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Abstract

This paper proposes a new method of construction of compact fully-connected Quasi-Cyclic Low
Density Parity Check (QC-LDPC) code with girth ¢ = 10 and g = 12. The originality of the proposed
method is to impose constraint on the exponent matrix P to reduce the search space drastically. For a
targeted expansion factor of N, the first step of the method is to sieve the integer ring Zy to make a
particular sub-group with specific properties to construct the second column of P (the first column being
filled with zeros). The remaining columns of P are determined recursively as multiples of the second
column thanks to an adaptation of the sequentially multiplied column (SMC) method where a controlled
greedy search is applied at each step. The codes constructed with the proposed semi-algebraic method
have lengths that can be significantly shorter than the best counterparts in the literature. To illustrate
the great potential of the SMC method, we give the explicit construction of a rate 0.75 irregular LDPC
code of size 65,220 that allows a gain of 0.15 dB compared to the code of same rate and size 64,800
of the DVB-S2.

Index Terms

QC-LDPC Code Construction, Girth, Multiplicative Group, Cyclic Subgroup, Greedy Search Method.

I. INTRODUCTION

It has been more than two decades since the rediscovery of low-density parity-check (LDPC)
codes as a class of modern channel coding [1]]. LDPC codes can work close to the Shannon ca-

pacity with a low complexity message passing decoding algorithm. Moreover, Quasi-cyclic (QC)
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LDPC code, a special class of LDPC codes, allows for efficient parallel hardware implementation
and has been adopted in many communication standards. A few examples are WIFI standard
[2], digital video broadcasting (DVB) standard [3], CCSDS standards [4], and more recently
the 5G standard [S]]. The promising coding techniques for communication systems beyond 5G
are turbo codes, binary/nonbinary QC-LDPC codes [6], spatially coupled (SC) QC-LDPC codes
[7], and polar codes. Assuming any scenario or application, constructing QC-LDPC codes with
the smallest possible Tanner graph [8] of optimal cycle distribution free of short cycles has
been a challenging issue within the past two decades. It has been shown that QC-LDPC code
with a Tanner graph free of short cycles and free of some harmful combination of small cycles
(known as “trapping sets”) has better performance under iterative decoding algorithms. Many
research works have been dedicated to study and construct such code [9], [10], [11], [12], [L3],
[14]], [15], [16], [17], (18], [19], [201], [21], [22], [23]. One of the common methods to prevent
harmful structures in Tanner graph of the code is increasing girth of the code’s graph. In contrast
with removing special trapping sets, which results in local improvement of performance of the
code within specific SNR ranges, increasing the girth leads to a general improvement of the
performance given any SNR regime. One of the main constraints of constructing a QC-LDPC
code is keeping the length of the code as small as possible while preserving other good properties
of that code. Considering some fixed conditions such as specific girth of the code and degree
distribution of the exponent matrix, the QC-LDPC code with the shortest length can be more
desirable in some cases due to easy encoding/decoding implementation, less required storage
memory and low communication latency. In addition, it has recently been shown that by using
some spreading techniques, a class of SC-QC-LDPC convolutional (C) codes with very low
syndrome memory could be constructed based on QC-LDPC codes [21], [24], [25], [26], [27].
Specifically, [25] asserts that given fixed girth and degree distribution, the smaller the lifting
degree of QC-LDPC code, the smaller the size of the syndrome memory of SC-QC-LDPCC
code and thus the better performance of such code under windowed decoding. In this work we
avoid the issue of SC-QC-LDPCC code and will concentrate fully on constructing short length
QC-LDPC codes with girth g = 10, 12. However, we keep in mind SC-QC-LDPCC code is a
potential candidate for beyond 5G applications, and good QC-LDPC code is the basis of good
SC-QC-LDPC code.

QC-LDPC codes can be divided into two major classes: 1) random-like codes constructed

by means of computer search under efficient algorithms and 2) structured codes constructed



based on algebraic tools [28]. These constructing methods all have deficiencies when considered
individually. Search-based methods (even heuristic or exhaustive ones) require high search com-
plexity but may find codes with shorter length than the ones obtained with algebraic methods.
Algebraic based methods, on the other hand, will explicitly determine the code (like array code
[28] of girth 6); however, so far algebraic methods are only known for the construction of small
girth code, not high girth code. In fact, defining algebraic properties that are perfectly matched
with high girth condition resulting in explicit construction of short length code is one of the main
shortcomings of algebraic methods. In this paper we try to combine these two methods in order to
construct large girth QC-LDPC code with short length in considerably lower search complexity.
We take the search-based sequentially multiplied column (SMC) construction method [26] as
our search algorithm and modifiy it by introducing an algebraic property for the second column
of the exponent matrix of the code. The second column with the asserted algebraic property
is found by an integer field sieve (IRS) method in a way that leads to search space reduction
eventually. As a result, a semi algebraic fast search-based method of constructing high girth
QC-LDPC code is proposed and many constructed codes of girth g = 10, 12 with different rates
and degrees are reported. To the best of the authors’ knowledge, all the constructed codes have
lengths shorter (by up to 35%) or equal (for a small prototype matrix with d, = 3 and d. < 8)
to their counterparts in the literature. For d, = 3 and g = 10, the constructed codes have lengths
equal, or very close, to the lower bound [29]. The paper also proposes matrices for values of d,
and d. not yet reported in the literature. Moreover, an irregular QC-LDPC code of rate 0.75 and
length 65220 bits (whose exponent matrix is locally optimized with the help of the presented
SMC-structured codes) is constructed in Appdendix B. This is a counterpart code to DVB-S2
[30] code of rate 0.75 and length 64800 bits. Simulation results show the SMC-structured code
outperforms by a few tenths dBs compared with rate 0.75, length 64800 DVB-S2 code. This
further illustrates the usefulness of the presented high girth SMC-structured codes.

The rest of the paper is organized as follows: Section Il presents the definitions and some earlier
results on SMC construction based QC-LDPC codes as well as some group and number theory
concepts, which will be used in later sections. Section III presents the building blocks of our
proposed IRS technique. Necessary mathematical arguments, relevant greedy search algorithm,
its extension for constructing the exponent matrices and the pertinent complexity analysis of
the algorithm are provided in this section. Numerical results as well as simulation results are

provided in Section IV. Finally, Section V concludes this paper.



II. PRELIMINARIES

In this section, we review the construction of a family of LDPC matrices well suited for
hardware implementation called Quasi-Cyclic LDPC matrices. Then we discuss the conditions
that result in QC-LDPC codes with good topological properties. Finally, we will give some

notations and relations of group and number theories.

A. QC-LDPC block codes

Let us consider a fully-connected QC-LDPC block code in which the parity-check matrix is
an m x n array of N x N circulant permutation matrices (CPMs), I(p;;), 0 < i < m — 1,
0 <j <n-—1, where N is the lifting degree of the code. I(p;;) is obtained from the identity
matrix through a cyclic shift of its rows by p;; positions, with 0 < p;; < N — 1. The code
length is L = nN, the column degree (i.e., the number of non-zero elements in each column)
of the parity-check matrix is presented by m and the row degree (i.e., the number of non-zero
elements in each row) of the parity-check matrix is presented by The m x n matrix P having
the integer values p;; as its entries is referred to as the exponent matrix of the code. For such a
QC-LDPC block code, a necessary and sufficient condition for the existence of a cycle of length

2k in its Tanner graph is

k—1
> (Pminy = Prmisn) =0 mod N, (1)

i=0
where ny = ng, m; # My, n; # N (91

To achieve a certain girth g, for given values of m and n, and for a fixed value of /V, one has
to find a matrix P whose entries do not satisfy for any value of k < ¢g/2, and any possible
choice of the row and column indexes m; and n;. Starting from P, the Tanner graph of the code
can be easily obtained as it is unambiguously related to the values of p;;.

We define a structural cycle in the Tanner graph of a CPM-based QC-LDPC block code as
a cycle for which SV (Dimin: — Pminss,) = BN, B € Z. Indeed, this sum could be unequal to
BN via altering p;;s. In the face of a structural cycle, an inevitable cycle is defined as a cycle for
which Zf;ol (pmm — Pran, +1) = 0, regardless of what the values of p;;s are. In [9] it is shown
that fully-connected CPM-based QC-LDPC codes always contain inevitable cycles of length 12,

and thus their girth cannot be larger than 12.

'In the case that QC-LDPC code is not fully-connected, m and n are often noted by d,, and d. in the literature, respectively



B. Code design via sequentially multiplied columns (SMC)

It is shown in [18] that the complexity of exhaustively checking equations of the type (]
goes high by increasing each one of the parameters m and n. Solutions with reduced complexity
were proposed in [17] and [19], but the corresponding design methods result in girth ¢ = 8. For
constructing short codes with higher girths (i.e., g = 10, 12), many methods are developed. To
the best of the authors’ knowledge, the results in [26] for QC-LDPC codes with girth g = 10,12
found by applying SMC construction technique are the shortest ones in the literature. Let us
recall the basic assumptions of the design method proposed in [26]]. The design of the parity-
check matrix of a QC-LDPC block code with lifting degree N starts from an exponent matrix

having the following form (SMC assumption)

Prsnl\i(rjl:[6‘151‘72®ﬁ1‘73®ﬁ1‘~~‘%—1®151}7 2)
with m, n, € N, m < n, and 0 and ]31 being column vectors with m entries in {0,--- , N — 1}.

The vector 0 is filled with all zero entries, while the entries of the vector 151 are chosen as follows:
the first entry is zero, the second entry is one and the other entries are chosen in {2,--- /N —1}
in an increasing order. Then, the subsequent vectors have the form ~; ® P Gg=2,---,n—1),
where ®@ denotes multiplication modulo N of each term of 151 with v;, and are computed from ]31
through sequential multiplications by the coefficients v; € {2,---, N — 1} such that v; < ;1.
We now restate Proposition 1 of [26]].

Proposition 2.1: Let PSMC be the exponent matrix of a QC-LDPC block code C' as defined in
H Suppose that the Tanner graph associated with the sub-matrix [6 ‘ }31] contains no inevitable
cycles of lengths up to 10. Then, the Tanner graph of C' has no inevitable cycle of length up to
10 for sufficiently large N and a proper choice of ;s.

Proof: See Proposition 1 in [26]. O

Example 2.2: Let m = 3 and n = 6. Suppose that P5MC is the exponent matrix of a QC-LDPC
block code C, as defined in H such that 151 = (0,1, 29)T. Considering , it is easy to check
that the Tanner graph associated to [6 ‘ }31} contains no inevitable cycles of length up to 10.
Then, according to Proposition [2.1] the Tanner graph of C' has no inevitable cycle of length up
to 10 for sufficiently large N and a proper choice of 7;s. Choosing v, = 3, 73 = 7, 74 = 67,
and 75 = 144 and N = 271, it is easily verified that C' has girth ¢ = 12. The code length is

L = 1626.



PSMC

o, can be avoided from

Indeed, proposition guarantees that exponent matrices of type
having inevitable cycles of length up to 10. In order to do that, the authors of [26] established a
recursive and greedy search algorithm (see algorithm 1 in [26]) to find a sufficiently large N with
a proper ordered set of non-zero ;s (j = 2,--- ,n — 1) named p; ;s as well as a proper ordered
set of non-zero p;18 (¢ =1,---,m — 1) that do not comply with the constraint . It means
that, with a given [V, this search algorithm is supposed to find n — 2 (resp., m — 1) non-zero
and distinct elements to be placed in the second row (resp., column) of PSMC These elements

mxXn*

vary from 1 to N — 1, so in the worst case the overall possibilities are equal to (5:21) (Z j) For
high rate and high girth codes, the lifting degree is much bigger than m and n (i.e., m,n < N),

so the whole search space is of O ((N — 1)m+n73). It has to be notified that if g € {10, 12} is
PSMC

oo, all the constraints of

our desired girth of the code, so, for each realization of the matrix

type (1)) with k < g/2 have to be checked.

C. Some relations in Group and Number theory

Definition 2.3 (Prime factorization): Factorizing an integer composite number into a product
of smaller integers is called integer factorization. If these integers are further restricted to prime
powers, the process is called prime factorization.

