

α=0.577 α=0.75 α=0.9

n=29
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Figure 3 : n = 29 (top) and n = 215 (bottom). These 6 panels only differ by n and by α varying in

{0.577, 0.75, 0.9}. In each panel, the displayed histogram is that of the 1000 replicates of ĥM − ĥn;

the histograms are normalized so that their integrals are equal to 1. The superposed blue curve is the

normal distribution of ĥM − ĥn predicted by the asymptotic theory.

4 Proofs

4.1 Main lemmas for the proof of Proposition 1

The following two lemmas are very useful for the proof of Proposition 1. We denote by, ‖·‖p the

p-norm, i.e, for a random variable X, ‖X‖p = (IE(|X|p))1/p and we recall that δ2(h) is defined

as in (4) and Hn = [an−1/5, bn−1/5] for some fixed a < c < b.
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Lemma 3. It holds, for p > 8,

lim
n→∞

‖ sup
h∈Hn

nh|δ2(h)|‖p = 0, (7)

lim
n→∞

‖ sup
h∈Hn

nh3|δ′′2(h)|‖p = 0, (8)

lim
M→∞

lim sup
n→∞

IP

(
sup
h∈Aε

√
n|δ′′2(h)| ≥M

)
= 0, (9)

where for fixed ε > 0, Aε is a subset of Hn defined by,

Aε = {h ∈ Hn,

∣∣∣∣ hhn − 1

∣∣∣∣ ≤ ε}.

Lemma 4. It holds, for p > 8,

lim
n→∞

‖ sup
h∈Hn

nh|Tn(h)− IE(Tn(h))|‖p = 0, (10)

lim
n→∞

‖ sup
h∈Hn

nh3|T ′′n (h)− IE(T ′′n (h))|‖p = 0. (11)

4.1.1 Proof of Lemma 3

We have the following decomposition

δ2(h) =
(
2n−1(Y − r)′U(r − r̂) + 2σ2n−1tr(URL)

)
= 2

n∑
i=1

Ai(h)u(xi)εi + 2
n∑
i=1

i−1∑
j=1

(u(xi) + u(xj))Bi,j(h)εiεj

+2
n∑
i=1

u(xi)Bi,i(h)
(
ε2i − IE(ε2i )

)
,

with,

Ai(h) =
1

n
(r(xi)− IE(r̂(xi))) = − 1

n
B(xi, h)

Bi,j(h) = −n−1 1

nh
K(

xi − xj
h

), Bi,i(h) = −n−1 1

nh
K(0).

Proof of (7). We have, for any h, h′ ∈ Hn, (using the same calculations yielding to (34)),

u(xi) sup
h∈Hn

nh|Ai(h)| = O(n−3/5),

u(xi)|nhAi(h)− nh′Ai(h′)|
≤ hu(xi)|B(xi, h)−B(xi, h

′)|+ u(xi)B(xi, h
′)|h− h′| ≤ cst n−2/5|h− h′|
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and,

nh|Bi,j(h)| ≤ cst n−11I|i−j|≤nh,

|nhBi,j(h)− nh′Bi,j(h
′)| ≤ cst n−4/5|h− h′|1I|i−j|≤nmax(h,h′)

nhBi,i(h) =
K(0)

n
.

Using Lemmas 14, 16 and the fact that

1

n

n∑
i=1

u(xi)(ε
2
i − IE(ε2i ))→ 0, in probability as n→∞,

we have

lim
n→∞

sup
h∈Hn

nh|δ2(h)| = 0, in probability as n→∞.

Proof of (8). For any h ∈]0, ε[ and any n ≥ 1,

δ′′2(h) = 2
n∑
i=1

ci(h)u(xi)εi + 2
n∑
i=1

i−1∑
j=1

(u(xi) + u(xj))ci,j(h)εiεj

+2
n∑
i=1

ci,i(h)u(xi)(ε
2
i − IE(ε2i )),

where, letting K1 = K −G and G1(u) = −uK ′1(u),

ci(h) = − 1

n

∂2

∂h2
IE(r̂(xi)) = − 1

n

∂2

∂h2
B(xi, h),

ci,j(h) = − 2

n2h3
K1(

xi − xj
h

) +
1

n2h3
G1(

xi − xj
h

),

ci,i(h) =
−2

n2h3
K(0).

Now,

nh3
n∑
i=1

ci,i(h)u(xi)(ε
2
i − IE(ε2i )) = cst

1

n

n∑
i=1

u(xi)(ε
2
i − IE(ε2i ))

which converges in probability to 0 by an analogous to Lemma 6.

We also have, for any h, h′ ∈ Hn, (see Lemma 10) the following bounds,

u(xi)|nh3ci(h)| ≤ cst n−3/5,

u(xi)|nh3ci(h)− nh′3ci,n(h′)| ≤ cstn−2/5|h− h′|,

u(xi)|nh3ci,j(h)| ≤ cst
1

n
1I|i−j|≤nh,

u(xi)|nh3ci,j(h)− nh′3ci,j(h′)| ≤ cstn−4/5|h− h′|1I|i−j|≤nmax(h,h′).
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All the requirements of Lemmas 14 and 16 are satisfied. We deduce that,

lim
n→∞

sup
h∈Hn

nh3|δ′′2(h)| = 0, in probability.

Proof of (9). We have,

√
nδ′′2(h) = 2

n∑
i=1

ei(h)u(xi)εi + 2
n∑
i=1

i−1∑
j=1

(u(xi) + u(xj))ei,j(h)εiεj

+2
n∑
i=1

ei,i(h)u(xi)(ε
2
i − IE(ε2i )),

where,

ei(h) = − 1√
n

∂2

∂h2
IE(r̂(xi)) = − 1√

n

∂2

∂h2
B(xi, h),

ei,j(h) = − 2

n
√
nh3

K1(
xi − xj
h

) +
1

n
√
nh3

G1(
xi − xj
h

),

ei,i(h) =
−2

n
√
nh3

K(0).

We have, since
∑∞

i=1 |Cov(ε21, ε
2
i )| <∞,

sup
h∈Hn

∣∣∣∣∣
n∑
i=1

ei,i(h)u(xi)(ε
2
i − IE(ε2i ))

∣∣∣∣∣ ≤ cst

n9/10

∣∣∣∣∣
n∑
i=1

u(xi)(ε
2
i − IE(ε2i ))

∣∣∣∣∣∥∥∥∥∥ sup
h∈Hn

∣∣∣∣∣
n∑
i=1

ei,i(h)u(xi)(ε
2
i − IE(ε2i ))

∣∣∣∣∣
∥∥∥∥∥
2

2

≤ cst

n18/10

∥∥∥∥∥
n∑
i=1

u(xi)(ε
2
i − IE(ε2i ))

∥∥∥∥∥
2

2

≤ cst
n

n18/10
.

Hence,

lim
n→∞

∥∥∥∥∥ sup
h∈Hn

∣∣∣∣∣
n∑
i=1

ei,i(h)u(xi)(ε
2
i − IE(ε2i ))

∣∣∣∣∣
∥∥∥∥∥
2

= 0. (12)

Let, for h ∈ Hn, h′ ∈ Hn, ẽi(h) = ei(h)− ei(hn), then

u(xi)|ẽi(h)| ≤ cst
1√
n
|h− hn| ≤ cst n−7/10,

u(xi)|ẽi(h)− ẽi(h′)| ≤ cst
1√
n
|h− h′|.

Hence,

sup
h∈Hn

∣∣∣∣∣
n∑
i=1

ei(h)u(xi)εi

∣∣∣∣∣ ≤ sup
h∈Hn

∣∣∣∣∣
n∑
i=1

(ei(h)− ei(hn))u(xi)εi

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

ei(hn)u(xi)εi

∣∣∣∣∣ .
16



It follows that ∥∥∥∥∥ sup
h∈Hn

∣∣∣∣∣
n∑
i=1

ei(h)u(xi)εi

∣∣∣∣∣
∥∥∥∥∥
p

≤

∥∥∥∥∥ sup
h∈Hn

∣∣∣∣∣
n∑
i=1

(ei(h)− ei(hn))u(xi)εi

∣∣∣∣∣
∥∥∥∥∥
p

+

∥∥∥∥∥
n∑
i=1

ei(hn)u(xi)εi

∥∥∥∥∥
p

.

Applying Lemmas 14 and Corollary 1 of the Appendix C, we deduce that,

lim sup
n→∞

∥∥∥∥∥ sup
h∈Hn

∣∣∣∣∣
n∑
i=1

ei(h)u(xi)εi

∣∣∣∣∣
∥∥∥∥∥
p

<∞. (13)

Let, for h ∈ Aε = {h ∈ Hn, | hhn − 1| ≤ ε}, Hi,j(h) = 1
h3

(G1 − 2K1)(
xi−xj
h

)

ẽi,j(h) = ei,j(h)− ei,j(hn) =
1

n3/2
(Hi,j(h)−Hi,j(hn)).

Since, |∂Hi,j
∂h

(h)| ≤ cst h−4, then for any h, h′ ∈ Hn

|Hi,j(h)−Hi,j(h
′)| ≤ n4/5|h− h′|1I|i−j|≤nmax(h,h′)

and, for any h ∈ Aε,

|ẽi,j(h)| ≤ cst
ε

n9/10
|1I|i−j|≤nmax(h,h′),

|ẽi,j(h)− ẽi,j(h′)| ≤ cst
1

n7/10
|h− h′|1I|i−j|≤nmax(h,h′).

We have,

sup
h∈Aε

∣∣∣∣∣
n∑
i=1

i−1∑
j=1

(u(xi) + u(xj))ei,j(h)εiεj

∣∣∣∣∣
≤ sup

h∈Aε

∣∣∣∣∣
n∑
i=1

i−1∑
j=1

(u(xi) + u(xj))(ei,j(h)− ei,j(hn))εiεj

∣∣∣∣∣
+

∣∣∣∣∣
n∑
i=1

i−1∑
j=1

(u(xi) + u(xj))ei,j(hn)εiεj

∣∣∣∣∣ .
Arguing as in Lemma 17, we have

lim sup
n→∞

∥∥∥∥∥ sup
h∈Aε

∣∣∣∣∣
n∑
i=1

i−1∑
j=1

(u(xi) + u(xj))(ei,j(h)− ei,j(hn))εiεj

∣∣∣∣∣
∥∥∥∥∥
p

<∞,
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and by Proposition 8,

lim sup
n→∞

∥∥∥∥∥
n∑
i=1

i−1∑
j=1

(u(xi) + u(xj))ei,j(hn)εiεj

∥∥∥∥∥
p

<∞.

Consequently,

lim
n→∞

∥∥∥∥∥ sup
h∈Aε

∣∣∣∣∣
n∑
i=1

i−1∑
j=1

(u(xi) + u(xj))ei,j(h)εiεj

∣∣∣∣∣
∥∥∥∥∥
p

<∞. (14)

The limit (9) is proved by collecting (12), (13) and (14).

4.1.2 Proof of Lemma 4

We can write the following decomposition,

Tn(h)− IE(Tn(h)) =
1

n

n∑
i=1

u(xi)
[
(r̂(xi)− IE(r̂(xi)))

2 − IE
[
(r̂(xi)− IE(r̂(xi)))

2]]
+

2

n

n∑
i=1

u(xi) (r̂(xi)− IE(r̂(xi))) (IE(r̂(xi))− r(xi))

=
n∑
j=1

Cj,n(h)εj +
n∑
j=1

j−1∑
l=1

Bj,l(h)εjεl +
n∑
j=1

Dj,n(h)(ε2j − IE(ε2j)), (15)

where,

Cj,n(h) =
2

n2h

n∑
i=1

u(xi)K(
xi − xj
h

)B(xi, h), B(xi, h) = IE(r̂(xi))− r(xi),

Bj,l(h) =
2

n3h2

n∑
i=1

u(xi)K(
xi − xj
h

)K(
xi − xl
h

),

Dj,n(h) =
1

n3h2

n∑
i=1

u(xi)K
2(
xi − xj
h

).

Proof of (10). Let

cj,n(h) = nhCj,n(h) =
2

n

n∑
i=1

u(xi)K(
xi − xj
h

)B(xi, h)

with B(xi, h) = IE(r̂(xi))− r(xi) = 1
nh

∑n
l=1K

(
xi−xl
h

)
r(xl)− r(xi). We get, for h, h′ ∈ Hn,

cj,n(h)− cj,n(h′) =
2

n

n∑
i=1

u(xi)

(
K(

xi − xj
h

)B(xi, h)−K(
xi − xj
h′

)B(xi, h
′)

)
.

18



Now, since K is a Lipschitz function,∣∣∣∣K(
xi − xj
h

)B(xi, h)−K(
xi − xj
h′

)B(xi, h
′)

∣∣∣∣
≤ cst

(
|B(xi, h)−B(xi, h

′)|+ |xi − xj| sup
h∈Hn

|B(xi, h)| |h− h
′|

hh′

)
1I|xi−xj |≤max(h,h′).

We have, for any h, h′ ∈ Hn,

u(xi)|B(xi, h)−B(xi, h
′)| ≤ cst n−1/5|h− h′|,

and by the proof of Lemma 8 in Appendix A.1, |B(xi, h)| ≤ cst h2. Hence, for h, h′ ∈ Hn,

|cj,n(h)− cj,n(h′)| ≤ cst n−2/5|h− h′|.

Since K is compactly supported, we have,

sup
h∈Hn

|cj,n(h)| ≤ cst max
1≤i≤n

sup
h∈Hn

(h|B(xi, h)|) = O(n−
3
5 ).

