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Abstract

This paper proposes a new method of construction of compact fully-connected Quasi-Cyclic Low

Density Parity Check (QC-LDPC) code with girth g = 10 and g = 12. The originality of the proposed

method is to impose constraint on the exponent matrix P to reduce the search space drastically. For a

targeted expansion factor of N , the first step of the method is to sieve the integer ring ZN to make a

particular sub-group with specific properties to construct the second column of P (the first column being

filled with zeros). The remaining columns of P are determined recursively as multiples of the second

column thanks to an adaptation of the sequentially multiplied column (SMC) method where a controlled

greedy search is applied at each step. The codes constructed with the proposed semi-algebraic method

have lengths that can be significantly shorter than the best counterparts in the literature. To illustrate

the great potential of the SMC method, we give the explicit construction of a rate 0.75 irregular LDPC

code of size 65, 220 that allows a gain of 0.15 dB compared to the code of same rate and size 64,800

of the DVB-S2.

Index Terms

QC-LDPC Code Construction, Girth, Multiplicative Group, Cyclic Subgroup, Greedy Search Method.

I. INTRODUCTION

It has been more than two decades since the rediscovery of low-density parity-check (LDPC)

codes as a class of modern channel coding [1]. LDPC codes can work close to the Shannon ca-

pacity with a low complexity message passing decoding algorithm. Moreover, Quasi-cyclic (QC)
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LDPC code, a special class of LDPC codes, allows for efficient parallel hardware implementation

and has been adopted in many communication standards. A few examples are WIFI standard

[2], digital video broadcasting (DVB) standard [3], CCSDS standards [4], and more recently

the 5G standard [5]. The promising coding techniques for communication systems beyond 5G

are turbo codes, binary/nonbinary QC-LDPC codes [6], spatially coupled (SC) QC-LDPC codes

[7], and polar codes. Assuming any scenario or application, constructing QC-LDPC codes with

the smallest possible Tanner graph [8] of optimal cycle distribution free of short cycles has

been a challenging issue within the past two decades. It has been shown that QC-LDPC code

with a Tanner graph free of short cycles and free of some harmful combination of small cycles

(known as “trapping sets”) has better performance under iterative decoding algorithms. Many

research works have been dedicated to study and construct such code [9], [10], [11], [12], [13],

[14], [15], [16], [17], [18], [19], [20], [21], [22], [23]. One of the common methods to prevent

harmful structures in Tanner graph of the code is increasing girth of the code’s graph. In contrast

with removing special trapping sets, which results in local improvement of performance of the

code within specific SNR ranges, increasing the girth leads to a general improvement of the

performance given any SNR regime. One of the main constraints of constructing a QC-LDPC

code is keeping the length of the code as small as possible while preserving other good properties

of that code. Considering some fixed conditions such as specific girth of the code and degree

distribution of the exponent matrix, the QC-LDPC code with the shortest length can be more

desirable in some cases due to easy encoding/decoding implementation, less required storage

memory and low communication latency. In addition, it has recently been shown that by using

some spreading techniques, a class of SC-QC-LDPC convolutional (C) codes with very low

syndrome memory could be constructed based on QC-LDPC codes [21], [24], [25], [26], [27].

Specifically, [25] asserts that given fixed girth and degree distribution, the smaller the lifting

degree of QC-LDPC code, the smaller the size of the syndrome memory of SC-QC-LDPCC

code and thus the better performance of such code under windowed decoding. In this work we

avoid the issue of SC-QC-LDPCC code and will concentrate fully on constructing short length

QC-LDPC codes with girth g = 10, 12. However, we keep in mind SC-QC-LDPCC code is a

potential candidate for beyond 5G applications, and good QC-LDPC code is the basis of good

SC-QC-LDPC code.

QC-LDPC codes can be divided into two major classes: 1) random-like codes constructed

by means of computer search under efficient algorithms and 2) structured codes constructed
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based on algebraic tools [28]. These constructing methods all have deficiencies when considered

individually. Search-based methods (even heuristic or exhaustive ones) require high search com-

plexity but may find codes with shorter length than the ones obtained with algebraic methods.

Algebraic based methods, on the other hand, will explicitly determine the code (like array code

[28] of girth 6); however, so far algebraic methods are only known for the construction of small

girth code, not high girth code. In fact, defining algebraic properties that are perfectly matched

with high girth condition resulting in explicit construction of short length code is one of the main

shortcomings of algebraic methods. In this paper we try to combine these two methods in order to

construct large girth QC-LDPC code with short length in considerably lower search complexity.

We take the search-based sequentially multiplied column (SMC) construction method [26] as

our search algorithm and modifiy it by introducing an algebraic property for the second column

of the exponent matrix of the code. The second column with the asserted algebraic property

is found by an integer field sieve (IRS) method in a way that leads to search space reduction

eventually. As a result, a semi algebraic fast search-based method of constructing high girth

QC-LDPC code is proposed and many constructed codes of girth g = 10, 12 with different rates

and degrees are reported. To the best of the authors’ knowledge, all the constructed codes have

lengths shorter (by up to 35%) or equal (for a small prototype matrix with dv = 3 and dc ≤ 8)

to their counterparts in the literature. For dv = 3 and g = 10, the constructed codes have lengths

equal, or very close, to the lower bound [29]. The paper also proposes matrices for values of dv

and dc not yet reported in the literature. Moreover, an irregular QC-LDPC code of rate 0.75 and

length 65220 bits (whose exponent matrix is locally optimized with the help of the presented

SMC-structured codes) is constructed in Appdendix B. This is a counterpart code to DVB-S2

[30] code of rate 0.75 and length 64800 bits. Simulation results show the SMC-structured code

outperforms by a few tenths dBs compared with rate 0.75, length 64800 DVB-S2 code. This

further illustrates the usefulness of the presented high girth SMC-structured codes.

The rest of the paper is organized as follows: Section II presents the definitions and some earlier

results on SMC construction based QC-LDPC codes as well as some group and number theory

concepts, which will be used in later sections. Section III presents the building blocks of our

proposed IRS technique. Necessary mathematical arguments, relevant greedy search algorithm,

its extension for constructing the exponent matrices and the pertinent complexity analysis of

the algorithm are provided in this section. Numerical results as well as simulation results are

provided in Section IV. Finally, Section V concludes this paper.
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II. PRELIMINARIES

In this section, we review the construction of a family of LDPC matrices well suited for

hardware implementation called Quasi-Cyclic LDPC matrices. Then we discuss the conditions

that result in QC-LDPC codes with good topological properties. Finally, we will give some

notations and relations of group and number theories.

A. QC-LDPC block codes

Let us consider a fully-connected QC-LDPC block code in which the parity-check matrix is

an m × n array of N × N circulant permutation matrices (CPMs), I(pij), 0 ≤ i ≤ m − 1,

0 ≤ j ≤ n − 1, where N is the lifting degree of the code. I(pij) is obtained from the identity

matrix through a cyclic shift of its rows by pij positions, with 0 ≤ pij ≤ N − 1. The code

length is L = nN , the column degree (i.e., the number of non-zero elements in each column)

of the parity-check matrix is presented by m and the row degree (i.e., the number of non-zero

elements in each row) of the parity-check matrix is presented by n1. The m×n matrix P having

the integer values pij as its entries is referred to as the exponent matrix of the code. For such a

QC-LDPC block code, a necessary and sufficient condition for the existence of a cycle of length

2k in its Tanner graph is
k−1∑
i=0

(
pmini

− pmini+1

)
= 0 mod N, (1)

where nk = n0, mi 6= mi+1, ni 6= ni+1 [9].

To achieve a certain girth g, for given values of m and n, and for a fixed value of N , one has

to find a matrix P whose entries do not satisfy (1) for any value of k < g/2, and any possible

choice of the row and column indexes mi and ni. Starting from P, the Tanner graph of the code

can be easily obtained as it is unambiguously related to the values of pij .

We define a structural cycle in the Tanner graph of a CPM-based QC-LDPC block code as

a cycle for which
∑k−1

i=0

(
pmini

− pmini+1

)
= βN , β ∈ Z. Indeed, this sum could be unequal to

βN via altering pijs. In the face of a structural cycle, an inevitable cycle is defined as a cycle for

which
∑k−1

i=0

(
pmini

− pmini+1

)
= 0, regardless of what the values of pijs are. In [9] it is shown

that fully-connected CPM-based QC-LDPC codes always contain inevitable cycles of length 12,

and thus their girth cannot be larger than 12.

1In the case that QC-LDPC code is not fully-connected, m and n are often noted by dv and dc in the literature, respectively
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B. Code design via sequentially multiplied columns (SMC)

It is shown in [18] that the complexity of exhaustively checking equations of the type (1)

goes high by increasing each one of the parameters m and n. Solutions with reduced complexity

were proposed in [17] and [19], but the corresponding design methods result in girth g = 8. For

constructing short codes with higher girths (i.e., g = 10, 12), many methods are developed. To

the best of the authors’ knowledge, the results in [26] for QC-LDPC codes with girth g = 10, 12

found by applying SMC construction technique are the shortest ones in the literature. Let us

recall the basic assumptions of the design method proposed in [26]. The design of the parity-

check matrix of a QC-LDPC block code with lifting degree N starts from an exponent matrix

having the following form (SMC assumption)

PSMC
m×n =

[
~0 ~P1 γ2 ⊗ ~P1 γ3 ⊗ ~P1 . . . γn−1 ⊗ ~P1

]
, (2)

with m, n, ∈ N, m < n, and ~0 and ~P1 being column vectors with m entries in {0, · · · , N − 1}.

The vector ~0 is filled with all zero entries, while the entries of the vector ~P1 are chosen as follows:

the first entry is zero, the second entry is one and the other entries are chosen in {2, · · · , N−1}

in an increasing order. Then, the subsequent vectors have the form γj ⊗ ~P1 (j = 2, · · · , n− 1),

where ⊗ denotes multiplication modulo N of each term of ~P1 with γj , and are computed from ~P1

through sequential multiplications by the coefficients γj ∈ {2, · · · , N − 1} such that γj < γj+1.

We now restate Proposition 1 of [26].

Proposition 2.1: Let PSMC
m×n be the exponent matrix of a QC-LDPC block code C as defined in

(2). Suppose that the Tanner graph associated with the sub-matrix
[
~0 ~P1

]
contains no inevitable

cycles of lengths up to 10. Then, the Tanner graph of C has no inevitable cycle of length up to

10 for sufficiently large N and a proper choice of γjs.

Proof: See Proposition 1 in [26].

Example 2.2: Let m = 3 and n = 6. Suppose that PSMC
3×6 is the exponent matrix of a QC-LDPC

block code C, as defined in (2), such that ~P1 = (0, 1, 29)T . Considering (1), it is easy to check

that the Tanner graph associated to
[
~0 ~P1

]
contains no inevitable cycles of length up to 10.

Then, according to Proposition 2.1, the Tanner graph of C has no inevitable cycle of length up

to 10 for sufficiently large N and a proper choice of γjs. Choosing γ2 = 3, γ3 = 7, γ4 = 67,

and γ5 = 144 and N = 271, it is easily verified that C has girth g = 12. The code length is

L = 1626.
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Indeed, proposition 2.1 guarantees that exponent matrices of type PSMC
m×n can be avoided from

having inevitable cycles of length up to 10. In order to do that, the authors of [26] established a

recursive and greedy search algorithm (see algorithm 1 in [26]) to find a sufficiently large N with

a proper ordered set of non-zero γjs (j = 2, · · · , n− 1) named p1,js as well as a proper ordered

set of non-zero pi,1s (i = 1, · · · ,m− 1) that do not comply with the constraint (1). It means

that, with a given N , this search algorithm is supposed to find n − 2 (resp., m − 1) non-zero

and distinct elements to be placed in the second row (resp., column) of PSMC
m×n. These elements

vary from 1 to N −1, so in the worst case the overall possibilities are equal to
(
N−1
n−2

)(
N−1
m−1

)
. For

high rate and high girth codes, the lifting degree is much bigger than m and n (i.e., m,n� N ),

so the whole search space is of O
(
(N − 1)m+n−3). It has to be notified that if g ∈ {10, 12} is

our desired girth of the code, so, for each realization of the matrix PSMC
m×n, all the constraints of

type (1) with k < g/2 have to be checked.

C. Some relations in Group and Number theory

Definition 2.3 (Prime factorization): Factorizing an integer composite number into a product

of smaller integers is called integer factorization. If these integers are further restricted to prime

powers, the process is called prime factorization.