Definition 2.4 (Co-prime integers): Two integers a and b are said to be relatively prime or
co-prime if the only positive integer (factor) that divides both of them is 1. Consequently, no
prime number can concurrently divide both of them. This is also equivalent to saying the Greatest
Common Divisor (GCD) of a and b is 1. Standard notations for relatively prime integers a and
b are GCD (a,b) =1 or (a,b) = 1.

If ¢ > 1 divides a and b, we write ¢ | a and ¢ | b. While ¢ does not divide a (b) we write ¢fa
(cfb).

Definition 2.5 (Euler’s totient function): Let N be a positive integer with prime factorization
N = p1® - xpy°N (e, > 0, @ = 1,---  N). Euler’s totient function counts the positive
integers up to N that are relatively prime to N, and it is written as ¢(/N) where, (N) =
Nx(1—=1/p1)*...x (1 —1/pn).

Theorem 2.6 (Euler’s theorem): Suppose that N and a are co-prime positive integers. Then
a*™) =1 (mod N).

Proof: See [31]]. O



Definition 2.7 (Ring of integers modulo N): Ring of integers modulo N, which is written as

Zy (even as Z/N7) is a set of numbers {0,1,---, N — 1} closed under two binary operations
“4+” and “x”. Since any pair of elements in Zy are commutative under operation “+” (resp.,
“x7), the group (Zy,+) (resp., (Zy \ {0}, %)) is said to be Abelian.
It has to be understood that (Zy \ {0}, %) is not a group evermore, as it has to satisfy invertibility
condition. This condition, which certifies that every non-zero element of a group has to be in-
vertible, is a necessary condition of the group. Furthermore, if a, b € Zy, then we conventionally
might use the notation ab to show a * b when there is no ambiguity later.

Definition 2.8 (Multiplicative group modulo N): Let N be a positive integer. The integers
co-prime (relatively prime) to N from the set {0,1,..., N — 1} of N non-negative integers form
a group under multiplication modulo N, called the multiplicative group of integers modulo N.
Another name for this group is group of units, and it is written as ZY, (even as (Z/NZ)™). Since
¢ (N) counts the number of positive co-prime integers (less than N), |Zy| = ¢ (N).

Definition 2.9 (Cyclic group): A cyclic group G is a group that is generated by a single
non identity element of this group a under group operation. Every element of this group is
constructed by repeatedly applying the group operation to a or its inverse. If this group is finite
with r elements, it is displayed as (a) = {a'|i = 1,2,--- ,r}.

Example 2.10 (Additive cyclic group): Let N be an arbitrary positive integer, G = (Zy, +)
and a = 1. So every element of (G is generated by using repetitive summation of a modulo N.

Example 2.11 (Multiplicative cyclic group): Let Ny = 11, Ny = 12, N3 = 14 and N, = 17.
For each N; (i = 1,2,3,4) we construct the corresponding multiplicative group Zy , and from
Definition we know that |Zy | = 10, |Zy,| = 4, |Zy,| = 6 and |Zy,| = 16. One can easily
check that it is possible to generate all the elements in Zy, (i = 1,3,4) just by taking a; = 2
(resp., a3 = 2 and a4 = 3 are to be the generator element) and its repetitive multiplications
modulo N. However, for the case Ny = 12, there is no solo generator element for Z]XV2 thus, it
is not cyclic.

Theorem 2.12: For any prime number p, Z, is always cyclic and there is a so-called generator
a € Z (named as primitive element of Z) so that Z = {a'|li = 1,2,--- ,p — 1}.

Proof: See [31]]. O
Note that Theorem [2.12] is not valid for an arbitrary integer value N. As we can see from
Example 73, is not cyclic but Z7, is cyclic; however none of the integers 12 and 14 are

prime numbers.



Definition 2.13 (Subgroup): Given a group GG under a binary operation “x”, a subset S of G is
called a subgroup of G if S also forms a group under the operation “x”. This is usually denoted
by S < G and read as “S is a subgroup of G”.

Definition 2.14 (Order of an element): Let G be a finite group under a binary operation “x”,
|G| =n, a € G, and e is the identity element of G. The smallest positive integer r (1 < r < n)

for which a” = e is called the order of a (or simply O (a)) where

T times
PR 3)
a’"=a*xa*---*xa.

Definition 2.15 (Order of a group): The order of a finite group G is equal to the number of
elements in G and is written as O (G).

If G = (a) is a cyclic group with generator a, then the order of G is equal to the order of its
generator, i.e., O(a) = O({(a)).

Theorem 2.16 (Lagrange’s theorem): For any finite group G, the order of every subgroup S
of G divides the order of G. Thus, GCD (O (5),0 (G)) = O (S).

Proof: See [31]]. ]

Corollary 2.17: Let G be a finite group. For an arbitrary element a € G, {a) = {a'|i =
1,2,---,0(a)} is a cyclic subgroup of G. In addition, GCD (O ({(a)), O (G)) = O ({(a)).

Proof: The result is a direct conclusion of Definition [2.9] and of Theorem [2.16] O

Suppose that N (N > 1) is an integer number, a,b € Zx and a # 0. In the upcoming sections,
it is needed to find the solution of equation ax = b, and under which circumstances b is dividable
by a. The next proposition determines this condition.

Proposition 2.18: Let N (N > 1) be an integer number, a,b € Zy, and a # 0. Also let d
be equal to d = GCD (a, N). Equation ax = b mod N has no solution if d [ b, and it has d
different solutions if d|b. In addition, let xy be the only solution of the equation (a/d) z = (b/d)
mod (N/d). So, d different solutions of the primary equation are z; = zo + (i * (N/d)) (i =
0,1,---,d—1).

Proof: See [31]]. O

Example 2.19: Let N = 18, a = 14, and b = 12. So, d = GCD (14,18) = 2 and d|b. In
this case, we solve the equation (14/2)z = (12/2) mod (18/2), and zy = 6 is the solution.
Since d = 2, the equation 14x = 12 mod 18 has two different solutions: zo = 6 and z; =

6+ (1 (18/2)) = 15.



In the next section, our method of sieving integer ring as well as a controlled greedy search

algorithm for implementing this method is fully explained.

III. INTEGER RING SIEVE TO FIND PERMISSIBLE ELEMENTS FOR THE VECTOR P

This section is divided into four parts. In Part A, we propose our definition of equivalent
relations of type (I) (i.e., equivalent cycles) in an exponent matrix (Tanner graph) of a fully-
connected QC-LDPC code as well as give a theorem for counting all classes of cycles under this

equivalent relation, i.e., the number of nonequivalent cycles of length 2k (k = 2,3,4,5) in this

SMC

e (d.e.,

matrix (graph). In Part B, several properties for selecting the second column of matrix P
131) are suggested. Indeed, depending on the size of d,, we propose a specific property for the
elements in P in a way that we can reduce the number of “potential but nonequivalent” cycles
by a factor of 3 when d, = 3 and a factor of d, — 1 if d, > 3. In Part C, some arguments and
statistics in existence of proper sieve occurrences that can meet properties suggested in Part B
are provided. Our greedy search algorithm is explained in Part D with pseudo code. Complexity

analyses for highlighting the important role of our sieving method in reducing the search space

are also provided in this final part.

A. Counting nonequivalent relations of type corresponding to nonequivalent potential cycles

of Tanner graph of a fully-connected QC-LDPC code

Definition 3.1 (Potential cycle): Let P, N, k and p,,,pn,, Pm, eP (0<i:<k-—1)be the

i1
parameters in relation (I). To address any set of 2k elements p,,,,, that meets the conditions
ng = ng, m; # m;r1, and n; # n;;1, we consider its corresponding summation, name it as

potential cycle Coi, of P, and display it as

k—1

CQk : Z (pmlm - pmini_H) . (4)

=0
In fact, as long as the elements p;;s are considered as symbolic within this summation and are
not assigned with some integers, we call this cycle potential. When all the elements within this
summation are assigned with integers and the summation is equal to zero modulo N, then Cy
1s an activated cycle.

Simply, any activated cycle is considered a realization of a potential cycle. In other words, a
potential cycle Cy;, is a symbolic presentation of its corresponding activated cycle. So, if girth

of QC-LDPC code C' is g it means 1) none of its potential cycles of length 2k (k < g/2) are



EPC’s EPC’s EPC’s ENAC’s ENAC’s | ESAC’s ENAC's ENAC's ENAC's
Class 1 Class 3 | Class 4 Class 1 Class 3 | Class 4 Class 1 Class 3 | Class 4
EPC’s EPC’s EPC’s EPC’s ESAC’s | ENAC’s | ENAC's | ENAC’s ESAC’s | ESAC’s | ENAC’s | ENAC’s
Class5 | Class6 | Class 7 | Class 8 Class5 | Class6 | Class7 | Class 8 Class5 | Class6 | Class7 | Class 8
EPC’s EPC’s EPC’s ENAC’S ENAC’s ENAC’s ESAC’s ENAC’s ENAC’s
Class 9 Class Class Class 9 Class Class Class 9 Class Class
10 12 10 12 s 10 12
EPC’s EPC’s EPC’s EPC’s ENAC’s | ESAC’s | ENAC’s | ENAC’s ENAC’s | ENAC’s | ENAC’s | ESAC’s
Class Class Class Class Class Class Class Class Class Class Class Class
13 14 15 16 13 14 15 16 13 14 15 16
al) a2) a3)
EPC’s EPC’s EPC’s EPC’s ENAC’s | ESAC’s | ENAC’s | ESAC’s ENAC’s | ENAC’s | ENAC’s | ENAC’s
Class 1 | Class 2 | Class 3 | Class 4 Class 1 | Class 2 | Class 3 | Class 4 Class 1 | Class 2 | Class 3 | Class 4
EPC’s EPC’s EPC’s EPC’s ESAC"s | ENAC’s | ENAC’s | ENAC's ESAC’s | ESAC’s | ENAC’s | ENAC’s
Class 5 | Class 6 | Class 7 | Class 8 Class5 | Class6 | Class 7 | Class 8 Class 5 | Class6 | Class7 | Class 8
EPC’s EPC’s EPC’s EPC’s ENAC’S ENAC’s | ESAC’s | ENAC’s ESAC’s ENAC’s | ENAC’s | ENAC’s
Class 9 Class Class Class Class 9 Class Class Class Class 9 Class Class Class
10 11 12 10 11 12 10 11 12
EPC’s EPC’s EPC’s EPC’s ENAC’s | ESAC’s | ENAC’s | ENAC’s ENAC’s | ENAC’s | ENAC’s | ESAC’s
Class Class Class Class Class Class Class Class Class Class Class Class
13 14 15 16 13 14 15 16 13 14 15 16
bl) b2) b3)

Fig. 1. Nexus of different categorizing of cycles. (al) and (bl) are diagrams to different classes of equivalent cycles of length
2k before assigning p;; values. (a2) and (a3) are different realizations of (al), and, (b2) and (b3) are different realizations of

(b1) after assigning p;; values.

activated after assigning values to p;;s and 2) there is no inevitable (potential or activated) cycle
of length 2k (k < ¢g/2) in code Cﬂ

Definition 3.2 (Equivalent cycles): Let Cy; be a potential cycle defined in [3.1] Potential cycle
Cs,. with corresponding summation Zi:ol (Pmin; — Pmint,,) 18 equivalent to the cycle Cyy, if and
Only if, 7”L6 = n;w m; 7é m;—i-l’ n; 7& n;—i-l’ LJf:_[)1 (m;7 n;), (mia n;—i-l)} = Uf:_ol (mia ni)a (miv ni+1)}
and |Zi:01 (ngn; - pm;n§+1)| = |Zi:ol(pmmz - pmmi+1)|- In other words, Cy;, is derived by
specifically reordering the terms of summation Zf:_ol (Pmin; — Pmynsy,) OF by the additive inverse
of it.