Consequently, we obtain using Lemma 14,

lim
n→∞

∥∥∥∥∥ sup
h∈Hn

nh

∣∣∣∣∣
n∑
j=1

Cj,n(h)εj

∣∣∣∣∣
∥∥∥∥∥
2

= 0. (16)

Now, let

dj,n(h) = nhDj,n(h) =
1

n2h

n∑
i=1

u(xi)K
2(
xi − xj
h

).

We have, |dj,n(h)| ≤ cst
n

and

|dj,n(h)− dj,n(h′)| ≤ n−4/5|h− h′|,

Then Lemma 15 gives,

lim
n→∞

∥∥∥∥∥ sup
h∈Hn

nh

∣∣∣∣∣
n∑
j=1

Dj,n(h)(ε2j − IE(ε2j))

∣∣∣∣∣
∥∥∥∥∥
p

= 0. (17)

Now, let

bj,l(h) = nhBj,l(h) =
1

n2h

n∑
i=1

u(xi)K(
xi − xj
h

)K(
xi − xl
h

),

we have,

b2j,l(h) =
1

n4h2

(
n∑
i=1

u(xi)K(
xi − xj
h

)K(
xi − xl
h

)

)2

≤ 1

n2
1I|j−l|≤2nh.
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Our purpose now is to control, for h, h′ ∈ Hn, the increment |bj,l(h)− bj,l(h′)|. We have,

|bj,l(h)− bj,l(h′)| ≤
cst max(h, h′)

nhh′
|h− h′| ≤ cst n−4/5|h− h′|1I|j−l|≤2nh.

Then by Lemma 16, we obtain

lim
n→∞

∥∥∥∥∥ sup
h∈Hn

nh

∣∣∣∣∣
n∑
j=1

j−1∑
l=1

Bj,l(h)εjεl

∣∣∣∣∣
∥∥∥∥∥
p

= 0. (18)

Collecting (15), (16), (17) and (18), we finally deduce (10).

Proof of (11). Taking the second derivative over h in (15), we have

T ′′n (h)− IE(T ′′n (h))

=
n∑
j=1

C ′′j,n(h)εj +
n∑
j=1

j−1∑
l=1

B′′j,l(h)εjεl +
n∑
j=1

D′′j,n(h)(ε2j − IE(ε2j)),

where, letting B(xi, h) = IE(r̂(xi))− r(xi),

C ′′j,n(h)

=
1

n2h

n∑
i=1

u(xi)

(
B(xi, h)

h2
G1(

xi − xj
h

) +
B′(xi, h)

h
G2(

xi − xj
h

) +B′′(xi, h)G3(
xi − xj
h

)

)
,

B′′j,l(h) =
1

n3h4

n∑
i=1

u(xi)F1(
xi − xj
h

)F2(
xi − xl
h

)

D′′j,n(h) =
1

n3h4

n∑
i=1

u(xi)F (
xi − xj
h

),

where F1, F2, F , G1, G2 and G3 are bounded functions of class C1, [−1, 1]-compactly supported.

The proof of (11) is analogous to (9) and (10).

4.2 Proof of Proposition 1

We have from Lemma 1,

lim
n→∞

sup
h∈Hn

∣∣∣∣IE(Tn(h))

Dn(h)
− 1

∣∣∣∣ = 0. (19)

From this, we claim that hn
h∗n

converges to 1, as n tends to infinity. In fact, it holds by the

definition of hn,

IE(Tn(hn)) ≤ IE(Tn(h∗n)).

Hence,

Dn(hn)
IE(Tn(hn))

Dn(hn)
≤ IE(Tn(h∗n))

Dn(h∗n)
Dn(h∗n),
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so by (19) and the definition of h∗n, we deduce that, for a fixed ε > 0 there exists n0 such that

for any n ≥ n0,

(1− ε)Dn(hn) ≤ (1 + ε)Dn(h∗n) ≤ (1 + ε)Dn(hn),

so that limn→∞
Dn(h∗n)
Dn(hn)

= 1, which ensures that limn→∞
h∗n
hn

= 1, in fact (supposing without loss

of generality that Dn(h∗n)−Dn(hn) 6= 0),

h∗n − hn
hn

=
h∗n − hn

Dn(h∗n)−Dn(hn)

Dn(h∗n)−Dn(hn)

hn

=
h∗n − hn

Dn(h∗n)−Dn(hn)

Dn(hn)

hn

(
Dn(h∗n)

Dn(hn)
− 1

)
=

Dn(hn)

hnD′n(h∗)

(
Dn(h∗n)

Dn(hn)
− 1

)
,

where h∗ is between hn and h∗n which are all in Hn, consequently lim supn→∞ |
Dn(hn)
hnD′n(h

∗)
| < ∞

and then the behavior of h∗n−hn
hn

is deduced from the fact that Dn(h∗n)
Dn(hn)

− 1 tends to 0 as n tends

to infinity.

In order to complete the proof of Proposition 1, we only need to prove that both Dn(ĥn)
Dn(hn)

and
Dn(ĥM )
Dn(hn)

converge in probability to 1 as n tends to infinity (recall that both ĥM and ĥn belong to

Hn). We refer the reader to Rice, J. (1984) for similar arguments. For this, we have to prove

an analogous to the limit (19),

lim
n→∞

∥∥∥∥ sup
h∈Hn

∣∣∣∣ Tn(h)

Dn(h)
− 1

∣∣∣∣ ∥∥∥∥
p

= 0, for some p > 8 (20)

which gives, from the same previous arguments, that, for any ε > 0,

lim
n→∞

IP

(
(1− ε) ≤ (1 + ε)

Dn(h∗n)

Dn(ĥn)
≤ (1 + ε)

)
= 1.

Since infh∈Hn nhDn(h) > 0 and by (19), the limit (20) is proved as soon as,

lim
n→∞

∥∥∥∥ sup
h∈Hn

nh |Tn(h)− IE(Tn(h))|
∥∥∥∥
p

= 0,

which immediately follows from Lemma 4 (more precisely (10) of Subsection 4.1). Our purpose

now is to prove that ĥM
hn

converges in probability to 1 as n tends to infinity. Recall that CL(h) =

Tn(h) + δ2(h) +n−1‖U1/2(Y − r)‖2, where δ2(h) = 2n−1(Y − r)′U(r− r̂) + 2σ2n−1tr(URL). We

have, using Lemma 3 of Subsection 4.1,

lim
n→∞

‖ sup
h∈Hn

nh|δ2(h)| ‖p = 0,

or equivalently, since infh∈Hn nhDn(h) > 0,

lim
n→∞

∥∥∥∥ sup
h∈Hn

∣∣∣∣ δ2(h)

Dn(h)

∣∣∣∣ ∥∥∥∥
p

= 0.
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This last limit, together with (20), give

lim
n→∞

∥∥∥∥ sup
h∈Hn

∣∣∣∣Tn(h) + δ2(h)

Dn(h)
− 1

∣∣∣∣ ∥∥∥∥
p

= 0. (21)

Now, since n−1‖U1/2(Y − r)‖2 doesn’t depend on h,

ĥM := argminh∈HnCL(h) = argminh∈Hn (Tn(h) + δ2(h)) ,

so that using (21) and the same previous arguments, we prove that

Dn(ĥM)

Dn(hn)
→ 1, in probability as n→∞.

The proof of Proposition 1 is completed.

4.3 Proof of Theorem 1

The following technical lemma is crucial for the proof of Theorem 1. It gives conditions under

which vn(ĥM − ĥn) converges to a normal law with some rate vn.

Lemma 5. Suppose that Assumptions (A) hold. If, as n tends to infinity and for some positive

rate an, (recall that δ2(h) is defined in Equation (4)),

1. anδ
′
2(hn) converges to a centered normal law with variance V ,

2. an(δ′2(hn)− δ′2(ĥn)) converges in probability to 0,

3. CL′′(h∗)
IE(T ′′n (hn))

tends in probability to 1 for any h∗ between ĥn and ĥM ,

then

anIE(T ′′n (hn))(ĥn − ĥM)

converges in distribution to a centered normal law with variance V .

Proof of Lemma 5. We have,

CL(h) = Tn(h) + δ2(h) + n−1‖U1/2(Y − r)‖2.

Hence CL′(h) = T ′n(h) + δ′2(h) and (recall that CL′(ĥM) = 0, T ′n(ĥn) = 0),

δ′2(ĥn) = CL′(ĥn)− T ′n(ĥn) = CL′(ĥn)− CL′(ĥM).

We also have, that there exists some sequence h∗ between ĥn and ĥM such that

CL′(ĥn)− CL′(ĥM) = (ĥn − ĥM)CL′′(h∗) = (ĥn − ĥM)IE(T ′′n (hn))
CL′′(h∗)

IE(T ′′n (hn))
.
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Consequently,

anIE(T ′′n (hn))(ĥn − ĥM) = an
IE(T ′′n (hn))

CL′′(h∗)
(CL′(ĥn)− CL′(ĥM))

=
IE(T ′′n (hn))

CL′′(h∗)
anδ

′
2(ĥn) =

IE(T ′′n (hn))

CL′′(h∗)
anδ

′
2(hn) +

IE(T ′′n (hn))

CL′′(h∗)
an(δ′2(ĥn)− δ′2(hn)).

The last equality together with the assumptions of Lemma 5 complete the proof of this lemma.

According to Lemma 5, we have to consider three steps. We study each of them in the following

three subsections. The fourth subsection concludes the proof of Theorem 1

4.3.1 Step 1: convergence in distribution of anδ
′
2(hn).

The following proposition studies the asymptotic distribution of anδ
′
2(hn) for an =

√
n
h2n

.

Proposition 3. Suppose that the assumptions of Theorem 1 are satisfied. Then the following

two assertions are equivalent.

•
√

n
h2n
δ′2(hn) converges in distribution as n tends to infinity to a centered normal law with

variance 4V

•
√

n
h2n

∑n
i=1

(
ãi,n(hn)u(xi)εi +

∑i−1
j=1(u(xi) + u(xj))bi,j(hn)εiεj

)
converges to a centered nor-

mal law with variance V , where

ãi,n(hn) = −CK
hn
n
r′′(xi).

Proof of Proposition 3. Recall that, for G(u) = −uK ′(u), for any h ∈]0, ε[ and any n ≥ 1,

δ′2(h) = 2
n∑
i=1

ai(h)u(xi)εi + 2
n∑
i=1

i−1∑
j=1

(u(xi) + u(xj))bi,j(h)εiεj

+2
n∑
i=1

bi,i(h)u(xi)(ε
2
i − IE(ε2i )), (22)

where,

ai(h) = − 1

n

∂

∂h
IE(r̂(xi)) =

1

n2h2

n∑
j=1

(K −G)(
xi − xj
h

)r(xj),

bi,j(h) =
1

n2h2
K(

xi − xj
h

)− 1

n2h2
G(
xi − xj
h

),

bi,i(h) =
1

n2h2
K(0).

We also need, for the proof of Proposition 3, the following two lemmas.
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Lemma 6. Recall that hn = cn−1/5 and suppose that
∑∞

j=1 |Cov(ε21, ε
2
j)| <∞, then

lim
n→∞

n

h2n
Var

(
n∑
i=1

u(xi)bi,i(hn)(ε2i − IE(ε2i ))

)
= 0.

Proof of Lemma 6. We have,

n

h2n
Var

(
n∑
i=1

u(xi)bi,i(hn)(ε2i − IE(ε2i ))

)
=

n

h2nn
4h4n

K2(0)
n∑
i=1

n∑
j=1

u(xi)u(xj)Cov(ε2i , ε
2
j)

≤ 1

n2h6n
K2(0)‖u‖2∞ sup

i

∞∑
j=1

|Cov(ε2i , ε
2
j)|.

The proof of this lemma is achieved since limn→∞ n
2h6n = limn→∞ n

4/5 =∞.

Lemma 7. Recall that hn = cn−1/5. We have, noting CK =
∫
x2K(x)dx,

lim
n→∞

n

h2n
Var

(
n∑
i=1

(
ai(hn) + CK

hn
n
r′′(xi)

)
u(xi)εi

)
= 0.

Proof of Lemma 7. Clearly, we have using Lemma 10 of Appendix A.2,

ai(hn) + CK
hn
n
r′′(xi) = O(

h2n
n

+
1

n2h3n
),

and

Var

(
n∑
i=1

(ai(hn) + CK
hn
n
r′′(xi))u(xi)εi

)

=
n∑
i=1

n∑
j=1

(ai(hn) + CK
hn
n
r′′(xi))(aj(hn) + CK

hn
n
r′′(xj))u(xi)u(xj)Cov(εi, εj)

≤ cst sup
i

(
(ai(hn) + CK

hn
n
r′′(xi))u(xi)

)2

nσ2

= O

(
n(
h2n
n

+
1

n2h3n
)2
)

= O(n−9/5) = o(
h2n
n

).

The proof of Lemma 7 is complete.

End of the proof of Proposition 3. We have, using (22),√
n

h2n
δ′2(hn) = 2

√
n

h2n

n∑
i=1

(
ãi,n(hn)u(xi)εi +

i−1∑
j=1

(u(xi) + u(xj))bi,j(hn)εiεj

)

+2

√
n

h2n

n∑
i=1

(ai(hn)− ãi,n(hn))u(xi)εi + 2

√
n

h2n

n∑
i=1

bi,i(hn)u(xi)(ε
2
i − IE(ε2i )).

The proof of Proposition 3 is complete if
√

n
h2n

∑n
i=1 (ai(hn)− ãi,n(hn))u(xi)εi and

√
n
h2n

∑n
i=1 bi,i(hn)u(xi)(ε

2
i−

IE(ε2i )) converge in probability to 0 as n tends to infinity, which are satisfied due to Lemmas 6

and 7.
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4.3.2 Step 2: convergence in probability of an(δ′2(hn)− δ′2(ĥn))

The following proposition checks step 2 of Lemma 5.