Definition 2.4 (Co-prime integers): Two integers a and b are said to be relatively prime or

co-prime if the only positive integer (factor) that divides both of them is 1. Consequently, no

prime number can concurrently divide both of them. This is also equivalent to saying the Greatest

Common Divisor (GCD) of a and b is 1. Standard notations for relatively prime integers a and

b are GCD (a, b) = 1 or (a, b) = 1.

If c ≥ 1 divides a and b, we write c | a and c | b. While c does not divide a (b) we write c6 | a

(c6 | b).

Definition 2.5 (Euler’s totient function): Let N be a positive integer with prime factorization

N = p1
e1 ∗ · · · ∗ pNeN (ei ≥ 0, i = 1, · · · , N ). Euler’s totient function counts the positive

integers up to N that are relatively prime to N , and it is written as ϕ(N) where, ϕ(N) =

N ∗ (1− 1/p1) ∗ ... ∗ (1− 1/pN).

Theorem 2.6 (Euler’s theorem): Suppose that N and a are co-prime positive integers. Then

aϕ(N) ≡ 1 (mod N).

Proof: See [31].
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Definition 2.7 (Ring of integers modulo N ): Ring of integers modulo N , which is written as

ZN (even as Z/NZ) is a set of numbers {0, 1, · · · , N − 1} closed under two binary operations

“+” and “∗”. Since any pair of elements in ZN are commutative under operation “+” (resp.,

“∗”), the group (ZN ,+) (resp., (ZN \ {0}, ∗)) is said to be Abelian.

It has to be understood that (ZN \ {0}, ∗) is not a group evermore, as it has to satisfy invertibility

condition. This condition, which certifies that every non-zero element of a group has to be in-

vertible, is a necessary condition of the group. Furthermore, if a, b ∈ ZN , then we conventionally

might use the notation ab to show a ∗ b when there is no ambiguity later.

Definition 2.8 (Multiplicative group modulo N ): Let N be a positive integer. The integers

co-prime (relatively prime) to N from the set {0, 1, . . . , N−1} of N non-negative integers form

a group under multiplication modulo N , called the multiplicative group of integers modulo N .

Another name for this group is group of units, and it is written as Z×N (even as (Z/NZ)×). Since

ϕ (N) counts the number of positive co-prime integers (less than N ), |Z×N | = ϕ (N).

Definition 2.9 (Cyclic group): A cyclic group G is a group that is generated by a single

non identity element of this group a under group operation. Every element of this group is

constructed by repeatedly applying the group operation to a or its inverse. If this group is finite

with r elements, it is displayed as 〈a〉 = {ai|i = 1, 2, · · · , r}.

Example 2.10 (Additive cyclic group): Let N be an arbitrary positive integer, G = (ZN ,+)

and a = 1. So every element of G is generated by using repetitive summation of a modulo N .

Example 2.11 (Multiplicative cyclic group): Let N1 = 11, N2 = 12, N3 = 14 and N4 = 17.

For each Ni (i = 1, 2, 3, 4) we construct the corresponding multiplicative group Z×Ni
, and from

Definition 2.8 we know that |Z×N1
| = 10, |Z×N2

| = 4, |Z×N3
| = 6 and |Z×N4

| = 16. One can easily

check that it is possible to generate all the elements in Z×Ni
(i = 1, 3, 4) just by taking a1 = 2

(resp., a3 = 2 and a4 = 3 are to be the generator element) and its repetitive multiplications

modulo N . However, for the case N2 = 12, there is no solo generator element for Z×N2
thus, it

is not cyclic.

Theorem 2.12: For any prime number p, Z×p is always cyclic and there is a so-called generator

a ∈ Z×p (named as primitive element of Z×p ) so that Z×p = {ai|i = 1, 2, · · · , p− 1}.

Proof: See [31].

Note that Theorem 2.12 is not valid for an arbitrary integer value N . As we can see from

Example 2.11, Z×12 is not cyclic but Z×14 is cyclic; however none of the integers 12 and 14 are

prime numbers.
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Definition 2.13 (Subgroup): Given a group G under a binary operation “∗”, a subset S of G is

called a subgroup of G if S also forms a group under the operation “∗”. This is usually denoted

by S ≤ G and read as “S is a subgroup of G”.

Definition 2.14 (Order of an element): Let G be a finite group under a binary operation “∗”,

|G| = n, a ∈ G, and e is the identity element of G. The smallest positive integer r (1 ≤ r ≤ n)

for which ar = e is called the order of a (or simply O (a)) where

r times

ar =
︷ ︸︸ ︷
a ∗ a ∗ · · · ∗ a .

(3)

Definition 2.15 (Order of a group): The order of a finite group G is equal to the number of

elements in G and is written as O (G).

If G = 〈a〉 is a cyclic group with generator a, then the order of G is equal to the order of its

generator, i.e., O(a) = O(〈a〉).

Theorem 2.16 (Lagrange’s theorem): For any finite group G, the order of every subgroup S

of G divides the order of G. Thus, GCD (O (S) ,O (G)) = O (S).

Proof: See [31].

Corollary 2.17: Let G be a finite group. For an arbitrary element a ∈ G, 〈a〉 = {ai|i =

1, 2, · · · ,O (a)} is a cyclic subgroup of G. In addition, GCD (O (〈a〉) ,O (G)) = O (〈a〉).

Proof: The result is a direct conclusion of Definition 2.9 and of Theorem 2.16.

Suppose that N (N > 1) is an integer number, a, b ∈ ZN and a 6= 0. In the upcoming sections,

it is needed to find the solution of equation ax = b, and under which circumstances b is dividable

by a. The next proposition determines this condition.

Proposition 2.18: Let N (N > 1) be an integer number, a, b ∈ ZN , and a 6= 0. Also let d

be equal to d = GCD (a,N). Equation ax ≡ b mod N has no solution if d 6 | b, and it has d

different solutions if d|b. In addition, let x0 be the only solution of the equation (a/d)x ≡ (b/d)

mod (N/d). So, d different solutions of the primary equation are xi = x0 + (i ∗ (N/d)) (i =

0, 1, · · · , d− 1).

Proof: See [31].

Example 2.19: Let N = 18, a = 14, and b = 12. So, d = GCD (14, 18) = 2 and d|b. In

this case, we solve the equation (14/2)x ≡ (12/2) mod (18/2), and x0 = 6 is the solution.

Since d = 2, the equation 14x ≡ 12 mod 18 has two different solutions: x0 = 6 and x1 =

6 + (1 ∗ (18/2)) = 15.
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In the next section, our method of sieving integer ring as well as a controlled greedy search

algorithm for implementing this method is fully explained.

III. INTEGER RING SIEVE TO FIND PERMISSIBLE ELEMENTS FOR THE VECTOR ~P1

This section is divided into four parts. In Part A, we propose our definition of equivalent

relations of type (1) (i.e., equivalent cycles) in an exponent matrix (Tanner graph) of a fully-

connected QC-LDPC code as well as give a theorem for counting all classes of cycles under this

equivalent relation, i.e., the number of nonequivalent cycles of length 2k (k = 2, 3, 4, 5) in this

matrix (graph). In Part B, several properties for selecting the second column of matrix PSMC
m×n (i.e.,

~P1) are suggested. Indeed, depending on the size of dv, we propose a specific property for the

elements in ~P1 in a way that we can reduce the number of “potential but nonequivalent” cycles

by a factor of 3 when dv = 3 and a factor of dv − 1 if dv > 3. In Part C, some arguments and

statistics in existence of proper sieve occurrences that can meet properties suggested in Part B

are provided. Our greedy search algorithm is explained in Part D with pseudo code. Complexity

analyses for highlighting the important role of our sieving method in reducing the search space

are also provided in this final part.

A. Counting nonequivalent relations of type (1) corresponding to nonequivalent potential cycles

of Tanner graph of a fully-connected QC-LDPC code

Definition 3.1 (Potential cycle): Let P, N , k and pmini
, pmini+1

∈ P (0 ≤ i ≤ k − 1) be the

parameters in relation (1). To address any set of 2k elements pmini
that meets the conditions

n0 = nk, mi 6= mi+1, and ni 6= ni+1, we consider its corresponding summation, name it as

potential cycle C2k of P, and display it as

C2k :
k−1∑
i=0

(
pmini

− pmini+1

)
. (4)

In fact, as long as the elements pijs are considered as symbolic within this summation and are

not assigned with some integers, we call this cycle potential. When all the elements within this

summation are assigned with integers and the summation is equal to zero modulo N , then C2k
is an activated cycle.

Simply, any activated cycle is considered a realization of a potential cycle. In other words, a

potential cycle C2k is a symbolic presentation of its corresponding activated cycle. So, if girth

of QC-LDPC code C is g it means 1) none of its potential cycles of length 2k (k < g/2) are
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Fig. 1. Nexus of different categorizing of cycles. (a1) and (b1) are diagrams to different classes of equivalent cycles of length

2k before assigning pij values. (a2) and (a3) are different realizations of (a1), and, (b2) and (b3) are different realizations of

(b1) after assigning pij values.

activated after assigning values to pijs and 2) there is no inevitable (potential or activated) cycle

of length 2k (k < g/2) in code C2.

Definition 3.2 (Equivalent cycles): Let C2k be a potential cycle defined in 3.1. Potential cycle

C ′2k with corresponding summation
∑k−1

i=0 (pm′in′i − pm′in′i+1
) is equivalent to the cycle C2k, if and

only if, n′0 = n′k, m′i 6= m′i+1, n′i 6= n′i+1,
⋃k−1

i=0 {(m′i, n′i), (m′i, n′i+1)} =
⋃k−1

i=0 {(mi, ni), (mi, ni+1)}

and |
∑k−1

i=0 (pm′in′i − pm′in′i+1
)| = |

∑k−1
i=0 (pmini

− pmini+1
)|. In other words, C ′2k is derived by

specifically reordering the terms of summation
∑k−1

i=0 (pmini
−pmini+1

) or by the additive inverse

of it.

Note that with our definition of equivalent cycles C2k and C ′2k, one can imagine that C2k is an

activated cycle if and only if C ′2k is. Moreover, equivalent cycles are involved in the same rows,

2Note that in this context an inevitable cycle could be considered both as potential and activated. In fact, before assigning

values to the elements of P an inevitable cycle is called Inevitable Potential Cycle (IPC) while it is called Inevitable Activated

Cycle (IAC) afterward.
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Fig. 2. Sample paths for cycles of length between 4 and 10 involved in exponent matrix P: a) exponent matrix of size m×n.

b) paths of length 4 equivalent cycles. c) paths of length 6 equivalent cycles. d) paths of length 8 equivalent cycles. e) path of

a length 8 cycle nonequivalent to (d). f) another path of a length 8 cycle nonequivalent to the paths (d) and (e). g) path of a

length 10 cycle.

the same columns, and even in the same elements of P.

To further address the nexus of our various categorizing of cycles, we consider a formal cycle

C2k in P with two scenarios: 1) P contains several nonequivalent classes of potential cycles of

length 2k where some of them are inevitable cycles and 2) P contains several nonequivalent

classes of potential cycles of length 2k with no inevitable cycle. (a1) and (b1) in Fig.1 depict a

diagram with 16 nonequivalent classes of potential cycles of length 2k respectively for scenario

1 and 2. In scenario 1, we see two classes of Equivalent Inevitable Potential Cycles (EIPC’s).

(a2) and (a3) in Fig.1 are two different realizations of (a1) related to two different assignments

of pijs. As can be seen, there are three types of equivalent classes in (a2) and (a3). The first one

is Equivalent Not-Activated Cycles (ENAC’s), second one is Equivalent Structurally Activated

Cycles (ESAC’s), and the last one is Equivalent Inevitably Activated Cycles (EIAC’s). (b2) and

(b3) in Fig.1 are also two different realizations of (b1) related to two different assignments of

pijs. As can be seen, there are no EIACs in these diagrams because there were no EIPCs in

(b1). In this work we follow scenario 2 and will try to find the optimal assignment in order to

keep all the potential cycles of length 2k (k = 2, 3, 4, 5) inactivated, as there is no inevitable
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cycle of length 2k (k = 2, 3, 4, 5) in the exponent matrix of a fully-connected QC-LDPC code.

The following example also further illustrates the perception of equivalent potential cycles.

Example 3.3: Suppose that P is the exponent matrix in Fig. 2 (a). Cycles C4, C6, and C8, which

are depicted with continuous arrows respectively in Fig. 2 (b), (c) and (d), are considered potential

cycles. Indeed, depending on the values of pij , which are taken from the set {0, 1, · · · , N −

1}, their corresponding summations may (or may not) be equal to zero modulo N . However,

regardless of the amount of their summation, each one of these cycles has some other equivalent

representation in matrix P. For instance, dash-dot arrows in Fig. 2 (b) and (c) respectively show

another equivalent representation (i.e. additive inverse) of C4 and C6. Also, the dash-dot arrows

in part (d) display a rearrangement of the summation corresponding to C8 and thus presents an

equivalent cycle of C8.