Note that with our definition of equivalent cycles Cy; and C,, one can imagine that Cy, is an

activated cycle if and only if C}, is. Moreover, equivalent cycles are involved in the same rows,

*Note that in this context an inevitable cycle could be considered both as potential and activated. In fact, before assigning
values to the elements of P an inevitable cycle is called Inevitable Potential Cycle (IPC) while it is called Inevitable Activated

Cycle (IAC) afterward.
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e) 3] g)

Fig. 2. Sample paths for cycles of length between 4 and 10 involved in exponent matrix P: a) exponent matrix of size m X n.
b) paths of length 4 equivalent cycles. c) paths of length 6 equivalent cycles. d) paths of length 8 equivalent cycles. e) path of
a length 8 cycle nonequivalent to (d). f) another path of a length 8 cycle nonequivalent to the paths (d) and (e). g) path of a
length 10 cycle.

the same columns, and even in the same elements of P.

To further address the nexus of our various categorizing of cycles, we consider a formal cycle
Cor in P with two scenarios: 1) P contains several nonequivalent classes of potential cycles of
length 2k where some of them are inevitable cycles and 2) P contains several nonequivalent
classes of potential cycles of length 2k with no inevitable cycle. (al) and (bl) in Fig[l] depict a
diagram with 16 nonequivalent classes of potential cycles of length 2k respectively for scenario
1 and 2. In scenario 1, we see two classes of Equivalent Inevitable Potential Cycles (EIPC’s).
(a2) and (a3) in Figm are two different realizations of (al) related to two different assignments
of p;;s. As can be seen, there are three types of equivalent classes in (a2) and (a3). The first one
is Equivalent Not-Activated Cycles (ENAC’s), second one is Equivalent Structurally Activated
Cycles (ESAC’s), and the last one is Equivalent Inevitably Activated Cycles (EIAC’s). (b2) and
(b3) in Figll] are also two different realizations of (bl) related to two different assignments of
pi;S. As can be seen, there are no EIACs in these diagrams because there were no EIPCs in
(b1). In this work we follow scenario 2 and will try to find the optimal assignment in order to

keep all the potential cycles of length 2k (kK = 2,3,4,5) inactivated, as there is no inevitable



cycle of length 2k (k = 2,3,4,5) in the exponent matrix of a fully-connected QC-LDPC code.
The following example also further illustrates the perception of equivalent potential cycles.

Example 3.3: Suppose that P is the exponent matrix in Fig.[2| (a). Cycles Cy4, Cg, and Cg, which
are depicted with continuous arrows respectively in Fig. 2| (b), (c) and (d), are considered potential
cycles. Indeed, depending on the values of p;;, which are taken from the set {0,1,--- , N —
1}, their corresponding summations may (or may not) be equal to zero modulo N. However,
regardless of the amount of their summation, each one of these cycles has some other equivalent
representation in matrix P. For instance, dash-dot arrows in Fig. [2] (b) and (c) respectively show
another equivalent representation (i.e. additive inverse) of C, and Cg. Also, the dash-dot arrows
in part (d) display a rearrangement of the summation corresponding to Cg and thus presents an
equivalent cycle of Cs.

The definition of equivalent classes of cycles reduces the number of equations to be verified
in constructing QC-LDPC code of given girth, so it accelerates the search process. We will
argue this method further in the following sections when we try to explain our search algorithm.
However, before that we provide a definition and a theorem here to count nonequivalent potential
cycles of length less than or equal to 10 in an exponent matrix P of size m x n where m,n > 2.

Definition 3.4 (Cycle’s tracking matrix of order 2k): Cycle’s tracking matrix of order 2k is

a square matrix of size k£ (k = 2,3,---) where its (z’-j)th component counts the number of
non-equivalent potential cycles of length 2k that involve all rows and columns of a matrix of
size 7 x j. This matrix is written as TC*.
It has to be noted that TC* is symmetrical (i.e., T = (TC%)T) as the number of potential
cycles involved in a ¢ X j matrix is equal to the number of such cycles involved in matrix of
size j X 1.

Theorem 3.5: Let P,,«, be an exponent matrix of a fully-connected QC-LDPC code with

m > 2 and n > 2 and #C,," be the number of nonequivalent potential cycles of length 2k

(k =2,3,4,5) involved in P,,+,. So

min{k,m} min{k,n}

sepr= >y (M)(1) )
i=2 =2 J



where tfj?’“ is the (i—j)th component of cycle’s tracking matrix TC* (k= 2,3,4,5) below

0O 0 O 0 0
0 0 O 0o 0 0 O 0 0
N T o o133 :
T4:01’T6:0007T8: 0 3 s 36,T10=OO 60 180 180
0 0 6 0 3 36 7 0 0 180 900 1440
_0 0 180 1440 1440_

and (:f) is equal to #lr), when r < n and 0 otherwise.

Proof: First we notice that based on relation (1)) a potential cycle Co of length 2k (k > 2) is
involved in at most k£ rows as well as k£ columns of matrix P,,.,. Secondly, for constitution of a
cycle of length 2k, the minimum required number of columns (rows) of P,,,,, is 2 when k is an
even number and 3 otherwise. So the term ("}') (’}) in relation (S) enumerates all the sub-matrices
of size i X j of a matrix of size m x n where 2 < ¢ < min{k,m} and 2 < j < min{k,n}. For
each one of such sub-matrices, tfj% counts the number of nonequivalent potential cycles that are
involved in a sub-matrix of size ¢ X j. By computer programming it is possible to enumerate
all such cycles of length 2k (k = 2, 3,4,5) which occupy ¢ rows and j columns. For example,
parts (d), (e), (f), and (g) of Fig. |2 are certain samples of potential cycles respectively of size 8,
8, 8, and 10 occupying all rows and columns of sub-matrices of dimension 2 x 4, 2 X 2, 3 X 2,
and 3 x 5. We used computer programming, and the derived results are summarized in tracking
matrices T¢* (k = 2,3,4,5). In summary, relation considers multiplicities of sub-matrices
of size 7 x j multiplied by nonequivalent potential cycles of length 2k that are involved in such
matrices. ]

Given that g is our desired girth of a code with exponent matrix P of size m X n, one
quick impression of Theorem is the verification algorithnﬂ has to make sure that none of
the nonequivalent cycles of length 2k (k < ¢/2) is activated. Table [Il contains multiplicities
of such cycles for certain sizes of m, and n. For instance, if ¢ = 12, m = 3 and n = 10,
then the verification algorithm is supposed to check #CJ'" + #Co™° + #C'0 + #C'0 =
135 4 720 4+ 12960 + 90360 = 104175 nonequivalent cycles of lengths 4 to 10 are not activated.

In addition, with some modifications we are still able to further reduce the number of these

3We recall that greedy search algorithm in [26]] consists of two main parts: 1) picking proper elements from the set {1,--- ,N—
1} to be placed as components of sequential rows (columns) of P 2) verifying if every cycle of length less than g remains
potential for the assigned P or not. A proper selection (part (1)) along with a valid verification (part (2)) will terminate this

algorithm successfully.



TABLE I
NUMBER OF NONEQUIVALENT POTENTIAL CYCLES OF SIZE 2k (k = 2,3,4,5) WHICH ARE INVOLVED IN MATRIX P, xn,
WHEN, 2 < m < 5AND 2 <n < 10.

— m=2 m=3 m=4 m=5

— [perrlpelpci ey et et et ety et e e ety wes e s | vl
n=2 1 0 1 0 3 0 6 0 6 0 21 0 10 0 55 0
n=3 3 0 6 0 9 6 45 60 18 24 | 189 | 420 30 60 555 1680
n = 6 0 21 0 18 24 | 189 | 420 36 96 | 864 | 3300 60 | 240 | 2640 | 14460
n=2>5| 10 0 55 0 30 60 | 555 [1680|| 60 | 240 |2640 (14460 100 | 600 | 8200 | 65940
n = 15 0 120 0 45 | 120 | 1305 [4980|| 90 | 480 |[6345|45660|| 150 | 1200 | 19875 |212340
n="T| 21 0 231 0 63 | 210 | 2646 (12180|| 126 | 840 (13041{116760|| 210 | 2100 |41055 | 548940
n =8| 28 0 406 0 84 | 336 | 4830 26040|| 168 | 1344 [24024[257880|| 280 | 3360 | 75880 (1220520
n=29]| 36 0 666 0 108 | 504 | 8154 [50400|| 216 |2016 |40824/511560/| 360 | 5040 [1292402431800
n = 10| 45 0 [1035| O 135 | 720 {12960[(90360|| 270 | 2880 [65205(934920| 450 | 7200 [206775/4457880

nonequivalent cycles. To this end, a special class of exponent matrices with SMC assumption

and a predetermined column is considered in the following part.

B. Designing P using cyclic subgroups of multiplicative group 7y

Let P, be the second column of exponent matrix PSMC that is introduced in relation (2). In this
part we try to pick the non-zero elements of P, from a specific cyclic subgroup of ZY%,. Depending
on the value of d, (i.e., value of m), we consider a specific cyclic subgroup and then propose
allocating some or all of the elements in this subgroup to p;; (1 < 7 < m — 1). The main reason
behind such allocation is reducing the number of nonequivalent potential cycles to some extent,
and thus accelerating our verification algorithm. We select our candidate subgroup in a way that
it can impose equivalent potential cycles to P5M¢ as much as possible. These extra equivalent
cycles are some of those nonequivalent cycles that are enumerated in Theorem in general,
but here they could be considered as equivalent due to the property of our selected subgroup.
Furthermore, by following this approach we have two other important properties. Firstly, by
forcing some counted nonequivalent cycles in Theorem [3.5|to be in pre-known equivalent classes,
we not only can reduce the search space, but also increase the chance of finding codes with an
assumed girth. Secondly, since our designation of P, is done a priori and definite, the elements

in P, would not be variables anymore. The search complexity is reduced to determining elements

v (G =2,3,-+-,n—1), only.



We pass further discussions to the next sections and will focus on two specific lemmas. These
lemmas elucidate both the selecting of cyclic subgroups and the role of these subgroups in

reducing nonequivalent potential cycles.

SMC ;

Lemma 3.6: Suppose that P33~ is an exponent matrix of form with lifting degree N and

PSMC

P, =1[0,1,a]" is the second column of P§M

where a is a non-identity element in multiplicative
group Zjy with property a * (1 —a) = 1 and superscript “7” stands for vector transpose. Thus,
O ({a)) =6 and
#Coi

3

3,n
#CQk,a S

where #Cg,fa is the number of nonequivalent potential cycles of length 2k (k = 2,3,4,5)
pertaining to P3M¢ with the second column P, and #C;’,’C" is introduced in Theorem for the

3Ixn

general case of an exponent matrix Pj3,, with three rows.
Proof: To show that O ({a)) is 6 we need to show that O (a) = 6. To this end, we consider
the assumption a * (1 —a) = a — a* = 1 and repeatedly apply the group operation to a as

follows:

a?=a*xa=a—-1, a>=a*xa’®=a’>—a=-1, a* =ax*a®= —a,

5 4

a=axa*=1—a, a°

5

=axa®=a—a’=1.

#C
3

To prove #Cg’,fa < , we show that for any potential cycle Cor: S0 (Pmin: — Prmins ,,) in

matrix P5MC below

oo o - 0
0 1 V2 0 In ) (6)
0 a ay2 -+ avm

there are at least two corresponding and avoidable cycles aCoy: Zf:_ol (apmmi — AP, +1) and

(1 —a)Cor: S0 ((1 = @) prmins — (1 — @) Prmynys, ) in this matrix that have the same length as

PSMC

Cay, but are located in different positions (with partly different elements) of P53

compared with
Cai,. Note that in Definition [3.2] it was emphasized that equivalent potential cycles will occupy
exactly the same elements, rows and columns of matrix P, so in the context of Definition
potential cycles Cay, aCsy, and (1 — a)Co, are nonequivalent. However, as it will be shown later,
Cor is an activated cycle if and only if aCy ((1 — a)Cy) is activated. Thus, we consider them
as equivalent cycles. In other words, by verifying one, the other two will be verified. Before

continuing, we need to establish a fact regarding isomorphic exponent matrices.



