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This paper proposes a new method of construction of compact fully-connected Quasi-Cyclic Low Density Parity Check (QC-LDPC) code with girth g = 10 and g = 12. The originality of the proposed method is to impose constraint on the exponent matrix P to reduce the search space drastically. For a targeted expansion factor of N , the first step of the method is to sieve the integer ring Z N to make a particular sub-group with specific properties to construct the second column of P (the first column being filled with zeros). The remaining columns of P are determined recursively as multiples of the second column thanks to an adaptation of the sequentially multiplied column (SMC) method where a controlled greedy search is applied at each step. The codes constructed with the proposed semi-algebraic method have lengths that can be significantly shorter than the best counterparts in the literature. To illustrate the great potential of the SMC method, we give the explicit construction of a rate 0.75 irregular LDPC code of size 65, 220 that allows a gain of 0.15 dB compared to the code of same rate and size 64,800 of the DVB-S2.

I. INTRODUCTION

It has been more than two decades since the rediscovery of low-density parity-check (LDPC) codes as a class of modern channel coding [START_REF] Mackay | Good error-correcting codes based on very sparse matrices[END_REF]. LDPC codes can work close to the Shannon capacity with a low complexity message passing decoding algorithm. Moreover, Quasi-cyclic (QC) LDPC code, a special class of LDPC codes, allows for efficient parallel hardware implementation and has been adopted in many communication standards. A few examples are WIFI standard [START_REF]IEEE Draft Standard for Air Interface for Broadband Wireless Access Systems[END_REF], digital video broadcasting (DVB) standard [START_REF]Digital Video Broadcasting (DVB)[END_REF], CCSDS standards [START_REF] Ccsds | Short Blocklength LDPC codes for TC synchronization and channel coding[END_REF], and more recently the 5G standard [5]. The promising coding techniques for communication systems beyond 5G are turbo codes, binary/nonbinary QC-LDPC codes [START_REF] Li | Algebra-assisted construction of quasi-cyclic LDPC codes for 5g new radio[END_REF], spatially coupled (SC) QC-LDPC codes [START_REF] Zhang | Time-invariant quasi-cyclic spatially coupled LDPC codes based on packings[END_REF], and polar codes. Assuming any scenario or application, constructing QC-LDPC codes with the smallest possible Tanner graph [START_REF] Tanner | A recursive approach to low complexity codes[END_REF] of optimal cycle distribution free of short cycles has been a challenging issue within the past two decades. It has been shown that QC-LDPC code with a Tanner graph free of short cycles and free of some harmful combination of small cycles (known as "trapping sets") has better performance under iterative decoding algorithms. Many research works have been dedicated to study and construct such code [START_REF] Fossorier | Quasi cyclic low-density parity-check codes from circulant permutation matrices[END_REF], [START_REF] O'sullivan | Algebraic construction of sparse matrices with large girth[END_REF], [START_REF] Wang | Construction of high-girth QC-LDPC codes[END_REF], [START_REF] Asvadi | Lowering the Error Floor of LDPC Codes Using Cyclic Liftings[END_REF], [START_REF] Nguyen | On the Construction of Structured LDPC Codes Free of Small Trapping Sets[END_REF], [START_REF] Bocharova | Searching for Voltage Graph-Based LDPC Tailbiting Codes With Large Girth[END_REF], [START_REF] Wang | The Cycle Consistency Matrix Approach to Absorbing Sets in Separable Circulant-Based LDPC Codes[END_REF], [START_REF] Diouf | A PEG-like LDPC code design avoiding short trapping sets[END_REF], [START_REF] Gholami | An explicit method to generate some QC-LDPC codes with girth 8[END_REF], [START_REF] Tasdighi | Efficient Search of Girth-Optimal QC-LDPC Codes[END_REF], [START_REF]Symmetrical Constructions for Regular Girth-8 QC-LDPC Codes[END_REF], [START_REF] Tao | On the Construction of LDPC Codes Free of Small Trapping Sets by Controlling Cycles[END_REF], [START_REF] Battaglioni | Compact QC-LDPC Block and SC-LDPC Convolutional Codes for Low-Latency Communications[END_REF], [START_REF] Derrien | Additive, Structural, and Multiplicative Transformations for the Construction of Quasi-Cyclic LDPC Matrices[END_REF], [START_REF] Naseri | Construction of Girth-8 QC-LDPC Codes Free of Small Trapping Sets[END_REF]. One of the common methods to prevent harmful structures in Tanner graph of the code is increasing girth of the code's graph. In contrast with removing special trapping sets, which results in local improvement of performance of the code within specific SNR ranges, increasing the girth leads to a general improvement of the performance given any SNR regime. One of the main constraints of constructing a QC-LDPC code is keeping the length of the code as small as possible while preserving other good properties of that code. Considering some fixed conditions such as specific girth of the code and degree distribution of the exponent matrix, the QC-LDPC code with the shortest length can be more desirable in some cases due to easy encoding/decoding implementation, less required storage memory and low communication latency. In addition, it has recently been shown that by using some spreading techniques, a class of SC-QC-LDPC convolutional (C) codes with very low syndrome memory could be constructed based on QC-LDPC codes [START_REF] Battaglioni | Compact QC-LDPC Block and SC-LDPC Convolutional Codes for Low-Latency Communications[END_REF], [START_REF] Jimenez Felstrom | Time-varying periodic convolutional codes with low-density parity-check matrix[END_REF], [START_REF] Battaglioni | Design and Analysis of Time-Invariant SC-LDPC Convolutional Codes With Small Constraint Length[END_REF], [START_REF] Tadayon | Efficient Search of Compact QC-LDPC and SC-LDPC Convolutional Codes With Large Girth[END_REF], [START_REF] Battaglioni | Girth Properties of Time-Varying SC-LDPC Convolutional Codes[END_REF].

Specifically, [START_REF] Battaglioni | Design and Analysis of Time-Invariant SC-LDPC Convolutional Codes With Small Constraint Length[END_REF] asserts that given fixed girth and degree distribution, the smaller the lifting degree of QC-LDPC code, the smaller the size of the syndrome memory of SC-QC-LDPCC code and thus the better performance of such code under windowed decoding. In this work we avoid the issue of SC-QC-LDPCC code and will concentrate fully on constructing short length QC-LDPC codes with girth g = 10, 12. However, we keep in mind SC-QC-LDPCC code is a potential candidate for beyond 5G applications, and good QC-LDPC code is the basis of good SC-QC-LDPC code. QC-LDPC codes can be divided into two major classes: 1) random-like codes constructed by means of computer search under efficient algorithms and 2) structured codes constructed based on algebraic tools [START_REF] Li | LDPC code designs, constructions, and unification[END_REF]. These constructing methods all have deficiencies when considered individually. Search-based methods (even heuristic or exhaustive ones) require high search complexity but may find codes with shorter length than the ones obtained with algebraic methods.

Algebraic based methods, on the other hand, will explicitly determine the code (like array code [START_REF] Li | LDPC code designs, constructions, and unification[END_REF] of girth 6); however, so far algebraic methods are only known for the construction of small girth code, not high girth code. In fact, defining algebraic properties that are perfectly matched with high girth condition resulting in explicit construction of short length code is one of the main shortcomings of algebraic methods. In this paper we try to combine these two methods in order to construct large girth QC-LDPC code with short length in considerably lower search complexity.

We take the search-based sequentially multiplied column (SMC) construction method [START_REF] Tadayon | Efficient Search of Compact QC-LDPC and SC-LDPC Convolutional Codes With Large Girth[END_REF] as our search algorithm and modifiy it by introducing an algebraic property for the second column of the exponent matrix of the code. The second column with the asserted algebraic property is found by an integer field sieve (IRS) method in a way that leads to search space reduction eventually. As a result, a semi algebraic fast search-based method of constructing high girth QC-LDPC code is proposed and many constructed codes of girth g = 10, 12 with different rates and degrees are reported. To the best of the authors' knowledge, all the constructed codes have lengths shorter (by up to 35%) or equal (for a small prototype matrix with d v = 3 and d c ≤ 8) to their counterparts in the literature. For d v = 3 and g = 10, the constructed codes have lengths equal, or very close, to the lower bound [START_REF] Karimi | On the Girth of Quasi-Cyclic Protograph LDPC Codes[END_REF]. The paper also proposes matrices for values of d v and d c not yet reported in the literature. Moreover, an irregular QC-LDPC code of rate 0.75 and length 65220 bits (whose exponent matrix is locally optimized with the help of the presented SMC-structured codes) is constructed in Appdendix B. This is a counterpart code to DVB-S2

[30] code of rate 0.75 and length 64800 bits. Simulation results show the SMC-structured code outperforms by a few tenths dBs compared with rate 0.75, length 64800 DVB-S2 code. This further illustrates the usefulness of the presented high girth SMC-structured codes.

The rest of the paper is organized as follows: Section II presents the definitions and some earlier results on SMC construction based QC-LDPC codes as well as some group and number theory concepts, which will be used in later sections. Section III presents the building blocks of our proposed IRS technique. Necessary mathematical arguments, relevant greedy search algorithm, its extension for constructing the exponent matrices and the pertinent complexity analysis of the algorithm are provided in this section. Numerical results as well as simulation results are provided in Section IV. Finally, Section V concludes this paper.

II. PRELIMINARIES

In this section, we review the construction of a family of LDPC matrices well suited for hardware implementation called Quasi-Cyclic LDPC matrices. Then we discuss the conditions that result in QC-LDPC codes with good topological properties. Finally, we will give some notations and relations of group and number theories.