Proposition 4. Under the assumptions of Theorem 1,
√

n
h2n

(δ′2(hn) − δ′2(ĥn)) converges in

probability to 0 as n tends to infinity.

Proof of Proposition 4. We have,√
n

h2n
(δ′2(hn)− δ′2(ĥn)) =

√
n

h2n
(hn − ĥn)δ′′2(h∗) =

√
n(1− ĥn

hn
)δ′′2(h∗),

where h∗ is an element of Hn between hn and ĥn and since ĥn/hn converges in probability to 1

as n tends to infinity (by Proposition 1), we deduce that

lim
n→∞

IP(h∗ /∈ Aε) = 0, ∀ ε > 0, (23)

where, for fixed ε > 0, Aε = {h ∈ Hn, | hhn − 1| ≤ ε}. Now, we have for any M > 0,

IP
(
an|δ′2(hn)− δ′2(ĥn)| ≥ ε2

)
≤ IP

(
√
n|1− ĥn

hn
||δ′′2(h∗)| ≥ ε2, h∗ ∈ Aε

)
+ IP

(
√
n(1− ĥn

hn
)|δ′′2(h∗)| ≥ ε2, h∗ /∈ Aε

)

≤ IP

(
√
n|1− ĥn

hn
||δ′′2(h∗)|1Ih∗∈Aε ≥ ε2

)
+ IP (h∗ /∈ Aε)

≤ IP

(
√
n|1− ĥn

hn
| sup
h∈Aε
|δ′′2(h)| ≥ ε2

)
+ IP (h∗ /∈ Aε)

≤ IP

(
√
n|1− ĥn

hn
| sup
h∈Aε
|δ′′2(h)| ≥ ε2,

√
n sup
h∈Aε
|δ′′2(h)| ≥M

)

+IP

(
√
n|1− ĥn

hn
| sup
h∈Aε
|δ′′2(h)| ≥ ε2,

√
n sup
h∈Aε
|δ′′2(h)| < M

)
+ IP (h∗ /∈ Aε)

≤ IP

(√
n sup
h∈Aε
|δ′′2(h)| ≥M

)
+ IP

(
M |1− ĥn

hn
| ≥ ε2

)
+ IP (h∗ /∈ Aε) ,

which tends to 0 by letting first n tends to infinity and then M tends to infinity, due to

Proposition 1, (9) and (23).

4.3.3 Step 3: convergence in probability of CL′′(h∗)
IE(T ′′n (hn))

Proposition 5. Under the assumptions of Theorem 1, CL′′(h∗)
IE(T ′′n (hn))

tends in probability to 1, as

n→∞, for any h∗ between ĥn and ĥM .
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Proof of Proposition 5. We have, for any h > 0, CL′′(h) = T ′′n (h) + δ′′2(h), and

CL′′(h)

IE(T ′′n (h))
=

T ′′n (h)

IE(T ′′n (h))
+

δ′′2(h)

IE(T ′′n (h))
.

Our first purpose is to prove that, suph∈Hn
|δ′′2 (h)|
|IE(T ′′n (h))|

converges to 0, in probability, as n tends

to infinity. Since suph∈Hn

∣∣∣ D′′n(h)
|IE(T ′′n (h))|

− 1
∣∣∣ converges to 0 as n tends to infinity, with

D′′n(h) = 3h2
∫ 1

0

u(x)r′′2(x)dx

∫ 1

−1
t2K(t)dt+

2

nh3
(

∫ 1

0

u(x)dx)

∫ 1

−1
K2(y)dyσ2,

(see Lemma 11 of Appendix A.2) it remains then to prove that, (since infh∈Hn nh
3|D′′n(h)| > 0),

sup
h∈Hn

(
nh3|δ′′2(h)|

)
−→ 0, in probability as n→∞,

which is proved due to Lemma 3 of Subsection 4.1. It remains to prove that

sup
h∈Hn

∣∣∣∣ T ′′n (h)

IE(T ′′n (h))
− 1

∣∣∣∣ −→ 0, in probability as n→∞,

or equivalently,

sup
h∈Hn

nh3 |T ′′n (h)− IE (T ′′n (h))| −→ 0, in probability as n→∞,

which is proved due to Lemma 4 of Subsection 4.1. Consequently,

sup
h∈Hn

∣∣∣∣ CL′′(h)

IE(T ′′n (h))
− 1

∣∣∣∣ −→ 0, in probability as n→∞,

Finally, ∣∣∣∣CL′′(h∗)

D′′n(hn)
− 1

∣∣∣∣ ≤ cst sup
h∈Hn

∣∣∣∣CL′′(h)

D′′n(h)
− 1

∣∣∣∣+

∣∣∣∣D′′n(h∗)

D′′n(hn)
− 1

∣∣∣∣ .
Since by definition of h∗ and by Proposition 1, we deduce that∣∣∣∣D′′n(h∗)

D′′n(hn)
− 1

∣∣∣∣ −→ 0 in probability as n→∞,

and then ∣∣∣∣CL′′(h∗)

D′′n(hn)
− 1

∣∣∣∣ −→ 0 in probability as n→∞.
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4.3.4 End of the proof of Theorem 1

We have to check the three items of Lemma 5. We have, from Proposition 7,

n7/10

n∑
i=1

(
ãi,n(hn)u(xi)εi +

i−1∑
j=1

(u(xi) + u(xj))bi,j(hn)εiεj

)
=⇒ N (0, V ).

It follows from Proposition 3 that

n7/10δ′2(hn) =⇒ N (0, 4V ),

where V = c2C2
Kσ

2
∫ 1

0
u2(x)r′′2(x)dx+ 4

c3
σ4
∫ 1

0
u2(x)dx

∫ 1

0
(K −G)2(u)du. The two other items

of Lemma 5 are satisfied using Propositions 4 and 5. The proof of Theorem 1 is complete using

Lemma 5 together with the fact that (see Lemma 11), IE(T ′′n (hn)) is equivalent to

n−2/5

(
3c2
∫ 1

0

u(x)r′′2(x)dx

(∫ 1

−1
t2K(t)dt

)2

+
2

c3
(

∫ 1

0

u(x)dx)

∫ 1

−1
K2(y)dyσ2

)
.
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A Auxiliary technical tools

A.1 Proof of Lemma 1

In all the following proofs we denote by cst a generic constant independent of n and of h. We

need the following two lemmas for the proof of Lemma 1.

Lemma 8. One has, under the requirements of Lemma 1,

1

n

n∑
i=1

u(xi)(IE(r̂(xi))− r(xi))2

=
h4

4

∫ 1

0

u(x)r′′2(x)dx

(∫ 1

−1
t2K(t)dt

)2

+O(
1

n
) + o(h4) +O(

1

n2h4
).

Lemma 9. It the assumptions of Lemma 1 are satisfied, then

1

n

n∑
i=1

u(xi)Var(r̂(xi)) =
σ2

nh
(

∫ 1

0

u(x)dx)

∫ 1

−1
K2(y)dy +O(

1

n2h3
) +

γ(h)

nh
.

where γ(h) depends on h (not on n) and tends to 0 as h tends to 0.

The proof of Lemma 1 is complete using Lemmas 8, 9 and the trivial fact

IE(Tn(h)) =
1

n

n∑
i=1

u(xi)(IE(r̂(xi))− r(xi))2 +
1

n

n∑
i=1

u(xi)Var(r̂(xi)).

Proof of Lemma 8. We have,

IE(r̂(xi))− r(xi) =
1

nh

n∑
j=1

K(
xi − xj
h

)r(xj)− r(xi)

=
1

h

∫ 1

0

K(
xi − s
h

)r(s)ds− r(xi) + ∆1(h) (24)

=

∫ xi/h

(xi−1)/h
K(y)r(xi − hy)dy − r(xi) + ∆1(h),

where ∆1(h) = 1
nh

∑n
j=1K(

xi−xj
h

)r(xj) − 1
h

∫ 1

0
K(xi−s

h
)r(s)ds. In order to control ∆1(h), we

apply the following bound, true for any C1 function f on [0, 1],∣∣∣∣∣
∫ 1

0

f(x)dx− 1

n

n∑
i=1

f(xi)

∣∣∣∣∣ ≤ 1

n
‖f ′‖∞, (25)

to the function f(s) = K(xi−s
h

)r(s). We obtain

|∆1(h)| ≤ ‖K
′‖∞‖r‖∞
nh2

+
‖K‖∞‖r′‖∞

nh
≤ cst

nh2
. (26)
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Now, applying the Taylor’s expansion, we have

|∆2(h, y)| :=
∣∣∣∣r(xi − hy)− r(xi) + hyr′(xi)−

1

2
h2y2r′′(xi)

∣∣∣∣ = o(h2). (27)

Hence, ∫ xi/h

(xi−1)/h
K(y)r(xi − hy)dy − r(xi)

=

∫ xi/h

(xi−1)/h
K(y)(r(xi)− hyr′(xi) +

1

2
h2y2r′′(xi) + ∆2(h, y))dy − r(xi)

= r(xi)

(∫ xi/h

(xi−1)/h
K(y)dy − 1

)
− hr′(xi)

∫ xi/h

(xi−1)/h
yK(y)dy

+
1

2
h2r′′(xi)

∫ xi/h

(xi−1)/h
y2K(y)dy +

∫ xi/h

(xi−1)/h
K(y)∆2(h, y)dy.

We obtain, collecting all the above equalities,

IE(r̂(xi))− r(xi) =

r(xi)

(∫ xi/h

(xi−1)/h
K(y)dy − 1

)
− hr′(xi)

∫ xi/h

(xi−1)/h
yK(y)dy

+
1

2
h2r′′(xi)

∫ xi/h

(xi−1)/h
y2K(y)dy + ∆1(h) +

∫ xi/h

(xi−1)/h
∆2(h, y)K(y)dy. (28)

We have, using (27), ∣∣∣∣∣
∫ xi/h

(xi−1)/h
∆2(h, y)K(y)dy

∣∣∣∣∣ = o(h2).

If [−1, 1] ⊂ [(xi − 1)/h, xi/h] then
∫ xi/h
(xi−1)/hK(y)dy = 1,

∫ xi/h
(xi−1)/h yK(y)dy = 0,∫ xi/h

(xi−1)/h y
2K(y)dy =

∫ 1

−1 y
2K(y)dy and (28) together with (26), (27) give,

IE(r̂(xi))− r(xi) =
1

2
h2r′′(xi)

∫ 1

−1
u2K(u)du+O

(
1

nh2

)
+ o(h2),

and

u(xi) (IE(r̂(xi))− r(xi))2

=
1

4
h4u(xi)r

′′2(xi)

(∫ 1

−1
u2K(u)du

)2

+O

(
1

n2h4

)
+O(

1

n
) + o(h4).
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Now if xi < h < ε or if 1− ε < 1−h < xi then by definition of u, u(xi) = 0. So that the bound

(29) is true for any i ∈ {1, · · · , n} and gives, due to (25),

1

n

n∑
i=1

u(xi) (IE(r̂(xi))− r(xi))2

=
1

4
h4
∫ 1

0

u(x)r′′2(x)dx

(∫ 1

−1
u2K(u)du

)2

+O(
1

n
) +O

(
1

n2h4

)
+ o(h4).

This proves Lemma 8.

Proof of Lemma 9. We have, MDS is a sequence of non-correlated random variables,

u(xi)Var(r̂(xi)) =
1

n2h2

n∑
j1=1

n∑
j2=1

u(xi)K(
xi − xj1

h
)K(

xi − xj2
h

)Cov(εj1 , εj2)

= σ2 1

n2h2

n∑
j1=1

u(xi)K
2(
xi − xj1

h
).

We have, using (25) together with some properties of the kernel K,∣∣∣∣∣ 1n
n∑

j1=1

K2(
xi − xj1

h
)−

∫ 1

0

K2(
xi − s
h

)ds

∣∣∣∣∣ ≤ cst

nh
.

Hence, ∣∣∣∣u(xi)Var(r̂(xi))− σ2 1

nh2

∫ 1

0

u(xi)K
2(
xi − s
h

)ds

∣∣∣∣ ≤ cst
1

n2h3
.

This bound together with the following inequality (obtained using (25))∣∣∣∣∣ 1n
n∑
i=1

u(xi)K
2(
xi − s
h

)−
∫ 1

0

u(x)K2(
x− s
h

)dx

∣∣∣∣∣ ≤ cst

nh
,

give, ∣∣∣∣∣
n∑
i=1

u(xi)Var(r̂(xi))−
σ2

h2

∫ 1

0

∫ 1

0

u(x)K2(
x− s
h

)dsdx

∣∣∣∣∣ ≤ cst
1

nh3
.

The last bound together with the following elementary calculation,

1

h

∫ 1

0

∫ 1

0

u(x)K2(
x− s
h

)dsdx =

∫ 1

0

u(x)

(∫ x/h

(x−1)/h
K2(y)dy

)
dx

=

∫ 1

−1
K2(y)

(∫ hy+1

hy

u(x)dx

)
dy

=

∫ 1

−1
K2(y)dy

(∫ 1

0

u(x)dx

)
+

∫ 1

−1
K2(y)dy

(∫ hy+1

hy

u(x)dx−
∫ 1

0

u(x)dx

)
=

∫ 1

−1
K2(y)dy

(∫ 1

0

u(x)dx

)
+ γ(h),
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complete the proof of Lemma 9.

A.2 Other useful lemmas

Lemma 10 below is used for the proof of Lemma 7 and Lemma 3.