0 0s 0 0
al) P =|o 1 T T TYs Ce=0-0+y,—ys+ay; —a
A 0 i ¥z . _._. ars
Yoo o0 0
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ad) ~(aP3¥S —Rs) = [0
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- 0 : .
25 RP(—(aPPC—R;)) =0 1 2 vs | =P3%r
0 [ § ays

Fig. 3. Isomorphic forms of exponent matrix P5Y.C under transformation RP; (— (aX — R3)): parts (al) to (a5) clarify the

stepwise impact of transformation RP; (— (aX — R3)) on both P§YC and the sample path of a potential cycle C.

Let N € N, a € Zj%, and Py (resp., Py) be an exponent matrix of code C (resp., Cs) with
lifting degree N. It is shown [18] that P, (or the equivalent Tanner graph of () is isomorphic
to Py (Tanner graph of C) if it is constructed by row (column) permutation of P; and/or by
adding a constant to each row (column) of P; and/or by multiplying a to P;. Given this fact
and considering GCD (a, N) = GCD (1 — a, N) = 1, we have P§MC =~ ¢PSMC =~ (1 _ o) p3MC

3xn

enu”

where “=” stands for isomorphic relation. Cy is also an activated cycle (i.e., its summation is
equal to zero modulo N) if and only if aCo, ((1—a)Cyy) is activated. Now consider the cycle-path
Cor (k = 2,3,4,5) in matrix P5MC (see Fig. [3[ (al) or Fig. 4| (al) for a sample cycle of length

six). Additionally, consider the cycle-paths of aCoy and (1 — a)Cay, respectively, in aP5MC and

3Ixn

(1—a)P5MC (see Fig. 3| (a2) or Fig. @ (a2) for the cycle of length six). In the sequel, we attempt

to illustrate the cycle-path aCyy, (resp., (1 — a)Cq) in matrix aP5MC (resp., (1 — a)P3MC) has
SMC

an isomorphic form in matrix P37 "



0 0‘41;) 0
D) e I r——mps | Gm0-0tn-ntan-a
y 0 a, . _ ayz_ . _. ays
‘ Y 10 o4 700
2 A-apse—|o 1- \ a2y T o
o 1! Yz
PO U SRR - I !
'
_ 0 -1 |
a3) (1—-a)PMC — R, = |0 —a[ —ayz
0 0 oo 0.-.-.c 0 lu—a=0-0+a-ay, -
> A-a)yys +y; -1
=0—0+ay;—ay; +y,—1
0 .
a4) ~(1 - )P - R,) = |0
I 0
as) RP, (—((1 — @)PSMC _ Rz)) =0 1y l'rs == P3Yy
0 ays . _ays

Fig. 4. Isomorphic forms of exponent matrix P5Y.’ under transformation RP» (— ((1 —a) X — Rz)): parts (al) to (a5) clarify

the stepwise impact of transformation RP: (— ((1 — a) X — Rz2)) on both P5Y.C and the sample path of a potential cycle Cs.

Assume that matrices Ry, R3, RP; and RP, are defined as follows:

01 v - 7 0 a ayx -+ avm 01 0 0 0 1
Ry=10 1 Yo ot Yn ,R3: 0 a ay2 -+ avm ,RP1: 0 0 1 ,RPQZ 1 0 0],
01 v - 0 a ayy -+ avn 1 0 0 01 0
(7N

where R; (¢« = 2,3) is constructed from the i row of matrix ngﬁ? and RP, (1 = 1,2)is a

row permutation matrix to be applied on P, So, matrix RP; (— (aP5Y.C — Rs)), which is

3xXn
constructed by applying linear transformations as well as row permutation matrix RP, on aP3}C

(see Fig. 3| parts (a3) to (a5)), has a form exactly like matrix Pgi{? . Furthermore, the cycle aCyy

has a new path in the resulting matrix and, at the same time, is isomorphic to the cycle in

matrix aP3MC (Fig part (a2)). Similarly, matrix RP; (— ((1 — a) P5C — Ry)) is constructed

3xXn

by applying linear transformations as well as row permutation RP, on (1 — a)P5MC (see Fig. |4—_1|

parts (a3) to (a5)), and it has a form exactly like matrix P5C, too. Also, the cycle (1 — a)Cay,

has a new path in the resulting matrix and, at the same time, is isomorphic to the cycle in
matrix (1 — a)P3MC (Fig part (a2)). As the permutation matrices RP; and RP, will entirely

3xXn

permute the rows of a matrix and, at the same time, are different from each other, so the new



path of cycle aCo (resp., (1 — a)Cq) in the resulting matrix (i.e., matrix in part (a5)) would be
different from the path of cycle Cyy. (in matrix part (al)) and different from (1 — a)Co (resp.,
aCsy). To summarize, for an arbitrary potential cycle Cy, there are two other different potential

cycles aCyr and (1 — a)Cyy, with the same length as Co, and the verification algorithm needs

to check only one of them. Since aCo; and (1 — a)Cyy, have cycle-paths in P5MC different from
3,n
Cor, #Ca, < T2, O
aC4 aCé P=

0 Y2 %3 Va T¥s Ve V7 Vs

[0 —+0 0 0°40 0 0 0]
0 a—ay; ay; ay, ays ays ay; ayg

c4 s p_ xa
10 4070 0 Foa-1
0 O 10 o0 0 0 © 0} a

3x9

i al)
0 L-¥2 ¥z ¥a™V¥s Ys Y7 Ve
0 a ay; ays ayy Uys ays ayz @Yelsyq X(1-¢

C4:(0—0)+ (y2 —1) (T::;)::w-
C6:(0—0)+ (ye—ys) + (ays — ayz) =1

(L—a)f4 (1—a)C6

B
oo 0O 0 0:!:0 0 0 0
[0 Y2 Y3'iYs '¥s Ye V7 VB“

0 ahyz2 ays ?}f‘_i_iﬂ?’s AYe A¥Y7 AYgly,q

a)

al)

Fig. 5. Samples of isomorphic paths of cycles with different length in P$Ys’: a) primary underlined paths for cycles Cs, Cs
and Cs. al) isomorphic paths for the considered primary paths in part (a) derived from transformation t;. a2) isomorphic paths

for the considered primary paths in part (a) derived from transformation to.

Example 3.7: Suppose that PSS is the exponent matrix in Fig. [3| (a), and cycles Cy, (k =

2,3,4) are the potential cycles with the path depicted in Fig. [5] (a). Following the procedure
described in the proof of Lemma we can find at least two other isomorphic paths to the
cycle Co, named aCyy, (Fig. |3 (al)) and (1 — a)Co, (Fig. [3] (a2)). To this end, we consider the
transformations t; (X) = RP; (— (aX — R3)) and to (X) = RP> (— ((1 —a) X — Ry)) where
parameter a, matrix RF; (z = 1,2), and matrix R; (z = 2,3) were introduced in the proof of
Lemma [3.6] As it was explained in this lemma, t; (P5YY) = t5 (P5Yy') = P5YY. However, the
path of cycle aCyy, (resp., (1 — a) Cor) in matrix aP5YS (resp., (1 — a) P5YY) is transformed to

a path in matrix P$MC which is different from the path of cycle Cyy, in this matrix.

Lemma 3.8: Suppose that P$MC is an exponent matrix of form with lifting degree N

and P, = [0,1,a,a%]" is the second column of PSMC where a is a non-identity element in
multiplicative group Zy with property a® = 1. Thus
#Coi!

3 )

4,n
#CQk,a <
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Fig. 6. Isomorphic forms of exponent matrix P$}C under transformation RP; (aX): parts (al) to (a3) clarify the stepwise

impact of transformation RP; (aX) on both P§YC and the sample path of a potential cycle C.

where #Cé,’:a is the number of nonequivalent potential cycles of P$MC of length 2k (k = 2,3, 4, 5)
and #C;,;” is introduced in Theorem for the general case of an exponent matrix P, with
four rows.

Proof: Before starting the proof, note that (a) is a cyclic subgroup of Zj of order 3 as a
is not an identity element and a® = 1.

As pointed out in the proof of Lemma we ought to show that for any potential cycle

k—1 : .
Cor: Yo (Pmins — Pmynsr,) in matrix P§YC below
0 O 0 e 0
001 2 -
; (®)
0 a avy - avym
0 a® a%y - a’y,

there are at least two corresponding and ignorable cycles aCoy: Zf;ol (apmmi — APy, +1) and

a’Coy: Zf:ol (a*Pimin; — @*Pmin,,,) in this matrix which have the same length as Cy; but are
located in different positions (with partly different elements) of P5Y.¢ compared with Cyy,. Similar
to the proof of Lemma we recall that since a (resp., a?) is invertible, Cyy, is an activated cycle
if and only if aCy; (a?Cay) is activated. Thus, we consider Cy, aCor, and a?Cyy, to be equivalent
cycles even though this characteristic is not compatible with the Definition Now let N € N,
a € Zy and Py (resp., P) be exponent matrix of code C (resp., Cy) with lifting degree N. It is

shown [18]] that P, (or the equivalent Tanner graph of (%) is isomorphic to P; (Tanner graph of
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Fig. 7. Isomorphic forms of exponent matrix P$YC under transformation RP» (aQX ): parts (al) to (a3) clarify the stepwise

impact of transformation RP» (a2X ) on both P$MC and the sample path of a potential cycle Cs

() if it is constructed by row (column) permutation of P, and/or by adding a constant to each

row (column) of P; and/or by multiplying a to P;. Given this fact P{MC = ¢P3MC o 52 piMC,

Moreover, consider the cycle-path Co, (k = 2, 3,4,5) in matrix P3MC (see Fig. @ (al) or Fig.

4xn

(al) for a sample cycle of length six). Additionally, consider the cycle-paths of aCo, and a*Cyy,

in aPPC and a*PIC (see Fig. [6] (a2) or Fig. [7] (a2) for the cycle of length six), respectively.

In the sequel, we attempt to illustrate the cycle-path aCy, (resp., a*Co;) in matrix aP$MC (resp.,

aQPSMC

SMCY has an isomorphic form in matrix P5MC

4xn *

Assume that matrices P, and RP, are defined as follows:

0

o

RP1: 7RP2: ) (9)

= o o O
= o O

0
0
0
1

o O O =
(an)

o O O =

o O = O

0
1
0

o

0

where RP; (i = 1,2) is a row permutation matrix to be applied on P, So matrix RP; (aPEIXIij) ,

which is constructed by applying row permutation matrix 2P, on aP$MC (see Fig. @ parts (a2)

to (a3)), has a form exactly like matrix P§MC. Furthermore, the cycle aCy;, has a new path in the

resulting matrix, and at the same time it is isomorphic to the cycle in matrix aP$M¢ (Fig@ part

(a2)). Similarly, matrix RP, (a*P3YC)) is constructed by applying row permutation matrix RP;

on a?P{MC (see Fig. [7| parts (a2) to (a3)), and it has a form exactly like matrix P§M¢ too. Also,

4xn

the cycle a®Cyy, has a new path in the resulting matrix, and at the same time it is isomorphic to
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the cycle in matrix a?>P$MC (Fig part (a2)). Permutation matrices RP; and RP, will entirely

permute the rows of matrices except the first row, which is intact. Since these permutations
are different from each other, the new path of cycle aCo (resp., a®Cay) in the resulting matrix
(i.e., matrix in part (a3)) would be different from the path of cycle Co; (in matrix part (al))
and different from a2Cy, (resp., aCoy;). To summarize, for an arbitrary potential cycle Co;, there
are two other different potential cycles aCy, and a?Cy;, with the same length as Co, and the

verification algorithm needs to check only one of them. Since aCy;, and a?Co have cycle-paths

4,n
1 SMC 1 #CQI;
in P> different from Co, #CQM < dJ
aC8 aCl0
P =
07T 0 0 0
g‘:g E Va5 Yo V7 vs
'aya ayy ays ‘ayeg ‘ay; ‘:ays
a’® alys ay, alye @2y aly, ‘a2
c8 C10 o ¥z Ya @¥a Q7YVs QTYVe QA7Y7 Q7YVglyg
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Fig. 8. Samples of isomorphic paths of cycles with different length in P$YS: a) primary underlined paths for cycles Cs and

Ci0. al) isomorphic paths for the considered primary paths in part (a) derived from transformation t;. a2) isomorphic paths for

the considered primary paths in part (a) derived from transformation t».