A. QC-LDPC block codes

Let us consider a fully-connected QC-LDPC block code in which the parity-check matrix is an m × n array of N × N circulant permutation matrices (CPMs), I(p ij ), 0 ≤ i ≤ m -1, 0 ≤ j ≤ n -1, where N is the lifting degree of the code. I(p ij ) is obtained from the identity matrix through a cyclic shift of its rows by p ij positions, with 0 ≤ p ij ≤ N -1. The code length is L = nN , the column degree (i.e., the number of non-zero elements in each column) of the parity-check matrix is presented by m and the row degree (i.e., the number of non-zero elements in each row) of the parity-check matrix is presented by n1 . The m × n matrix P having the integer values p ij as its entries is referred to as the exponent matrix of the code. For such a QC-LDPC block code, a necessary and sufficient condition for the existence of a cycle of length 2k in its Tanner graph is

k-1 i=0 p m i n i -p m i n i+1 = 0 mod N, (1) 
where

n k = n 0 , m i = m i+1 , n i = n i+1 [9].
To achieve a certain girth g, for given values of m and n, and for a fixed value of N , one has to find a matrix P whose entries do not satisfy (1) for any value of k < g/2, and any possible choice of the row and column indexes m i and n i . Starting from P, the Tanner graph of the code can be easily obtained as it is unambiguously related to the values of p ij .

We define a structural cycle in the Tanner graph of a CPM-based QC-LDPC block code as a cycle for which k-1 i=0 p m i n i -p m i n i+1 = βN , β ∈ Z. Indeed, this sum could be unequal to βN via altering p ij s. In the face of a structural cycle, an inevitable cycle is defined as a cycle for which k-1 i=0 p m i n i -p m i n i+1 = 0, regardless of what the values of p ij s are. In [START_REF] Fossorier | Quasi cyclic low-density parity-check codes from circulant permutation matrices[END_REF] it is shown that fully-connected CPM-based QC-LDPC codes always contain inevitable cycles of length 12, and thus their girth cannot be larger than 12.

B. Code design via sequentially multiplied columns (SMC)

It is shown in [START_REF] Tasdighi | Efficient Search of Girth-Optimal QC-LDPC Codes[END_REF] that the complexity of exhaustively checking equations of the type [START_REF] Mackay | Good error-correcting codes based on very sparse matrices[END_REF] goes high by increasing each one of the parameters m and n. Solutions with reduced complexity were proposed in [START_REF] Gholami | An explicit method to generate some QC-LDPC codes with girth 8[END_REF] and [START_REF]Symmetrical Constructions for Regular Girth-8 QC-LDPC Codes[END_REF], but the corresponding design methods result in girth g = 8. For constructing short codes with higher girths (i.e., g = 10, 12), many methods are developed. To the best of the authors' knowledge, the results in [START_REF] Tadayon | Efficient Search of Compact QC-LDPC and SC-LDPC Convolutional Codes With Large Girth[END_REF] for QC-LDPC codes with girth g = 10, 12 found by applying SMC construction technique are the shortest ones in the literature. Let us recall the basic assumptions of the design method proposed in [START_REF] Tadayon | Efficient Search of Compact QC-LDPC and SC-LDPC Convolutional Codes With Large Girth[END_REF]. The design of the paritycheck matrix of a QC-LDPC block code with lifting degree N starts from an exponent matrix having the following form (SMC assumption)

P SMC m×n = 0 P 1 γ 2 ⊗ P 1 γ 3 ⊗ P 1 . . . γ n-1 ⊗ P 1 , (2) 
with m, n, ∈ N, m < n, and 0 and P 1 being column vectors with m entries in {0, • • • , N -1}.

The vector 0 is filled with all zero entries, while the entries of the vector P 1 are chosen as follows:

the first entry is zero, the second entry is one and the other entries are chosen in

{2, • • • , N -1}
in an increasing order. Then, the subsequent vectors have the form

γ j ⊗ P 1 (j = 2, • • • , n -1),
where ⊗ denotes multiplication modulo N of each term of P 1 with γ j , and are computed from P 1 through sequential multiplications by the coefficients γ j ∈ {2, • • • , N -1} such that γ j < γ j+1 .

We now restate Proposition 1 of [START_REF] Tadayon | Efficient Search of Compact QC-LDPC and SC-LDPC Convolutional Codes With Large Girth[END_REF].

Proposition 2.1: Let P SMC m×n be the exponent matrix of a QC-LDPC block code C as defined in [START_REF]IEEE Draft Standard for Air Interface for Broadband Wireless Access Systems[END_REF]. Suppose that the Tanner graph associated with the sub-matrix 0 P1 contains no inevitable cycles of lengths up to 10. Then, the Tanner graph of C has no inevitable cycle of length up to 10 for sufficiently large N and a proper choice of γ j s.

Proof: See Proposition 1 in [26].
Example 2.2: Let m = 3 and n = 6. Suppose that P SMC 3×6 is the exponent matrix of a QC-LDPC block code C, as defined in [START_REF]IEEE Draft Standard for Air Interface for Broadband Wireless Access Systems[END_REF], such that P 1 = (0, 1, 29) T . Considering [START_REF] Mackay | Good error-correcting codes based on very sparse matrices[END_REF], it is easy to check that the Tanner graph associated to 0 P1 contains no inevitable cycles of length up to 10.

Then, according to Proposition 2.1, the Tanner graph of C has no inevitable cycle of length up to 10 for sufficiently large N and a proper choice of γ j s. Choosing γ 2 = 3, γ 3 = 7, γ 4 = 67, and γ 5 = 144 and N = 271, it is easily verified that C has girth g = 12. The code length is

L = 1626.
Indeed, proposition 2.1 guarantees that exponent matrices of type P SMC m×n can be avoided from having inevitable cycles of length up to 10. In order to do that, the authors of [START_REF] Tadayon | Efficient Search of Compact QC-LDPC and SC-LDPC Convolutional Codes With Large Girth[END_REF] established a recursive and greedy search algorithm (see algorithm 1 in [START_REF] Tadayon | Efficient Search of Compact QC-LDPC and SC-LDPC Convolutional Codes With Large Girth[END_REF]) to find a sufficiently large N with a proper ordered set of non-zero γ j s (j = 2, • • • , n -1) named p 1,j s as well as a proper ordered set of non-zero p i,1 s (i = 1, • • • , m -1) that do not comply with the constraint [START_REF] Mackay | Good error-correcting codes based on very sparse matrices[END_REF]. It means that, with a given N , this search algorithm is supposed to find n -2 (resp., m -1) non-zero and distinct elements to be placed in the second row (resp., column) of P SMC m×n . These elements vary from 1 to N -1, so in the worst case the overall possibilities are equal to N -1

n-2 N -1 m-1 .
For high rate and high girth codes, the lifting degree is much bigger than m and n (i.e., m, n N ), so the whole search space is of O (N -1) m+n-3 . It has to be notified that if g ∈ {10, 12} is our desired girth of the code, so, for each realization of the matrix P SMC m×n , all the constraints of type (1) with k < g/2 have to be checked. 

C. Some relations in Group and

N = p 1 e 1 * • • • * p N e N (e i ≥ 0, i = 1, • • • , N ).
Euler's totient function counts the positive integers up to N that are relatively prime to N , and it is written as ϕ(N ) where,

ϕ(N ) = N * (1 -1/p 1 ) * ... * (1 -1/p N ).
Theorem 2.6 (Euler's theorem): Suppose that N and a are co-prime positive integers. Then a ϕ(N ) ≡ 1 (mod N ).

Proof: See [START_REF] Riesel | Prime numbers and computer methods for factorization[END_REF].

Definition 2.7 (Ring of integers modulo N ): Ring of integers modulo N , which is written as

Z N (even as Z/N Z) is a set of numbers {0, 1, • • • , N -1} closed
under two binary operations "+" and " * ". Since any pair of elements in Z N are commutative under operation "+" (resp., " * "), the group (Z N , +) (resp., (Z N \ {0}, * )) is said to be Abelian.

It has to be understood that (Z N \ {0}, * ) is not a group evermore, as it has to satisfy invertibility condition. This condition, which certifies that every non-zero element of a group has to be in- For each N i (i = 1, 2, 3, 4) we construct the corresponding multiplicative group Z × N i , and from Definition 2.8 we know that

|Z × N 1 | = 10, |Z × N 2 | = 4, |Z × N 3 | = 6 and |Z × N 4 | = 16.
One can easily check that it is possible to generate all the elements in Z × N i (i = 1, 3, 4) just by taking a 1 = 2 (resp., a 3 = 2 and a 4 = 3 are to be the generator element) and its repetitive multiplications modulo N . However, for the case N 2 = 12, there is no solo generator element for Z × N 2 thus, it is not cyclic. Theorem 2.12: For any prime number p, Z × p is always cyclic and there is a so-called generator a ∈ Z × p (named as primitive element of Z × p ) so that

Z × p = {a i |i = 1, 2, • • • , p -1}. Proof: See [31].
Note that Theorem 2.12 is not valid for an arbitrary integer value N . As we can see from Example 2.11, Z × 12 is not cyclic but Z × 14 is cyclic; however none of the integers 12 and 14 are prime numbers. Definition 2.13 (Subgroup): Given a group G under a binary operation " * ", a subset S of G is called a subgroup of G if S also forms a group under the operation " * ". This is usually denoted by S ≤ G and read as "S is a subgroup of G". If G = a is a cyclic group with generator a, then the order of G is equal to the order of its generator, i.e., O(a) = O( a ). In the next section, our method of sieving integer ring as well as a controlled greedy search algorithm for implementing this method is fully explained.

x i = x 0 + (i * (N/d)) (i = 0, 1, • • • , d -1). Proof: See [31].