The definition of equivalent classes of cycles reduces the number of equations to be verified

in constructing QC-LDPC code of given girth, so it accelerates the search process. We will

argue this method further in the following sections when we try to explain our search algorithm.

However, before that we provide a definition and a theorem here to count nonequivalent potential

cycles of length less than or equal to 10 in an exponent matrix P of size m×n where m,n ≥ 2.

Definition 3.4 (Cycle’s tracking matrix of order 2k): Cycle’s tracking matrix of order 2k is

a square matrix of size k (k = 2, 3, · · · ) where its (i-j)th component counts the number of

non-equivalent potential cycles of length 2k that involve all rows and columns of a matrix of

size i× j. This matrix is written as T C2k .

It has to be noted that T C2k is symmetrical (i.e., T C2k =
(
T C2k

)T ) as the number of potential

cycles involved in a i × j matrix is equal to the number of such cycles involved in matrix of

size j × i.

Theorem 3.5: Let Pm×n be an exponent matrix of a fully-connected QC-LDPC code with

m ≥ 2 and n ≥ 2 and #Cm,n
2k be the number of nonequivalent potential cycles of length 2k

(k = 2, 3, 4, 5) involved in Pm×n. So

#Cm,n
2k =

min{k,m}∑
i=2

min{k,n}∑
j=2

tC2kij

(
m

i

)(
n

j

)
, (5)
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where tC2kij is the (i-j)th component of cycle’s tracking matrix T C2k (k = 2, 3, 4, 5) below

T C4 =

[
0 0

0 1

]
, T C6 =

0 0 0

0 0 0

0 0 6

 , T C8 =


0 0 0 0

0 1 3 3

0 3 18 36

0 3 36 72

 , T C10 =


0 0 0 0 0

0 0 0 0 0

0 0 60 180 180

0 0 180 900 1440

0 0 180 1440 1440


and

(
n
r

)
is equal to n!

r!(n−r)! when r ≤ n and 0 otherwise.

Proof: First we notice that based on relation (1) a potential cycle C2k of length 2k (k ≥ 2) is

involved in at most k rows as well as k columns of matrix Pm×n. Secondly, for constitution of a

cycle of length 2k, the minimum required number of columns (rows) of Pm×n is 2 when k is an

even number and 3 otherwise. So the term
(
m
i

)(
n
j

)
in relation (5) enumerates all the sub-matrices

of size i× j of a matrix of size m× n where 2 ≤ i ≤ min{k,m} and 2 ≤ j ≤ min{k, n}. For

each one of such sub-matrices, tC2kij counts the number of nonequivalent potential cycles that are

involved in a sub-matrix of size i × j. By computer programming it is possible to enumerate

all such cycles of length 2k (k = 2, 3, 4, 5) which occupy i rows and j columns. For example,

parts (d), (e), (f), and (g) of Fig. 2 are certain samples of potential cycles respectively of size 8,

8, 8, and 10 occupying all rows and columns of sub-matrices of dimension 2× 4, 2× 2, 3× 2,

and 3× 5. We used computer programming, and the derived results are summarized in tracking

matrices T C2k (k = 2, 3, 4, 5). In summary, relation (5) considers multiplicities of sub-matrices

of size i× j multiplied by nonequivalent potential cycles of length 2k that are involved in such

matrices.

Given that g is our desired girth of a code with exponent matrix P of size m × n, one

quick impression of Theorem 3.5 is the verification algorithm3 has to make sure that none of

the nonequivalent cycles of length 2k (k < g/2) is activated. Table I contains multiplicities

of such cycles for certain sizes of m, and n. For instance, if g = 12, m = 3 and n = 10,

then the verification algorithm is supposed to check #C3,104 + #C3,106 + #C3,108 + #C3,1010 =

135 + 720 + 12960 + 90360 = 104175 nonequivalent cycles of lengths 4 to 10 are not activated.

In addition, with some modifications we are still able to further reduce the number of these

3We recall that greedy search algorithm in [26] consists of two main parts: 1) picking proper elements from the set {1, · · · , N−

1} to be placed as components of sequential rows (columns) of P 2) verifying if every cycle of length less than g remains

potential for the assigned P or not. A proper selection (part (1)) along with a valid verification (part (2)) will terminate this

algorithm successfully.
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TABLE I

NUMBER OF NONEQUIVALENT POTENTIAL CYCLES OF SIZE 2k (k = 2, 3, 4, 5) WHICH ARE INVOLVED IN MATRIX Pm×n ,

WHEN, 2 ≤ m ≤ 5 AND 2 ≤ n ≤ 10.

− m=2 m=3 m=4 m=5

− #C2,n
4 #C2,n

6 #C2,n
8 #C2,n

10 #C3,n
4 #C3,n

6 #C3,n
8 #C3,n

10 #C4,n
4 #C4,n

6 #C4,n
8 #C4,n

10 #C5,n
4 #C5,n

6 #C5,n
8 #C5,n

10

n = 2 1 0 1 0 3 0 6 0 6 0 21 0 10 0 55 0

n = 3 3 0 6 0 9 6 45 60 18 24 189 420 30 60 555 1680

n = 4 6 0 21 0 18 24 189 420 36 96 864 3300 60 240 2640 14460

n = 5 10 0 55 0 30 60 555 1680 60 240 2640 14460 100 600 8200 65940

n = 6 15 0 120 0 45 120 1305 4980 90 480 6345 45660 150 1200 19875 212340

n = 7 21 0 231 0 63 210 2646 12180 126 840 13041116760 210 2100 41055 548940

n = 8 28 0 406 0 84 336 4830 26040 168 1344 24024257880 280 3360 75880 1220520

n = 9 36 0 666 0 108 504 8154 50400 216 2016 40824511560 360 5040 1292402431800

n = 10 45 0 1035 0 135 720 12960 90360 270 2880 65205934920 450 7200 2067754457880

nonequivalent cycles. To this end, a special class of exponent matrices with SMC assumption

and a predetermined column is considered in the following part.

B. Designing ~P1 using cyclic subgroups of multiplicative group Z×N

Let ~P1 be the second column of exponent matrix PSMC
m×n that is introduced in relation (2). In this

part we try to pick the non-zero elements of ~P1 from a specific cyclic subgroup of Z×N . Depending

on the value of dv (i.e., value of m), we consider a specific cyclic subgroup and then propose

allocating some or all of the elements in this subgroup to p1j (1 ≤ j ≤ m−1). The main reason

behind such allocation is reducing the number of nonequivalent potential cycles to some extent,

and thus accelerating our verification algorithm. We select our candidate subgroup in a way that

it can impose equivalent potential cycles to PSMC
m×n, as much as possible. These extra equivalent

cycles are some of those nonequivalent cycles that are enumerated in Theorem 3.5 in general,

but here they could be considered as equivalent due to the property of our selected subgroup.

Furthermore, by following this approach we have two other important properties. Firstly, by

forcing some counted nonequivalent cycles in Theorem 3.5 to be in pre-known equivalent classes,

we not only can reduce the search space, but also increase the chance of finding codes with an

assumed girth. Secondly, since our designation of ~P1 is done a priori and definite, the elements

in ~P1 would not be variables anymore. The search complexity is reduced to determining elements

γj (j = 2, 3, · · · , n− 1), only.
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We pass further discussions to the next sections and will focus on two specific lemmas. These

lemmas elucidate both the selecting of cyclic subgroups and the role of these subgroups in

reducing nonequivalent potential cycles.

Lemma 3.6: Suppose that PSMC
3×n is an exponent matrix of form (2) with lifting degree N and

~P1 = [0, 1, a]T is the second column of PSMC
3×n where a is a non-identity element in multiplicative

group Z×N with property a ∗ (1− a) = 1 and superscript “T ” stands for vector transpose. Thus,

O (〈a〉) = 6 and

#C3,n2k,a ≤
#C3,n2k

3

where #C3,n2k,a is the number of nonequivalent potential cycles of length 2k (k = 2, 3, 4, 5)

pertaining to PSMC
3×n with the second column ~P1, and #C3,n2k is introduced in Theorem 3.5 for the

general case of an exponent matrix P3×n with three rows.

Proof: To show that O (〈a〉) is 6 we need to show that O (a) = 6. To this end, we consider

the assumption a ∗ (1− a) = a − a2 = 1 and repeatedly apply the group operation to a as

follows:

a2 = a ∗ a = a− 1, a3 = a ∗ a2 = a2 − a = −1, a4 = a ∗ a3 = −a,

a5 = a ∗ a4 = 1− a, a6 = a ∗ a5 = a− a2 = 1.

To prove #C3,n2k,a ≤
#C3,n

2k

3
, we show that for any potential cycle C2k:

∑k−1
i=0 (pmini

− pmini+1
) in

matrix PSMC
3×n below 0 0 0 · · · 0

0 1 γ2 · · · γn

0 a aγ2 · · · aγn

 , (6)

there are at least two corresponding and avoidable cycles aC2k:
∑k−1

i=0

(
apmini

− apmini+1

)
and

(1− a) C2k:
∑k−1

i=0

(
(1− a) pmini

− (1− a) pmini+1

)
in this matrix that have the same length as

C2k but are located in different positions (with partly different elements) of PSMC
3×n compared with

C2k. Note that in Definition 3.2 it was emphasized that equivalent potential cycles will occupy

exactly the same elements, rows and columns of matrix P, so in the context of Definition 3.2,

potential cycles C2k, aC2k and (1− a)C2k are nonequivalent. However, as it will be shown later,

C2k is an activated cycle if and only if aC2k ((1− a) C2k) is activated. Thus, we consider them

as equivalent cycles. In other words, by verifying one, the other two will be verified. Before

continuing, we need to establish a fact regarding isomorphic exponent matrices.
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Fig. 3. Isomorphic forms of exponent matrix PSMC
3×n under transformation RP1 (− (aX −R3)): parts (a1) to (a5) clarify the

stepwise impact of transformation RP1 (− (aX −R3)) on both PSMC
3×n and the sample path of a potential cycle C6.

Let N ∈ N, a ∈ Z×N , and P1 (resp., P2) be an exponent matrix of code C1 (resp., C2) with

lifting degree N . It is shown [18] that P2 (or the equivalent Tanner graph of C2) is isomorphic

to P1 (Tanner graph of C1) if it is constructed by row (column) permutation of P1 and/or by

adding a constant to each row (column) of P1 and/or by multiplying a to P1. Given this fact

and considering GCD (a,N) = GCD (1− a,N) = 1, we have PSMC
3×n
∼= aPSMC

3×n
∼= (1− a)PSMC

3×n

where “∼=” stands for isomorphic relation. C2k is also an activated cycle (i.e., its summation is

equal to zero modulo N ) if and only if aC2k ((1−a)C2k) is activated. Now consider the cycle-path

C2k (k = 2, 3, 4, 5) in matrix PSMC
3×n (see Fig. 3 (a1) or Fig. 4 (a1) for a sample cycle of length

six). Additionally, consider the cycle-paths of aC2k and (1− a)C2k, respectively, in aPSMC
3×n and

(1−a)PSMC
3×n (see Fig. 3 (a2) or Fig. 4 (a2) for the cycle of length six). In the sequel, we attempt

to illustrate the cycle-path aC2k (resp., (1 − a)C2k) in matrix aPSMC
3×n (resp., (1 − a)PSMC

3×n ) has

an isomorphic form in matrix PSMC
3×n .
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Fig. 4. Isomorphic forms of exponent matrix PSMC
3×n under transformation RP2 (− ((1− a)X −R2)): parts (a1) to (a5) clarify

the stepwise impact of transformation RP2 (− ((1− a)X −R2)) on both PSMC
3×n and the sample path of a potential cycle C6.