Example 3.9: Suppose that P$YC is the exponent matrix in Fig. |8[(a), and cycles Co (k = 4,5)

are the potential cycles with the path depicted in Fig. [§] (a). Following the procedure described
in the proof of Lemma [3.8] we can find at least two other isomorphic paths to the cycle Cy
named aCoy (Fig. [8] (al)) and a2C;, (Fig. [8] (a2)). To this end, we consider the transformations
t1 (X) = RP, (aX) and ty (X) = RP (a*X) where parameter a and matrix RP; (i = 1,2)
were introduced in the proof of Lemma As was explained in this lemma, t; (P$Yy) =
ty (PIMY) = PV’ However, path of cycle aCoy, (resp., a?Coy,) in matrix aP5Yy” (resp., a’P{Yy)
is transformed to a path in matrix P$C, which is different from the path of cycle Cyy, in this

matrix.

Note that we have tried to intuitively reason lemmas [3.6] and [3.8] to make them easier to
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understand. However, an algebraic proof method to these lemmas is presented in Appendix A.
In addition, a general formulation of these lemmas is presented in the following theorem.

Theorem 3.10: Suppose that P5MC is an exponent matrix of form (2) with lifting degree N

mXxXn

SMC

m72]T
mxn

and [0,1,a,a?,---a is the second column of P (m,n > 3) where a is a non-identity

element in multiplicative group Zy, with property a * (1 —a) = 1 (resp., O (a) = m — 1) when

m = 3 (resp., m > 4). Thus

Cm)n #Cm,n
mn. - 2k ) mn - 2k
g < T2 Gesp. g < 2y

where m = 3 (resp., m > 4), #C;’}C’Z is the number of nonequivalent potential cycles of PSM¢
of length 2k (k = 2,3,4,5) and #C,," is from Theorem [3.5| for the general case of an exponent
matrix P,,y, with m rows.

Proof: For the cases m = 3 and m = 4 we refer them to the lemmas|3.6/and respectively.
For the case m > 5 the argument is exactly the same as the case m = 4. This means that
tailored to the order of non-identity element ¢ € Zy and any potential cycle Co;, € Cy" (k =
2,3,4,5), it must be shown that there are m — 2 other isomorphically equivalent cycles a'Cay,
(i =1,---,m — 2) that all have the same length as the cycle Cy; but with different paths in
matrix PSMC of form (2) that has [0, 1,a, a2, - --a™ 2] as its second column. To show this fact,

we consider below a row permutation matrix of size m

- - i

1000 0 0
0000 0 1
0100 0 0

RP.=|100 1 0 00 L i=1,2,--,m—2 (10)
00 0 1 00
o000 - 1o

iPSMC

and apply it on the left side of matrix a'P}\" .

Following the steps of the presented argument
in Lemma this action will translate the potential cycle Cqi, to m — 2 other isomorphic cycles
a'Coy, that all have the same size as Co; but with completely different paths in P5MC. O

Here it should be noted that using the constraint a (1 —a) = 1 for the case m = 3 is more
efficient than using a?> = 1. This is because the former constraint will reduce the equivalent

cycles by a factor of 3 while the later constraint will reduce it by a factor of 2.
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C. IRS technique as an A priori step of greedy search algorithm

In Theorem [3.10] it was shown that by tailoring to the column degree d, = m of exponent
matrix P5MC there might exist a proper cyclic subgroup (a) of multiplicative group Z} from
which we can pick non-zero components of P. Specifically, this theorem asserts that P =
[0,1,a,a2,---a™2]". The essence of Theorem is determining P, a priori in a way that 1)
the number of nonequivalent potential cycles is reduced by a certain factor and 2) the greedy
search algorithm does not need to search components of P anymore. Then, after determining
a suitable P, that meets the condition of Theorem the search algorithm will take the sub-
matrix [6 ‘ 131} as a base and try to find proper values of 7;s in order for PSMC to meet the
girth condition. Nevertheless, it has to be noted that Theorem [3.10] does not guarantee that sub-
matrix [0 | 7| meets the girth condition itself. So given the desired girth g = 2k (k = 5,6), the
questions are “does every candidate P, result in a sub-matrix [6 ‘ 131} with desired girth ¢g? If not,
what is the portion of Zys (accordingly, what is the portion of Ns) holding at least one cyclic
subgroup (a) that meets the condition of Theorem and at the same time [6 ‘ 131] meets
the girth condition?” To answer the first question, we provide a proposition for the case d, = 3
and a counterexample for the case d, > 4. To address the second question, some statistics are
provided.

Proposition 3.11: Suppose that N € N, N > 7 and P, = 0,1, a}T where, a is a non-identity
element of multiplicative group Zy, with property a % (1 — a) = 1. Then, QC-LDPC code with
exponent matrix [6 ‘ 131} has girth equal to 12.

Proof: Based on Theorem we recognize that [6 ‘ 131} has no potential cycle of length 6
and 10, as it has only two columns. Furthermore, based on the results of Lemma the number
of nonequivalent potential cycles of length 4 (resp., 8) that we need to check is #Cfﬁ =1 (resp.,
#Cg’ﬁ = 2). The paths of nonequivalent potential cycles of length 4 and 8, which are involved
in the first two columns of exponent matrix P are depicted in parts (b), (e), and (f) of Fig.

respectively. Given that poo = p1o = p20 = po1 = 0, p11 = 1, and py; = a, we have:

cycle C4 in part (b) : poo — por + P11 —pro=1#0 mod N,

cycle Cg in part (e) : 2 (poo — po1 + P11 — P1o) =2# 0 mod N,

cycle Cg in part (f) : poo — por + P11 — P10 + P20 — P21 + P11 —pro=2—a #0 mod N.
Note that since a * (1 —a) = a — a®* = 1, a* = a — 1. Considering that GCD (a, N) = 1, if
2—a=0 mod N, then 2a = a®> mod N. Thus, 2a = a—1 mod N. This means that a = —1
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mod . But there is a contradiction as a = —1 mod N and at the same time a = 2 mod N.
[

In the following we bring a counterexample that shows every a value that meets the condition
a™~! =1 (d, > 4) would not necessarily be a proper candidate for constructing the sub-matrix
[0 7] with girth 12.

Example 3.12: Let Ny = 41, Ny = 239, N3 = 639, N, = 1443, and correspondingly consider
multiplicative groups Zy (i = 1,2,3,4) where |Zy | = 40, |Zy,| = 238, |Zy,| = 420, and
|Z,| = 864. Conventionally suppose that an element a € Zy, has property J when ax (1 —a) =
1, has property 33 when O (a) = 3, and has property 333 when O (a) = 4. So none of the
elements of Zy, holds properties J and JJ, while there are two elements a = 9, 32 in this group
that meet the property JJJ. Nevertheless, neither a = 9 nor a = 32 are proper candidates for
constructing vector P; = [0,1,a,a2,a% as they will result in matrix [0 7] with girth less
than or equal to 8. For the value N, none of the elements of Zy, holds properties J to JJ3J.
For 7y, there is no element with property J and JJJ, but only two elements a = 214, 427 hold
the property JJ. However, neither a = 214 nor a = 427 are proper candidates for constructing
vector P = 0,1, a, a2]T as they will result in matrix [6 ‘ 131} with girth less than or equal to 8.
Eventually, ZJXV4 possesses four elements a = 101, 212, 1232, 1343 that have property J and all of
them are suitable choices for constructing P = [0,1,a). This is because, based on proposition
P = [0,1,a] with property J always constitutes a two-column matrix with girth 12.
Moreover, ZXM has 8 elements a = 100, 211, 334, 445,898,1210, 1231, 1342 with property JJ,
and all of them are suitable candidates for constructing ]31. Also, there are 24 elements in wa
that have property JJJ, and among them, 16 are good candidate for constructing P, which are

a = 73,142,376, 512,554, 593, 623, 746, 850, 857, 1067, 1178, 1301, 1331, 1370, 1412 .

TABLE 11
RATIO OF PERMISSIBLE VALUES OF N BELONG TO THE SET {37, 38, -+, 7400} AND THE AVERAGE NUMBER G OF
PERMISSIBLE a’S PER PERMISSIBLE Z ). PERMISSIBLE a IN Zx; IS THE VALUE FOR WHICH [6\P1] HAS GIRTH GREATER

THAN 8.

_ la-a)=1]a=1]a'=1]a’=1]

Ratio of permissible N’s 13% 60% 51% 24%
a’s per permissible N 2.72 3.63 8.46 5.75

Although Example highlights there probably is not a general and explicit way for finding
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cyclic subgroups that are suitable for launching a greedy search algorithm, there still is a reliable
trend to ensure that suitable candidates of cyclic subgroups are available even with a large size.
To address this issue we bring some statistics in Table [[I and Fig. 0] The first row of Table
indicates the property of each cyclic subgroup. The second row of this table contains the
proportion (or ratio) of those integer number Ns, which for that Zj3 possesses at least one
suitable cyclic subgroup of indicated order. The variation range of /N is between 37 and 7400,
which is high enough for our investigation and inference. As can be seen in Table [l this ratio
is always greater than 10%. The third row of Table [IIl accommodates the average number of
suitable candidates of value « that exist in each suitable multiplicative group Zy. For instance,
if the ultimate goal is using SMC technique for constructing a fully-connected QC-LDPC code
with d, = 4 and girth at least 10, one can consider a fixed NV € N as a lifting degree and hope
that they have a 60% chance (for this specific N) to find a proper cyclic subgroup of order
3 to make P,. In addition, for each N, Z)y possesses more than three a values (on average)
that we can make use to form vector P, = 0,1, a, az]T. Fig. @ helps us to have a conception
of piecewise trends of existence cyclic subgroups while NV is gradually increased. This figure
consists of four parts; each one displays a screenshot of size 10 of a 3-dimensional histogram.
These small histograms show the multiplicities of suitable a values (as z axis) of Z}, considering
N (as x axis). The notable thing is these screenshots are selected from different parts of the
general histogram. The results of this figure ensure that we have a chance to find a suitable cyclic
subgroup of Z3, even when N belongs to the small intervals who are picked from different parts
of the integer ringﬂ

Before concluding this part, there are three important relevant facts. First, Lagrange’s theorem
is a primary criterion to verify if Zy, has at least one cyclic subgroup of our desired order
or not. However, this theorem proposes a necessary but not sufficient condition. For example,
|Z340| = ©(240) = 64 and GCD (8,64) = 8, but Z;,, has no element of order greater than

4. So it is impossible to construct P = 0,1,a,--- ,am_l]T when N = 240 and m = 8.

*The authors seize this opportunity to highlight another capability of IRS method which is beyond the scope of this paper
but could be considered as future work. Indeed, if N is a prime number and non-zero components of P, constitute a cyclic
subgroup of ZY;, then the set of non-zero elements of P_’;- (j =2,---,n—1)1s a co-set of this subgroup. In other words,
exponent matrix PSMS is made of a specific cyclic subgroup of multiplicative group Z}, and some of its co-sets. Investigation
of the relation between these co-sets and the girth of SMC constructing based QC-LDPC codes could be considered as future

studies.
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multiplicity of “a”
o
multiplicity of “a”

multiplicity of “a”
&
multiplicity of “a”

(<33

Fig. 9. 3-Dimensional histograms that pick z axis to show the abundance of “a” values with properties “a (1 —a) = 17,

“q® = 1” and “a* = 1” which are in ZY, where, N € {i+ 37,5+ 38, -+ ,i+ 46} = 0,200,600, 1400): a) screenshot of

size 10 when 7 = 0. b) screenshot of size 10 when ¢« = 200. ¢) screenshot of size 10 when 7 = 600. d) screenshot of size 10

when 7 = 1400.

Second, checking for the existence of a proper N and, accordingly, the existence of a suitable
cyclic subgroup that results in P, is not time-consuming. Given a fixed m, it will take few
milliseconds for MATLAB software to check if Zj is a proper candidate or not. Third, the
following proposition, “the search algorithm will need to investigate only one permissible a per
each permissible cyclic subgroup of Zj; that meets the girth condition.” In other words, if there
is more than one generator for permissible cyclic subgroup S (S < ZY), then it is sufficient to
check only one of them.