III. INTEGER RING SIEVE TO FIND PERMISSIBLE ELEMENTS FOR THE VECTOR P 1

This section is divided into four parts. In Part A, we propose our definition of equivalent relations of type (1) (i.e., equivalent cycles) in an exponent matrix (Tanner graph) of a fullyconnected QC-LDPC code as well as give a theorem for counting all classes of cycles under this equivalent relation, i.e., the number of nonequivalent cycles of length 2k (k = 2, 3, 4, 5) in this matrix (graph). In Part B, several properties for selecting the second column of matrix P SMC m×n (i.e., P 1 ) are suggested. Indeed, depending on the size of d v , we propose a specific property for the elements in P 1 in a way that we can reduce the number of "potential but nonequivalent" cycles by a factor of 3 when d v = 3 and a factor of

d v -1 if d v > 3.
In Part C, some arguments and statistics in existence of proper sieve occurrences that can meet properties suggested in Part B are provided. Our greedy search algorithm is explained in Part D with pseudo code. Complexity analyses for highlighting the important role of our sieving method in reducing the search space are also provided in this final part.

A. Counting nonequivalent relations of type (1) corresponding to nonequivalent potential cycles of Tanner graph of a fully-connected QC-LDPC code Definition 3.1 (Potential cycle): Let P, N , k and p m i n i , p m i n i+1 ∈ P (0 ≤ i ≤ k -1) be the parameters in relation [START_REF] Mackay | Good error-correcting codes based on very sparse matrices[END_REF]. To address any set of 2k elements p m i n i that meets the conditions n 0 = n k , m i = m i+1 , and n i = n i+1 , we consider its corresponding summation, name it as potential cycle C 2k of P, and display it as

C 2k : k-1 i=0 p m i n i -p m i n i+1 . (4) 
In fact, as long as the elements p ij s are considered as symbolic within this summation and are not assigned with some integers, we call this cycle potential. When all the elements within this summation are assigned with integers and the summation is equal to zero modulo N , then C 2k is an activated cycle.

Simply, any activated cycle is considered a realization of a potential cycle. In other words, a potential cycle C 2k is a symbolic presentation of its corresponding activated cycle. So, if girth of QC-LDPC code C is g it means 1) none of its potential cycles of length 2k (k < g/2) are activated after assigning values to p ij s and 2) there is no inevitable (potential or activated) cycle

of length 2k (k < g/2) in code C 2 .

Definition 3.2 (Equivalent cycles):

Let C 2k be a potential cycle defined in 3.1. Potential cycle

C 2k with corresponding summation k-1 i=0 (p m i n i -p m i n i+1 ) is equivalent to the cycle C 2k , if and only if, n 0 = n k , m i = m i+1 , n i = n i+1 , k-1 i=0 {(m i , n i ), (m i , n i+1 )} = k-1 i=0 {(m i , n i ), (m i , n i+1 )} and | k-1 i=0 (p m i n i -p m i n i+1 )| = | k-1 i=0 (p m i n i -p m i n i+1 )|.
In other words, C 2k is derived by specifically reordering the terms of summation k-1 i=0 (p m i n i -p m i n i+1 ) or by the additive inverse of it.

Note that with our definition of equivalent cycles C 2k and C 2k , one can imagine that C 2k is an activated cycle if and only if C 2k is. Moreover, equivalent cycles are involved in the same rows, the same columns, and even in the same elements of P.

To further address the nexus of our various categorizing of cycles, we consider a formal cycle C 2k in P with two scenarios: 1) P contains several nonequivalent classes of potential cycles of length 2k where some of them are inevitable cycles and 2) P contains several nonequivalent classes of potential cycles of length 2k with no inevitable cycle. (a1) and (b1) in Fig. 1 depict a diagram with 16 nonequivalent classes of potential cycles of length 2k respectively for scenario 1 and 2. In scenario 1, we see two classes of Equivalent Inevitable Potential Cycles (EIPC's).

(a2) and (a3) in Fig. 1 are two different realizations of (a1) related to two different assignments of p ij s. As can be seen, there are three types of equivalent classes in (a2) and (a3). The first one is Equivalent Not-Activated Cycles (ENAC's), second one is Equivalent Structurally Activated Cycles (ESAC's), and the last one is Equivalent Inevitably Activated Cycles (EIAC's). (b2) and (b3) in Fig. 1 are also two different realizations of (b1) related to two different assignments of p ij s. As can be seen, there are no EIACs in these diagrams because there were no EIPCs in (b1). In this work we follow scenario 2 and will try to find the optimal assignment in order to keep all the potential cycles of length 2k (k = 2, 3, 4, 5) inactivated, as there is no inevitable cycle of length 2k (k = 2, 3, 4, 5) in the exponent matrix of a fully-connected QC-LDPC code.

The following example also further illustrates the perception of equivalent potential cycles.

Example 3.3: Suppose that P is the exponent matrix in Fig. 2 The definition of equivalent classes of cycles reduces the number of equations to be verified in constructing QC-LDPC code of given girth, so it accelerates the search process. We will argue this method further in the following sections when we try to explain our search algorithm.

However, before that we provide a definition and a theorem here to count nonequivalent potential cycles of length less than or equal to 10 in an exponent matrix P of size m × n where m, n ≥ 2. Definition 3.4 (Cycle's tracking matrix of order 2k): Cycle's tracking matrix of order 2k is a square matrix of size k (k = 2, 3, • • • ) where its (i-j) th component counts the number of non-equivalent potential cycles of length 2k that involve all rows and columns of a matrix of size i × j. This matrix is written as T C 2k . It has to be noted that T C 2k is symmetrical (i.e., T C 2k = T C 2k T ) as the number of potential cycles involved in a i × j matrix is equal to the number of such cycles involved in matrix of size j × i. Theorem 3.5: Let P m×n be an exponent matrix of a fully-connected QC-LDPC code with m ≥ 2 and n ≥ 2 and #C m,n 2k be the number of nonequivalent potential cycles of length 2k

(k = 2, 3, 4, 5) involved in P m×n . So #C m,n 2k = min{k,m} i=2 min{k,n} j=2 t C 2k ij m i n j , (5) 
where t C 2k ij is the (i-j) th component of cycle's tracking matrix T C 2k (k = 2, 3, 4, 5) below 

T C 4 = 0 0 0 1 , T C 6 =    0 0 0 0 0 0 0 0 6    , T C 8 =       0 0 0 0 0 1 3 3 0 3 18 36 0 3 36 72       , T C 10 =         0 
       
and n r is equal to n! r!(n-r)! when r ≤ n and 0 otherwise. Proof: First we notice that based on relation (1) a potential cycle C 2k of length 2k (k ≥ 2) is involved in at most k rows as well as k columns of matrix P m×n . Secondly, for constitution of a cycle of length 2k, the minimum required number of columns (rows) of P m×n is 2 when k is an even number and 3 otherwise. So the term m i n j in relation ( 5) enumerates all the sub-matrices of size i × j of a matrix of size m × n where 2 ≤ i ≤ min{k, m} and 2 ≤ j ≤ min{k, n}. For each one of such sub-matrices, t C 2k ij counts the number of nonequivalent potential cycles that are involved in a sub-matrix of size i × j. By computer programming it is possible to enumerate all such cycles of length 2k (k = 2, 3, 4, 5) which occupy i rows and j columns. Given that g is our desired girth of a code with exponent matrix P of size m × n, one quick impression of Theorem 3.5 is the verification algorithm 3 has to make sure that none of the nonequivalent cycles of length 2k (k < g/2) is activated. Table I contains In addition, with some modifications we are still able to further reduce the number of these 3 We recall that greedy search algorithm in [START_REF] Tadayon | Efficient Search of Compact QC-LDPC and SC-LDPC Convolutional Codes With Large Girth[END_REF] consists of two main parts: 1) picking proper elements from the set {1, • • • , N -1} to be placed as components of sequential rows (columns) of P 2) verifying if every cycle of length less than g remains potential for the assigned P or not. A proper selection (part (1)) along with a valid verification (part (2)) will terminate this algorithm successfully. nonequivalent cycles. To this end, a special class of exponent matrices with SMC assumption and a predetermined column is considered in the following part.

- m=2 m=3 m=4 m=5 -#C 2,n 4 #C 2,n 6 #C 2,n 8 #C 2,n 10 #C 3,n 4 #C 3,n 6 #C 3,n 8 #C 3,n 10 #C 4,n 4 #C 4,n 6 #C
B. Designing P 1 using cyclic subgroups of multiplicative group Z × N Let P 1 be the second column of exponent matrix P SMC m×n that is introduced in relation (2). In this part we try to pick the non-zero elements of P 1 from a specific cyclic subgroup of Z × N . Depending on the value of d v (i.e., value of m), we consider a specific cyclic subgroup and then propose allocating some or all of the elements in this subgroup to p 1j (1 ≤ j ≤ m -1). The main reason behind such allocation is reducing the number of nonequivalent potential cycles to some extent, and thus accelerating our verification algorithm. We select our candidate subgroup in a way that it can impose equivalent potential cycles to P SMC m×n , as much as possible. These extra equivalent cycles are some of those nonequivalent cycles that are enumerated in Theorem 3.5 in general, but here they could be considered as equivalent due to the property of our selected subgroup. Furthermore, by following this approach we have two other important properties. Firstly, by forcing some counted nonequivalent cycles in Theorem 3.5 to be in pre-known equivalent classes, we not only can reduce the search space, but also increase the chance of finding codes with an assumed girth. Secondly, since our designation of P 1 is done a priori and definite, the elements in P 1 would not be variables anymore. The search complexity is reduced to determining elements

γ j (j = 2, 3, • • • , n -1), only.
We pass further discussions to the next sections and will focus on two specific lemmas. These lemmas elucidate both the selecting of cyclic subgroups and the role of these subgroups in reducing nonequivalent potential cycles. Lemma 3.6: Suppose that P SMC 3×n is an exponent matrix of form (2) with lifting degree N and P 1 = [0, 1, a] T is the second column of P SMC 3×n where a is a non-identity element in multiplicative group Z × N with property a * (1 -a) = 1 and superscript "T " stands for vector transpose. Thus, O ( a ) = 6 and

#C 3,n 2k,a ≤ #C 3,n 2k 3
where #C 3,n 2k,a is the number of nonequivalent potential cycles of length 2k (k = 2, 3, 4, 5) pertaining to P SMC 3×n with the second column P 1 , and #C 3,n 2k is introduced in Theorem 3.5 for the general case of an exponent matrix P 3×n with three rows.