Lemma 10. Let h ∈]0, ε[ be fixed. We have, for any i ∈ {1, · · · , n},

−u(xi)
1

n

∂

∂h
(IE(r̂(xi)))

= −u(xi)
h

n
r′′(xi)

∫
u2K(u)du+O(

h2

n
) +O(

1

n2h3
). (29)

For any h, h′ ∈ Hn, we have, letting B(xi, h) = IE(r̂(xi))− r(xi), for any 1 ≤ i ≤ n,

u(xi)|B(xi, h)−B(xi, h
′)| ≤ cst n−1/5|h− h′|, (30)

u(xi) sup
h∈Hn

|B′′(xi, h)| <∞, (31)

u(xi)|B′′(xi, h)−B′′(xi, h′)| ≤ cst|h− h′|. (32)

We also need for the proofs of Proposition 5 and Theorem 1, the following trivial lemma that

we state without proof.

Lemma 11. Let h 7−→ Dn(h) be the function as defined in Lemma 1. Then this function is

twice differentiable and

D′′n(h) = 3h2
∫ 1

0

u(x)r′′2(x)dx

(∫ 1

−1
t2K(t)dt

)2

+
2σ2

nh3
(

∫ 1

0

u(x)dx)

∫ 1

−1
K2(y)dy.

We also have, suph∈Hn

∣∣∣ |D′′n(h)||IE(T ′′n (h))|
− 1
∣∣∣ converges to 0 as n tends to infinity.

Proof of Lemma 10. We take the derivative over h in (24) and we obtain,

∂IE(r̂(xi))

∂h

= − 1

h2

∫ 1

0

K

(
xi − s
h

)
r(s)ds− 1

h

∫ 1

0

xi − s
h2

K ′
(
xi − s
h

)
r(s)ds+ ∆′1(h)

= −1

h

∫ xi/h

(xi−1)/h
K(y)r(xi − yh)ds− 1

h

∫ xi/h

(xi−1)/h
yK ′(y)r(xi − yh)dy + ∆′1(h).

Hence if [−1, 1] ⊂ [(xi − 1)/h, xi/h] then

∂IE(r̂(xi))

∂h
= −1

h

∫ 1

−1
K(y)r(xi − yh)ds− 1

h

∫ 1

−1
yK ′(y)r(xi − yh)dy + ∆′1(h).
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If [−1, 1] is not a subset of [(xi − 1)/h, xi/h], then u(xi) = 0 so that in both cases, we have

u(xi)
∂IE(r̂(xi))

∂h
(33)

= −u(xi)

h

∫ 1

−1
K(y)r(xi − yh)ds− u(xi)

h

∫ 1

−1
yK ′(y)r(xi − yh)dy + u(xi)∆

′
1(h).

Now, using the same arguments as in (28),

1

h

∫ 1

−1
K(y)r(xi − yh)dy =

r(xi)

h
+
h

2
r′′(xi)

∫ 1

−1
y2K(y)dy +O(h2), (34)

1

h

∫ 1

−1
yK ′(y)r(xi − yh)dy

=

∫ 1

−1
yK ′(y)dy

r(xi)

h
− r′(xi)

∫ 1

−1
y2K ′(y)dy +

h

2
r′′(xi)

∫ 1

−1
y3K ′(y)dy +O(h2).

Since
∫ 1

−1 yK
′(y)dy = −1,

∫ 1

−1 y
2K ′(y)dy = 0,

∫ 1

−1 y
3K ′(y)dy = −3

∫ 1

−1 y
2K(y)dy, we deduce

that,

1

h

∫ 1

−1
yK ′(y)r(xi − yh)dy

= −r(xi)
h
− 3h

2
r′′(xi)

∫ 1

−1
y2K(y)dy +O(h2). (35)

We obtain, collecting (33), (34) and (36), for any 1 ≤ i ≤ n,

u(xi)
∂IE(r̂(xi))

∂h
= hr′′(xi)u(xi)

∫ 1

−1
y2K(y)dy + u(xi)∆

′
1(h) +O(h2).

Let us now calculate ∆′1(h). We have,

∆′1(h) = −1

h
∆1(h) (36)

+
1

h3

(∫ 1

0

(xi − s)K ′
(
xi − s
h

)
r(s)ds− 1

n

n∑
j=1

(xi − xj)K ′
(
xi − xj
h

)
r(xj)

)
.

We have already proved that (see (26)),

|1
h

∆1(h)| ≤ cst

nh3
. (37)

Define f(s) = (xi−s)K ′
(
xi−s
h

)
r(s). Likewise, using (25), since f has a bounded first derivative,∣∣∣∣∣

∫ 1

0

(xi − s)K ′
(
xi − s
h

)
r(s)ds− 1

n

n∑
j=1

(xi − xj)K ′
(
xi − xj
h

)
r(xj)

∣∣∣∣∣ ≤ cst

n
,
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and then by (36) and (37),

|∆′1(h)| ≤ cst

nh3
.

Consequently, for any i = 1, · · · , n,

u(xi)
∂IE(r̂(xi))

∂h
= hu(xi)r

′′(xi)

∫ 1

−1
y2K(y)dy +O(h2 +

1

nh3
).

The proof of (29) is complete. Let us now prove (30), (31) and (32). Inequality (30) is true

since

sup
h∈Hn

|u(xi)
∂B(xi, h)

∂h
| = sup

h∈Hn
|u(xi)

∂IE(r̂(xi))

∂h
| ≤ cst n−1/5.

We have already proved that, for any 1 ≤ i ≤ n, (see (28)),

u(xi)B(xi, h)

=
h2

2
u(xi)r

′′(xi)

∫
y2K(y)dy + ∆1(h)u(xi) + u(xi)

∫ 1

−1
∆2(h, y)K(y)dy,

with,

|∆′′1(h)| ≤ cst

nh4
, |∆(3)

1 (h)| ≤ cst

nh5
, |∆′′2(h, y)| ≤ cst, |∆(3)

2 (h, y)| ≤ cst.

Consequently, for any h, h′ ∈ Hn, skipping the details,

u(xi)|B′′(xi, h)−B′′(xi, h′)| ≤ cst|h− h′|
u(xi)|B′′(xi, h)| ≤ cst.

The proof of Lemma 10 is complete.

B Central limit theorem for some triangular arrays of a

quadratic form of a stationary MDS

Recall that K − G is an even function, [−1, 1]-supported, that the window hn is a positive

sequence satisfying

lim
n→∞

hn = 0, lim
n→∞

nhn =∞.

Define, for i = 1, · · · , n, xi = i
n

and, for a positive constant CK depending only on K,

ai,n(hn) = CK
hn
n
r′′(xi)u(xi),

bi,j(hn) =
1

n2h2n
(K −G)(

xi − xj
hn

),

b̃i,j = bi,j(hn)(u(xi) + u(xj)).

35



Let (εi)i≥0 be a centered sequence of stationary MD random variables with finite second moment

σ2. The purpose of this section is to prove, letting

Yi,n(hn) = ai,n(hn)εi +
i−1∑
j=1

b̃i,jεiεj, (38)

that
1

sn

n∑
i=1

(Yi,n(hn)− IE(Yi,n(hn)) ,

converges in distribution to a normal law, with s2n = Var(
∑n

i=1 Yi,n(hn)).

For this, we first control Var(
∑n

i=1 Yi,n(hn)). In all the proofs of this Appendix we denote

by cst a generic constant independent of n and hn and that may be different from line to line.

B.1 Control of the variance

Proposition 6. Suppose that r is of class C2 on [0, 1]. Let (εi)i≥0 be a stationary sequence of

centered MD random variables with finite fourth moment. Suppose that there exists a positive

decreasing function Φ defined on IR+ satisfying

∞∑
s=1

s2Φ(s) <∞,

and for any 1 ≤ i1 ≤ i2 < i3 ≤ i4 ≤ i5 ≤ n such that i3 − i2 ≥ max(i2 − i1, i4 − i3, i5 − i4)

|Cov(εi1εi2 , εi3εi4)| ≤ Φ(i3 − i2),
|Cov(εi2 , εi3εi4εi5)| ≤ Φ(i3 − i2).

Then

Var

(
n∑
i=1

Yi,n(hn)

)
=
h2nσ

2

n
C2
K

∫
u2(x)r′′2(x)dx+

4σ4

n2h3n

∫ 1

0

u2(x)dx

∫ 1

0

(K −G)2(u)du

+o(
1

n2h3n
+
h2n
n

).
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Proof of Proposition 6. We have,

Var(
n∑
i=1

Yi,n(hn)) =
n∑

i1=1

n∑
i2=1

Cov(Yi1,n(hn), Yi2,n(hn))

=
n∑

i1=1

n∑
i2=1

ai1(hn)ai2(hn)Cov(εi1 , εi2) +
n∑

i1=1

n∑
i2=1

ai1(hn)

i2−1∑
j2=1

b̃i2,j2Cov(εi1 , εi2εj2)

+
n∑

i1=1

n∑
i2=1

ai2(hn)

i1−1∑
j1=1

b̃i1,j1Cov(εi2 , εi1εj1)

+
n∑

i1=1

n∑
i2=1

i1−1∑
j1=1

i2−1∑
j2=1

b̃i1,j1 b̃i2,j2Cov(εi1εj1 , εi2εj2) =: I + II + III + IV.

Control of I. Clearly, since Cov(εi1 , εi2) = 0 for i1 6= i2,

I =
n∑

i1=1

n∑
i2=1

ai1(hn)ai2(hn)Cov(εi1 , εi2) =
n∑

i1=1

a2i1(hn)σ2. (39)

We have,

n∑
i1=1

a2i1(hn) = C2
K

h2n
n2

n∑
i1=1

r′′2(xi)u
2(xi),

and since

lim
n→∞

1

n

n∑
i1=1

r′′2(xi)u
2(xi) =

∫ 1

0

r′′2(x)u2(x)dx

we deduce that
n∑

i1=1

a2i1(hn)σ2 = σ2C2
K

h2n
n

∫ 1

0

r′′2(x)u2(x)dx+ o(
h2n
n

). (40)

Combining (39) and (40), it yields that

I = σ2C2
K

h2n
n

∫ 1

0

u2(x)r′′2(x)dx+ o(
h2n
n

).

Control of II and III. We only concentrate on II (the control of III is similar). We need the

following bound, (recall that j2 < i2 and that Cov(εi1 , εj2εi2) = IE(εi1εj2εi2) = Cov(εi1εj2 , εi2) =

Cov(εj2 , εi1εi2)),

|Cov(εi1 , εi2εj2)| ≤ Φ(j2 − i1)1Ii1<j2<i21Ii2−j2≤j2−i1 + Φ(i2 − j2)1Ii1<j2<i21Ii2−j2>j2−i1
+Φ(i1 − i2)1Ij2<i2<i11Ii1−i2>i2−j2 + Φ(i2 − j2)1Ij2<i2<i11Ii1−i2≤i2−j2
+Φ(i1 − j2)1Ij2<i1<i21Ii1−j2>i2−i1 + Φ(i2 − i1)1Ij2<i1<i21Ii1−j2≤i2−i1 .
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Thanks to the previous bound, we decompose the sum in II into six sums according to whether

i1 < j2 < i2 or i2 − j2 ≤ j2 − i1, · · · j2 < i1 < i2 or i1 − j2 ≤ i2 − i1. We only need

to control one sum among the six, since the calculations are similar. We have (recall that

|b̃i,j| ≤ 2‖u‖∞‖K −G‖∞/n2h2n),

n∑
i1=1

n∑
i2=1

ai1(hn)

i2−1∑
j2=1

b̃i2,j2|Cov(εi1 , εi2εj2)|1Ii1<j2<i21Ii2−j2≤j2−i1

≤ cst
1

n2h2n

n∑
i1=1

|ai1(hn)|
n∑

i2=1

i2−1∑
j2=1

Φ(j2 − i1)1Ii1<j2<i21Ii2−j2≤j2−i1

≤ cst
1

n2h2n

n∑
i1=1

|ai1(hn)|
n∑

j2=i1

2j2−i1∑
i2=j2+1

Φ(j2 − i1)1Ii1<j2<i21Ii2−j2≤j2−i1

≤ cst
1

n2h2n

n∑
i1=1

|ai1(hn)|
n−i1∑
s=1

j2+s∑
i2=j2+1

Φ(s)1Ii2−j2≤s

≤ cst
1

n2h2n

n∑
i1=1

|ai1(hn)|
∞∑
s=1

sΦ(s),

which is of order O( 1
n2hn

) since
∑n

i1=1 |ai1(hn)| = O(hn) and
∑∞

s=1 sΦ(s) <∞. With the same

way, we prove that

II + III = O(
1

n2hn
) = o(

1

n2h3n
).

Control of IV. Recall that

IV =
n∑

i1=1

n∑
i2=1

i1−1∑
j1=1

i2−1∑
j2=1

b̃i1,j1 b̃i2,j2Cov(εi1εj1 , εi2εj2).

We decompose the sums in IV according to the following cases:

(a) sums over j1 < i1 and (i1, j1) = (i2, j2),

(b) sums over j1 < i1 ≤ j2 < i2 (or j2 < i2 ≤ j1 < i1)

(c) sums over j1 ≤ j2 ≤ i1 ≤ i2, (i1, j1) 6= (i2, j2), j1 < i1 and j2 < i2

(c’) sums over j2 ≤ j1 ≤ i2 ≤ i1, (i1, j1) 6= (i2, j2), j1 < i1 and j2 < i2

(d) sums over j1 ≤ j2 < i2 ≤ i1 and (i1, j1) 6= (i2, j2)

(d’) j2 ≤ j1 < i1 ≤ i2 and (i1, j1) 6= (i2, j2)
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We denote by Sa, Sb, Sc, Sc′ , Sd, Sd′ the sums corresponding to these items, so that

IV = Sa + Sb + Sc + Sc′ + Sd + Sd′ . (41)

Then our purpose is to control each of those sums Sa, Sb, Sc, Sc′ , Sd and Sd′ .