Assume that matrices R2, R3, RP1 and RP2 are defined as follows:

R2 =

0 1 γ2 · · · γn

0 1 γ2 · · · γn

0 1 γ2 · · · γn

 , R3 =

0 a aγ2 · · · aγn

0 a aγ2 · · · aγn

0 a aγ2 · · · aγn

 , RP1 =

0 1 0

0 0 1

1 0 0

 , RP2 =

0 0 1

1 0 0

0 1 0

 ,
(7)

where Ri (i = 2, 3) is constructed from the ith row of matrix PSMC
3×n and RPi (i = 1, 2) is a

row permutation matrix to be applied on PSMC
3×n . So, matrix RP1

(
−
(
aPSMC

3×n −R3

))
, which is

constructed by applying linear transformations as well as row permutation matrix RP1 on aPSMC
3×n

(see Fig. 3 parts (a3) to (a5)), has a form exactly like matrix PSMC
3×n . Furthermore, the cycle aC2k

has a new path in the resulting matrix and, at the same time, is isomorphic to the cycle in

matrix aPSMC
3×n (Fig.3 part (a2)). Similarly, matrix RP2

(
−
(
(1− a)PSMC

3×n −R2

))
is constructed

by applying linear transformations as well as row permutation RP2 on (1− a)PSMC
3×n (see Fig. 4

parts (a3) to (a5)), and it has a form exactly like matrix PSMC
3×n , too. Also, the cycle (1− a)C2k

has a new path in the resulting matrix and, at the same time, is isomorphic to the cycle in

matrix (1 − a)PSMC
3×n (Fig.4 part (a2)). As the permutation matrices RP1 and RP2 will entirely

permute the rows of a matrix and, at the same time, are different from each other, so the new
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path of cycle aC2k (resp., (1− a)C2k) in the resulting matrix (i.e., matrix in part (a5)) would be

different from the path of cycle C2k (in matrix part (a1)) and different from (1 − a)C2k (resp.,

aC2k). To summarize, for an arbitrary potential cycle C2k, there are two other different potential

cycles aC2k and (1 − a)C2k with the same length as C2k, and the verification algorithm needs

to check only one of them. Since aC2k and (1− a)C2k have cycle-paths in PSMC
3×n different from

C2k, #C3,n2k,a ≤
#C3,n

2k

3
.

Fig. 5. Samples of isomorphic paths of cycles with different length in PSMC
3×9 : a) primary underlined paths for cycles C4, C6

and C8. a1) isomorphic paths for the considered primary paths in part (a) derived from transformation t1. a2) isomorphic paths

for the considered primary paths in part (a) derived from transformation t2.

Example 3.7: Suppose that PSMC
3×9 is the exponent matrix in Fig. 5 (a), and cycles C2k (k =

2, 3, 4) are the potential cycles with the path depicted in Fig. 5 (a). Following the procedure

described in the proof of Lemma 3.6, we can find at least two other isomorphic paths to the

cycle C2k named aC2k (Fig. 5 (a1)) and (1 − a)C2k (Fig. 5 (a2)). To this end, we consider the

transformations t1 (X) = RP1 (− (aX −R3)) and t2 (X) = RP2 (− ((1− a)X −R2)) where

parameter a, matrix RPi (i = 1, 2), and matrix Ri (i = 2, 3) were introduced in the proof of

Lemma 3.6. As it was explained in this lemma, t1
(
PSMC

3×9
)

= t2
(
PSMC

3×9
)

= PSMC
3×9 . However, the

path of cycle aC2k (resp., (1− a) C2k) in matrix aPSMC
3×9 (resp., (1− a)PSMC

3×9 ) is transformed to

a path in matrix PSMC
3×9 which is different from the path of cycle C2k in this matrix.

Lemma 3.8: Suppose that PSMC
4×n is an exponent matrix of form (2) with lifting degree N

and ~P1 = [0, 1, a, a2]
T is the second column of PSMC

4×n where a is a non-identity element in

multiplicative group Z×N with property a3 = 1. Thus

#C4,n2k,a ≤
#C4,n2k

3
,
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Fig. 6. Isomorphic forms of exponent matrix PSMC
4×n under transformation RP1 (aX): parts (a1) to (a3) clarify the stepwise

impact of transformation RP1 (aX) on both PSMC
4×n and the sample path of a potential cycle C6.

where #C4,n2k,a is the number of nonequivalent potential cycles of PSMC
4×n of length 2k (k = 2, 3, 4, 5)

and #C4,n2k is introduced in Theorem 3.5 for the general case of an exponent matrix P4×n with

four rows.

Proof: Before starting the proof, note that 〈a〉 is a cyclic subgroup of Z×N of order 3 as a

is not an identity element and a3 = 1.

As pointed out in the proof of Lemma 3.6, we ought to show that for any potential cycle

C2k:
∑k−1

i=0 (pmini
− pmini+1

) in matrix PSMC
4×n below

0 0 0 · · · 0

0 1 γ2 · · · γn

0 a aγ2 · · · aγn

0 a2 a2γ2 · · · a2γn

 , (8)

there are at least two corresponding and ignorable cycles aC2k:
∑k−1

i=0

(
apmini

− apmini+1

)
and

a2C2k:
∑k−1

i=0

(
a2pmini

− a2pmini+1

)
in this matrix which have the same length as C2k but are

located in different positions (with partly different elements) of PSMC
4×n compared with C2k. Similar

to the proof of Lemma 3.6, we recall that since a (resp., a2) is invertible, C2k is an activated cycle

if and only if aC2k (a2C2k) is activated. Thus, we consider C2k, aC2k, and a2C2k to be equivalent

cycles even though this characteristic is not compatible with the Definition 3.2. Now let N ∈ N,

a ∈ Z×N and P1 (resp., P2) be exponent matrix of code C1 (resp., C2) with lifting degree N . It is

shown [18] that P2 (or the equivalent Tanner graph of C2) is isomorphic to P1 (Tanner graph of
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Fig. 7. Isomorphic forms of exponent matrix PSMC
4×n under transformation RP2

(
a2X

)
: parts (a1) to (a3) clarify the stepwise

impact of transformation RP2

(
a2X

)
on both PSMC

4×n and the sample path of a potential cycle C6

C1) if it is constructed by row (column) permutation of P1 and/or by adding a constant to each

row (column) of P1 and/or by multiplying a to P1. Given this fact PSMC
4×n
∼= aPSMC

4×n
∼= a2PSMC

4×n .

Moreover, consider the cycle-path C2k (k = 2, 3, 4, 5) in matrix PSMC
4×n (see Fig. 6 (a1) or Fig. 7

(a1) for a sample cycle of length six). Additionally, consider the cycle-paths of aC2k and a2C2k
in aPSMC

4×n and a2PSMC
4×n (see Fig. 6 (a2) or Fig. 7 (a2) for the cycle of length six), respectively.

In the sequel, we attempt to illustrate the cycle-path aC2k (resp., a2C2k) in matrix aPSMC
4×n (resp.,

a2PSMC
4×n ) has an isomorphic form in matrix PSMC

4×n .

Assume that matrices RP1 and RP2 are defined as follows:

RP1 =


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

 , RP2 =


1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

 , (9)

where RPi (i = 1, 2) is a row permutation matrix to be applied on PSMC
4×n . So matrix RP1

(
aPSMC

4×n
)
,

which is constructed by applying row permutation matrix RP1 on aPSMC
4×n (see Fig. 6 parts (a2)

to (a3)), has a form exactly like matrix PSMC
4×n . Furthermore, the cycle aC2k has a new path in the

resulting matrix, and at the same time it is isomorphic to the cycle in matrix aPSMC
4×n (Fig.6 part

(a2)). Similarly, matrix RP2

(
a2PSMC

4×n
)
) is constructed by applying row permutation matrix RP2

on a2PSMC
4×n (see Fig. 7 parts (a2) to (a3)), and it has a form exactly like matrix PSMC

4×n , too. Also,

the cycle a2C2k has a new path in the resulting matrix, and at the same time it is isomorphic to
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the cycle in matrix a2PSMC
4×n (Fig.7 part (a2)). Permutation matrices RP1 and RP2 will entirely

permute the rows of matrices except the first row, which is intact. Since these permutations

are different from each other, the new path of cycle aC2k (resp., a2C2k) in the resulting matrix

(i.e., matrix in part (a3)) would be different from the path of cycle C2k (in matrix part (a1))

and different from a2C2k (resp., aC2k). To summarize, for an arbitrary potential cycle C2k there

are two other different potential cycles aC2k and a2C2k with the same length as C2k, and the

verification algorithm needs to check only one of them. Since aC2k and a2C2k have cycle-paths

in PSMC
4×n different from C2k, #C4,n2k,a ≤

#C4,n
2k

3
.

Fig. 8. Samples of isomorphic paths of cycles with different length in PSMC
4×9 : a) primary underlined paths for cycles C8 and

C10. a1) isomorphic paths for the considered primary paths in part (a) derived from transformation t1. a2) isomorphic paths for

the considered primary paths in part (a) derived from transformation t2.

Example 3.9: Suppose that PSMC
4×9 is the exponent matrix in Fig. 8 (a), and cycles C2k (k = 4, 5)

are the potential cycles with the path depicted in Fig. 8 (a). Following the procedure described

in the proof of Lemma 3.8, we can find at least two other isomorphic paths to the cycle C2k
named aC2k (Fig. 8 (a1)) and a2C2k (Fig. 8 (a2)). To this end, we consider the transformations

t1 (X) = RP1 (aX) and t2 (X) = RP2 (a2X) where parameter a and matrix RPi (i = 1, 2)

were introduced in the proof of Lemma 3.8. As was explained in this lemma, t1
(
PSMC

4×9
)

=

t2
(
PSMC

4×9
)

= PSMC
4×9 . However, path of cycle aC2k (resp., a2C2k) in matrix aPSMC

4×9 (resp., a2PSMC
4×9 )

is transformed to a path in matrix PSMC
4×9 , which is different from the path of cycle C2k in this

matrix.

Note that we have tried to intuitively reason lemmas 3.6 and 3.8 to make them easier to
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understand. However, an algebraic proof method to these lemmas is presented in Appendix A.

In addition, a general formulation of these lemmas is presented in the following theorem.

Theorem 3.10: Suppose that PSMC
m×n is an exponent matrix of form (2) with lifting degree N

and [0, 1, a, a2, · · · am−2]T is the second column of PSMC
m×n (m,n ≥ 3) where a is a non-identity

element in multiplicative group Z×N with property a ∗ (1− a) = 1 (resp., O (a) = m− 1) when

m = 3 (resp., m ≥ 4). Thus

#Cm,n
2k,a ≤

#Cm,n
2k

3
(resp., #Cm,n

2k,a ≤
#Cm,n

2k

m− 1
)

where m = 3 (resp., m ≥ 4), #Cm,n
2k,a is the number of nonequivalent potential cycles of PSMC

m×n

of length 2k (k = 2, 3, 4, 5) and #Cm,n
2k is from Theorem 3.5 for the general case of an exponent

matrix Pm×n with m rows.

Proof: For the cases m = 3 and m = 4 we refer them to the lemmas 3.6 and 3.8, respectively.

For the case m ≥ 5 the argument is exactly the same as the case m = 4. This means that

tailored to the order of non-identity element a ∈ Z×N and any potential cycle C2k ∈ Cm,n
2k (k =

2, 3, 4, 5), it must be shown that there are m − 2 other isomorphically equivalent cycles aiC2k
(i = 1, · · · ,m − 2) that all have the same length as the cycle C2k but with different paths in

matrix PSMC
m×n of form (2) that has [0, 1, a, a2, · · · am−2]T as its second column. To show this fact,

we consider below a row permutation matrix of size m

RPi =





1 0 0 0 · · · 0 0

0 0 0 0 · · · 0 1

0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...

...
...

...
. . .

...

0 0 0 0 · · · 1 0


m×m



i

, i = 1, 2, · · · ,m− 2 (10)

and apply it on the left side of matrix aiPSMC
m×n. Following the steps of the presented argument

in Lemma 3.8, this action will translate the potential cycle C2k to m−2 other isomorphic cycles

aiC2k that all have the same size as C2k but with completely different paths in PSMC
m×n.

Here it should be noted that using the constraint a (1− a) = 1 for the case m = 3 is more

efficient than using a2 = 1. This is because the former constraint will reduce the equivalent

cycles by a factor of 3 while the later constraint will reduce it by a factor of 2.
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C. IRS technique as an A priori step of greedy search algorithm

In Theorem 3.10 it was shown that by tailoring to the column degree dv = m of exponent

matrix PSMC
m×n, there might exist a proper cyclic subgroup 〈a〉 of multiplicative group Z×N from

which we can pick non-zero components of ~P1. Specifically, this theorem asserts that ~P1 =

[0, 1, a, a2, · · · am−2]T . The essence of Theorem 3.10 is determining ~P1 a priori in a way that 1)

the number of nonequivalent potential cycles is reduced by a certain factor and 2) the greedy

search algorithm does not need to search components of ~P1 anymore. Then, after determining

a suitable ~P1 that meets the condition of Theorem 3.10, the search algorithm will take the sub-

matrix
[
~0 ~P1

]
as a base and try to find proper values of γjs in order for PSMC

m×n to meet the

girth condition. Nevertheless, it has to be noted that Theorem 3.10 does not guarantee that sub-

matrix
[
~0 ~P1

]
meets the girth condition itself. So given the desired girth g = 2k (k = 5, 6), the

questions are “does every candidate ~P1 result in a sub-matrix
[
~0 ~P1

]
with desired girth g? If not,

what is the portion of Z×Ns (accordingly, what is the portion of Ns) holding at least one cyclic

subgroup 〈a〉 that meets the condition of Theorem 3.10, and at the same time
[
~0 ~P1

]
meets

the girth condition?” To answer the first question, we provide a proposition for the case dv = 3

and a counterexample for the case dv ≥ 4. To address the second question, some statistics are

provided.