Proof: To show that O ( a ) is 6 we need to show that O (a) = 6. To this end, we consider the assumption a * (1 -a) = a -a 2 = 1 and repeatedly apply the group operation to a as follows:

a 2 = a * a = a -1, a 3 = a * a 2 = a 2 -a = -1, a 4 = a * a 3 = -a, a 5 = a * a 4 = 1 -a, a 6 = a * a 5 = a -a 2 = 1. To prove #C 3,n 2k,a ≤ #C 3,n 2k 
3 , we show that for any potential cycle

C 2k : k-1 i=0 (p m i n i -p m i n i+1 ) in matrix P SMC 3×n below    0 0 0 • • • 0 0 1 γ 2 • • • γ n 0 a aγ 2 • • • aγ n    , (6) 
there are at least two corresponding and avoidable cycles

aC 2k : k-1 i=0 ap m i n i -ap m i n i+1 and (1 -a) C 2k : k-1 i=0 (1 -a) p m i n i -(1 -a) p m i n i+1
in this matrix that have the same length as C 2k but are located in different positions (with partly different elements) of P SMC 3×n compared with C 2k . Note that in Definition 3.2 it was emphasized that equivalent potential cycles will occupy exactly the same elements, rows and columns of matrix P, so in the context of Definition 3.2, potential cycles C 2k , aC 2k and (1 -a)C 2k are nonequivalent. However, as it will be shown later, C 2k is an activated cycle if and only if aC 2k ((1 -a) C 2k ) is activated. Thus, we consider them as equivalent cycles. In other words, by verifying one, the other two will be verified. Before continuing, we need to establish a fact regarding isomorphic exponent matrices. Assume that matrices R 2 , R 3 , RP 1 and RP 2 are defined as follows:

R 2 =    0 1 γ 2 • • • γ n 0 1 γ 2 • • • γ n 0 1 γ 2 • • • γ n    , R 3 =    0 a aγ 2 • • • aγ n 0 a aγ 2 • • • aγ n 0 a aγ 2 • • • aγ n    , RP 1 =    0 1 0 0 0 1 1 0 0    , RP 2 =    0 0 1 1 0 0 0 1 0    , (7) 
where R i (i = 2, 3) is constructed from the i th row of matrix P SMC 3×n and RP i (i = 1, 2) is a row permutation matrix to be applied on P SMC 3×n . So, matrix RP 1 -aP SMC 3×n -R 3 , which is constructed by applying linear transformations as well as row permutation matrix RP 1 on aP SMC 3×n (see Fig. 3 parts (a3) to (a5)), has a form exactly like matrix P SMC 3×n . Furthermore, the cycle aC 2k has a new path in the resulting matrix and, at the same time, is isomorphic to the cycle in matrix aP SMC 3×n (Fig. 3 

(X) = RP 1 (-(aX -R 3 )) and t 2 (X) = RP 2 (-((1 -a) X -R 2 ))
where parameter a, matrix RP i (i = 1, 2), and matrix R i (i = 2, 3) were introduced in the proof of Lemma 3.6. As it was explained in this lemma, t 1 P SMC 3×9 = t 2 P SMC 3×9 = P SMC 3×9 . However, the path of cycle aC 2k (resp., (1 -a) C 2k ) in matrix aP SMC 3×9 (resp., (1 -a) P SMC 3×9 ) is transformed to a path in matrix P SMC 3×9 which is different from the path of cycle C 2k in this matrix. Lemma 3.8: Suppose that P SMC 4×n is an exponent matrix of form (2) with lifting degree N and

P 1 = [0, 1, a, a 2 ]
T is the second column of P SMC 4×n where a is a non-identity element in multiplicative group Z × N with property a 3 = 1. Thus where #C 4,n 2k,a is the number of nonequivalent potential cycles of P SMC 4×n of length 2k (k = 2, 3, 4, 5) and #C 4,n 2k is introduced in Theorem 3.5 for the general case of an exponent matrix P 4×n with four rows.

#C 4,n 2k,a ≤ #C 4,n 2k 3 ,
Proof: Before starting the proof, note that a is a cyclic subgroup of Z × N of order 3 as a is not an identity element and a 3 = 1.

As pointed out in the proof of Lemma 3.6, we ought to show that for any potential cycle

C 2k : k-1 i=0 (p m i n i -p m i n i+1 ) in matrix P SMC 4×n below       0 0 0 • • • 0 0 1 γ 2 • • • γ n 0 a aγ 2 • • • aγ n 0 a 2 a 2 γ 2 • • • a 2 γ n       , (8) 
there are at least two corresponding and ignorable cycles

aC 2k : k-1 i=0 ap m i n i -ap m i n i+1 and a 2 C 2k : k-1 i=0 a 2 p m i n i -a 2 p m i n i+1
in this matrix which have the same length as C 2k but are located in different positions (with partly different elements) of P SMC 4×n compared with C 2k . Similar to the proof of Lemma 3.6, we recall that since a (resp., a 2 ) is invertible, C 2k is an activated cycle if and only if aC 2k (a 2 C 2k ) is activated. Thus, we consider C 2k , aC 2k , and a 2 C 2k to be equivalent cycles even though this characteristic is not compatible with the Definition 3.2. Now let N ∈ N, a ∈ Z × N and P 1 (resp., P 2 ) be exponent matrix of code C 1 (resp., C 2 ) with lifting degree N . It is shown [START_REF] Tasdighi | Efficient Search of Girth-Optimal QC-LDPC Codes[END_REF] that P 2 (or the equivalent Tanner graph of C 2 ) is isomorphic to P 1 (Tanner graph of in aP SMC 4×n and a 2 P SMC 4×n (see Fig. 6 (a2) or Fig. 7 (a2) for the cycle of length six), respectively. In the sequel, we attempt to illustrate the cycle-path aC 2k (resp., a 2 C 2k ) in matrix aP SMC 4×n (resp., a 2 P SMC 4×n ) has an isomorphic form in matrix P SMC 4×n . Assume that matrices RP 1 and RP 2 are defined as follows:

RP 1 =       1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0       , RP 2 =       1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0       , (9) 
where RP i (i = 1, 2) is a row permutation matrix to be applied on P SMC 4×n . So matrix RP 1 aP SMC 4×n , which is constructed by applying row permutation matrix RP 1 on aP SMC 4×n (see Fig. 6 parts (a2) to (a3)), has a form exactly like matrix P SMC 4×n . Furthermore, the cycle aC 2k has a new path in the resulting matrix, and at the same time it is isomorphic to the cycle in matrix aP SMC 4×n (Fig. 6 part (a2)). Similarly, matrix RP 2 a 2 P SMC 4×n ) is constructed by applying row permutation matrix RP 2 on a 2 P SMC 4×n (see Fig. 7 parts (a2) to (a3)), and it has a form exactly like matrix P SMC 4×n , too. Also, the cycle a 2 C 2k has a new path in the resulting matrix, and at the same time it is isomorphic to the cycle in matrix a 2 P SMC 4×n (Fig. 7 part (a2)). Permutation matrices RP 1 and RP 2 will entirely permute the rows of matrices except the first row, which is intact. Since these permutations are different from each other, the new path of cycle aC 2k (resp., a 2 C 2k ) in the resulting matrix Example 3.9: Suppose that P SMC 4×9 is the exponent matrix in Fig. 8 (a), and cycles C 2k (k = 4, 5) are the potential cycles with the path depicted in Fig. 8 (a). Following the procedure described in the proof of Lemma 3.8, we can find at least two other isomorphic paths to the cycle C 2k named aC 2k (Fig. 8 (a1)) and a 2 C 2k (Fig. 8 (a2)). To this end, we consider the transformations t 1 (X) = RP 1 (aX) and t 2 (X) = RP 2 (a 2 X) where parameter a and matrix RP i (i = 1, 2)

were introduced in the proof of Lemma 3.8. As was explained in this lemma, t 1 P SMC 4×9 = t 2 P SMC 4×9 = P SMC 4×9 . However, path of cycle aC 2k (resp., a 2 C 2k ) in matrix aP SMC 4×9 (resp., a 2 P SMC 4×9 ) is transformed to a path in matrix P SMC 4×9 , which is different from the path of cycle C 2k in this matrix.

Note that we have tried to intuitively reason lemmas 3.6 and 3.8 to make them easier to understand. However, an algebraic proof method to these lemmas is presented in Appendix A.

In addition, a general formulation of these lemmas is presented in the following theorem. Theorem 3.10: Suppose that P SMC m×n is an exponent matrix of form (2) with lifting degree N and

[0, 1, a, a 2 , • • • a m-2 ]
T is the second column of P SMC m×n (m, n ≥ 3) where a is a non-identity element in multiplicative group Z × N with property a * (1 -a) = 1 (resp., O (a) = m -1) when m = 3 (resp., m ≥ 4). Thus

#C m,n 2k,a ≤ #C m,n 2k 3 (resp., #C m,n 2k,a ≤ #C m,n 2k m -1 )
where m = 3 (resp., m ≥ 4), #C m,n 2k,a is the number of nonequivalent potential cycles of P SMC m×n of length 2k (k = 2, 3, 4, 5) and #C m,n 2k is from Theorem 3.5 for the general case of an exponent matrix P m×n with m rows.