Proposition 3.13: Let N > 6, a, b be two different elements of Z}, which satisfy the constraint
in Theorem and (a) = (b) = S. The Tanner graph of constructed matrix P5M¢ with second

mxn

m_Q]T has the same girth as the Tanner graph of matrix P>M¢ with second

column [0,1,a,--- ,a o

column [0,1,b, -+, 6™ 2",

Proof: Tt is shown [18] that if d € Z}, then the Tanner graph of code with exponent matrix
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P is isomorphic to the Tanner graph of code with exponent matrix dP. Since a and b are in Z},
so both of them are invertible and GCD (a, N) = GCD (b, N) = 1. Given this fact we consider
two cases:

Case I (d, = m = 3): In this case, a and b have the property a (1 —a) =1 =0b(1 —b) and
based on Lemma O ({a)) = O((b)) = 6. Since a necessary and sufficient condition for

non-identity element z = 2V ((z) = S, y € N) to be a generator of S is GCD (y,O(5)) = 1,

5

are the only generators of S. If P§YC has [0,1,a]" as

it is easy to see that a and b = «a v

MC

MC preserves SMC property, and it has [0, a®, 1]T as its second

its second column, then a’P%

SPSMC

column. Swapping the second and the third rows of a°P3;

also does not affect the girth but
gives [0,1,a°]" =1[0,1,b]" as the second column.

Case II (d, = m > 4): In this case a and b have the property a™ ' = 1 = ™! and
O(S) = m — 1. So, as in case I, b has a form like b = a¥ where y € N (1 < y < m —
2) and GCD (y,m — 1) = 1. If PSMC has [0,1,a, -+ ,a™ ¥, am v .o am2)" as its

mxn

T . .
second column, then aVP5MC has [0,a¥,a¥*!,--- ,1,a,---,a?"1]" as its second column while

SMC
mxn

0,1,aY,a%, - 7a(m‘2)y]T =[0,1,b,02,--- ,b™2]" as the second column of a?PSMC ]

mxn*

preserving the SMC constraint. Permuting the rows of /P does not affect the girth but gives

In Summary, the search algorithm will test one permissible generator per each permissible
cyclic subgroup S to find exponent matrix P3MC of code with girth g (¢ = 10, 12). The final
point is there might be more than one permissible cyclic subgroup of Z}; that meet the conditions
in Theorem however, not all of them would necessarily result in matrix P5MC with girth
g (g = 10, 12) for the given N. For example Z;,, has two distinct permissible cyclic subgroups
S1 = (80) and Sy = (136) of order 6 where their generators satisfy the property a (1 —a) =1
as well as the girth conditions. We will see in Section that search algorithm is able to

find exponent matrix P§MS$ with second column [0,1,80]" for code with girth 10 while it is

impossible to find girth 10 code with exponent matrix P5X( and second column [0, 1, 136]T.

D. Controlled greedy search algorithm

In this section, we present a new controlled greedy search algorithm that uses the SMC tech-
nique [26]. In the proposed algorithm, the complexity of the “verification” phase is considerably
reduced thanks to the considered IRS technique. Moreover, the behavior of the “assigning” phase
is optimized and controlled based on the available information at each step. In the following,

the proposed version of this algorithm along with a complementary explanation are presented.
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Algorithm 1 Controlled greedy search algorithm for m > 3

Input: Parameters n, m, N of the code, targeted girth g, vector G of size n to control the

greedy search effort.

Output: Eventually, set of coefficients I',, of size n if success, empty set otherwise.

------------------- primary step -------------

: A={2,3,.... N—-1} T, =92,T; ={0}
2: while A # @ and I',, = @ do

3 Extract an element a of A.

4: A=A\ {a}

5: if O(a) =m — 1 then

6: Set P, = (0,1, a, a2,...,am_2)T
7 A=A\ {d"}r=a m2

8: S = d,(Iy, P, N)

9: I',, = search (Fl,S,N,n,Isl,G)

------------------ search function ------------

10: I',, = search (I', S, N,n,f’l,G)

1: I'y =T

12: if |I',| = n then Return I,

13: else

14: for i =1 to |S| do

15: s(i) = SN, (I'US(7), P, N)| (note: s is a vector).

16: I =sort _index (s) (note: s(I(1)) > s(I(2)) > ... > s(I(|S])).

17: for j =1 to min (|S|,G(|I'])) do

18: if |I',| = n then Return I,

19: else

20: Iy =T U{S(I1(5))}

5t § =S\ {SU())}

22: Sy =SN®, (T, P, N)

23: if |I'x| + |Sk| > n then

24: I',, = search (I'y,, S, N, n, 131, G)
25: else

26: Return @
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Let I'y ={0,1,72,...,7%-1} be a set of size k of elements of Zy. The property p,(L;, P, N)
is true if and only if the exponent matrix [ 0 ‘ P ‘ Yo ® P, ‘ e ‘ Te-1 ® P ] gives a matrix
with a girth greater than or equal to g when expanded by a factor of N. We call ®,(I', ]31, N)
the ordered set of coefficients of Zy so that a vector ['y,; of size £ + 1 constructed by the
concatenation of I';, and any coefficient of ®, (I, 151, N) also gives an exponent matrix of girth

g. In a more formal way
B € ®,(Ty, P,N) < p,(Tx U{B}, P, N) is true. (11)

The search of a solution of degree (m,n) for a given expansion factor NV is done in two steps.
The first step consists of the enumeration of a single element per class of the a values verifying
the condition of Theorem [3.10] This step is described in Algorithm 1 part 1 for m > 3. To do
so, the set of values A is initialized as A = {2,3,..., N — 1}. The values of A are extracted
one by one. Each time an extracted value « fulfills the condition of theorem [3.10] the function
search is launched to try to find a solution I',,. In case of success, the algorithm is successful
and stops. Otherwise, the elements of (a) are suppressed from the search space .A. The process
continues until no more values remain in A. In this case, the search is unsuccessful. Note that for
m = 3, the condition O(a) = m — 1 of line 5 should be replaced by the condition a(1 —a) =1

The search function is described in Algorithm 1, part 2. It is a recursive function that tries
to increase recursively the size of I' until it reaches a size of n. The arguments of the search
function are I', S, N, n, 151, and a vector G of size n that controls the processing effort. Let
us describe the processing during the first call of the function in line 9. The arguments of this
first call are 'y = {0} and S (defined in line 8), the set of values compatible with I'; (see
(11)). Lines 14 and 15 set up the greedy search. For i = 1,...,|S], the number s(i) of triplets
Iy = {0,8(i), u}, p € S verifying the condition p(I's, P,, N) is computed (note that s(i) < |S]|
). The s(i) are thus sorted in decreasing order (line 16), and the first G(|I'|) = G(1) elements of
S (line 17) associated to the highest values of vector s are tested. For each tested value, a vector
['), of size 2 is generated (line 18). The tested value is suppressed from the set S (line 19), and
then the subset S; of S of values compatible with 'y is created (line 20). If the size of S plus
the size of I’y is greater than or equal to n, or, if there is still the possibility to generate a I’
vector of length n, then the search function is called again with a I' set of size 2. The process is

recursively reiterated until a length n ' vector is found or until no more possibility remains to
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be explored. The complexity of the search is controlled by a vector GG of size n. The k™ value
G(k) of G indicates that only the most “promising” G (k) branches will be explored inside each
depth k recursive call of the search function. Note that when all the values of G are equal to N
the search algorithm is exhaustive. It can be done in a limited time (less than a few days) only
for low values of n. For large n, the first values of GG are set to 1 or 2 for reducing the search

space to a reasonable size. Note that | X| represents the cardinal of the set X.

TABLE III
COMPARISON OF THE COMPLEXITIES: EXHAUSTIVE SEARCH VERSUS NEW PROPOSED SEARCH METHOD (m = min{k, m}

AND 7i = min{k,n})

- “verification” search space “assigning” search space overall complexity
— || sMc&mrs | exhaustive  [[SMC & IRS|  exhaustive SMC & IRS | exhaustive
SOOI
m=3 T S S i 3 () |[(V - 3)" 7 (V- 12D o ((N - 3)<"*2>) @) ((N - 1)2““))
=2 =2 :
£ 52| a a
m > 4 i=2j 72m1 - J Z Z tszk (T) (7;) (N _ m)n—Q (N _ 1)(m—1)(n—1) @) ((N _ m)(n—2)>o ((N _ 1)(m—1)(n—1))
=2 j=2

At the end of this discussion, we compare the complexity of our proposed search method that
uses IRS technique with an exhaustive search in terms of: 1) mitigating the verification phase by
reducing nonequivalent potential cycles and 2) mitigating the assigning phase by reducing the
number of undetermined components of exponent matrix P. These two types of simplification are
logically accurate even for g = 10 or 12. Table |[IIl summarizes these results. The first column of
this table shows the column degree d, = m of our constructed QC-LDPC codes. Without loss of
generality we assume n >> m due to the fact that studying the complexity of our search method
would be important when the rate of the codes is high. In other words, if one intends to find
fully-connected QC-LDPC code of different rates, the dominant variable is row weight d. = n.
The second column of the table presents the necessary search space for the verification phase.

min{k,m} min{k,n}
As was shown in Theorems 3.5 and [3.10} this space is equal to >~ > #*(7)(}) and
i j=

min{k,m} min{k,n}

( Z Z tff’“ (™) (’;))/ (m — 1) respectively for an exhaustive search and our IRS method
combmed Wlth the SMC technique. Considering that girth of the code is less than or equal to
2k =12 (i.e., K <£6), m < n and the parameter tif’“ is always less than or equal to 1440 (see
tracking matrix 7€ in Theorem [3.5)), it can be concluded that the dominant term in any of

previous summations is (Z) Since in the worst case the complexity of (Z) is of O (nk) and the
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summation is finite, the overall complexity of the verification phase is of polynomial order and
equal to O (n’“) This means that even with or without applying the IRS approach the complexity
of verification phase is polynomial. However, by applying the IRS approach the complexity is
reduced as a factor of m — 1, which is slightly lower. The third column of the table counts the
number of candidate values among Zy that can be assigned to each non-zero component of
the exponent matrix. Given that the exponent matrix P is of size m x n with all zero first row
and all zero first column, in an exhaustive search case, (m — 1) (n — 1) remaining components
of P have to be assigned. None of these remaining components has to be zero, otherwise the
girth is 4. So the number of such possibilities is equal to (N — 1)(m71)("71). On the other hand,
when the IRS method is considered, the second column is assigned a priori. So the remaining
components of P are those in column 3 to n. When SMC technique is considered concurrently
with IRS, we need to assign one component 7y; per j column. So n — 2 components need to
be assigned. Knowing the fact that “when P has all zero first row and all zero first column and
its girth is greater than 6, all the non-zero elements of P have to be distinct ([18]])”, so each
one of the n — 2 components has to be different from the elements in the second column, i.e.,
v; € Zy\{0,1,a,--- ,a™ 2}. So the number of such possibilities is (N — )" >. Finally, the
fourth column proposes the overall complexity of the search method. Given the fact that for
high girth code, NV >> n, and the verification search has polynomial complexity, one can easily
conclude that the overall complexity of both phases is dominated by the assigning phase equal
to O ((N — 1)(m_1)("_1)) and O ((N — m)("_z)), respectively, for exhaustive search and our
proposed search method.