Proposition 3.11: Suppose that N ∈ N, N ≥ 7 and ~P1 = [0, 1, a]T where, a is a non-identity

element of multiplicative group Z×N with property a ∗ (1− a) = 1. Then, QC-LDPC code with

exponent matrix
[
~0 ~P1

]
has girth equal to 12.

Proof: Based on Theorem 3.5, we recognize that
[
~0 ~P1

]
has no potential cycle of length 6

and 10, as it has only two columns. Furthermore, based on the results of Lemma 3.6, the number

of nonequivalent potential cycles of length 4 (resp., 8) that we need to check is #C3,24,a = 1 (resp.,

#C3,28,a = 2). The paths of nonequivalent potential cycles of length 4 and 8, which are involved

in the first two columns of exponent matrix P are depicted in parts (b), (e), and (f) of Fig. 2,

respectively. Given that p00 = p10 = p20 = p01 = 0, p11 = 1, and p21 = a, we have:

cycle C4 in part (b) : p00 − p01 + p11 − p10 = 1 6= 0 mod N,

cycle C8 in part (e) : 2 (p00 − p01 + p11 − p10) = 2 6= 0 mod N,

cycle C8 in part (f) : p00 − p01 + p11 − p10 + p20 − p21 + p11 − p10 = 2− a 6= 0 mod N.

Note that since a ∗ (1− a) = a − a2 = 1, a2 = a − 1. Considering that GCD (a,N) = 1, if

2− a = 0 mod N , then 2a = a2 mod N . Thus, 2a = a− 1 mod N . This means that a = −1
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mod N . But there is a contradiction as a = −1 mod N and at the same time a = 2 mod N .

In the following we bring a counterexample that shows every a value that meets the condition

adv−1 = 1 (dv ≥ 4) would not necessarily be a proper candidate for constructing the sub-matrix[
~0 ~P1

]
with girth 12.

Example 3.12: Let N1 = 41, N2 = 239, N3 = 639, N4 = 1443, and correspondingly consider

multiplicative groups Z×Ni
(i = 1, 2, 3, 4) where |Z×N1

| = 40, |Z×N2
| = 238, |Z×N3

| = 420, and

|Z×N4
| = 864. Conventionally suppose that an element a ∈ Z×N has property I when a∗(1− a) =

1, has property II when O (a) = 3, and has property III when O (a) = 4. So none of the

elements of Z×N1
holds properties I and II, while there are two elements a = 9, 32 in this group

that meet the property III. Nevertheless, neither a = 9 nor a = 32 are proper candidates for

constructing vector ~P1 = [0, 1, a, a2, a3]
T as they will result in matrix

[
~0 ~P1

]
with girth less

than or equal to 8. For the value N2, none of the elements of Z×N2
holds properties I to III.

For Z×N3
, there is no element with property I and III, but only two elements a = 214, 427 hold

the property II. However, neither a = 214 nor a = 427 are proper candidates for constructing

vector ~P1 = [0, 1, a, a2]
T as they will result in matrix

[
~0 ~P1

]
with girth less than or equal to 8.

Eventually, Z×N4
possesses four elements a = 101, 212, 1232, 1343 that have property I and all of

them are suitable choices for constructing ~P1 = [0, 1, a]. This is because, based on proposition

3.11, ~P1 = [0, 1, a] with property I always constitutes a two-column matrix with girth 12.

Moreover, Z×N4
has 8 elements a = 100, 211, 334, 445, 898, 1210, 1231, 1342 with property II,

and all of them are suitable candidates for constructing ~P1. Also, there are 24 elements in Z×N4

that have property III, and among them, 16 are good candidate for constructing ~P1, which are

a = 73, 142, 376, 512, 554, 593, 623, 746, 850, 857, 1067, 1178, 1301, 1331, 1370, 1412 .

TABLE II

RATIO OF PERMISSIBLE VALUES OF N BELONG TO THE SET {37, 38, · · · , 7400} AND THE AVERAGE NUMBER ā OF

PERMISSIBLE a’S PER PERMISSIBLE Z×N . PERMISSIBLE a IN Z×N IS THE VALUE FOR WHICH
[
~0|~P1

]
HAS GIRTH GREATER

THAN 8.

− a (1− a) = 1 a3 = 1 a4 = 1 a5 = 1

Ratio of permissible N ’s 13% 60% 51% 24%

ā’s per permissible N 2.72 3.63 8.46 5.75

Although Example 3.12 highlights there probably is not a general and explicit way for finding
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cyclic subgroups that are suitable for launching a greedy search algorithm, there still is a reliable

trend to ensure that suitable candidates of cyclic subgroups are available even with a large size.

To address this issue we bring some statistics in Table II and Fig. 9. The first row of Table

II indicates the property of each cyclic subgroup. The second row of this table contains the

proportion (or ratio) of those integer number Ns, which for that Z×N possesses at least one

suitable cyclic subgroup of indicated order. The variation range of N is between 37 and 7400,

which is high enough for our investigation and inference. As can be seen in Table II this ratio

is always greater than 10%. The third row of Table II accommodates the average number of

suitable candidates of value a that exist in each suitable multiplicative group Z×N . For instance,

if the ultimate goal is using SMC technique for constructing a fully-connected QC-LDPC code

with dv = 4 and girth at least 10, one can consider a fixed N ∈ N as a lifting degree and hope

that they have a 60% chance (for this specific N ) to find a proper cyclic subgroup of order

3 to make ~P1. In addition, for each N , Z×N possesses more than three a values (on average)

that we can make use to form vector ~P1 = [0, 1, a, a2]
T . Fig. 9 helps us to have a conception

of piecewise trends of existence cyclic subgroups while N is gradually increased. This figure

consists of four parts; each one displays a screenshot of size 10 of a 3-dimensional histogram.

These small histograms show the multiplicities of suitable a values (as z axis) of Z×N considering

N (as x axis). The notable thing is these screenshots are selected from different parts of the

general histogram. The results of this figure ensure that we have a chance to find a suitable cyclic

subgroup of Z×N even when N belongs to the small intervals who are picked from different parts

of the integer ring4.

Before concluding this part, there are three important relevant facts. First, Lagrange’s theorem

2.16 is a primary criterion to verify if Z×N has at least one cyclic subgroup of our desired order

or not. However, this theorem proposes a necessary but not sufficient condition. For example,

|Z×240| = ϕ (240) = 64 and GCD (8, 64) = 8, but Z×240 has no element of order greater than

4. So it is impossible to construct ~P1 = [0, 1, a, · · · , am−1]T when N = 240 and m = 8.

4The authors seize this opportunity to highlight another capability of IRS method which is beyond the scope of this paper

but could be considered as future work. Indeed, if N is a prime number and non-zero components of ~P1 constitute a cyclic

subgroup of Z×N , then the set of non-zero elements of ~Pj (j = 2, · · · , n − 1) is a co-set of this subgroup. In other words,

exponent matrix PSMC
m×n is made of a specific cyclic subgroup of multiplicative group Z×N and some of its co-sets. Investigation

of the relation between these co-sets and the girth of SMC constructing based QC-LDPC codes could be considered as future

studies.
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Fig. 9. 3-Dimensional histograms that pick z axis to show the abundance of “a” values with properties “a (1− a) = 1”,

“a3 = 1” and “a4 = 1” which are in Z×N , where, N ∈ {i + 37, i + 38, · · · , i + 46}(i = 0, 200, 600, 1400): a) screenshot of

size 10 when i = 0. b) screenshot of size 10 when i = 200. c) screenshot of size 10 when i = 600. d) screenshot of size 10

when i = 1400.

Second, checking for the existence of a proper N and, accordingly, the existence of a suitable

cyclic subgroup that results in ~P1 is not time-consuming. Given a fixed m, it will take few

milliseconds for MATLAB software to check if Z×N is a proper candidate or not. Third, the

following proposition, “the search algorithm will need to investigate only one permissible a per

each permissible cyclic subgroup of Z×N that meets the girth condition.” In other words, if there

is more than one generator for permissible cyclic subgroup S (S ≤ Z×N ), then it is sufficient to

check only one of them.

Proposition 3.13: Let N ≥ 6, a, b be two different elements of Z×N which satisfy the constraint

in Theorem 3.10 and 〈a〉 = 〈b〉 = S. The Tanner graph of constructed matrix PSMC
m×n with second

column [0, 1, a, · · · , am−2]T has the same girth as the Tanner graph of matrix PSMC
m×n with second

column [0, 1, b, · · · , bm−2]T .

Proof: It is shown [18] that if d ∈ Z×N then the Tanner graph of code with exponent matrix
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P is isomorphic to the Tanner graph of code with exponent matrix dP. Since a and b are in Z×N
so both of them are invertible and GCD (a,N) = GCD (b,N) = 1. Given this fact we consider

two cases:

Case I (dv = m = 3): In this case, a and b have the property a (1− a) = 1 = b (1− b) and

based on Lemma 3.6, O (〈a〉) = O (〈b〉) = 6. Since a necessary and sufficient condition for

non-identity element z = xy (〈x〉 = S, y ∈ N) to be a generator of S is GCD (y,O(S)) = 1,

it is easy to see that a and b = a5 are the only generators of S. If PSMC
3×n has [0, 1, a]T as

its second column, then a5PSMC
3×n preserves SMC property, and it has [0, a5, 1]

T as its second

column. Swapping the second and the third rows of a5PSMC
3×n also does not affect the girth but

gives [0, 1, a5]
T

= [0, 1, b]T as the second column.

Case II (dv = m ≥ 4): In this case a and b have the property am−1 = 1 = bm−1 and

O(S) = m − 1. So, as in case I, b has a form like b = ay where y ∈ N (1 ≤ y ≤ m −

2) and GCD (y,m− 1) = 1. If PSMC
m×n has [0, 1, a, · · · , am−1−y, am−1−y+1, · · · , am−2]T as its

second column, then ayPSMC
m×n has [0, ay, ay+1, · · · , 1, a, · · · , ay−1]T as its second column while

preserving the SMC constraint. Permuting the rows of ayPSMC
m×n does not affect the girth but gives[

0, 1, ay, a2y, · · · , a(m−2)y
]T

= [0, 1, b, b2, · · · , bm−2]T as the second column of ayPSMC
m×n.

In Summary, the search algorithm will test one permissible generator per each permissible

cyclic subgroup S to find exponent matrix PSMC
m×n of code with girth g (g = 10, 12). The final

point is there might be more than one permissible cyclic subgroup of Z×N that meet the conditions

in Theorem 3.10; however, not all of them would necessarily result in matrix PSMC
m×n with girth

g (g = 10, 12) for the given N . For example Z×301 has two distinct permissible cyclic subgroups

S1 = 〈80〉 and S2 = 〈136〉 of order 6 where their generators satisfy the property a (1− a) = 1

as well as the girth conditions. We will see in Section IV that search algorithm is able to

find exponent matrix PSMC
3×10 with second column [0, 1, 80]T for code with girth 10 while it is

impossible to find girth 10 code with exponent matrix PSMC
3×10 and second column [0, 1, 136]T .

D. Controlled greedy search algorithm

In this section, we present a new controlled greedy search algorithm that uses the SMC tech-

nique [26]. In the proposed algorithm, the complexity of the “verification” phase is considerably

reduced thanks to the considered IRS technique. Moreover, the behavior of the “assigning” phase

is optimized and controlled based on the available information at each step. In the following,

the proposed version of this algorithm along with a complementary explanation are presented.
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Algorithm 1 Controlled greedy search algorithm for m ≥ 3

Input: Parameters n, m, N of the code, targeted girth g, vector G of size n to control the

greedy search effort.

Output: Eventually, set of coefficients Γn of size n if success, empty set otherwise.

primary step

1: A = {2, 3, . . . , N − 1}, Γn = ∅, Γ1 = {0}

2: while A 6= ∅ and Γn = ∅ do

3: Extract an element a of A.