Proof: For the cases m = 3 and m = 4 we refer them to the lemmas 3.6 and 3.8, respectively.

For the case m ≥ 5 the argument is exactly the same as the case m = 4. This means that tailored to the order of non-identity element a ∈ Z × N and any potential cycle

C 2k ∈ C m,n 2k (k = 2, 3, 4, 5
), it must be shown that there are m -2 other isomorphically equivalent cycles a i C 2k

(i = 1, • • • , m -2
) that all have the same length as the cycle C 2k but with different paths in matrix P SMC m×n of form (2) that has [0, 1, a, a 2 , • • • a m-2 ] T as its second column. To show this fact, we consider below a row permutation matrix of size m

RP i =                             1 0 0 0 • • • 0 0 0 0 0 0 • • • 0 1 0 1 0 0 • • • 0 0 0 0 1 0 • • • 0 0 0 0 0 1 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 0 0 • • • 1 0               m×m               i , i = 1, 2, • • • , m -2 (10) 
and apply it on the left side of matrix a i P SMC m×n . Following the steps of the presented argument in Lemma 3.8, this action will translate the potential cycle C 2k to m -2 other isomorphic cycles a i C 2k that all have the same size as C 2k but with completely different paths in P SMC m×n . Here it should be noted that using the constraint a (1 -a) = 1 for the case m = 3 is more efficient than using a 2 = 1. This is because the former constraint will reduce the equivalent cycles by a factor of 3 while the later constraint will reduce it by a factor of 2.

C. IRS technique as an A priori step of greedy search algorithm

In Theorem 3.10 it was shown that by tailoring to the column degree d v = m of exponent matrix P SMC m×n , there might exist a proper cyclic subgroup a of multiplicative group Z × N from which we can pick non-zero components of P 1 . Specifically, this theorem asserts that

P 1 = [0, 1, a, a 2 , • • • a m-2 ]
T . The essence of Theorem 3.10 is determining P 1 a priori in a way that 1)

the number of nonequivalent potential cycles is reduced by a certain factor and 2) the greedy search algorithm does not need to search components of P 1 anymore. Then, after determining a suitable P 1 that meets the condition of Theorem 3.10, the search algorithm will take the submatrix 0 P1 as a base and try to find proper values of γ j s in order for P SMC m×n to meet the girth condition. Nevertheless, it has to be noted that Theorem 3.10 does not guarantee that submatrix 0 P1 meets the girth condition itself. So given the desired girth g = 2k (k = 5, 6), the questions are "does every candidate P 1 result in a sub-matrix 0 P1 with desired girth g? Note that since a * (1 -a) = a -a 2 = 1, a 2 = a -1. Considering that GCD (a, N ) = 1, if 2 -a = 0 mod N , then 2a = a 2 mod N . Thus, 2a = a -1 mod N . This means that a = -1 mod N . But there is a contradiction as a = -1 mod N and at the same time a = 2 mod N .

In the following we bring a counterexample that shows every a value that meets the condition a dv-1 = 1 (d v ≥ 4) would not necessarily be a proper candidate for constructing the sub-matrix 0 P1 with girth 12. T as they will result in matrix 0 P1 with girth less than or equal to 8. For the value N 2 , none of the elements of Z × N 2 holds properties I to III. For Z × N 3 , there is no element with property I and III, but only two elements a = 214, 427 hold the property II. However, neither a = 214 nor a = 427 are proper candidates for constructing

vector P 1 = [0, 1, a, a 2 ]
T as they will result in matrix 0 P1 with girth less than or equal to 8. Although Example 3.12 highlights there probably is not a general and explicit way for finding cyclic subgroups that are suitable for launching a greedy search algorithm, there still is a reliable trend to ensure that suitable candidates of cyclic subgroups are available even with a large size.

Eventually

To address this issue we bring some statistics in Table II and Fig. 9. The first row of Table II indicates the property of each cyclic subgroup. The second row of this table contains the proportion (or ratio) of those integer number N s, which for that Z × N possesses at least one suitable cyclic subgroup of indicated order. The variation range of N is between 37 and 7400, which is high enough for our investigation and inference. As can be seen in Table II this ratio is always greater than 10%. The third row of Table II accommodates the average number of suitable candidates of value a that exist in each suitable multiplicative group Z × N . For instance, if the ultimate goal is using SMC technique for constructing a fully-connected QC-LDPC code with d v = 4 and girth at least 10, one can consider a fixed N ∈ N as a lifting degree and hope that they have a 60% chance (for this specific N ) to find a proper cyclic subgroup of order 3 to make P 1 . In addition, for each N , Z × N possesses more than three a values (on average) that we can make use to form vector

P 1 = [0, 1, a, a 2 ]
T . Fig. 9 helps us to have a conception of piecewise trends of existence cyclic subgroups while N is gradually increased. This figure consists of four parts; each one displays a screenshot of size 10 of a 3-dimensional histogram.

These small histograms show the multiplicities of suitable a values (as z axis) of Z × N considering N (as x axis). The notable thing is these screenshots are selected from different parts of the general histogram. The results of this figure ensure that we have a chance to find a suitable cyclic subgroup of Z × N even when N belongs to the small intervals who are picked from different parts of the integer ring 4 .

Before concluding this part, there are three important relevant facts. First, Lagrange's theorem 2.16 is a primary criterion to verify if Z × N has at least one cyclic subgroup of our desired order or not. However, this theorem proposes a necessary but not sufficient condition. For example,

|Z ×

240 | = ϕ (240) = 64 and GCD (8, 64) = 8, but Z × 240 has no element of order greater than 4. So it is impossible to construct

P 1 = [0, 1, a, • • • , a m-1 ]
T when N = 240 and m = 8. 4 The authors seize this opportunity to highlight another capability of IRS method which is beyond the scope of this paper but could be considered as future work. Indeed, if N is a prime number and non-zero components of P1 constitute a cyclic subgroup of Z × N , then the set of non-zero elements of Pj (j = 2, • • • , n -1) is a co-set of this subgroup. In other words, exponent matrix P SMC m×n is made of a specific cyclic subgroup of multiplicative group Z × N and some of its co-sets. Investigation of the relation between these co-sets and the girth of SMC constructing based QC-LDPC codes could be considered as future studies. Second, checking for the existence of a proper N and, accordingly, the existence of a suitable cyclic subgroup that results in P 1 is not time-consuming. Given a fixed m, it will take few milliseconds for MATLAB software to check if Z × N is a proper candidate or not. Third, the following proposition, "the search algorithm will need to investigate only one permissible a per each permissible cyclic subgroup of Z × N that meets the girth condition." In other words, if there is more than one generator for permissible cyclic subgroup S (S ≤ Z × N ), then it is sufficient to check only one of them. 

[0, 1, a, • • • , a m-2 ]
T has the same girth as the Tanner graph of matrix

P SMC m×n with second column [0, 1, b, • • • , b m-2 ]
T .

Proof: It is shown [START_REF] Tasdighi | Efficient Search of Girth-Optimal QC-LDPC Codes[END_REF] that if d ∈ Z × N then the Tanner graph of code with exponent matrix 

∈ N (1 ≤ y ≤ m - 2) and GCD (y, m -1) = 1. If P SMC m×n has [0, 1, a, • • • , a m-1-y , a m-1-y+1 , • • • , a m-2 ]
T as its second column, then

a y P SMC m×n has [0, a y , a y+1 , • • • , 1, a, • • • , a y-1 ]
T as its second column while preserving the SMC constraint. Permuting the rows of a y P SMC m×n does not affect the girth but gives

0, 1, a y , a 2y , • • • , a (m-2)y T = [0, 1, b, b 2 , • • • , b m-2 ]
T as the second column of a y P SMC m×n . In Summary, the search algorithm will test one permissible generator per each permissible cyclic subgroup S to find exponent matrix P SMC m×n of code with girth g (g = 10, 12). The final point is there might be more than one permissible cyclic subgroup of Z × N that meet the conditions in Theorem 3.10; however, not all of them would necessarily result in matrix P SMC m×n with girth g (g = 10, 12) for the given N . For example Z × 301 has two distinct permissible cyclic subgroups S 1 = 80 and S 2 = 136 of order 6 where their generators satisfy the property a (1 -a) = 1 as well as the girth conditions. We will see in Section IV that search algorithm is able to find exponent matrix P SMC 3×10 with second column [0, 1, 80] T for code with girth 10 while it is impossible to find girth 10 code with exponent matrix P SMC 3×10 and second column [0, 1, 136] T .

D. Controlled greedy search algorithm

In this section, we present a new controlled greedy search algorithm that uses the SMC technique [START_REF] Tadayon | Efficient Search of Compact QC-LDPC and SC-LDPC Convolutional Codes With Large Girth[END_REF]. In the proposed algorithm, the complexity of the "verification" phase is considerably reduced thanks to the considered IRS technique. Moreover, the behavior of the "assigning" phase is optimized and controlled based on the available information at each step. In the following, the proposed version of this algorithm along with a complementary explanation are presented.

Algorithm 1 Controlled greedy search algorithm for m ≥ 3 Input: Parameters n, m, N of the code, targeted girth g, vector G of size n to control the greedy search effort.

Output: Eventually, set of coefficients Γ n of size n if success, empty set otherwise.

primary step

1: A = {2, 3, . . . , N -1}, Γ n = ∅, Γ 1 = {0} 2: while A = ∅ and Γ n = ∅ do 3:
Extract an element a of A.