Control of Sa. We get, using the fact that Var(εi1εj1) = σ4 + Cov(ε2i1 , ε
2
j1

) − Cov2(εi1 , εj1) =

σ4 + Cov(ε2i1 , ε
2
j1

), for i1 6= j1,

Sa =
n∑

i1=1

i1−1∑
j1=1

b̃2i1,j1Var(εi1εj1)

=
n∑

i1=1

i1−1∑
j1=1

b̃2i1,j1σ
4 +

n∑
i1=1

i1−1∑
j1=1

b̃2i1,j1Cov(ε2i1 , ε
2
j1

).

This term is controlled as in the i.i.d. case, see Härdle, W., Hall, P. and Marron, J. S. (1988)

and Girard, D. (1998), nevertheless, we give the calculations details for the sake of clarity,

n∑
i1=1

i1−1∑
j1=1

b̃2i1,j1

=
1

n4h4n

n∑
i=1

i−1∑
j=1

(u(xi) + u(xj))
2

(
K(

xi − xj
hn

)−G(
xi − xj
hn

)

)2

. (42)

Clearly,

1

n2hn

n∑
i=1

i−1∑
j=1

(u(i/n) + u(j/n))2
(
K(

xi − xj
hn

)−G(
xi − xj
hn

)

)2

=
1

n2hn

n−1∑
s=1

n∑
i=s+1

(u(i/n) + u(
i− s
n

))2
(
K(

s

nhn
)−G(

s

nhn
)

)2

=
4

n2hn

n−1∑
s=1

n∑
i=1

u2(
i

n
)

(
K(

s

nhn
)−G(

s

nhn
)

)2

+O

(
1

n2hn

n−1∑
s=1

s

(
K(

s

nhn
)−G(

s

nhn
)

)2
)
, (43)

the last bound is obtained by noticing that∣∣∣∣∣
n∑

i=s+1

(u(i/n) + u(
i− s
n

))2 − 4
n∑
i=1

u2(
i

n
)

∣∣∣∣∣ ≤ cst s.

Now, we have using (25) (recall that K −G is [−1, 1]-supported and that [nhn] ≤ n− 1)

1

n2hn

n−1∑
s=1

s

(
K(

s

nhn
)−G(

s

nhn
)

)2

=
nhn
n2hn

nhn∑
s=1

s

nhn

(
K(

s

nhn
)−G(

s

nhn
)

)2

= O(hn). (44)
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We have, again due to (25),

1

n2hn

n−1∑
s=1

n∑
i=1

u2(
i

n
) (K −G)2 (

s

nhn
) =

∫ 1

0

u2(x)dx

∫ 1

0

(K −G)2(y)dy + o(1). (45)

Collecting (42), (43), (44) and (45), we deduce that

n∑
i1=1

i1−1∑
j1=1

b̃2i1,j1 =
4

n2h3n

∫ 1

0

u2(x)dx

∫ 1

0

(K −G)2(u)du+ o(
1

n2h3n
). (46)

Our purpose now is to prove that,

n∑
i1=1

i1−1∑
j1=1

b̃2i1,j1Cov(ε2i1 , ε
2
j1

) = o(
1

n2h3n
), (47)

so that,

Sa =
4σ4

n2h3n

∫ 1

0

u2(x)dx

∫ 1

0

(K −G)2(u)du+ o(
1

n2h3n
). (48)

We know that |Cov(ε2i1 , ε
2
j1

)| ≤ cstΦ(i1 − j1). We get, arguing as before,

n∑
i1=1

i1−1∑
j1=1

b̃2i1,j1|Cov(ε2i1 , ε
2
j1

)|

≤ cst
n∑

i1=1

i1−1∑
j1=1

b2i1,j1(hn)Φ(i1 − j1)

≤ cst

n4h4n

[nhn]∑
s=1

(n− s)
(
K(

s

nhn
)−G(

s

nhn
)

)2

Φ(s)

≤ cst

n3h4n

∞∑
s=1

Φ(s) = o(
1

n2h3n
).

This proves (47) and then (48) holds.

Control of Sb. We now consider the sums over j1 < i1 ≤ j2 < i2 (the case j2 < i2 ≤ j1 < i1 is

exactly the same). We discuss the following subcases. If i2 − j2 ≥ max(i1 − j1, j2 − i1), then

|Cov(εi1εj1 , εi2εj2)|
= |Cov(εj1εi1εj2 , εi2)− Cov(εi1 , εj1)Cov(εi2 , εj2)|
= |Cov(εj1εi1εj2 , εi2)| ≤ Φ(i2 − j2).

If j1 < i1 ≤ j2 < i2 and i1 − j1 ≥ max(i2 − j2, j2 − i1), then

|Cov(εi1εj1 , εi2εj2)| ≤ Φ(i1 − j1).
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If j1 < i1 ≤ j2 < i2 and j2 − i1 ≥ max(i2 − j2, i1 − j1), then

|Cov(εi1εj1 , εi2εj2)| ≤ Φ(j2 − i1).

The sum
∑

j1<i1≤j2<i2 b̃i1,j1 b̃i2,j2|Cov(εi1εj1 , εi2εj2)| is then decomposed into three sums according

to whether i2 − j2 ≥ max(i1 − j1, j2 − i1), i1 − j1 ≥ max(i2 − j2, j2 − i1) or j2 − i1 ≥ max(i2 −
j2, i1−j1). We only discuss one sum among these three sums (since the calculations are similar).

We have, ∑
j1<i1≤j2<i2

b̃i1,j1 b̃i2,j2|Cov(εi1εj1 , εi2εj2)|1Ii2−j2≥max(i1−j1,j2−i1)

≤ cst

n4h4n

∑
j1<i1≤j2<i2

1Ii2−j2≥max(i1−j1,j2−i1)Φ(i2 − j2)

≤ cst

n4h4n

n−1∑
j1=1

n∑
i1=j1+1

n−1∑
j2=i1

n∑
i2=j2+1

1Ii2−j2≥max(i1−j1,j2−i1)Φ(i2 − j2)

≤ cst

n4h4n

n−1∑
j1=1

n−j1∑
l=1

n−1∑
j2=l+j1

n−j2∑
s=1

1Is≥max(l,j2−j1−l)Φ(s)

≤ cst

n3h4n

∞∑
s=1

s2Φ(s) = o(
1

n2h3n
).

From this, we deduce that

Sb = o(
1

n2h3n
). (49)

Control of Sc. We now discuss the sums over (i1, j1) 6= (i2, j2), j1 < i1, j2 < i2 and j1 ≤ j2 ≤
i1 ≤ i2. We write,

Cov(εi1εj1 , εi2εj2) = IE(εj1εj2εi1εi2)− Cov(εi1 , εj1)Cov(εi2 , εj2)

= IE(εj1εj2εi1εi2).

We discuss the following subcases.

• j1 ≤ j2 ≤ i1 ≤ i2, j2 − j1 ≥ max(i1 − j2, i2 − i1). In this case

|IE(εj1εj2εi1εi2)| ≤ Φ(j2 − j1)
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so that |Cov(εi1εj1 , εi2εj2)| ≤ Φ(j2 − j1). We have,∑
j1≤j2<i1≤i2

b̃i1,j1 b̃i2,j21Ij2−j1≥max(i1−j2,i2−i1)|Cov(εi1εj1 , εi2εj2)|

≤ cst

n4h4n

∑
j1≤j2<i1≤i2

1Ij2−j1≥max(i1−j2,i2−i1)Φ(j2 − j1)

≤ cst

n4h4n

n−1∑
j1=1

n−1∑
j2=j1

n−1∑
i1=j2

n∑
i2=i1

1Ij2−j1≥max(i1−j2,i2−i1)Φ(j2 − j1)

≤ cst

n4h4n

n−1∑
j1=1

n−j1∑
s=1

s+j2∑
i1=j2

s+i1∑
i2=i1

1Is≥max(i1−j2,i2−i1)Φ(s)

≤ cst

n3h4n

∞∑
s=1

s2Φ(s) = o(
1

n2h3n
). (50)

• j1 ≤ j2 ≤ i1 ≤ i2, i2 − i1 ≥ max(j2 − j1, i1 − j2). Then

|IE(εj1εj2εi1εi2)| ≤ Φ(i2 − i1) Cov(εj1 , εi1)Cov(εj2 , εi2) = 0,

and then

|Cov(εi1εj1 , εi2εj2)| ≤ Φ(i2 − i1).

We prove, noting that in this case i2 − i1 ≥ i1−j1
2

and i1 − 2(i2 − i1) ≤ j1 ≤ i1,∑
j1≤j2≤i1≤i2

b̃i1,j1 b̃i2,j21Ii2−i1≥max(j2−j1,i1−j2)|Cov(εi1εj1 , εi2εj2)|

≤ cst
∑

j1≤j2<i1≤i2

bi1,j1(hn)bi2,j2(hn)1Ii2−i1≥max(j2−j1,i1−j2)Φ(i2 − i1)

≤ cst

n4h4n

n∑
i1=1

n∑
i2=i1

i1∑
j1=i1−2(i2−i1)

j1+(i2−i1)∑
j2=j1

Φ(i2 − i1)

≤ cst

n3h4n

∞∑
s=1

s2Φ(s) = o(
1

n2h3n
). (51)

• j1 ≤ j2 ≤ i1 ≤ i2, i1 − j2 ≥ max(j2 − j1, i2 − i1), (i1, j1) 6= (i2, j2), j1 < i1, j2 < i2. We

write,

Cov(εi1εj1 , εi2εj2) = IE(εj1εj2εi1εi2)− Cov(εi1 , εj1)Cov(εi2 , εj2)

= Cov(εj1εj2 , εi1εi2) + Cov(εj1 , εj2)Cov(εi1 , εi2).

We have,

|Cov(εj1εj2 , εi1εi2)| ≤ Φ(i1 − j2).
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We get, arguing as before,∑
j1≤j2≤i1≤i2

b̃i1,j1 b̃i2,j21Ii1−j2≥max(j2−j1,i2−i1)Φ(i1 − j2) = o(
1

n2h3n
)

so that, (noting by
∑∗

j1≤j2≤i1≤i2 the sum over j1 ≤ j2 ≤ i1 ≤ i2, (i1, j1) 6= (i2, j2),

j1 < i1, j2 < i2)

∗∑
j1≤j2≤i1≤i2

b̃i1,j1 b̃i2,j21Ii1−j2≥max(j2−j1,i2−i1)Cov(εi1εj1 , εi2εj2) (52)

=
∗∑

j1≤j2≤i1≤i2

b̃i1,j1 b̃i2,j21Ii1−j2≥max(j2−j1,i2−i1)Cov(εj1 , εj2)Cov(εi1 , εi2) + o(
1

n2h3n
)

= 0 + o(
1

n2h3n
), by definition of the sum

∗∑
j1≤j2≤i1≤i2

.

We deduce, collecting all the bounds (50), (51) and (52)

Sc = o(
1

n2h3n
).

Control of S ′c. We now discuss the sums over (i1, j1) 6= (i2, j2), j1 < i1, j2 < i2 and j2 ≤ j1 ≤
i2 ≤ i1. As for the control of Sc, we prove that

S ′c = o(
1

n2h3n
). (53)

Control of Sd. We now control the item (d), i.e, the sums over j1 ≤ j2 < i2 ≤ i1 (i1, j1) 6= (i2, j2).

Here again, we discuss the following subcases,

• If i1 − i2 ≥ max(i2 − j2, j2 − j1) then |IE(εj1εj2εi2εi1)| ≤ Φ(i1 − i2), so that

|Cov(εi1εj1 , εi2εj2)| ≤ Φ(i1 − i2).

We have, ∑
j1≤j2<i2≤i1

b̃i1,j1 b̃i2,j21Ii1−i2≥max(i2−j2,j2−j1)|Cov(εi1εj1 , εi2εj2)|

≤ cst

n4h4n

n∑
j1=1

n∑
j2=j1

n∑
i2=j2

n∑
i1=i2

Φ(i1 − i2)1Ii1−i2≥max(i2−j2,j2−j1)

≤ cst

n4h4n
cst

n∑
j1=1

n∑
j2=j1

n∑
i2=j2

n−i2∑
s=0

Φ(s)1Is≥max(i2−j2,j2−j1)

≤ cst

n3h4n
cst

∞∑
s=1

s2Φ(s) = o(
1

n2h3n
).

43



• If j2 − j1 ≥ max(i1 − i2, i2 − j2) then |IE(εj1εj2εi2εi1)| ≤ Φ(j2 − j1)
and Cov(εi1 , εj1)Cov(εi2 , εj2) = 0, so that

|Cov(εi1εj1 , εi2εj2)| ≤ Φ(j2 − j1).

As before, ∑
j1≤j2<i2≤i1

b̃i1,j1 b̃i2,j21Ij2−j1≥max(i1−i2,i2−j2)|Cov(εi1εj1 , εi2εj2)|

≤ cst

n4h4n

n∑
j1=1

n∑
j2=j1

n∑
i2=j2

n∑
i1=i2

Φ(j2 − j1)1Ij2−j1≥max(i1−i2,i2−j2)

≤ cst

n3h4n

∞∑
s=1

s2Φ(s) = o(
1

n2h3n
).