In general cases, by considering the number of nonequivalent cycles in relation (5) as the

verification search space and noticing that (N — 1)(m_1)(”_1)

is the general assigning search
space, one can figure out that the complexity of both verification and assigning phases of
an exhaustive search are instinctively exponential. Information in the last column of Table [III
shows that even when combining SMC approach with IRS technique the complexity remains
exponential. However, privileges of the aforementioned combination are that not only does it
considerably reduce both of the search spaces, but by this synchronous combination, we are also
still able to find lifting degrees very close to the lower bound even for large values of d.s. In
the next section we will investigate the outcomes of our greedy search algorithm. These results

demonstrate that combining SMC with IRS for finding QC-LDPC code with large girth and

short length is a practical tool.
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IV. NUMERICAL RESULTS

To present our results in comparison with the state-of-the-art, we have performed the following
experiment: Given a fixed girth g (¢ = 10, 12), for each size m X n of the exponent matrix, we
start by the smallest value of N reported in the literature as providing for a QC-LDPC code
obtained from a cyclic lifting of degree N of the fully-connected m x n exponent matrix. For
this value of N, we apply the proposed search algorithm to see if we can find an exponent
matrix of the form (2)) for a QC-LDPC code of girth g. If we succeed, we then reduce the value
of N into the nearest smaller integer value for which Zy contains at least one eligible cyclic
subgroup to form P, and repeat the same experiment. We continue until the proposed algorithm
fails to provide an answer. At that point, we report the previous value of N along with the
corresponding exponent matrix found by the algorithm. These results are presented in Tables
for values of (m,g) = (3,10), (3,12), (4,10), and (4, 12), respectively. To present the
exponent matrices, we have only provided the second row along with the generator element a
of the corresponding cyclic subgroup. In the tables, we have also reported the d. = n, rate and
the minimum found lifting degree N. Although our proposed algorithm has the capability to
find very high rate codes with girth g = 10,12, Tables VII| contain the codes with lengths
below 100K bits. This is because most of the implemented LDPC code in the literature have
lengths below 100K bits. In the tables, we have additionally provided the best available results
(in terms of minimum /V) in the literature even for the search-based results or the explicit (i.e.,
deterministic) constructions for comparison. Note that, due to the lack of published results for
exponent matrices with a large row degree d., we apply search algorithm (1| either by considering
some proposed lower bounds (of lifting degree V) in the literature or with our conjecture of
lifting degree N as a primary input of this algorithm. If input parameter N is considered as a
lower bound then algorithm (1| has to test /V every time and moves upward up to the point that it
achieves the first success. Otherwise (i.e., if there is no lower bound or upper bound), we need to
guess the starting point of V. This conjecture of N comes from studying the general trend of the
lifting degree growth rate of previous /Vs of smaller exponent matrices with the same girth. Here
we used nonlinear regression to predict the new input values of N where “cubic polynomial”
is considered as to be the regressions model (RM). As an example of former situation with a

lower bound, we can look at girth ¢ = 10 exponent matrices. When g = 10 and the exponent

(m?2—m)(n?—n)

matrix is of size m X n, there is a lower bound equal to 5

+ 1 for the lifting degree
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TABLE IV

EXPONENT MATRICES OF THE SHORTEST QC-LDPC CODES WITH GIRTH 10, CONSTRUCTED FROM A 3 X 1.

FULLY-CONNECTED BASE GRAPH CONSIDERING COMBINATION OF SMC AND IRS METHODS (N,nin IS THE SMALLEST

LIFTING DEGREE. a IS THE GENERATOR OF CYCLIC SUBGROUP <a> OF Z;,. THE LIFTING DEGREE OF THE SHORTEST

EXISTING CODES IS GIVEN BETWEEN BRACKETS. ONLY THE SECOND ROW OF THE EXPONENT MATRIX ARE LISTED)

’n‘ Rate ‘ Noin ‘ a ‘ Second Row of Exponent Matrix
37
61
91
6(0.503 (o frgy) | 17 [0-1,3,7,25,38
129
710573 (130 omy) | 80 0.1,3,7,16,41,84
T8I
810.6260 (151 oy |13300.1,3,69,120,129,141, 156
937
900.667 (047 by |182[0.1,3,7,37,65,80, 133, 196
301
100.7000 (313 o) | 80 0,1,3.7,33,73,117, 140,208, 226
373
110.727) (397 ) |285[0,1,3,35,50,73,95, 170, 180, 221, 235
163
120.750] (503 ) |442[0,1,3,9,29,116,148, 219, 260, 329, 388, 418
571
130.769 (913 327) |6620,1,3,9,91,120,140, 217,375,398, 511, 516, 561
77
140.785 (1050 327) |446(0.1,3,7,12,35,105,192, 213, 352,442,472, 653, 714
877
15/0.80 | (1935 [327) |595[0. 1,3, 7,12,22,47, 114, 247,390, 423, 431, 639, 692, 755
1039
160.812 (1550 321) |399]0. 1.3.7,12, 20, 36, 183, 396, 462, 674716, 798, 823, 967, 982
1700.823 (18%%ﬁ%2]) 11050, 1,3, 7, 12, 20, 34, 106, 132, 374, 402, 450, 519, 737, 1010, 1061, 1071
18)0.833 (215%ﬁ%2D 7600, 1,3, 7,12, 20, 30, 46, 132, 184, 239, 320, 418, 867, 951, 1015, 1100, 1382
1793 0,1,3,7,12, 20,30, 46, 67,99, 248, 605, 693, 793, 831,975, 1105, . ..
190842 (9500 (321) 165277 )
2089 0,1,3,7,12,20,30,45, 61,85, 107, 249, 510, 602, 970, 1022, 1297, . ..
200850 (2875 [32) 12631481,1635,1987
9197 01,125,122, 251, 1533, 493, 2191, 1416, 867, 2083, 877, 1794, 413, . ..
21/0.857 (3350 133y 1161
(3300 [321) 303, 811, 846, 1262, 1438, 1739, 2109
0,1, 196, 66, 522, 1998, 524, 1109, 1343, 1217, 432, 39, 2255, 1257, . ..
2900.863| 2689 2298
17,466, 1596, 1788, 2346, 2504, 2524, 2618
0,1, 267,89, 710, 2145, 726, 2338, 639, 1971, 2886, 2445, 2077, 1424, . ..
2300.869| 3049 2517
1821, 414, 586, 612, 1002, 1373, 1504, 1573, 2646
0, 1,404, 407, 2676, 1209, 399, 557, 1623, 2013, 3231, 1878, 2436, 716, . ..
24/0.875 3331  [1868
242,916, 31,1843, 1941, 1998, 2229, 2318, 2618, 3139
0,1,674,677, 1346, 571, 2700, 7, 3467, 530, 2895, 1657, 2916, . .
95(0.880| 3577  [1452
9443, 91,3204, 1033, 3049, 3523, 164, 1070, 2651, 2772, 2931, 3144
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TABLE V
EXPONENT MATRICES OF THE SHORTEST QC-LDPC CODES WITH GIRTH 12, CONSTRUCTED FROM A 3 X n
FULLY-CONNECTED BASE GRAPH CONSIDERING COMBINATION OF SMC AND IRS METHODS (Nyin IS THE SMALLEST
LIFTING DEGREE. @ IS THE GENERATOR OF CYCLIC SUBGROUP {a) OF ZY,. THE LIFTING DEGREE OF THE SHORTEST

EXISTING CODES IS GIVEN BETWEEN BRACKETS. ONLY THE SECOND ROW OF THE EXPONENT MATRIX ARE LISTED)

’ ‘ Rate ‘ Noin ‘ a ‘ Second Row of Exponent Matrix

0.263) 73 (14 gy 9 021,313
0.406 (15%251]) 11900, 1, 3,108,139
29 |0, 1,3,7,67, 144

1360, 1,3, 18, 209, 300, 388

( )
( )
0.626) (go1 [a1y) | 367|013, 216,312, 318,462, 529
( )
]

63200,1, 3, 84,224, 361, 410, 849,916
12080, 1, 14, 5, 89, 349, 383, 562, 1130, 1152

1447 (21

2011
2161 [o1y) /18060, 1,30, 10,3, 122, 454, 654,937, 1095, 1699

)

9883 )
4730 [17) 24440, 1,522,442, 965, 11,902, 1145, 1857, 2001, 2632, 2775

)

sgo) 33)) 33060, 1,154, 1257, 2564, 3009, 1636, 19, 1539, 2519, 2855, 3111, 3250

140.785] 4953 [15440, 1, 108, 1546, 1331, 4308, 3839, 4746, 2558, 457, 486, 1252, 4262, 4911
0,1,4380,4051, 1613, 5328, 827, 3891, 5171, 4342, 1637, 2135, 4082, . ..
4694, 5905

—
[\
S
N |
(SN
o=}
b~ I~ —~ |

15/ 0.80 6321 2273

N [29], [34]]. So for the code with d. = n > 21 (see Table where there is no reported value,
we use this lower bound as the input value of N within algorithm [T} The lower bound of N for
the case (m,n) = (3,22) is 1387, and algorithm |1| takes this as an input and increases N up
to the point that it encounters first success. We limited the running time of our search program
to 72 hours, and the smallest successful lifting degree was N = 2689 using a core i7 desktop
computer with a 3.5 GHz CPU and 8 GB RAM running in parallel. As an example of the later
situation where there is no bound for N we can look at girth ¢ = 12 exponent matrices. We
performed cubic regression for both of the cases d, = m = 3,4. Regression models RMi:lg
and RMﬁ;lf presented below are respectively derived for the cases m = 3 (4 < n < 13) and

m=4((»b<n<9).

RMZL::lg(n) = 4.422299611n3 — 55.13985257n? + 303.524031n — 535.7821601

RM9:12(n) = 132.6276493n3 — 2135.788568n? 4+ 11973.00351n — 22484.20244

m=4
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TABLE VI
EXPONENT MATRICES OF THE SHORTEST QC-LDPC CODES WITH GIRTH 10, CONSTRUCTED FROM A 4 X n
FULLY-CONNECTED BASE GRAPH CONSIDERING COMBINATION OF SMC AND IRS METHODS (Nyin IS THE SMALLEST
LIFTING DEGREE. @ IS THE GENERATOR OF CYCLIC SUBGROUP (a) OF Z},. THE LIFTING DEGREE OF THE SHORTEST

EXISTING CODES IS GIVEN BETWEEN BRACKETS. ONLY THE SECOND ROW OF THE EXPONENT MATRIX ARE LISTED)

’n‘ Rate ‘ Noin ‘ a ‘ Second Row of Exponent Matrix
5 ( )| 11 0,1,5,21,54
610.333 ( ) 39 100,1,3,9,45,59
700428 ( )| 28 0,1,3,7,141,221,255
810.500 (409 [211) 87 10,1,3,7,111, 159,233, 303
Y0599 (577 [21)
( )

0.200

0.555 129100, 1, 3,99, 264, 314, 353,401, 423
10/0.600 26 0,1,9,123, 353,443,498, 501, 609, 663

1100.636|(1039 x| 52 0. 13,158, 113, 349, 509, 677, 702, 725, 772

213
12006661557 {y7)| 217 0, 1. 3,653, 1088, 798, 29, 195, 370, 476, 574, 713

130.692| 1459 [339(0,1,487,1313,1053, 740, 533, 398, 504, 662, 664, 685, 970

14(0.714| 1939 [18220,1, 3,1590,1357,112,579, 152,254, 323,417, 848,975, 1863

150.733| 2539 22320, 1, 3,920, 1533, 278, 2515, 1504, 333, 538, 317, 404, 769, 1437, 2383
16/0.750] 3991 37010, 1, 3, 869, 1448, 1062, 777, 2220, 3507, 10, 30, 41, 164, 845, 1632, 1808
0,1,3,1721, 2868, 467, 4807, 2761, 679,792,675, 1916, 4687, 32, 50, . ..
3314, 3559

17/0.764| 4909 14335

TABLE VII
EXPONENT MATRICES OF THE SHORTEST QC-LDPC CODES WITH GIRTH 12, CONSTRUCTED FROM A 4 X n
FULLY-CONNECTED BASE GRAPH CONSIDERING COMBINATION OF SMC AND IRS METHODS (Nynin IS THE SMALLEST
LIFTING DEGREE. a IS THE GENERATOR OF CYCLIC SUBGROUP {a) OF Z},. THE LIFTING DEGREE OF THE SHORTEST

EXISTING CODES IS GIVEN BETWEEN BRACKETS. ONLY THE SECOND ROW OF THE EXPONENT MATRIX ARE LISTED)

’n‘ Rate ‘ Npin ‘ a ‘ Second Row of Exponent Matrix
LY

0.200| (Go7 [21y) | 461 0,1, 17,184, 482

0333 (1901 [21y) | 8290, 1,4, 142, 1018, 1055

5
6

2203

7/0.428) (9571 a1y [19170. 1, 4, 130,443, 1082, 1397
8

9

1139
0.500] (6607 fToj) 37890 1, 942, 1062, 1547, 2202, 1312, 3692

R966
0.555|(19071 [107)39770: 1, 4987, 6942, 11,17, 1158, 2049, 3754
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So, if our underlined exponent matrix is of size 3 X n (resp., 4 X n) and there is no bound for
the size of N, we estimate it with N ~ [RM?_2(n)| (resp., N ~ |[RMY_'7(n)]). As we are
not sure if this approximated value of N is a lower bound or upper bound, our search program
would be run for two cases in parallel: 1) upward check and 2) downward check. During this
process and at a time when the program sees a success by decreasing /N, it will terminate the
upward manner and will focus only on downward movement. This process is continued until the
processing time is over. As a result, for a girth 12 exponent matrix of size (m,n) = (3, 14), we
could not find an accurate bound for its lifting degree (see Table ; however, we estimated it
as N ~ |RMY-'2(14) | = 5040. We ran our search program for it, and after 24 hours of running,
the smallest successful N was 4953. The point-to-point growth rate curves to all the values of
N found by our search program, by proposed bounds, and by estimations are included in Fig.
[10] for further comparison and investigation.