4:

A = A \ {a} 5: if O(a) = m -1 then 6:
Set P 1 = (0, 1, a, a 2 , . . . , a m-2 ) T 7: for i = 1 to |S| do 15:

A = A \ {a k } k=2,...,m-2 8: S = Φ g (Γ 1 , P 1 , N ) 9: Γ n = search (Γ 1 , S, N, n, P 1 , G)
s(i) = |S ∩ Φ g (Γ ∪ S(i), P 1 , N )| (note: s is a vector).
16:

I = sort index (s) (note: s(I(1)) ≥ s(I(2)) ≥ . . . ≥ s(I(|S|))).
17:

for j = 1 to min (|S|, G(|Γ|)) do 18: if |Γ n | = n then Return Γ n 19:
else 20:

Γ k = Γ ∪ {S(I(j))} 21: S = S \ {S(I(j))} 22: S k = S ∩ Φ g (Γ k , P 1 , N ) 23: if |Γ k | + |S k | ≥ n then 24: Γ n = search (Γ k , S k , N, n, P 1 , G) 25: else 26: Return ∅ Let Γ k = {0, 1, γ 2 , . . . , γ k-1 } be a set of size k of elements of Z × N .
The property ρ g (Γ k , P 1 , N ) is true if and only if the exponent matrix 0 P 1 γ 2 ⊗ P 1 . . . γ k-1 ⊗ P 1 gives a matrix with a girth greater than or equal to g when expanded by a factor of N . We call Φ g (Γ k , P 1 , N ) the ordered set of coefficients of Z N so that a vector Γ k+1 of size k + 1 constructed by the concatenation of Γ k and any coefficient of Φ g (Γ k , P 1 , N ) also gives an exponent matrix of girth g. In a more formal way

β ∈ Φ g (Γ k , P 1 , N ) ⇐⇒ ρ g (Γ k ∪ {β}, P 1 , N ) is true. ( 11 
)
The search of a solution of degree (m, n) for a given expansion factor N is done in two steps.

The 

m = 3 m i=2 n j=2 t C 2k ij ( 3 i )( n j ) 3 m i=2 n j=2 t C 2k ij 3 i n j (N -3) n-2 (N -1) 2(n-1) O (N -3) (n-2) O (N -1) 2(n-1) m ≥ 4 m i=2 n j=2 t C 2k ij ( m i )( n j ) m-1 m i=2 n j=2 t C 2k ij m i n j (N -m) n-2 (N -1) (m-1)(n-1) O (N -m) (n-2) O (N -1) (m-1)(n-1)
At the end of this discussion, we compare the complexity of our proposed search method that uses IRS technique with an exhaustive search in terms of: 1) mitigating the verification phase by reducing nonequivalent potential cycles and 2) mitigating the assigning phase by reducing the number of undetermined components of exponent matrix P. These two types of simplification are logically accurate even for g = 10 or 12. Table III summarizes these results. The first column of this table shows the column degree d v = m of our constructed QC-LDPC codes. Without loss of generality we assume n >> m due to the fact that studying the complexity of our search method would be important when the rate of the codes is high. In other words, if one intends to find fully-connected QC-LDPC code of different rates, the dominant variable is row weight d c = n.

The second column of the table presents the necessary search space for the verification phase.

As was shown in Theorems 3.5 and 3.10, this space is equal to min{k,m} )/ (m -1) respectively for an exhaustive search and our IRS method combined with the SMC technique. Considering that girth of the code is less than or equal to 2k = 12 (i.e., k ≤ 6), m n and the parameter t C 2k ij is always less than or equal to 1440 (see tracking matrix T C 10 in Theorem 3.5), it can be concluded that the dominant term in any of previous summations is n k . Since in the worst case the complexity of n k is of O n k and the summation is finite, the overall complexity of the verification phase is of polynomial order and equal to O n k . This means that even with or without applying the IRS approach the complexity of verification phase is polynomial. However, by applying the IRS approach the complexity is reduced as a factor of m -1, which is slightly lower. The third column of the table counts the number of candidate values among Z N that can be assigned to each non-zero component of the exponent matrix. Given that the exponent matrix P is of size m × n with all zero first row and all zero first column, in an exhaustive search case, (m -1) (n -1) remaining components of P have to be assigned. None of these remaining components has to be zero, otherwise the girth is 4. So the number of such possibilities is equal to (N -1) (m-1)(n-1) . On the other hand, when the IRS method is considered, the second column is assigned a priori. So the remaining components of P are those in column 3 to n. When SMC technique is considered concurrently with IRS, we need to assign one component γ j per j th column. So n -2 components need to be assigned. Knowing the fact that "when P has all zero first row and all zero first column and its girth is greater than 6, all the non-zero elements of P have to be distinct ( [START_REF] Tasdighi | Efficient Search of Girth-Optimal QC-LDPC Codes[END_REF])", so each one of the n -2 components has to be different from the elements in the second column, i.e.,

γ j ∈ Z N \{0, 1, a, • • • , a m-2 }.
So the number of such possibilities is (N -m) n-2 . Finally, the fourth column proposes the overall complexity of the search method. Given the fact that for high girth code, N >> n, and the verification search has polynomial complexity, one can easily conclude that the overall complexity of both phases is dominated by the assigning phase equal to O (N -1) (m-1)(n-1) and O (N -m) (n-2) , respectively, for exhaustive search and our proposed search method.

In general cases, by considering the number of nonequivalent cycles in relation (5) as the verification search space and noticing that (N -1) (m-1)(n-1) is the general assigning search space, one can figure out that the complexity of both verification and assigning phases of an exhaustive search are instinctively exponential. Information in the last column of Table III shows that even when combining SMC approach with IRS technique the complexity remains exponential. However, privileges of the aforementioned combination are that not only does it considerably reduce both of the search spaces, but by this synchronous combination, we are also still able to find lifting degrees very close to the lower bound even for large values of d c s. In the next section we will investigate the outcomes of our greedy search algorithm. These results demonstrate that combining SMC with IRS for finding QC-LDPC code with large girth and short length is a practical tool. smartly selecting elements of exponent matrix's second column of the code from this ring, it is possible to further reduce the search space and still find high girth QC-LDPC codes with lengths very close to the lower bound. Pseudo code of our proposed search algorithm was presented and as a result of our method, a variety of fully-connected QC-LDPC codes with different rates and small lengths were provided in tables. Furthermore, small length counterpart codes were addressed within the tables for comparison, and in most of the cases the new codes have lengths smaller than the available state of the art. In the end, capability of the proposed method in constructing practical irregular QC-LDPC codes was illustrated, and their good performances were compared with the standard codes. 

APPENDIX

A. An algebraic proof to lemmas 3.6 and 3.8.

Let C m,n 2k be a potential cycle of length 2k in P SMC m×n with summation k-1 i=0 p m i n i -p m i n i+1 where n k = n 0 , m i = m i+1 and n i = n i+1 . Without loss of generality we can rewrite this summation as k-1 i=0 p m i n i -p m i+1 n i where m k = m 0 , m i = m i+1 and n i = n i+1 . Since the second column of P SMC m×n is P

1 = [0, 1, a, a 2 , • • • , a m-2 ]
T , the later summation could be written

as k-1 i=0 γ n i (δ (m i ) -δ (m i+1 )) where m i ∈ {0, 1, 2, • • • , m -1}, n i ∈ {0, 1, 2, • • • , n -1}, δ (m i ) = P 1 (m i ), γ 0 = 0, γ 1 = 1, and γ n i (2 ≤ n i ) is the coefficient of column P n i = γ n i P 1 . As- suming ∆ (m i ) = δ (m i )-δ (m i+1 ), the summation of C m,n
2k could be written as k-1 i=0 γ n i ∆ (m i ). Let us first consider the case m = 3 and a( 1 -a LOOKUP TABLE TO ∆ (mi), a∆ (mi) AND a 2 ∆ (mi) WHEN SECOND COLUMN OF P SMC 4×n IS P1 = 0, 1, a, a 2 T . ∆ (mi) 1 a a 2 1 -a 1 -a 2 a -a 2 -1 -a -a 2 -1 + a -1 + a 2 -a + a 2 a∆ (mi) a a 2 1 a -a 2 -1 + a -1 + a 2 -a -a 2 -1 -a + a 2 1 -a 1 -a 2 a 2 ∆ (mi)a 2 1 a -1 a 2 -a + a 2 1 -a -a 2 -1 -a 1 -a 2 a -a 2 -1 + a

) = 1, where a ∈ Z × N . Since GCD(a, N ) = GCD((1 -a), N ) = 1, k-1 i=0 γ n i ∆ (m i ) = 0 mod N if and only if k-1 i=0 γ n i a∆ (m i ) = 0 mod N if and only if k-1 i=0 γ n i (1 -a)∆ (m i ) = 0 mod N . In
that ∆ (m i ) , a∆ (m i ) , (1 -a)∆ (m i ) ∈ {±1, ±a, ±(1 -a)} (see

B. DVB-S2 like code construction

The array displayed in ( 13) is a vertical display of an exponent matrix P SMC 15×60 with lifting degree 1087, which is masked 5 in a way that its row (resp., column) degree distribution is ρ (x) = 0.8666x 15 + 0.1334x 16 (resp., λ (x) = 0.25x + 0.55x 2 + 0.0666x 3 + 0.0834x 10 + 0.05x 13 ).