• If i2 − j2 ≥ max(i1 − i2, j2 − j1) then |Cov(εj1εj2 , εi2εi1)| ≤ Φ(i2 − j2)
and Cov(εi1 , εj1)Cov(εi2 , εj2) = 0. Write,

Cov(εi1εj1 , εi2εj2) = IE(εi1εj1εi2εj2)

= Cov(εj1εj2 , εi2εi1) + Cov(εj1 , εj2)Cov(εi2 , εi1).

We have, as before,∑
j1≤j2<i2≤i1

b̃i1,j1 b̃i2,j21Ii2−j2≥max(i1−i2,j2−j1)Φ(i2 − j2) = o(
1

n2h3n
),

and thus ∑
j1≤j2<i2≤i1

b̃i1,j1 b̃i2,j21Ii2−j2≥max(i1−i2,j2−j1)Cov(εi1εj1 , εi2εj2)

=
∑

j1≤j2<i2≤i1

b̃i1,j1 b̃i2,j21Ii2−j2≥max(i1−i2,j2−j1)IE(εj1εj2)IE(εi2εi1)1I(i1,j1)6=(i2,j2)

+o(
1

n2h3n
) = o(

1

n2h3n
).

Collecting all the previous inequalities, we deduce that

Sd = o(
1

n2h3n
).

Control of S ′d. We now control the item (d’), i.e, the sums over j2 ≤ j1 < i1 ≤ i2 (i1, j1) 6=
(i2, j2). As for the control of Sd, we obtain

S ′d = o(
1

n2h3n
).
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Since IV = Sa + Sb + Sc + S ′c + Sd + S ′d, we deduce that

IV =
4σ4

n2h3n

∫ 1

0

u2(x)dx

∫ 1

0

(K −G)2(u)du+ o(
1

n2h3n
).

The proof of Proposition 6 is complete by collecting the terms I, II, III, IV .

B.2 Central limit theorem

The following proposition proves a central limit theorem for the partial sum of (Yin(hn))1≤i≤n,

as defined in (38).

Proposition 7. Let (εi)i≥0 be a stationary sequence of centered martingale difference random

variables relative to the filtration Fi = σ(ε1, · · · , εi) such that IE(ε81) < ∞. Moreover, suppose

that there exists a positive decreasing function Φ defined on IR+ satisfying

∞∑
s=1

s4Φ(s) <∞,

and for any positive integer q ≤ 6, 1 ≤ i1 ≤ · · · ≤ ik < ik+1 ≤ · · · ≤ iq ≤ n such that

ik+1 − ik ≥ max1≤l≤k(il+1 − il)

|Cov(εi1 · · · εik , εik+1
· · · εiq)| ≤ Φ(ik+1 − ik).

Let Yi,n(hn) be defined as in (38) with hn = cn−1/5. Then

n7/10

n∑
i=1

Yi,n(hn) =⇒ N (0, V ),

where =⇒ denotes the convergence in distribution when n tends to infinity and the variance V

is defined by,

V = c2C2
Kσ

2

∫ 1

0

u2(x)r′′2(x)dx+
4

c3
σ4

∫ 1

0

u2(x)dx

∫ 1

0

(K −G)2(u)du,

with σ2 = IE(ε21).

Proof of Proposition 7.

Since (εi)i≥0 is a stationary sequence of centered martingale-difference relative to the filtration

Fi = σ(ε1, · · · , εi) then the sequence (Yi,n(hn))1≤i≤n (defined in (38)) is also a martingale-

difference relative to the filtration Fi, in fact Yi,n(hn) is Fi-measurable and

IE(Yi,n(hn)|Fi−1) = ai,n(hn)IE(εi|Fi−1) +
i−1∑
j=1

b̃i,jεjIE(εi|Fi−1) = 0.
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For a martingale-difference sequence (Yi,n), the central limit theorem (CLT, in short) for
1
sn

∑n
i=1 Yi,n, with s2n = Var (

∑n
i=1 Yi,n), follows by using the following result due to McLeish,

D. L. (1974).

Theorem 2. Let (Yi,n)i≥0 be a martingale-difference series relative to the filtration Fi. If the

following conditions hold,

(T1) max1≤i≤n
|Yi,n|
sn

is uniformly bounded in L2-norm,

(T2) limn→∞max1≤i≤n
|Yi,n|
sn

= 0 in probability,

(T3) limn→∞
1
s2n

∑n
i=1 Y

2
i,n = 1 in probability,

then 1
sn

∑n
i=1 Yi,n converges in distribution to the standard normal law.

Proposition 7 is then proved if Conditions (T1), (T2) and (T3) are satisfied by the sequence

Yi,n(hn) =: Yi,n as defined in (38). These Conditions (T1), (T2) and (T3) follow immediately

from the following Lemmas 12 and 13.

Lemma 12. We have, for any ε > 0,

lim
n→∞

n∑
i=1

IE

(
Y 2
i,n

s2n
1I |Yi,n|

sn
≥ε

)
= 0.

Conditions (T1) and (T2) are then satisfied.

Proof of Lemma 12. We have, for any δ > 0 and ε > 0,

n∑
i=1

IE

(
Y 2
i,n

s2n
1I |Yi,n|

sn
≥ε

)
≤ 1

εδs2+δn

n∑
i=1

IE
(
|Yi,n|2+δ

)
≤ n

εδs2+δn

max
1≤i≤n

IE
(
|Yi,n|2+δ

)
.

Now we use the inequality (a+ b)2+δ ≤ 21+δ(a2+δ + b2+δ) for any a, b ≥ 0 together with Hölder’s

inequality with conjugate integers p, q ≥ 2 for which IE
(
|ε1|(2+δ)q

)
<∞. We get,

IE(|Yi,n|2+δ) ≤ 21+δa2+δi,n (hn)IE(|εi|2+δ) + 21+δIE

|εi|2+δ
∣∣∣∣∣
i−1∑
j=1

b̃i,jεj

∣∣∣∣∣
2+δ


≤ 21+δa2+δi,n (hn)IE(|εi|2+δ) + 21+δ
[
IE
(
|εi|(2+δ)q

)]1/q IE

∣∣∣∣∣
i−1∑
j=1

b̃i,jεj

∣∣∣∣∣
(2+δ)p

1/p

.

Corollary 1 of the Appendix C (recall that |b̃i,j| ≤ cst 1
n2h2n

1I|i−j|≤nhn) givesIE

∣∣∣∣∣
i−1∑
j=1

b̃i,jεj

∣∣∣∣∣
(2+δ)p

1/p

≤ cst

(
i−1∑
j=1

b̃2i,j

)(2+δ)/2

≤ cst

(
nhn
n4h4n

)(2+δ)/2

.
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Hence,

IE(|Yi,n|2+δ) ≤ cst(
hn
n

)2+δ + cst

(
nhn
n4h4n

)(2+δ)/2

and,

n∑
i=1

IE

(
Y 2
i,n

s2n
1I |Yi,n|

sn
≥ε

)
≤ cst

n

s2+δn

(
hn
n

)2+δ + cst
n

s2+δn

(
nhn
n4h4n

)(2+δ)/2

Finally, (recall that, by Proposition 6 limn→∞ s
2
n
n
h2n

= cst and that nh5n = c)

n∑
i=1

IE

(
Y 2
i,n

s2n
1I |Yi,n|

sn
≥ε

)
= O(

1

nδ/2
).

Hence limn→∞
∑n

i=1 IE

(
Y 2
i,n

s2n
1I |Yi,n|

sn
≥ε

)
= 0. This ensures, using some elementary calculations,

that (T1) and (T2) hold.

Lemma 13. Let (εi)i≥0 be a stationary sequence of martingale-difference relative to the filtration

Fi. Suppose that all the requirements of Proposition 7 are satisfied. Recall that hn = cn−1/5.

Then 1
s2n

∑n
i=1 Y

2
i,n converges in probability to 1 as n tends to infinity.

Proof of Lemma 13. Define V 2
n =

∑n
i=1 Y

2
i,n. Our purpose is to prove that 1

s2n
V 2
n converges in

probability to 1 as n tends to infinity. Thanks to Markov’s inequality, it suffices to prove that

lim
n→∞

1

s4n
IE
[(
V 2
n − s2n

)2]
= 0.

Let An =
∑n

i=1 a
2
i,n(hn)σ2 +

∑n
i=1

∑i−1
j=1 b̃

2
i,jσ

4. We have, noting that by Proposition 6, (40) and

(46), s2n = An + o( 1
n2h3n

+ h2n
n

) = An + o(n−7/5), so that(
V 2
n − s2n

)2 ≤ 2
(
V 2
n − An

)2
+ 2

(
An − s2n

)2 ≤ 2
(
V 2
n − An

)2
+ o(n−14/5).

The last bound together with the fact that s2n ∼ cst ( 1
n2h3n

+ h2n
n

) ∼ cst (n−7/5) prove that

1

s4n
IE
[(
V 2
n − s2n

)2] ≤ A2
n

s4n

IE
[
(V 2

n − An)
2
]

A2
n

+ o(1).

From this and the fact that A2
n

s4n
= 1 + o(1), we deduce that, in order to prove Lemma 13, it

suffices to prove that

lim
n→∞

IE
[
(V 2

n − An)
2
]

A2
n

= 0. (54)
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Indeed, we have,

V 2
n =

n∑
i=1

Y 2
i,n =

n∑
i=1

(
ai,n(hn) +

i−1∑
j=1

b̃i,jεj

)2

ε2i

=
n∑
i=1

a2i,n(hn)ε2i +
n∑
i=1

(
i−1∑
j=1

b̃i,jεj

)2

ε2i + 2
n∑
i=1

ai,n(hn)
i−1∑
j=1

b̃i,jεjε
2
i

=
n∑
i=1

a2i,n(hn)ε2i +
n∑
i=1

i−1∑
j=1

b̃2i,jε
2
jε

2
i + 2

n∑
i=1

∑
1≤j1<j2≤i−1

b̃i,j1 b̃i,j2εj1εj2ε
2
i

+2
n∑
i=1

ai,n(hn)
i−1∑
j=1

b̃i,jεjε
2
i ,

and

V 2
n − An = V 2

n −
n∑
i=1

a2i,n(hn)σ2 −
n∑
i=1

i−1∑
j=1

b̃2i,jσ
4

=
n∑
i=1

a2i,n(hn)
(
ε2i − σ2

)
+

n∑
i=1

i−1∑
j=1

b̃2i,j
(
ε2jε

2
i − σ4

)
+2

n∑
i=1

∑
1≤j1<j2≤i−1

b̃i,j1 b̃i,j2εj1εj2ε
2
i + 2

n∑
i=1

ai,n(hn)
i−1∑
j=1

b̃i,jεjε
2
i .

Hence,

IE
[(
V 2
n − An

)2]
≤ 4IE

( n∑
i=1

a2i,n(hn)
(
ε2i − σ2

))2
+ 4IE

( n∑
i=1

i−1∑
j=1

b̃2i,j
(
ε2jε

2
i − σ4

))2


+16IE

( n∑
i=1

ai,n(hn)
i−1∑
j=1

b̃i,jεjε
2
i

)2
+ 16IE

( n∑
i=1

∑
1≤j1<j2≤i−1

b̃i,j1 b̃i,j2εj1εj2ε
2
i

)2


= I + II + III + IV. (55)
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Control of I.

IE

( n∑
i=1

a2i,n(hn)
(
ε2i − σ2

))2
 =

n∑
i=1

a4i,n(hn)IE
[(
ε2i − σ2

)2]
+2

∑
1≤i<j≤n

a2i,n(hn)a2j,n(hn)IE
[(
ε2i − σ2

) (
ε2j − σ2

)]
≤ cst

h4n
n4

nVar(ε21) + cst
h4n
n4
n sup

i

∞∑
j=1

∣∣Cov(ε2i , ε
2
j)
∣∣

= O(
h4n
n3

).

Consequently,

1

A2
n

IE

( n∑
i=1

a2i,n(hn)
(
ε2i − σ2

))2
 = O(n−1). (56)

Control of II.

IE

( n∑
i=1

i−1∑
j=1

b̃2i,j
(
ε2jε

2
i − σ4

))2


=
n∑

i1=1

i1−1∑
j1=1

n∑
i2=2

i2−1∑
j2=1

b̃2i1,j1 b̃
2
i2,j2

IE
[(
ε2j1ε

2
i1
− σ4

) (
ε2j2ε

2
i2
− σ4

)]
≤ 1

n8h8n

n∑
i1=1

i1−1∑
j1=1

n∑
i2=1

i2−1∑
j2=1

1I|i1−j1|≤nhn1I|i2−j2|≤nhn
∣∣IE [(ε2j1ε2i1 − σ4

) (
ε2j2ε

2
i2
− σ4

)]∣∣ .
We have to prove that

n∑
i1=1

i1−1∑
j1=1

n∑
i2=2

i2−1∑
j2=1

1I|i1−j1|≤nhn1I|i2−j2|≤nhn
∣∣IE [(ε2j1ε2i1 − σ4

) (
ε2j2ε

2
i2
− σ4

)]∣∣
= o(n6h12n ). (57)

We evaluate now the sums over i1 6= i2, j1 6= j2 (if (i1, j1) = (i2, j2) or i1 = i2, j1 6= j2 or

i1 6= i2, j1 = j2 then it is easy to check that the order o(n6h12n ) is obtained). We suppose also

without loss of generality, that j1 < i1 < j2 < i2. Write,

IE
[(
ε2j1ε

2
i1
− σ4

) (
ε2j2ε

2
i2
− σ4

)]
= IE(ε2j1ε

2
i1
ε2j2ε

2
i2

)− σ4
(
Cov(ε2j2 , ε

2
i2

) + σ4
)
− σ4

(
Cov(ε2j1 , ε

2
i1

) + σ4
)

+ σ8

= IE(ε2j1ε
2
i1
ε2j2ε

2
i2

)− σ8 − σ4Cov(ε2j2 , ε
2
i2

)− σ4Cov(ε2j1 , ε
2
i1

). (58)

49



We have,

n∑
i1=1

i1−1∑
j1=1

n∑
i2=1

i2−1∑
j2=1

1I|i1−j1|≤nhn1I|i2−j2|≤nhn|Cov(ε2j2 , ε
2
i2

)| (59)

≤
n∑

i1=1

i1−1∑
j1=1

n∑
i2=1

i2−1∑
j2=1

1I|i1−j1|≤nhn1I|i2−j2|≤nhnΦ(i2 − j2) ≤ n3hn

∞∑
r=1

Φ(r) = o(n6h12n ).