4: A = A \ {a}

5: if O(a) = m− 1 then

6: Set ~P1 = (0, 1, a, a2, . . . , am−2)
T

7: A = A \ {ak}k=2,...,m−2

8: S = Φg(Γ1, ~P1, N)

9: Γn = search (Γ1,S, N, n, ~P1, G)

search function

10: Γn = search (Γ,S, N, n, ~P1, G)

11: Γn = Γ

12: if |Γn| = n then Return Γn

13: else

14: for i = 1 to |S| do

15: s(i) = |S ∩ Φg(Γ ∪ S(i), ~P1, N)| (note: s is a vector).

16: I = sort index (s) (note: s(I(1)) ≥ s(I(2)) ≥ . . . ≥ s(I(|S|))).

17: for j = 1 to min (|S|, G(|Γ|)) do

18: if |Γn| = n then Return Γn

19: else

20: Γk = Γ ∪ {S(I(j))}

21: S = S \ {S(I(j))}

22: Sk = S ∩ Φg(Γk, ~P1, N)

23: if |Γk|+ |Sk| ≥ n then

24: Γn = search (Γk,Sk, N, n, ~P1, G)

25: else

26: Return ∅
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Let Γk = {0, 1, γ2, . . . , γk−1} be a set of size k of elements of Z×N . The property ρg(Γk, ~P1, N)

is true if and only if the exponent matrix
[
~0 ~P1 γ2 ⊗ ~P1 . . . γk−1 ⊗ ~P1

]
gives a matrix

with a girth greater than or equal to g when expanded by a factor of N . We call Φg(Γk, ~P1, N)

the ordered set of coefficients of ZN so that a vector Γk+1 of size k + 1 constructed by the

concatenation of Γk and any coefficient of Φg(Γk, ~P1, N) also gives an exponent matrix of girth

g. In a more formal way

β ∈ Φg(Γk, ~P1, N) ⇐⇒ ρg(Γk ∪ {β}, ~P1, N) is true. (11)

The search of a solution of degree (m,n) for a given expansion factor N is done in two steps.

The first step consists of the enumeration of a single element per class of the a values verifying

the condition of Theorem 3.10. This step is described in Algorithm 1 part 1 for m > 3. To do

so, the set of values A is initialized as A = {2, 3, . . . , N − 1}. The values of A are extracted

one by one. Each time an extracted value a fulfills the condition of theorem 3.10, the function

search is launched to try to find a solution Γn. In case of success, the algorithm is successful

and stops. Otherwise, the elements of 〈a〉 are suppressed from the search space A. The process

continues until no more values remain in A. In this case, the search is unsuccessful. Note that for

m = 3, the condition O(a) = m− 1 of line 5 should be replaced by the condition a(1− a) = 1

mod N , and line 7 should be replaced by the instruction A = A \ {ak}k=2,...,5.

The search function is described in Algorithm 1, part 2. It is a recursive function that tries

to increase recursively the size of Γ until it reaches a size of n. The arguments of the search

function are Γ, S, N , n, ~P1, and a vector G of size n that controls the processing effort. Let

us describe the processing during the first call of the function in line 9. The arguments of this

first call are Γ1 = {0} and S (defined in line 8), the set of values compatible with Γ1 (see

(11)). Lines 14 and 15 set up the greedy search. For i = 1, . . . , |S|, the number s(i) of triplets

Γ3 = {0,S(i), µ}, µ ∈ S verifying the condition ρ(Γ3, ~P1, N) is computed (note that s(i) < |S|

). The s(i) are thus sorted in decreasing order (line 16), and the first G(|Γ|) = G(1) elements of

S (line 17) associated to the highest values of vector s are tested. For each tested value, a vector

Γk of size 2 is generated (line 18). The tested value is suppressed from the set S (line 19), and

then the subset Sk of S of values compatible with Γk is created (line 20). If the size of Sk plus

the size of Γk is greater than or equal to n, or, if there is still the possibility to generate a Γ

vector of length n, then the search function is called again with a Γ set of size 2. The process is

recursively reiterated until a length n Γ vector is found or until no more possibility remains to
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be explored. The complexity of the search is controlled by a vector G of size n. The kth value

G(k) of G indicates that only the most “promising” G(k) branches will be explored inside each

depth k recursive call of the search function. Note that when all the values of G are equal to N

the search algorithm is exhaustive. It can be done in a limited time (less than a few days) only

for low values of n. For large n, the first values of G are set to 1 or 2 for reducing the search

space to a reasonable size. Note that |X| represents the cardinal of the set X .

TABLE III

COMPARISON OF THE COMPLEXITIES: EXHAUSTIVE SEARCH VERSUS NEW PROPOSED SEARCH METHOD (m̄ = min{k,m}

AND n̄ = min{k, n})

− “verification” search space “assigning” search space overall complexity

− SMC & IRS exhaustive SMC & IRS exhaustive SMC & IRS exhaustive

m = 3

m̄∑
i=2

n̄∑
j=2

t
C2k
ij (3

i)(
n
j)

3

m̄∑
i=2

n̄∑
j=2

t
C2k
ij

(
3
i

)(
n
j

)
(N − 3)n−2 (N − 1)2(n−1) O

(
(N − 3)(n−2)

)
O
(

(N − 1)2(n−1)
)

m ≥ 4

m̄∑
i=2

n̄∑
j=2

t
C2k
ij (mi )(nj)

m−1

m̄∑
i=2

n̄∑
j=2

t
C2k
ij

(
m
i

)(
n
j

)
(N −m)n−2(N − 1)(m−1)(n−1) O

(
(N −m)(n−2)

)
O
(

(N − 1)(m−1)(n−1)
)

At the end of this discussion, we compare the complexity of our proposed search method that

uses IRS technique with an exhaustive search in terms of: 1) mitigating the verification phase by

reducing nonequivalent potential cycles and 2) mitigating the assigning phase by reducing the

number of undetermined components of exponent matrix P. These two types of simplification are

logically accurate even for g = 10 or 12. Table III summarizes these results. The first column of

this table shows the column degree dv = m of our constructed QC-LDPC codes. Without loss of

generality we assume n >> m due to the fact that studying the complexity of our search method

would be important when the rate of the codes is high. In other words, if one intends to find

fully-connected QC-LDPC code of different rates, the dominant variable is row weight dc = n.

The second column of the table presents the necessary search space for the verification phase.

As was shown in Theorems 3.5 and 3.10, this space is equal to
min{k,m}∑

i=2

min{k,n}∑
j=2

tC2kij

(
m
i

)(
n
j

)
and

(
min{k,m}∑

i=2

min{k,n}∑
j=2

tC2kij

(
m
i

)(
n
j

)
)/ (m− 1) respectively for an exhaustive search and our IRS method

combined with the SMC technique. Considering that girth of the code is less than or equal to

2k = 12 (i.e., k ≤ 6), m � n and the parameter tC2kij is always less than or equal to 1440 (see

tracking matrix T C10 in Theorem 3.5), it can be concluded that the dominant term in any of

previous summations is
(
n
k

)
. Since in the worst case the complexity of

(
n
k

)
is of O

(
nk
)

and the
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summation is finite, the overall complexity of the verification phase is of polynomial order and

equal to O
(
nk
)
. This means that even with or without applying the IRS approach the complexity

of verification phase is polynomial. However, by applying the IRS approach the complexity is

reduced as a factor of m− 1, which is slightly lower. The third column of the table counts the

number of candidate values among ZN that can be assigned to each non-zero component of

the exponent matrix. Given that the exponent matrix P is of size m× n with all zero first row

and all zero first column, in an exhaustive search case, (m− 1) (n− 1) remaining components

of P have to be assigned. None of these remaining components has to be zero, otherwise the

girth is 4. So the number of such possibilities is equal to (N − 1)(m−1)(n−1). On the other hand,

when the IRS method is considered, the second column is assigned a priori. So the remaining

components of P are those in column 3 to n. When SMC technique is considered concurrently

with IRS, we need to assign one component γj per jth column. So n − 2 components need to

be assigned. Knowing the fact that “when P has all zero first row and all zero first column and

its girth is greater than 6, all the non-zero elements of P have to be distinct ([18])”, so each

one of the n− 2 components has to be different from the elements in the second column, i.e.,

γj ∈ ZN\{0, 1, a, · · · , am−2}. So the number of such possibilities is (N −m)n−2. Finally, the

fourth column proposes the overall complexity of the search method. Given the fact that for

high girth code, N >> n, and the verification search has polynomial complexity, one can easily

conclude that the overall complexity of both phases is dominated by the assigning phase equal

to O
(

(N − 1)(m−1)(n−1)
)

and O
(

(N −m)(n−2)
)

, respectively, for exhaustive search and our

proposed search method.

In general cases, by considering the number of nonequivalent cycles in relation (5) as the

verification search space and noticing that (N − 1)(m−1)(n−1) is the general assigning search

space, one can figure out that the complexity of both verification and assigning phases of

an exhaustive search are instinctively exponential. Information in the last column of Table III

shows that even when combining SMC approach with IRS technique the complexity remains

exponential. However, privileges of the aforementioned combination are that not only does it

considerably reduce both of the search spaces, but by this synchronous combination, we are also

still able to find lifting degrees very close to the lower bound even for large values of dcs. In

the next section we will investigate the outcomes of our greedy search algorithm. These results

demonstrate that combining SMC with IRS for finding QC-LDPC code with large girth and

short length is a practical tool.
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IV. NUMERICAL RESULTS

To present our results in comparison with the state-of-the-art, we have performed the following

experiment: Given a fixed girth g (g = 10, 12), for each size m× n of the exponent matrix, we

start by the smallest value of N reported in the literature as providing for a QC-LDPC code

obtained from a cyclic lifting of degree N of the fully-connected m × n exponent matrix. For

this value of N , we apply the proposed search algorithm to see if we can find an exponent

matrix of the form (2) for a QC-LDPC code of girth g. If we succeed, we then reduce the value

of N into the nearest smaller integer value for which Z×N contains at least one eligible cyclic

subgroup to form ~P1, and repeat the same experiment. We continue until the proposed algorithm

fails to provide an answer. At that point, we report the previous value of N along with the

corresponding exponent matrix found by the algorithm. These results are presented in Tables

IV-VII for values of (m, g) = (3, 10), (3, 12), (4, 10), and (4, 12), respectively. To present the

exponent matrices, we have only provided the second row along with the generator element a

of the corresponding cyclic subgroup. In the tables, we have also reported the dc = n, rate and

the minimum found lifting degree N . Although our proposed algorithm has the capability to

find very high rate codes with girth g = 10, 12, Tables IV-VII contain the codes with lengths

below 100K bits. This is because most of the implemented LDPC code in the literature have

lengths below 100K bits. In the tables, we have additionally provided the best available results

(in terms of minimum N ) in the literature even for the search-based results or the explicit (i.e.,

deterministic) constructions for comparison. Note that, due to the lack of published results for

exponent matrices with a large row degree dc, we apply search algorithm 1 either by considering

some proposed lower bounds (of lifting degree N ) in the literature or with our conjecture of

lifting degree N as a primary input of this algorithm. If input parameter N is considered as a

lower bound then algorithm 1 has to test N every time and moves upward up to the point that it

achieves the first success. Otherwise (i.e., if there is no lower bound or upper bound), we need to

guess the starting point of N . This conjecture of N comes from studying the general trend of the

lifting degree growth rate of previous Ns of smaller exponent matrices with the same girth. Here

we used nonlinear regression to predict the new input values of N where “cubic polynomial”

is considered as to be the regressions model (RM). As an example of former situation with a

lower bound, we can look at girth g = 10 exponent matrices. When g = 10 and the exponent

matrix is of size m× n, there is a lower bound equal to (m2−m)(n2−n)
2

+ 1 for the lifting degree
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TABLE IV

EXPONENT MATRICES OF THE SHORTEST QC-LDPC CODES WITH GIRTH 10, CONSTRUCTED FROM A 3× n

FULLY-CONNECTED BASE GRAPH CONSIDERING COMBINATION OF SMC AND IRS METHODS (Nmin IS THE SMALLEST

LIFTING DEGREE. a IS THE GENERATOR OF CYCLIC SUBGROUP 〈a〉 OF Z×N . THE LIFTING DEGREE OF THE SHORTEST

EXISTING CODES IS GIVEN BETWEEN BRACKETS. ONLY THE SECOND ROW OF THE EXPONENT MATRIX ARE LISTED)

n Rate Nmin a Second Row of Exponent Matrix

4 0.263 37
(37 [14], [18]) 27 0, 1, 3, 24

5 0.406 61
(61 [14], [18]) 48 0, 1, 3, 7, 12

6 0.503 91
(91 [18]) 17 0, 1, 3, 7, 25, 38

7 0.573 129
(139 [21]) 80 0, 1, 3, 7, 16, 41, 84

8 0.626 181
(181 [21]) 133 0, 1, 3, 69, 120, 129, 141, 156

9 0.667 237
(241 [21]) 182 0, 1, 3, 7, 37, 65, 80, 133, 196

10 0.700 301
(313 [21]) 80 0, 1, 3, 7, 33, 73, 117, 140, 208, 226

11 0.727 373
(397 [21]) 285 0, 1, 3, 35, 50, 73, 95, 170, 180, 221, 235

12 0.750 463
(523 [21]) 442 0, 1, 3, 9, 29, 116, 148, 219, 260, 329, 388, 418

13 0.769 571
(815 [32]) 662 0, 1, 3, 9, 91, 120, 140, 217, 375, 398, 511, 516, 561

14 0.785 727
(1050 [32]) 446 0, 1, 3, 7, 12, 35, 105, 192, 213, 352, 442, 472, 653, 714

15 0.80 877
(1235 [32]) 595 0, 1, 3, 7, 12, 22, 47, 114, 247, 390, 423, 431, 639, 692, 755

16 0.812 1039
(1550 [32]) 899 0, 1, 3, 7, 12, 20, 36, 183, 396, 462, 674716, 798, 823, 967, 982

17 0.823 1231
(1810 [32]) 11050, 1, 3, 7, 12, 20, 34, 106, 132, 374, 402, 450, 519, 737, 1010, 1061, 1071

18 0.833 1453
(2100 [32]) 760 0, 1, 3, 7, 12, 20, 30, 46, 132, 184, 239, 320, 418, 867, 951, 1015, 1100, 1382

19 0.842 1723
(2500 [32]) 1682

0, 1, 3, 7, 12, 20, 30, 46, 67, 99, 248, 605, 693, 793, 831, 975, 1105, . . .