Thus, the resulting code of (13) would be an irregular QC-LDPC code that we call C masked . Before the masking operation, P SMC 15×60 is an exponent matrix of a girth g = 6 fully-connected QC-LDPC code C full of length 60 * 1087 = 65220 and rate 60-15 60 = 0.75 that preserves SMC property. Although the Tanner graph T full of code C full is of girth 6, it is locally optimized so that it has several distinct and large sub-graphs each of girth 12. To impose this property to T full , P SMC 15×60 is constructed as follows: 

P SMC 15×60 =           A T A 1 A 2 0 γ 4 p 3,
where matrix A is the matrix of dimension 4×6 defined in Table VII for rate 1/3 (fully-connected QC-LDPC code with m = 4, n = 6, and N min = 1087), thus A T is of dimension 6 × 4. Matrix A 1 is the matrix of dimension 5 × 4 generated with the 5 last rows of A T multiplied by the factor 139, i.e., A 1 (i, j) = 139 * A T (i + 1, j) (mod 1087) (i = 1, . . . , 5; j = 1, . . . , 4). Matrix A 2 is the matrix of dimension 4 × 4 generated with the rows 2 to 5 of A T multiplied by the factor 719, i.e., A 2 (i, j) = 719 * A T (i + 1, j) (mod 1087) (i = 1, . . . , 4; j = 1, . . . , 4). Since 1087 is a prime number, GCD (139, 1087) = GCD (719, 1087) = 1, and thus A 1 and A 2 are also of girth 12 (lemma 3 of [START_REF] Tasdighi | Efficient Search of Girth-Optimal QC-LDPC Codes[END_REF]). As shown in [START_REF] Asvadi | Lowering the Error Floor of LDPC Codes Using Cyclic Liftings[END_REF], the first four columns of P SMC 15×60 are made of the vertical concatenation of A T , A 1 , and A 2 . This left part of matrix P SMC 15×60 is intentionally constructed with high girth sub-matrices as it will be only lightly masked. The rest of the columns of P SMC 15×60 still apply to SMC property, where p j,2 's (j = 3, • • • , 15) are components of the second column of P SMC 15×60 , coefficients γ i 's (4 ≤ i ≤ 59) are selected in a way that P SMC 15×60 respects girth-6 constraint, and p j,2 γ i is calculated modulo 1087. 

c 9 0 -1 -1 -1 -1 -1 -1 -1 893 921 -1 -1 548 -1 -1 c 10 -1 -1 109 -1 -1 215 -1 -1 -1 -1 -1 842 -1 1081 -1 c 11 -1 70 -1 -1 605 -1 1034 -1 -1 -1 -1 -1 -1 -1 195 
c 12 0 -1 -1 337 -1 -1 -1 355 -1 -1 421 -1 -1 -1 -1 c 13 -1 -1 -1 -1 -1 438 747 -1 635 -1 -1 -1 -1 -1 -1 c 14 -1 106 -1 -1 -1 956 -1 -1 -1 -1 -1 124 -1 -1 -1 c 15 0 -1 -1 -1 -1 -1 -1 -1 -1 1060 82 -1 -1 -1 -1 c 16 -1 -1 -1 -1 23 -1 -1 -1 305 -1 -1 -1 -1 -1 232 
c 17 -1 -1 -1 -1 278 -1 -1 438 -1 -1 -1 -1 -1 23 -1 c 18 -1 -1 -1 112 -1 -1 523 -1 -1 -1 -1 -1 569 -1 -1 c 19 -1 -1 425 -1 6 -1 -1 -1 -1 834 -1 -1 -1 -1 -1 c 20 -1 -1 496 -1 -1 380 -1 -1 -1 -1 -1 22 -1 -1 -1 c 21 -1 952 -1 -1 -1 -1 -1 -1 -1 168 456 -1 -1 -1 -1 c 22 -1 380 -1 697 -1 -1 -1 -1 -1 -1 -1 -1 -1 36 -1 c 23 0 -1 -1 -1 -1 -1 -1 -1 276 -1 -1 -1 -1 -1 46 c 24 -1 -1 -1 -1 343 -1 270 -1 -1 -1 -1 -1 433 -1 -1 c 25 -1 -1 -1 178 -1 -1 -1 -1 -1 -1 -1 1085 -1 -1 138 c 26 -1 -1 -1 838 -1 347 -1 -1 -1 -1 -1 186 -1 -1 -1 c 27 -1 -1 687 -1 -1 -1 -1 -1 -1 366 217 -1 -1 -1 -1 c 28 0 -1 -1 -1 -1 -1 -1 296 -1 -1 -1 -1 -1 -1 302 c 29 -1 179 -1 -1 -1 -1 -1 -1 352 -1 -1 -1 -1 -1 421 
c 30 0 -1 -1 -1 -1 -1 -1 87 -1 -1 -1 -1 -1 965 -1 c 31 -1 435 -1 -1 -1 211 -1 -1 -1 908 -1 -1 -1 -1 -1 c 32 -1 -1 -1 -1 55 1081 -1 -1 -1 -1 -1 1018 -1 -1 -1 c 33 -1 -1 -1 886 -1 -1 -1 -1 -1 310 65 -1 -1 -1 -1 c 34 -1 -1 -1 100 -1 -1 -1 315 -1 -1 -1 -1 -1 158 -1 c 35 -1 -1 892 -1 -1 -1 -1 -1 311 -1 -1 -1 -1 -1 233 c 36 -1 1051 -1 -1 -1 -1 -1 637 -1 -1 -1 -1 -1 706 -1 c 37 0 -1 -1 -1 -1 -1 -1 -1 863 -1 -1 -1 -1 812 -1 c 38 0 -1 -1 -1 -1 -1 383 -1 -1 -1 -1 -1 425 -1 -1 c 39 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 600 34 136 -1 -1 c 40 -1 -1 -1 -1 750 -1 -1 -1 -1 985 -1 -1 -1 -1 98 c 41 -1 -1 -1 388 -1 -1 -1 -1 669 -1 -1 -1 -1 700 -1 c 42 -1 -1 16 -1 -1 -1 556 -1 -1 -1 -1 -1 634 -1 -1 c 43 -1 -1 989 -1 -1 -1 -1 509 -1 -1 -1 -1 193 -1 -1 c 44 -1 270 -1 -1 -1 -1 572 -1 -1 -1 -1 644 -1 -1 -1 c 45 0 -1 -1 -1 -1 735 -1 -1 -1 -1 1074 -1 -1 -1 -1 c 46 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 223 
c 47 0 291 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 c 48 -1 32 128 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 c 49 -1 -1 14 497 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 c 50 -1 -1 -1 119 57 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 c 51 -1 -1 -1 -1 536 989 -1 -1 -1 -1 -1 -1 -1 -1 -1 c 52 -1 -1 -1 -1 -1 814 1016 -1 -1 -1 -1 -1 -1 -1 -1 c 53 -1 -1 -1 -1 -1 -1 658 458 -1 -1 -1 -1 -1 -1 -1 c 54 -1 -1 -1 -1 -1 -1 -1 1025 1060 -1 -1 -1 -1 -1 -1 c 55 -1 -1 -1 -1 -1 -1 -1 -1 506 489 -1 -1 -1 -1 -1 c 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 382 571 -1 -1 -1 -1 c 57 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 383 192 -1 -1 -1 c 58 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 897 327 -1 -1 c 59 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 989 869 -1 c 60 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 936 
969 [START_REF] Nguyen | On the Construction of Structured LDPC Codes Free of Small Trapping Sets[END_REF] 

Number theory Definition 2 . 3 (

 23 Prime factorization): Factorizing an integer composite number into a product of smaller integers is called integer factorization. If these integers are further restricted to prime powers, the process is called prime factorization. Definition 2.4 (Co-prime integers): Two integers a and b are said to be relatively prime or co-prime if the only positive integer (factor) that divides both of them is 1. Consequently, no prime number can concurrently divide both of them. This is also equivalent to saying the Greatest Common Divisor (GCD) of a and b is 1. Standard notations for relatively prime integers a and b are GCD (a, b) = 1 or (a, b) = 1. If c ≥ 1 divides a and b, we write c | a and c | b. While c does not divide a (b) we write c | a (c | b).Definition 2.5 (Euler's totient function): Let N be a positive integer with prime factorization

Example 2 . 10 (

 210 Additive cyclic group): Let N be an arbitrary positive integer, G = (Z N , +) and a = 1. So every element of G is generated by using repetitive summation of a modulo N .

Example 2 . 11 (

 211 Multiplicative cyclic group): Let N 1 = 11, N 2 = 12, N 3 = 14 and N 4 = 17.

Definition 2 . 14 ( 3 )

 2143 Order of an element): Let G be a finite group under a binary operation " * ", |G| = n, a ∈ G, and e is the identity element of G. The smallest positive integer r (1 ≤ r ≤ n) for which a r = e is called the order of a (or simply O (a)) where r times a r = a * a * • • • * a . (Definition 2.15 (Order of a group): The order of a finite group G is equal to the number of elements in G and is written as O (G).

Theorem 2 .

 2 16 (Lagrange's theorem): For any finite group G, the order of every subgroup S of G divides the order of G. Thus, GCD (O (S) , O (G)) = O (S). Proof: See [31]. Corollary 2.17: Let G be a finite group. For an arbitrary element a ∈ G, a = {a i |i = 1, 2, • • • , O (a)} is a cyclic subgroup of G. In addition, GCD (O ( a ) , O (G)) = O ( a ). Proof: The result is a direct conclusion of Definition 2.9 and of Theorem 2.16. Suppose that N (N > 1) is an integer number, a, b ∈ Z N and a = 0. In the upcoming sections, it is needed to find the solution of equation ax = b, and under which circumstances b is dividable by a. The next proposition determines this condition. Proposition 2.18: Let N (N > 1) be an integer number, a, b ∈ Z N , and a = 0. Also let d be equal to d = GCD (a, N ). Equation ax ≡ b mod N has no solution if d | b, and it has d different solutions if d|b. In addition, let x 0 be the only solution of the equation (a/d) x ≡ (b/d) mod (N/d). So, d different solutions of the primary equation are

Example 2 . 19 :

 219 Let N = 18, a = 14, and b = 12. So, d = GCD (14, 18) = 2 and d|b. In this case, we solve the equation (14/2) x ≡ (12/2) mod (18/2), and x 0 = 6 is the solution. Since d = 2, the equation 14x ≡ 12 mod 18 has two different solutions: x 0 = 6 and x 1 = 6 + (1 * (18/2)) = 15.