Now, since

IE(ε2j1ε
2
i1
ε2j2ε

2
i2

)− σ8

= Cov(ε2j1 , ε
2
i1
ε2j2ε

2
i2

) + σ2IE(ε2i1ε
2
j2
ε2i2)− σ

8

= Cov(ε2j1 , ε
2
i1
ε2j2ε

2
i2

) + σ2(Cov(ε2i1 , ε
2
j2
ε2i2) + σ2IE(ε2j2ε

2
i2

))− σ8

= Cov(ε2j1 , ε
2
i1
ε2j2ε

2
i2

) + σ2Cov(ε2i1 , ε
2
j2
ε2i2) + σ4Cov(ε2j2 , ε

2
i2

),

we obtain, ∣∣IE(ε2j1ε
2
i1
ε2j2ε

2
i2

)− σ8
∣∣ ≤ Φ(i1 − j1) + σ2Φ(j2 − i1) + σ4Φ(i2 − j2).

Consequently,

n∑
i1=2

i1−1∑
j1=1

n∑
j2: i1<j2

∑
i2: j2<i2

1I|i1−j1|≤nhn1I|i2−j2|≤nhn
∣∣IE(ε2j1ε

2
i1
ε2j2ε

2
i2

)− σ8
∣∣

≤
n∑

i1=2

i1−1∑
j1=1

n∑
i1<j2

∑
j2<i2

1I|i1−j1|≤nhn1I|i2−j2|≤nhn
(
Φ(i1 − j1) + σ2Φ(j2 − i1) + σ4Φ(i2 − j2)

)
≤ 3n3h

∞∑
r=1

Φ(r) = o(n6h12n ). (60)

Hence (57) is proved by collecting (58), (59) and (60). Consequently,

1

A2
n

IE

( n∑
i=1

i−1∑
j=1

b̃2i,j
(
ε2jε

2
i − σ4

))2
 = o (1) . (61)

Control of III. We have,

IE

( n∑
i=1

ai,n(hn)
i−1∑
j=1

b̃i,jεjε
2
i

)2


=
n∑

i1=1

i1−1∑
j1=1

n∑
i2=1

i2−1∑
j2=1

ai1,n(hn)ai2,n(hn)b̃i1,j1 b̃i2,j2IE
(
εj1ε

2
i1
εj2ε

2
i2

)
≤ cst

1

n6h2n

n∑
i1=1

i1−1∑
j1=1

n∑
i2=1

i2−1∑
j2=1

∣∣IE (εj1ε2i1εj2ε2i2)∣∣ 1I|i1−j1|≤nhn1I|i2−j2|≤nhn .
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It suffices to prove that

n∑
i1=2

i1−1∑
j1=1

n∑
i2=2

i2−1∑
j2=1

∣∣IE (εj1ε2i1εj2ε2i2)∣∣ 1I|i1−j1|≤nhn1I|i2−j2|≤nhn = o(
n2

h4n
), (62)

in order to obtain

1

A2
n

IE

( n∑
i=1

ai,n(hn)
i−1∑
j=1

b̃i,jεjε
2
i

)2
 = o(1). (63)

So we concentrate in proving (62). The sums when (i1, j1) = (i2, j2), i1 = i2, j1 6= j2, i1 6=
i2, j1 = j2 are respectively of order n2h, n3h2 and n3h2. So they are all of order o(n

2

h4n
) and we

have only to consider the case where the sum in (62) is taken over i1 6= i2 and j1 6= j2.

We only suppose that j1 < j2 < i2 < i1 (the other cases are similar). We write

IE
(
εj1ε

2
i1
εj2ε

2
i2

)
= IE

(
εj1εj2ε

2
i2
ε2i1
)
.

We have to discuss the subcases j2 − j1 ≥ max(i1 − i2, i2 − j2), i1 − i2 ≥ max(j2 − j1, i2 − j2)
or i2 − j2 ≥ max(i1 − i2, j2 − j1).

• if j2 − j1 ≥ max(i1 − i2, i2 − j2) then we write∣∣IE (εj1εj2ε2i2ε2i1)∣∣ =
∣∣Cov

(
εj1 , εj2ε

2
i2
ε2i1
)∣∣ ≤ Φ(j2 − j1).

Hence, ∑
j1<j2<i2<i1

∣∣IE (εj1ε2i1εj2ε2i2)∣∣ 1I|i1−j1|≤nhn1I|i2−j2|≤nhn1Ij2−j1≥max(i1−i2,i2−j2)

≤
∑

j1<j2<i2<i1

1I|i1−j1|≤nhn1I|i2−j2|≤nhn1Ij2−j1≥max(i1−i2,i2−j2)Φ(j2 − j1)

≤
n∑

j1=1

n∑
j2=j1+1

(j2 − j1)2Φ(j2 − j1) ≤ n
∞∑
r=1

r2Φ(r) = o(
n2

h4n
).

• if i1 − i2 ≥ max(j2 − j1, i2 − j2) and j2 − j1 ≥ i2 − j2 (the case i2 − j2 ≥ j2 − j1 is similar

noting that IE(εj1εj2) = 0) then we write∣∣IE (εj1εj2ε2i2ε2i1)∣∣ ≤ ∣∣Cov
(
εj1εj2ε

2
i2
, ε2i1
)∣∣+ σ2|Cov(εj1 , εj2ε

2
i2

)|
≤ Φ(i1 − i2) + σ2Φ(j2 − j1) ≤ cstΦ(j2 − j1).

Hence, ∑
j1<j2<i2<i1

∣∣IE (εj1ε2i1εj2ε2i2)∣∣ 1I|i1−j1|≤nhn1I|i2−j2|≤nhn1Ii1−i2≥max(j2−j1,i2−j2)1Ij2−j1≥i2−j2

≤ cst
∑

j1<j2<i2<i1

Φ(j2 − j1)1I|i1−j1|≤nhn1I|i2−j2|≤nhn1Ii1−i2≥max(j2−j1,i2−j2)1Ij2−j1≥i2−j2

≤ cst n2h sup
j1

∑
j2>j1

(j2 − j1)Φ(j2 − j1) ≤ cst n2h
∞∑
r=1

rΦ(r) = o(
n2

h4n
).
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• if i2 − j2 ≥ max(i1 − i2, j2 − j1) then we write (since IE(εj1εj2) = 0)∣∣IE (εj1εj2ε2i2ε2i1)∣∣ =
∣∣Cov

(
εj1εj2 , ε

2
i2
ε2i1
)∣∣ ≤ Φ(i2 − j2),

and ∑
j1<j2<i2<i1

∣∣IE (εj1ε2i1εj2ε2i2)∣∣ 1I|i1−j1|≤nhn1I|i2−j2|≤nhn1Ii2−j2≥max(i1−i2,j2−j1)

≤
∑

j1<j2<i2<i1

Φ(i2 − j2)1I|i1−j1|≤nhn1Ii2−j2≥max(i1−i2,j2−j1)

≤ n2h
∞∑
r=1

rΦ(r) = o(
n2

h4n
).

Collecting all the previous bounds, the proof of (62) is achieved.

Control of IV .

IV = IE

( n∑
i=1

∑
1≤j1<j2≤i−1

b̃i,j1 b̃i,j2εj1εj2ε
2
i

)2


=
n∑
i=1

∑
1≤j1<j2≤i−1

n∑
l=2

∑
1≤l1<l2≤l−1

b̃i,j1 b̃i,j2 b̃l,l1 b̃l,l2IE
(
εj1εj2ε

2
i εl1εl2ε

2
l

)
.

We have to prove (letting 1Ii,j1,j2,l,l1,l2 := 1I|i−j1|≤nhn1I|i−j2|≤nhn1I|l−l1|≤nhn1I|l−l2|≤nhn )

n∑
i=1

∑
1≤j1<j2≤i−1

n∑
l=2

∑
1≤l1<l2≤l−1

1Ii,j1,j2,l,l1,l2IE
(
εj1εj2ε

2
i εl1εl2ε

2
l

)
= o(n4h2n), (64)

so that

1

A2
n

IE

( n∑
i=1

∑
1≤j1<j2≤i−1

b̃i,j1 b̃i,j2εj1εj2ε
2
i

)2
 = o(1). (65)

To prove (64), we write, if all the index i, l, j1, j2, l1, l2 are different, (the other cases are similar)

IE
(
εj1εj2ε

2
i εl1εl2ε

2
l

)
= IE

(
εj1εj2(ε

2
i − σ2)εl1εl2(ε

2
l − σ2)

)
+ σ2IE

(
εj1εj2(ε

2
i − σ2)εl1εl2

)
+σ2IE

(
εj1εj2εl1εl2(ε

2
l − σ2)

)
+ σ4IE (εj1εj2εl1εl2) ,

so that IE (εj1εj2ε
2
i εl1εl2ε

2
l ) is written as a sum of expectations of products of centered random

variables, i.e, a sum of terms of the form IE(Yt1 × · · · × Ytq) where q ∈ {4, 5, 6}, {t1, · · · , tq} =

{i, l, j1, j2, l1, l2}, t1 < · · · < tq and (Yti)i is a centered sequence of random variables. In order
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to evaluate IE(Yt1 × · · · × Ytq), we use the classical techniques (used to get moment inequalities

for sums of even orders for example in Rio, E. (2017), see also Doukhan, P. and Louhichi, S.

(1999)). Letting k be such that tk+1 − tk = maxi(ti+1 − ti),

|IE(Yt1 × · · · × Ytq)|
≤ |Cov(Yt1 × · · · × Ytk , Ytk+1

· · · × Ytq)|+ |IE(Yt1 × · · · × Ytk)||IE(Ytk+1
· · · × Ytq)|

≤ Φ(tk+1 − tk) + |IE(Yt1 × · · · × Ytk)||IE(Ytk+1
· · · × Ytq)|

∑
1≤t1<···<tq≤m

Φ(tk+1 − tk) ≤ m

∞∑
r=1

rq−2Φ(r).

Hence ∑
1≤t1<···<tq≤m

|IE(Yt1 × · · · × Ytq)| ≤ m

∞∑
r=1

rq−2Φ(r)

+
m∑
tk=1

∑
(t1,··· ,tk−1) t1<···<tk−1<tk

|IE(Yt1 × · · · × Ytk)|
∑

tk+1<···<tq

|IE(Ytk+1
· · · × Ytq)|

and we can control |IE(Yt1×· · ·×Ytk)| and |IE(Ytk+1
· · ·×Ytq)| as it was done for |IE(Yt1×· · ·×Ytq)|.

We prove then (54) by collecting (55) together with (56), (61), (65) and (63). With this,

the proof of Lemma 13 is complete.

C Tools for martingale difference sequences

We recall the following Marcinkiewicz-Zygmund type inequality which is a simple consequence

of the Minkowski and the Burkholder inequalities (see Burkholder, D. L. (1988)).

Theorem 3. Let (ηi)i≥0 be a stationary sequence of martingale difference of finite pth moment

with p ≥ 2. Then there exists a positive constant cp such that for any positive integer n,∥∥∥∥∥
n∑
i=1

ηi

∥∥∥∥∥
2

p

≤ cp

n∑
i=1

‖ηi‖2p.

An immediate consequence of Theorem 3 is the following corollary.

Corollary 1. Let (ηi)i≥0 be a stationary sequence of martingale difference of finite pth moment

with p ≥ 2. Then there exists a positive constant cp such that for any positive integer n and for

any sequence of real numbers (di,n)1≤i≤n∥∥∥∥∥
n∑
i=1

di,nηi

∥∥∥∥∥
2

p

≤ cp

n∑
i=1

d2i,n.
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We also need the following propositions for which their proofs use Theorem 3 above.

Proposition 8. Let (ηi)i≥0 be a stationary sequence of martingale difference such that ‖ηi‖2p <
∞ for some p ≥ 2. Then, there exists a positive constant cp such that for any positive integer

n, and for any sequence of real numbers (bi,j,n)1≤i,j≤n,∥∥∥∥∥
n∑
i=1

i−1∑
j=1

bi,j,nηjηi

∥∥∥∥∥
2

p

≤ cp

n∑
i=1

i−1∑
j=1

b2i,j,n,

Proof of Proposition 8. Let Xi =
∑i−1

j=1 bi,j,nηjηi. The sequence (Xi)i is a martingale

difference relative to the filtration Fi = σ(ηj, 1 ≤ j ≤ i). We apply Theorem 3 to this sequence

(Xi)i, we obtain ∥∥∥∥∥
n∑
i=1

i−1∑
j=1

bi,j,nηjηi

∥∥∥∥∥
2

p

=

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
2

p

≤ cp

n∑
i=1

‖Xi‖2p = cp

n∑
i=1

∥∥∥∥∥ηi
i−1∑
j=1

bi,j,nηj

∥∥∥∥∥
2

p

≤ cp

n∑
i=1

‖ηi‖22p

∥∥∥∥∥
i−1∑
j=1

bi,j,nηj

∥∥∥∥∥
2

2p

by Hölder inequality

≤ cp

n∑
i=1

i−1∑
j=1

b2i,j,n by Corollary 1.