As pointed out in the introduction, the exponent matrices of fully-connected codes reported in
Tables [IV|to can be used to construct other practical LDPC codes (regular or irregular). As an
example of such construction methods, we considered the (64800, 48600) DVB-S2 standard code
[30] as a reference code and tried to design a similar code in length and rate using the proposed
SMC-structured QC-LDPC codes. To this end, we started from a base-matrix of dimension 15 x 60
and lifting degree N = 1087 to define a rate 3/4 (65220, 48915) fully-connected QC-LDPC code
Ctan With Tanner graph Tg,y. The overall girth is 6 but the Tanner graph contains several distinct
and large sub-graphs of girth 12. To mimic the edge distribution of the DVB-S2 code, parts of
the exponent matrix are suppressed from Cp,y to generate an irregular QC-LDPC code Clasked-
The details on the construction of Cpaskea are given in Appendix B. Finally, performances of
both Chaskea and DVB-S2 codes were evaluated under Additive White Gaussian Noise (AWGN)
channel with Sum-Product (SP) algorithm by AFF3CT software [35]]. Fig. [I1] depicts the Frame
Error Rate (FER) as well as the Bit Error Rate (BER) performances of these codes. As it can
be seen from this figure, Chaskea has better performance in waterfall region and it gains 0.15 dB

at FER= 1075 under SP decoder with 50 decoding iterations.

V. CONCLUSION

We have proposed a search-based method for the construction of fully-connected QC-LDPC
block codes capable of achieving girths ¢ = 10, 12 with lengths close to the lower bounds.

To ease the search, we sieved through the multiplicative ring of integers. We showed that by
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Lifting degree (N) growth rate

106 F T T T T ]
5 L+

0 E A ;
r . 1
I s ]
- + -

T ot

104 - * =

¥ ¥ ]
> [ D

10°% |

5 —©—new coded, =m =3, g =10
-0 lower bound d, =m = 3, g = 10 [29]

102 —B—new code d, =m =4, g =10 =
r @ lower bound d, = m =4, g = 10 [34] ]
[ —¥—new code d, =m =3, g =12 1
L ---%--- nonlinear regression d, = m =3, g = 12| |
| —}—new code d, =m =4, g =12 i

---+--- nonlinear regression d, = m =4, g = 12

10! I I I I

0 5 10 15 20 25

Fig. 10. Minimum lifting degree N growth rate of new constructed codes versus d. = n for d, = m = 3, 4.

smartly selecting elements of exponent matrix’s second column of the code from this ring, it is
possible to further reduce the search space and still find high girth QC-LDPC codes with lengths
very close to the lower bound. Pseudo code of our proposed search algorithm was presented
and as a result of our method, a variety of fully-connected QC-LDPC codes with different rates
and small lengths were provided in tables. Furthermore, small length counterpart codes were
addressed within the tables for comparison, and in most of the cases the new codes have lengths
smaller than the available state of the art. In the end, capability of the proposed method in
constructing practical irregular QC-LDPC codes was illustrated, and their good performances

were compared with the standard codes.
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FER/BER

5 —O— SMC structured code Clyy55ked (FER)
10 Z >+ SMC structured code Cppasked (BER)

DVB-S2 (FER) o
..{y - DVB-S2 (BER)
10-9 1 1 1 1 1 1 1 1 1

18 185 19 195 2 205 21 215 22 225 23
E, /Ny

V. G IR R
<O

Fig. 11. Performance comparison of a (65220,48915) SMC-structured QC-LDPC code, constructed by cyclic lifting of a
masked 15 x 60 fully-connected base graph and lifting degree N = 1087, with a (64800, 48600) DVB-S2 code [30].

APPENDIX

A. An algebraic proof to lemmas [3.6] and

mxn

Let C," be a potential cycle of length 2k in P5MC with summation Zf;ol (Pmin: — Pminiss)
where n, = ng, m; # m;y, and n; # n;,,. Without loss of generality we can rewrite this
summation as Y ;o (Pimini — Pmisn) Where my, = mo, m; # myy1 and n; # n;4q. Since the

second column of PSMC g P = 0,1,a,a?, - ,am*Q]T, the later summation could be written
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as Sy, (6 (my) — 6 (miy1)) where m; € {0,1,2,---,m — 1}, n; € {0,1,2,--- ,n — 1},
d(m;) = P (m;), 0 = 0,71 = 1, and v, (2 < n;) is the coefficient of column f’n = fyniﬁl. As-
suming A (m;) = 6 (m;) — 9 (m;41), the summation of C;;" could be written as Zf;ol Yoy A (7).
Let us first consider the case m = 3 and a(1 — a) = 1, where a € Zy. Since GCD(a, N) =
GCD((1—a),N) = 1, 35 "0 A (m;) = 0 mod N if and only if Zf;ol Y, 0A (M) = 0
mod N if and only if YF ) 4,.(1 — a)A (m;) = 0 mod N. In other words, Cy;" is activated
if and only if aC);" is activated if and only if (1 — a)Cy," is. On the other hand, it is easy to
check that A (m;), aA(m;), (1 —a)A(m;) € {£1,+a,£(1 — a)} (see Table [VIII). In fact
for every index m;, each of the differences A (m;), aA (m;), and (1 — a)A (m;) is calculated
by considering elements in the same column but different pairs of rows of P$MC. As a resul,

potential cycles Cy,", aCyy™, and (1 — a)Cy,." have the same length but different paths in P3Y¢

and they concurrently are either activated or not-activated. So #Cg,fa < #C;k . For the case

m = 4 and a® = 1, where a € Z;, one can also follow the same argument by considering the

values in Table As result #Cgk”a < #C% .

TABLE VIII

LOOKUP TABLE TO A (1), a/A (m;) AND (1 — a)A (m;) WHEN SECOND COLUMN OF P§YC 1s P, = [0,1,qa]”.

A (m;) 1 a [l—d -1 |—-al-1+a

al (m;) a |-144d 1 —a [1—af -1
1—-a)A(mi)l—a -1 | —a|-144d 1 a

TABLE IX

LOOKUP TABLE TO A (m;), aA (m;) AND a®A (m;) WHEN SECOND COLUMN ofF PS¢ 1s P = [0,1,a,a%]".

A(m;) [1lale® 1—a |1 -a®|a—a®|-1|-a|-d? -1+ a|-1+a*~a+ d?

alA (my)|a@®1l|a—a*|-1+al-14+a*—al-a*~1|-a+a* 1—a|l—a

a’A (me?1]al-1+a*~a+a* 1—a |-a*-1|—a|l—-a®|a—a®|-1+a

B. DVB-S2 like code construction

The array displayed in is a vertical display of an exponent matrix P{MG, with lifting

degree 1087, which is masked E] in a way that its row (resp., column) degree distribution is

3See section 7 of [28] for masking technique.
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p(x) = 0.8666x'° +0.1334z'6 (resp., A (z) = 0.252 +0.5522 4 0.06662°> +0.0834z ' 4 0.052'3).

Thus, the resulting code of (13) would be an irregular QC-LDPC code that we call Cragked-

Before the masking operation, PG, is an exponent matrix of a girth g = 6 fully-connected

QC-LDPC code Ciyy of length 60 % 1087 = 65220 and rate 606_015 = 0.75 that preserves SMC

property. Although the Tanner graph T,y of code Chyy is of girth 6, it is locally optimized so

that it has several distinct and large sub-graphs each of girth 12. To impose this property to g,

P$MC is constructed as follows:

0 . 0
T
A Va4 T Y59
PG = | Al | psova | 0 | pa2vse | (12)
Ay
| P15,274 T P15,2759 |

where matrix A is the matrix of dimension 4 x 6 defined in Table for rate 1/3 (fully-connected
QC-LDPC code with m = 4, n = 6, and N,,,;,, = 1087), thus A” is of dimension 6 x 4. Matrix
A, is the matrix of dimension 5 x 4 generated with the 5 last rows of AT multiplied by the
factor 139, i.e., A1(i,j) = 139 AT(i+1,5) (mod 1087) (i = 1,...,5;5 =1,...,4). Matrix A,
is the matrix of dimension 4 x 4 generated with the rows 2 to 5 of AT multiplied by the factor
719, ie., As(i,j) =719 AT(i 4+ 1,7) (mod 1087) (i =1,...,4;5 =1,...,4). Since 1087 is a
prime number, GCD (139, 1087) = GCD (719, 1087) = 1, and thus A; and A, are also of girth
12 (lemma 3 of [18]]). As shown in , the first four columns of P%ﬂ%o are made of the vertical

concatenation of AT, A;, and A,. This left part of matrix P5)G, is intentionally constructed

with high girth sub-matrices as it will be only lightly masked. The rest of the columns of PG,

still apply to SMC property, where p;2’s (j = 3,--- ,15) are components of the second column
of PMC., coefficients ;s (4 < i < 59) are selected in a way that P$MG, respects girth-6

constraint, and p;+7; is calculated modulo 1087.
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T2 T3 T4 T5 T6 7 T8 T9 T10 T11 T12 T13 T14 T15

T1

c1

391
213
483

1007
1074
—1
367
434

702
413

719
375
1080
1036

987
799
388
187

192
466
429

172

556
36

139

1055
647
472

1018

142
322
623
191
371
—1
671

c2

410

55
1028

829
—1

c3

1059
883

495
656

939

cq

— - 461 -
480
1013

466
945

36

c5

80
350

915
878

136
—1
1081

34
964
542

391
216

837
265
43

€6

310 153
837
548

675
48

194
294

1060

c7

908

874
893

172

c8

921

€9

—1
195

1081

—1

842

c10

605 -1 1034 -1 — —

70

c11

c12

747

438
956

€13

124

106

C14

1060 82

—1
305

€15

- 232

23 - - -

c16

c17

- 12— - 523 — - - - - 569  — -

c18

€19

- 380  — - - - - 22 - -

- 496 —

€20

456

168

c21

380  — 697  — - - - - - - - - 36—

c22

46

€23

343 — 270 — — — — — 433 — -

c24

138

1085 -1

—1

186

347 — - - -

838

€26

217

366

c27

302
421

- - 296 — -

c28

c29

(13)

-1

965

87

€30

—1 211 -1 -1 - 908
55 1081 —1

—1

€31

1018 —1

—1
65

€32

- - - - 310

886

€33

€34

- 233

— 311

892

€35

-1 1051 -1

€36

- - - 863  — - - - 812  —

€37

€38

- - - - - 600 34 136 - -

€39

98

€40

- 388  — - - - 669  — - - - 700 —

C41

C42

193

- - 509  — -

- 989 — -

€43

C44

- 735 - — — -1 1074 -1 - —

€45

223

c46

291
32

ca7

128

€48

497
119

14

C49

57
536

€50

989
814

€51

1 _

458

1016
658

€52

€53

- - - — - —1 1025 1060 —1 - - - -
489
382

€54

506

55

- - - - 571 - - -
383

c56

192
897

C57

- - - - — - 327 — -
989

€58

869
936

€59

969

€60
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