1271, 1381

20 0.850 2089
(2875 [32]) 1263

0, 1, 3, 7, 12, 20, 30, 45, 61, 85, 107, 249, 510, 602, 970, 1022, 1297, . . .

1481, 1635, 1987

21 0.857 2197
(3300 [32]) 1161

0, 1, 125, 122, 251, 1533, 493, 2191, 1416, 867, 2083, 877, 1794, 413, . . .

303, 811, 846, 1262, 1438, 1739, 2109

22 0.863 2689 2298
0, 1, 196, 66, 522, 1998, 524, 1109, 1343, 1217, 432, 39, 2255, 1257, . . .

17, 466, 1596, 1788, 2346, 2504, 2524, 2618

23 0.869 3049 2517
0, 1, 267, 89, 710, 2145, 726, 2338, 639, 1971, 2886, 2445, 2077, 1424, . . .

1821, 414, 586, 612, 1002, 1373, 1504, 1573, 2646

24 0.875 3331 1868
0, 1, 404, 407, 2676, 1209, 399, 557, 1623, 2013, 3231, 1878, 2436, 716, . . .

242, 916, 31, 1843, 1941, 1998, 2229, 2318, 2618, 3139

25 0.880 3577 1452
0, 1, 674, 677, 1346, 571, 2700, 7, 3467, 580, 2895, 1657, 2916, . . .

2443, 91, 3204, 1033, 3049, 3523, 164, 1070, 2651, 2772, 2931, 3144
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TABLE V

EXPONENT MATRICES OF THE SHORTEST QC-LDPC CODES WITH GIRTH 12, CONSTRUCTED FROM A 3× n

FULLY-CONNECTED BASE GRAPH CONSIDERING COMBINATION OF SMC AND IRS METHODS (Nmin IS THE SMALLEST

LIFTING DEGREE. a IS THE GENERATOR OF CYCLIC SUBGROUP 〈a〉 OF Z×N . THE LIFTING DEGREE OF THE SHORTEST

EXISTING CODES IS GIVEN BETWEEN BRACKETS. ONLY THE SECOND ROW OF THE EXPONENT MATRIX ARE LISTED)

n Rate Nmin a Second Row of Exponent Matrix

4 0.263 73
(73 [14], [18]) 9 0, 1, 3, 13

5 0.406 151
(151 [21]) 119 0, 1, 3, 108, 139

6 0.503 271
(271 [21]) 29 0, 1, 3, 7, 67, 144

7 0.573 427
(457 [21]) 136 0, 1, 3, 18, 209, 300, 388

8 0.626 619
(691 [21]) 367 0, 1, 3, 216, 312, 318, 462, 529

9 0.667 921
(991 [21]) 632 0, 1, 3, 84, 224, 361, 410, 849, 916

10 0.700 1303
(1447 [21]) 12080, 1, 14, 5, 89, 349, 383, 562, 1130, 1152

11 0.727 2011
(2161 [21]) 18060, 1, 30, 10, 3, 122, 454, 654, 937, 1095, 1699

12 0.750 2883
(4730 [14]) 24440, 1, 522, 442, 965, 11, 902, 1145, 1857, 2091, 2632, 2775

13 0.769 3769
(5851 [33]) 33060, 1, 154, 1257, 2564, 3099, 1636, 19, 1539, 2519, 2855, 3111, 3250

14 0.785 4953 15440, 1, 108, 1546, 1331, 4308, 3839, 4746, 2558, 457, 486, 1252, 4262, 4911

15 0.80 6321 2273
0, 1, 4380, 4051, 1613, 5328, 827, 3891, 5171, 4342, 1637, 2135, 4082, . . .

4694, 5905

N [29], [34]. So for the code with dc = n > 21 (see Table IV) where there is no reported value,

we use this lower bound as the input value of N within algorithm 1. The lower bound of N for

the case (m,n) = (3, 22) is 1387, and algorithm 1 takes this as an input and increases N up

to the point that it encounters first success. We limited the running time of our search program

to 72 hours, and the smallest successful lifting degree was N = 2689 using a core i7 desktop

computer with a 3.5 GHz CPU and 8 GB RAM running in parallel. As an example of the later

situation where there is no bound for N we can look at girth g = 12 exponent matrices. We

performed cubic regression for both of the cases dv = m = 3, 4. Regression models RMg=12
m=3

and RMg=12
m=4 presented below are respectively derived for the cases m = 3 (4 ≤ n ≤ 13) and

m = 4 (5 ≤ n ≤ 9).

RMg=12
m=3 (n) = 4.422299611n3 − 55.13985257n2 + 303.524031n− 535.7821601

RMg=12
m=4 (n) = 132.6276493n3 − 2135.788568n2 + 11973.00351n− 22484.20244
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TABLE VI

EXPONENT MATRICES OF THE SHORTEST QC-LDPC CODES WITH GIRTH 10, CONSTRUCTED FROM A 4× n

FULLY-CONNECTED BASE GRAPH CONSIDERING COMBINATION OF SMC AND IRS METHODS (Nmin IS THE SMALLEST

LIFTING DEGREE. a IS THE GENERATOR OF CYCLIC SUBGROUP 〈a〉 OF Z×N . THE LIFTING DEGREE OF THE SHORTEST

EXISTING CODES IS GIVEN BETWEEN BRACKETS. ONLY THE SECOND ROW OF THE EXPONENT MATRIX ARE LISTED)

n Rate Nmin a Second Row of Exponent Matrix

5 0.200 133
(139 [21]) 11 0, 1, 5, 21, 54

6 0.333 223
(241 [21]) 39 0, 1, 3, 9, 45, 59

7 0.428 271
(307 [21]) 28 0, 1, 3, 7, 141, 221, 255

8 0.500 403
(409 [21]) 87 0, 1, 3, 7, 111, 159, 233, 303

9 0.555 541
(577 [21]) 129 0, 1, 3, 99, 264, 314, 353, 401, 423

10 0.600 703
(787 [21]) 26 0, 1, 9, 123, 353, 443, 498, 501, 609, 663

11 0.636 919
(1039 [21]) 52 0, 1, 3, 158, 113, 349, 509, 677, 702, 725, 772

12 0.666 1213
(1381 [21]) 217 0, 1, 3, 653, 1088, 798, 29, 195, 370, 476, 574, 713

13 0.692 1459 339 0, 1, 487, 1313, 1053, 740, 533, 398, 504, 662, 664, 685, 970

14 0.714 1939 18220, 1, 3, 1590, 1357, 112, 579, 152, 254, 323, 417, 848, 975, 1863

15 0.733 2539 22320, 1, 3, 920, 1533, 278, 2515, 1504, 333, 538, 317, 404, 769, 1437, 2383

16 0.750 3991 37010, 1, 3, 869, 1448, 1062, 777, 2220, 3507, 10, 30, 41, 164, 845, 1632, 1808

17 0.764 4909 4335
0, 1, 3, 1721, 2868, 467, 4807, 2761, 679, 792, 675, 1916, 4687, 32, 50, . . .

3314, 3559

TABLE VII

EXPONENT MATRICES OF THE SHORTEST QC-LDPC CODES WITH GIRTH 12, CONSTRUCTED FROM A 4× n

FULLY-CONNECTED BASE GRAPH CONSIDERING COMBINATION OF SMC AND IRS METHODS (Nmin IS THE SMALLEST

LIFTING DEGREE. a IS THE GENERATOR OF CYCLIC SUBGROUP 〈a〉 OF Z×N . THE LIFTING DEGREE OF THE SHORTEST

EXISTING CODES IS GIVEN BETWEEN BRACKETS. ONLY THE SECOND ROW OF THE EXPONENT MATRIX ARE LISTED)

n Rate Nmin a Second Row of Exponent Matrix

5 0.200 571
(607 [21]) 461 0, 1, 17, 184, 482

6 0.333 1087
(1201 [21]) 829 0, 1, 4, 142, 1018, 1055

7 0.428 2203
(2371 [21]) 19170, 1, 4, 130, 443, 1082, 1397

8 0.500 4489
(6607 [10]) 37890, 1, 942, 1062, 1547, 2202, 1312, 3692

9 0.555 8966
(12071 [10])39770, 1, 4987, 6942, 11, 17, 1158, 2049, 3754
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So, if our underlined exponent matrix is of size 3× n (resp., 4× n) and there is no bound for

the size of N , we estimate it with N ' bRMg=12
m=3 (n)c (resp., N ' bRMg=12

m=4 (n)c). As we are

not sure if this approximated value of N is a lower bound or upper bound, our search program

would be run for two cases in parallel: 1) upward check and 2) downward check. During this

process and at a time when the program sees a success by decreasing N , it will terminate the

upward manner and will focus only on downward movement. This process is continued until the

processing time is over. As a result, for a girth 12 exponent matrix of size (m,n) = (3, 14), we

could not find an accurate bound for its lifting degree (see Table V); however, we estimated it

as N ' bRMg=12
m=3 (14)c = 5040. We ran our search program for it, and after 24 hours of running,

the smallest successful N was 4953. The point-to-point growth rate curves to all the values of

N found by our search program, by proposed bounds, and by estimations are included in Fig.

10 for further comparison and investigation.

As pointed out in the introduction, the exponent matrices of fully-connected codes reported in

Tables IV to VII can be used to construct other practical LDPC codes (regular or irregular). As an

example of such construction methods, we considered the (64800, 48600) DVB-S2 standard code

[30] as a reference code and tried to design a similar code in length and rate using the proposed

SMC-structured QC-LDPC codes. To this end, we started from a base-matrix of dimension 15×60

and lifting degree N = 1087 to define a rate 3/4 (65220, 48915) fully-connected QC-LDPC code

Cfull with Tanner graph Tfull. The overall girth is 6 but the Tanner graph contains several distinct

and large sub-graphs of girth 12. To mimic the edge distribution of the DVB-S2 code, parts of

the exponent matrix are suppressed from Cfull to generate an irregular QC-LDPC code Cmasked.

The details on the construction of Cmasked are given in Appendix B. Finally, performances of

both Cmasked and DVB-S2 codes were evaluated under Additive White Gaussian Noise (AWGN)

channel with Sum-Product (SP) algorithm by AFF3CT software [35]. Fig. 11 depicts the Frame

Error Rate (FER) as well as the Bit Error Rate (BER) performances of these codes. As it can

be seen from this figure, Cmasked has better performance in waterfall region and it gains 0.15 dB

at FER= 10−5 under SP decoder with 50 decoding iterations.

V. CONCLUSION

We have proposed a search-based method for the construction of fully-connected QC-LDPC

block codes capable of achieving girths g = 10, 12 with lengths close to the lower bounds.