The following maximal limits, for weighed sums of martingale difference or weighted sums of

quadratic forms of martingale differences, are also very needed in the proofs. Their proofs need

some chaining arguments (as used for instance in Andrews, D. W. K. and Pollard, D. (1994),

Louhichi, S. (2000) or Pollard, D. (1990)).

Lemma 14. Let (ηi)i≥0 be a sequence of stationary martingale difference with ‖ηi‖p < ∞
for some p ≥ 2. Let (ci,n(h))i,n,h be a sequence of weights satisfying, for any h, h′ ∈ Hn =

[an−1/5, bn−1/5],

|ci,n(h)− ci,n(h′)| ≤ cst |h− h′|

and

max
i≤n

sup
h∈Hn

|ci,n(h)| ≤ cst n−α, α >
5p− 2

10(p− 1)
.

Then,

lim
n→∞

∥∥∥∥∥ sup
h∈Hn

∣∣∣∣∣
n∑
i=1

ci,n(h)ηi

∣∣∣∣∣
∥∥∥∥∥
p

= 0.
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Proof of Lemma 14. Define, for h ∈ Hn = [an−1/5, bn−1/5], Zn(h) =
∑n

i=1 ci,n(h)ηi. Clearly,

for any fixed k ∈ IN (to be chosen later)

Hn = [an−1/5, bn−1/5] = ∪2k−1p=0 Hn,k,p,

where

Hn,k,p = [(a+ p2−k(b− a))n−1/5, (a+ (p+ 1)2−k(b− a))n−1/5],

so that (Hn,k,p)p is a covering set of Hn, of 2k cardinality, such that for any h ∈ Hn there exists

p ∈ {0, · · · , 2k − 1} for which, letting hk,p = (a+ p2−k(b− a))n−1/5, one has,

|h− hk,p| ≤ n−1/52−k(b− a) =: ρn,k.

Define

Ik = {(a+ p2−k(b− a))n−1/5, p = 0, · · · , 2k − 1}.

Let h ∈ Hn be fixed. We define inductively, for m < k (to be chosen later), the sequence

hk ∈ Ik, · · ·hl ∈ Il, · · · , hm ∈ Im in such a way that |h− hk| ≤ n−1/52−k(b− a),

|hk − hk−1| ≤ n−1/52−(k−1)(b− a), · · · , |hl − hl−1| ≤ n−1/52−(l−1)(b− a).

We have,

|Zn(h)| ≤ |Zn(h)− Zn(hk)|+
k∑

l=m+1

|Zn(hl)− Zn(hl−1)|+ |Zn(hm)|.

Hence,

sup
h∈Hn

|Zn(h)|

≤ sup
h: |h−hk|≤ρn,k

|Zn(h)− Zn(hk)|+
k∑

l=m+1

max
hl∈Il
|Zn(hl)− Zn(hl−1)|+ max

h∈Im
|Zn(h)|

≤
n∑
i=1

sup
h: |h−hk|≤ρn,k

|ci,n(h)− ci,n(hk)||ηi|

+
k∑

l=m+1

max
hl∈Il
|Zn(hl)− Zn(hl−1)|+ max

h∈Im
|Zn(h)|, (66)

so that, taking the p-norm in the last inequality and using the requirements of Lemma 14

together with the inequality

‖max
i≤N
|Yi|‖p ≤ N1/p max

i≤N
‖Yi‖p, (67)
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we obtain

‖ sup
h∈Hn

|Zn(h)|‖p

≤ cst ρn,k

n∑
i=1

‖ηi‖p +
k∑

l=m+1

‖max
hl∈Il
|Zn(hl)− Zn(hl−1)|‖p + ‖max

h∈Im
|Zn(h)|‖p

≤ cst nρn,k +
k∑

l=m+1

|Il|1/p max
hl∈Il
‖Zn(hl)− Zn(hl−1)‖p + |Im|1/p max

h∈Im
‖|Zn(h)|‖p

The last bound, together with Corollary 1, give (recall that ρn,k = n−1/52−k(b− a)),

‖ sup
h∈Hn

|Zn(h)|‖p ≤ cst nρn,k + cst
k∑

l=m+1

|Il|1/p max
hl∈Il

(
n∑
i=1

|ci,n(hl)− ci,n(hl−1)|2
)1/2

+cst|Im|1/p max
h∈Im

(
n∑
i=1

|ci,n(h)|2
)1/2

≤ cst nρn,k + cst
k∑

l=m+1

2l/p
√
nρn,l−1 + 2m/p

√
nmax

i≤n
sup
h∈Hn

|ci,n(h)|

≤ cst n4/52−k + cst n3/10

∞∑
l=m+1

2l/p2−l + 2m/p
√
nmax

i≤n
sup
h∈Hn

|ci,n(h)|

≤ cst n4/52−k + cst n3/102−m(1−1/p) + 2m/p
√
nn−α.

Our task now is to choose m and k (m < k) in such a way that the last hand side of this

last inequality tends to 0 as n tends to infinity. This choice is possible, by taking for instance,

γ > β > 0, such that,

2m = nβ, with
3

10

p

p− 1
< β < (α− 1

2
)p,

2k = nγ, with, γ > max(4/5, (α− 1

2
)p).

Lemma 15. Let (εj)j be a sequence of random variables with finite fourth moment and such

that,

sup
i

∞∑
j=1

|Cov(ε2i , ε
2
j)| <∞.

Let for h ∈ Hn = [an−1/5, bn−1/5], (dj,n(h))1≤j≤n be a sequence of real numbers satisfying for

any 1 ≤ j ≤ n,

|dj,n(h)| ≤ cst

n
, and |dj,n(h)− dj,n(h′)| ≤ cst n−2/5|h− h′|.
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Then,

lim
n→∞

∥∥∥∥∥ sup
h∈Hn

∣∣∣∣∣
n∑
i=1

di,n(h)(ε2i − IE(ε2i ))

∣∣∣∣∣
∥∥∥∥∥
2

= 0.

Proof of Lemma 15. Let

Zn(h) =
n∑
i=1

di,n(h)(ε2i − IE(ε2i )).

Hence, for any h, h′ ∈ Hn,

Zn(h)− Zn(h′) =
n∑
i=1

(di,n(h)− di,n(h′))(ε2i − IE(ε2i ))

We have,

‖Zn(h)‖22 = Var(Zn(h)) =
n∑
i=1

n∑
j=1

di,n(h)dj,n(h)Cov(ε2i , ε
2
j)

≤ nmax
i
d2i,n sup

i

∞∑
j=1

|Cov(ε2i , ε
2
j)|.

Let hk be related to h as in the proof of Lemma 14. Then,

sup
h∈Hn

|Zn(h)| ≤ sup
h: |h−hk|≤ρn,k

|Zn(h)− Zn(hk)|+ max
h∈Ik
|Zn(h)|.

We take the 2-norm in the last inequality and we use some similar calculations as in the proof

of Lemma 14 and Inequality (67). We get for k to be chosen later,

‖ sup
h∈Hn

|Zn(h)|‖2 ≤ ‖ sup
h: |h−hk|≤ρn,k

|Zn(h)− Zn(hk)|‖2 + ‖max
h∈Ik
|Zn(h)|‖2

≤ cst nmax
j

sup
h: |h−hk|≤ρn,k

|dj,n(h)− dj,n(hk)|+ cst 2k/2
√
nmax

i
|di,n|

≤ cst

(
n3/5ρn,k +

2k/2√
n

)
≤ cst

(
n2/52−k +

2k/2√
n

)
,

which tends to 0 as n tends to infinity if we choose k such that 2k = nβ for 2/5 < β < 1.

Lemma 16. Let (ηi)i≥0 be a stationary sequence of martingale difference random variables with

finite moment of order 2p, for some p > 8. Suppose that, for any h, h′ ∈ Hn

|bi,j,n(h)| ≤ cst

n
1I|i−j|≤2nh, |bi,j,n(h)− bi,j,n(h′)| ≤ cst n−4/5|h− h′|1I|i−j|≤2nmax(h,h′).

Then,

lim
n→∞

∥∥∥∥∥ sup
h∈Hn

∣∣∣∣∣
n∑
i=1

i−1∑
j=1

bi,j,n(h)ηjηi

∣∣∣∣∣
∥∥∥∥∥
p

= 0.
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Proof of Lemma 16. Define Zn(h) =
∑n

i=1

∑i−1
j=1 bi,j,n(h)ηjηi.We have, using the requirements

of Lemma 16 together with Proposition 8,

‖Zn(h)‖p ≤ cst

(
n∑
i=1

i−1∑
j=1

b2i,j,n(h)

)1/2

≤ cst
√
h,

|Zn(h)− Zn(h′)| ≤ cst
n∑
i=1

i−1∑
j=1

|bi,j,n(h)− bi,j,n(h′)||ηiηj|.

We have, for p > 8, using the notations of the proof of Lemma 14,

‖ sup
h∈Hn

|Zn(h)|‖p

≤ ‖ sup
h: |h−hk|≤ρn,k

|Zn(h)− Zn(hk)|‖p + ‖max
h∈Ik
|Zn(h)|‖p

≤ ‖ sup
h: |h−hk|≤ρn,k

|Zn(h)− Zn(hk)|‖p + |Ik|1/p max
h∈Ik
‖|Zn(h)|‖p

≤
n∑
i=1

i−1∑
j=1

sup
h: |h−hk|≤ρn,k

|bi,j,n(h)− bi,j,n(hk)|‖ηjηi‖p + 2k/p max
h∈Ik
‖|Zn(h)|‖p

≤ cst 2−kn4/5 + cst 2k/pn−1/10.

Now, we choose k such that 2k = nβ with 4
5
< β < p

10
, so that

lim
n→∞

‖ sup
h∈Hn

|Zn(h)|‖p = 0.

Lemma 17. Let (ηi)i≥0 be a stationary sequence of martingale difference random variables with

finite moment of order 2p, for some p ≥ 1. Suppose that, for any h, h′ ∈ Hn

|bi,j,n(h)| ≤ cst

n9/10
1I|i−j|≤2nh, |bi,j,n(h)− bi,j,n(h′)| ≤ cst n−7/10|h− h′|1I|i−j|≤2nmax(h,h′).

Then,

lim sup
n→∞

∥∥∥∥∥ sup
h∈Hn

∣∣∣∣∣
n∑
i=1

i−1∑
j=1

bi,j,n(h)ηjηi

∣∣∣∣∣
∥∥∥∥∥
p

<∞.

Proof of Lemma 17. Define Zn(h) =
∑n

i=1

∑i−1
j=1 bi,j,n(h)ηjηi. Let m be fixed, we have, using
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(66), together with the notations of the proof of Lemma 14,∥∥∥∥ sup
h∈Hn

|Zn(h)|
∥∥∥∥
p

≤

∥∥∥∥∥ sup
h: |h−hk|≤ρn,k

|Zn(h)− Zn(hk)|

∥∥∥∥∥
p

+

∥∥∥∥∥
k∑

l=m+1

max
hl∈Il
|Zn(hl)− Zn(hl−1)|

∥∥∥∥∥
p

+

∥∥∥∥max
h∈Im
|Zn(h)|

∥∥∥∥
p

≤
n∑
i=1

i−1∑
j=1

sup
h: |h−hk|≤ρn,k

|bi,j,n(h)− bi,j,n(hk)|‖ηiηj‖p

+

∥∥∥∥∥
k∑

l=m+1

max
hl∈Il
|Zn(hl)− Zn(hl−1)|

∥∥∥∥∥
p

+

∥∥∥∥max
h∈Im
|Zn(h)|

∥∥∥∥
p

.

Now,

n∑
i=1

i−1∑
j=1

sup
h: |h−hk|≤ρn,k

|bi,j,n(h)− bi,j,n(hk)|‖ηiηj‖p

≤ cst
n∑
i=1

i−1∑
j=1

n−7/102−kn−1/51I|i−j|≤2n4/5 ≤ cstn1+4/5−7/10−1/52−k ≤ cst n9/102−k,

and ∥∥∥∥∥
k∑

l=m+1

max
hl∈Il
|Zn(hl)− Zn(hl−1)|

∥∥∥∥∥
p

≤
k∑

l=m+1

∥∥∥∥max
hl∈Il
|Zn(hl)− Zn(hl−1)|

∥∥∥∥
p

≤
k∑

l=m+1

2l/p max
hl∈Il
‖ |Zn(hl)− Zn(hl−1)| ‖p

≤
k∑

l=m+1

2l/p max
hl∈Il

(
n∑
i=1

i−1∑
j=1

|bi,j,n(hl)− bi,j,n(hl−1)|2
)1/2

≤
k∑

l=m+1

2l/pn−7/102−ln−1/5
√
n2n−1/5 ≤

k∑
l=m+1

2−l(1−1/p) ≤
∞∑

l=m+1

2−l(1−1/p) <∞.

Finally, ∥∥∥∥max
h∈Im
|Zn(h)|

∥∥∥∥
p

≤ 2m/p max
h∈Im
‖|Zn(h)||p ≤ 2m/p max

h∈Im

(
n∑
i=1

i−1∑
j=1

|bi,j,n(h)|2
)1/2

≤ 2m/pn−9/10
√
n2n−1/5 ≤ 2m/p.

Hence, ∥∥∥∥ sup
h∈Hn

|Zn(h)|
∥∥∥∥
p

≤ cst n9/102−k +
∞∑

l=m+1

2−l(1−1/p) + 2m/p.
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The right hand side of the last inequality is uniformly bounded over n if we choose a constant

m < k and 2k = nβ with 9/10 < β.
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