To ease the search, we sieved through the multiplicative ring of integers. We showed that by
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Fig. 10. Minimum lifting degree N growth rate of new constructed codes versus dc = n for dv = m = 3, 4.

smartly selecting elements of exponent matrix’s second column of the code from this ring, it is

possible to further reduce the search space and still find high girth QC-LDPC codes with lengths

very close to the lower bound. Pseudo code of our proposed search algorithm was presented

and as a result of our method, a variety of fully-connected QC-LDPC codes with different rates

and small lengths were provided in tables. Furthermore, small length counterpart codes were

addressed within the tables for comparison, and in most of the cases the new codes have lengths

smaller than the available state of the art. In the end, capability of the proposed method in

constructing practical irregular QC-LDPC codes was illustrated, and their good performances

were compared with the standard codes.
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Fig. 11. Performance comparison of a (65220, 48915) SMC-structured QC-LDPC code, constructed by cyclic lifting of a

masked 15× 60 fully-connected base graph and lifting degree N = 1087, with a (64800, 48600) DVB-S2 code [30].

APPENDIX

A. An algebraic proof to lemmas 3.6 and 3.8.

Let Cm,n
2k be a potential cycle of length 2k in PSMC

m×n with summation
∑k−1

i=0

(
pmini

− pmini+1

)
where nk = n0, mi 6= mi+1 and ni 6= ni+1. Without loss of generality we can rewrite this

summation as
∑k−1

i=0

(
pmini

− pmi+1ni

)
where mk = m0, mi 6= mi+1 and ni 6= ni+1. Since the

second column of PSMC
m×n is ~P1 = [0, 1, a, a2, · · · , am−2]T , the later summation could be written
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as
∑k−1

i=0 γni
(δ (mi)− δ (mi+1)) where mi ∈ {0, 1, 2, · · · ,m − 1}, ni ∈ {0, 1, 2, · · · , n − 1},

δ (mi) = ~P1 (mi), γ0 = 0, γ1 = 1, and γni
(2 ≤ ni) is the coefficient of column ~Pni

= γni
~P1. As-

suming ∆ (mi) = δ (mi)−δ (mi+1), the summation of Cm,n
2k could be written as

∑k−1
i=0 γni

∆ (mi).

Let us first consider the case m = 3 and a(1 − a) = 1, where a ∈ Z×N . Since GCD(a,N) =

GCD((1− a), N) = 1,
∑k−1

i=0 γni
∆ (mi) = 0 mod N if and only if

∑k−1
i=0 γni

a∆ (mi) = 0

mod N if and only if
∑k−1

i=0 γni
(1 − a)∆ (mi) = 0 mod N . In other words, Cm,n

2k is activated

if and only if aCm,n
2k is activated if and only if (1 − a)Cm,n

2k is. On the other hand, it is easy to

check that ∆ (mi) , a∆ (mi) , (1 − a)∆ (mi) ∈ {±1,±a,±(1 − a)} (see Table VIII). In fact

for every index mi, each of the differences ∆ (mi) , a∆ (mi), and (1 − a)∆ (mi) is calculated

by considering elements in the same column but different pairs of rows of PSMC
3×n . As a result,

potential cycles Cm,n
2k , aCm,n

2k , and (1− a)Cm,n
2k have the same length but different paths in PSMC

3×n

and they concurrently are either activated or not-activated. So #C3,n2k,a ≤
#C3,n

2k

3
. For the case

m = 4 and a3 = 1, where a ∈ Z×N , one can also follow the same argument by considering the

values in Table IX. As result #C4,n2k,a ≤
#C4,n

2k

3
.

TABLE VIII

LOOKUP TABLE TO ∆ (mi), a∆ (mi) AND (1− a)∆ (mi) WHEN SECOND COLUMN OF PSMC
3×n IS ~P1 = [0, 1, a]T .

∆ (mi) 1 a 1− a −1 −a −1 + a

a∆ (mi) a −1 + a 1 −a 1− a −1

(1− a) ∆ (mi)1− a −1 −a −1 + a 1 a

TABLE IX

LOOKUP TABLE TO ∆ (mi), a∆ (mi) AND a2∆ (mi) WHEN SECOND COLUMN OF PSMC
4×n IS ~P1 =

[
0, 1, a, a2

]T .

∆ (mi) 1 a a2 1− a 1− a2 a− a2 −1 −a −a2 −1 + a −1 + a2−a + a2

a∆ (mi) a a2 1 a− a2 −1 + a −1 + a2 −a −a2 −1 −a + a2 1− a 1− a2

a2∆ (mi)a
2 1 a −1 + a2−a + a2 1− a −a2 −1 −a 1− a2 a− a2 −1 + a

B. DVB-S2 like code construction

The array displayed in (13) is a vertical display of an exponent matrix PSMC
15×60 with lifting

degree 1087, which is masked 5 in a way that its row (resp., column) degree distribution is

5See section 7 of [28] for masking technique.
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ρ (x) = 0.8666x15 +0.1334x16 (resp., λ (x) = 0.25x+0.55x2 +0.0666x3 +0.0834x10 +0.05x13).

Thus, the resulting code of (13) would be an irregular QC-LDPC code that we call Cmasked.

Before the masking operation, PSMC
15×60 is an exponent matrix of a girth g = 6 fully-connected

QC-LDPC code Cfull of length 60 ∗ 1087 = 65220 and rate 60−15
60

= 0.75 that preserves SMC

property. Although the Tanner graph Tfull of code Cfull is of girth 6, it is locally optimized so

that it has several distinct and large sub-graphs each of girth 12. To impose this property to Tfull,

PSMC
15×60 is constructed as follows:

PSMC
15×60 =


AT

A1

A2

0

γ4

p3,2γ4
...

p15,2γ4

· · ·

· · ·

· · ·
. . .

· · ·

0

γ59

p3,2γ59
...

p15,2γ59


, (12)

where matrix A is the matrix of dimension 4×6 defined in Table VII for rate 1/3 (fully-connected

QC-LDPC code with m = 4, n = 6, and Nmin = 1087), thus AT is of dimension 6× 4. Matrix

A1 is the matrix of dimension 5 × 4 generated with the 5 last rows of AT multiplied by the

factor 139, i.e., A1(i, j) = 139∗AT (i+1, j) (mod 1087) (i = 1, . . . , 5; j = 1, . . . , 4). Matrix A2

is the matrix of dimension 4× 4 generated with the rows 2 to 5 of AT multiplied by the factor

719, i.e., A2(i, j) = 719 ∗AT (i+ 1, j) (mod 1087) (i = 1, . . . , 4; j = 1, . . . , 4). Since 1087 is a

prime number, GCD (139, 1087) = GCD (719, 1087) = 1, and thus A1 and A2 are also of girth

12 (lemma 3 of [18]). As shown in (12), the first four columns of PSMC
15×60 are made of the vertical

concatenation of AT , A1, and A2. This left part of matrix PSMC
15×60 is intentionally constructed

with high girth sub-matrices as it will be only lightly masked. The rest of the columns of PSMC
15×60

still apply to SMC property, where pj,2’s (j = 3, · · · , 15) are components of the second column

of PSMC
15×60, coefficients γi’s (4 ≤ i ≤ 59) are selected in a way that PSMC

15×60 respects girth-6

constraint, and pj,2γi is calculated modulo 1087.
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r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

c1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c2 −1 1 4 142 1018 1055 139 556 172 192 987 719 702 1007 391

c3 0 829 55 322 410 647 9 36 −1 466 799 375 413 1074 213

c4 0 −1 1028 623 −1 472 939 495 −1 429 388 1080 1059 −1 483

c5 0 9 36 191 466 −1 −1 656 461 −1 187 1036 883 367 −1

c6 0 837 −1 371 945 391 34 136 480 915 −1 −1 −1 434 80

c7 −1 265 1060 −1 194 216 964 −1 1013 878 675 310 153 −1 350

c8 0 43 172 671 294 −1 542 1081 874 −1 48 −1 837 908 −1

c9 0 −1 −1 −1 −1 −1 −1 −1 893 921 −1 −1 548 −1 −1

c10 −1 −1 109 −1 −1 215 −1 −1 −1 −1 −1 842 −1 1081 −1

c11 −1 70 −1 −1 605 −1 1034 −1 −1 −1 −1 −1 −1 −1 195

c12 0 −1 −1 337 −1 −1 −1 355 −1 −1 421 −1 −1 −1 −1

c13 −1 −1 −1 −1 −1 438 747 −1 635 −1 −1 −1 −1 −1 −1

c14 −1 106 −1 −1 −1 956 −1 −1 −1 −1 −1 124 −1 −1 −1

c15 0 −1 −1 −1 −1 −1 −1 −1 −1 1060 82 −1 −1 −1 −1

c16 −1 −1 −1 −1 23 −1 −1 −1 305 −1 −1 −1 −1 −1 232

c17 −1 −1 −1 −1 278 −1 −1 438 −1 −1 −1 −1 −1 23 −1

c18 −1 −1 −1 112 −1 −1 523 −1 −1 −1 −1 −1 569 −1 −1

c19 −1 −1 425 −1 6 −1 −1 −1 −1 834 −1 −1 −1 −1 −1

c20 −1 −1 496 −1 −1 380 −1 −1 −1 −1 −1 22 −1 −1 −1

c21 −1 952 −1 −1 −1 −1 −1 −1 −1 168 456 −1 −1 −1 −1

c22 −1 380 −1 697 −1 −1 −1 −1 −1 −1 −1 −1 −1 36 −1

c23 0 −1 −1 −1 −1 −1 −1 −1 276 −1 −1 −1 −1 −1 46

c24 −1 −1 −1 −1 343 −1 270 −1 −1 −1 −1 −1 433 −1 −1

c25 −1 −1 −1 178 −1 −1 −1 −1 −1 −1 −1 1085 −1 −1 138

c26 −1 −1 −1 838 −1 347 −1 −1 −1 −1 −1 186 −1 −1 −1

c27 −1 −1 687 −1 −1 −1 −1 −1 −1 366 217 −1 −1 −1 −1

c28 0 −1 −1 −1 −1 −1 −1 296 −1 −1 −1 −1 −1 −1 302

c29 −1 179 −1 −1 −1 −1 −1 −1 352 −1 −1 −1 −1 −1 421

c30 0 −1 −1 −1 −1 −1 −1 87 −1 −1 −1 −1 −1 965 −1

c31 −1 435 −1 −1 −1 211 −1 −1 −1 908 −1 −1 −1 −1 −1

c32 −1 −1 −1 −1 55 1081 −1 −1 −1 −1 −1 1018 −1 −1 −1

c33 −1 −1 −1 886 −1 −1 −1 −1 −1 310 65 −1 −1 −1 −1

c34 −1 −1 −1 100 −1 −1 −1 315 −1 −1 −1 −1 −1 158 −1

c35 −1 −1 892 −1 −1 −1 −1 −1 311 −1 −1 −1 −1 −1 233

c36 −1 1051 −1 −1 −1 −1 −1 637 −1 −1 −1 −1 −1 706 −1

c37 0 −1 −1 −1 −1 −1 −1 −1 863 −1 −1 −1 −1 812 −1

c38 0 −1 −1 −1 −1 −1 383 −1 −1 −1 −1 −1 425 −1 −1

c39 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 600 34 136 −1 −1

c40 −1 −1 −1 −1 750 −1 −1 −1 −1 985 −1 −1 −1 −1 98

c41 −1 −1 −1 388 −1 −1 −1 −1 669 −1 −1 −1 −1 700 −1

c42 −1 −1 16 −1 −1 −1 556 −1 −1 −1 −1 −1 634 −1 −1

c43 −1 −1 989 −1 −1 −1 −1 509 −1 −1 −1 −1 193 −1 −1

c44 −1 270 −1 −1 −1 −1 572 −1 −1 −1 −1 644 −1 −1 −1

c45 0 −1 −1 −1 −1 735 −1 −1 −1 −1 1074 −1 −1 −1 −1

c46 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 223

c47 0 291 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

c48 −1 32 128 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

c49 −1 −1 14 497 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

c50 −1 −1 −1 119 57 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

c51 −1 −1 −1 −1 536 989 −1 −1 −1 −1 −1 −1 −1 −1 −1

c52 −1 −1 −1 −1 −1 814 1016 −1 −1 −1 −1 −1 −1 −1 −1

c53 −1 −1 −1 −1 −1 −1 658 458 −1 −1 −1 −1 −1 −1 −1

c54 −1 −1 −1 −1 −1 −1 −1 1025 1060 −1 −1 −1 −1 −1 −1

c55 −1 −1 −1 −1 −1 −1 −1 −1 506 489 −1 −1 −1 −1 −1

c56 −1 −1 −1 −1 −1 −1 −1 −1 −1 382 571 −1 −1 −1 −1

c57 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 383 192 −1 −1 −1

c58 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 897 327 −1 −1

c59 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 989 869 −1

c60 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 936 969

(13)
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