Fig. 1 .

 1 Fig. 1. Nexus of different categorizing of cycles. (a1) and (b1) are diagrams to different classes of equivalent cycles of length 2k before assigning pij values. (a2) and (a3) are different realizations of (a1), and, (b2) and (b3) are different realizations of (b1) after assigning pij values.

Fig. 2 .

 2 Fig. 2. Sample paths for cycles of length between 4 and 10 involved in exponent matrix P: a) exponent matrix of size m × n. b) paths of length 4 equivalent cycles. c) paths of length 6 equivalent cycles. d) paths of length 8 equivalent cycles. e) path of a length 8 cycle nonequivalent to (d). f) another path of a length 8 cycle nonequivalent to the paths (d) and (e). g) path of a length 10 cycle.

  (a). Cycles C 4 , C 6 , and C 8 , which are depicted with continuous arrows respectively in Fig. 2 (b), (c) and (d), are considered potential cycles. Indeed, depending on the values of p ij , which are taken from the set {0, 1, • • • , N -1}, their corresponding summations may (or may not) be equal to zero modulo N . However, regardless of the amount of their summation, each one of these cycles has some other equivalent representation in matrix P. For instance, dash-dot arrows in Fig. 2 (b) and (c) respectively show another equivalent representation (i.e. additive inverse) of C 4 and C 6 . Also, the dash-dot arrows in part (d) display a rearrangement of the summation corresponding to C 8 and thus presents an equivalent cycle of C 8 .

  For example, parts (d), (e), (f), and (g) of Fig. 2 are certain samples of potential cycles respectively of size 8, 8, 8, and 10 occupying all rows and columns of sub-matrices of dimension 2 × 4, 2 × 2, 3 × 2, and 3 × 5. We used computer programming, and the derived results are summarized in tracking matrices T C 2k (k = 2, 3, 4, 5). In summary, relation (5) considers multiplicities of sub-matrices of size i × j multiplied by nonequivalent potential cycles of length 2k that are involved in such matrices.

4 +

 4 multiplicities of such cycles for certain sizes of m, and n. For instance, if g = 12, m = 3 and n = 10, then the verification algorithm is supposed to check #C 3,10 + 12960 + 90360 = 104175 nonequivalent cycles of lengths 4 to 10 are not activated.

Fig. 3 .Fig. 4 .

 34 Fig. 3. Isomorphic forms of exponent matrix P SMC 3×n under transformation RP1 (-(aX -R3)): parts (a1) to (a5) clarify the stepwise impact of transformation RP1 (-(aX -R3)) on both P SMC 3×n and the sample path of a potential cycle C6.

3 .Fig. 5 .

 35 Fig. 5. Samples of isomorphic paths of cycles with different length in P SMC 3×9 : a) primary underlined paths for cycles C4, C6 and C8. a1) isomorphic paths for the considered primary paths in part (a) derived from transformation t1. a2) isomorphic paths for the considered primary paths in part (a) derived from transformation t2.

Fig. 6 .

 6 Fig. 6. Isomorphic forms of exponent matrix P SMC 4×n under transformation RP1 (aX): parts (a1) to (a3) clarify the stepwise impact of transformation RP1 (aX) on both P SMC 4×n and the sample path of a potential cycle C6.

Fig. 7 .

 7 Fig. 7. Isomorphic forms of exponent matrix P SMC 4×n under transformation RP2 a 2 X : parts (a1) to (a3) clarify the stepwise impact of transformation RP2 a 2 X on both P SMC 4×n and the sample path of a potential cycle C6

Fig. 8 .

 8 Fig. 8. Samples of isomorphic paths of cycles with different length in P SMC 4×9 : a) primary underlined paths for cycles C8 and C10. a1) isomorphic paths for the considered primary paths in part (a) derived from transformation t1. a2) isomorphic paths for the considered primary paths in part (a) derived from transformation t2.

Proposition 3 . 11 :

 311 If not, what is the portion of Z × N s (accordingly, what is the portion of N s) holding at least one cyclic subgroup a that meets the condition of Theorem 3.10, and at the same time 0 P1 meets the girth condition?" To answer the first question, we provide a proposition for the case d v = 3 and a counterexample for the case d v ≥ 4. To address the second question, some statistics are provided. Suppose that N ∈ N, N ≥ 7 and P 1 = [0, 1, a] T where, a is a non-identity element of multiplicative group Z × N with property a * (1 -a) = 1. Then, QC-LDPC code with exponent matrix 0 P1 has girth equal to 12. Proof: Based on Theorem 3.5, we recognize that 0 P1 has no potential cycle of length 6 and 10, as it has only two columns. Furthermore, based on the results of Lemma 3.6, the number of nonequivalent potential cycles of length 4 (resp., 8) that we need to check is #C 3,2 4,a = 1 (resp., #C 3,2 8,a = 2). The paths of nonequivalent potential cycles of length 4 and 8, which are involved in the first two columns of exponent matrix P are depicted in parts (b), (e), and (f) of Fig. 2, respectively. Given that p 00 = p 10 = p 20 = p 01 = 0, p 11 = 1, and p 21 = a, we have: cycle C 4 in part (b) : p 00 -p 01 + p 11 -p 10 = 1 = 0 mod N, cycle C 8 in part (e) : 2 (p 00 -p 01 + p 11 -p 10 ) = 2 = 0 mod N, cycle C 8 in part (f) : p 00 -p 01 + p 11 -p 10 + p 20 -p 21 + p 11 -p 10 = 2 -a = 0 mod N.

Example 3 . 12 :

 312 Let N 1 = 41, N 2 = 239, N 3 = 639, N 4 = 1443, and correspondingly consider multiplicative groups Z × N i (i = 1, 2, 3, 4) where |Z × N 1 | = 40, |Z × N 2 | = 238, |Z × N 3 | = 420, and |Z × N 4 | = 864. Conventionally suppose that an element a ∈ Z × N has property I when a * (1 -a) = 1, has property II when O (a) = 3, and has property III when O (a) = 4. So none of the elements of Z × N 1 holds properties I and II, while there are two elements a = 9, 32 in this group that meet the property III. Nevertheless, neither a = 9 nor a = 32 are proper candidates for constructing vector P 1 = [0, 1, a, a 2 , a 3 ]

Fig. 9 . 3 -

 93 Fig. 9. 3-Dimensional histograms that pick z axis to show the abundance of "a" values with properties "a (1 -a) = 1", "a 3 = 1" and "a 4 = 1" which are in Z × N , where, N ∈ {i + 37, i + 38, • • • , i + 46}(i = 0, 200, 600, 1400): a) screenshot of size 10 when i = 0. b) screenshot of size 10 when i = 200. c) screenshot of size 10 when i = 600. d) screenshot of size 10 when i = 1400.

Proposition 3 . 13 :

 313 Let N ≥ 6, a, b be two different elements of Z × N which satisfy the constraint in Theorem 3.10 and a = b = S. The Tanner graph of constructed matrix P SMC m×n with second column

P

  is isomorphic to the Tanner graph of code with exponent matrix dP. Since a and b are in Z × N so both of them are invertible and GCD (a, N ) = GCD (b, N ) = 1. Given this fact we consider two cases: Case I (d v = m = 3): In this case, a and b have the property a (1 -a) = 1 = b (1 -b) and based on Lemma 3.6, O ( a ) = O ( b ) = 6. Since a necessary and sufficient condition for non-identity element z = x y ( x = S, y ∈ N) to be a generator of S is GCD (y, O(S)) = 1, it is easy to see that a and b = a 5 are the only generators of S. If P SMC 3×n has [0, 1, a] T as its second column, then a 5 P SMC 3×n preserves SMC property, and it has [0, a 5 , 1] T as its second column. Swapping the second and the third rows of a 5 P SMC 3×n also does not affect the girth but gives [0, 1, a 5 ] T = [0, 1, b] T as the second column. Case II (d v = m ≥ 4): In this case a and b have the property a m-1 = 1 = b m-1 and O(S) = m -1. So, as in case I, b has a form like b = a y where y

search function 10 :

 10 Γ n = search (Γ, S, N, n, P 1 , G) 11: Γ n = Γ 12: if |Γ n | = n then Return Γ n 13: else 14:

Γ 3 =

 3 first step consists of the enumeration of a single element per class of the a values verifying the condition of Theorem 3.10. This step is described in Algorithm 1 part 1 for m > 3. To do so, the set of values A is initialized as A = {2, 3, . . . , N -1}. The values of A are extracted one by one. Each time an extracted value a fulfills the condition of theorem 3.10, the function search is launched to try to find a solution Γ n . In case of success, the algorithm is successful and stops. Otherwise, the elements of a are suppressed from the search space A. The process continues until no more values remain in A. In this case, the search is unsuccessful. Note that for m = 3, the condition O(a) = m -1 of line 5 should be replaced by the condition a(1 -a) = 1 mod N , and line 7 should be replaced by the instruction A = A \ {a k } k=2,...,5 . The search function is described in Algorithm 1, part 2. It is a recursive function that tries to increase recursively the size of Γ until it reaches a size of n. The arguments of the search function are Γ, S, N , n, P 1 , and a vector G of size n that controls the processing effort. Let us describe the processing during the first call of the function in line 9. The arguments of this first call are Γ 1 = {0} and S (defined in line 8), the set of values compatible with Γ 1 (see[START_REF] Wang | Construction of high-girth QC-LDPC codes[END_REF]). Lines 14 and 15 set up the greedy search. For i = 1, . . . , |S|, the number s(i) of triplets {0, S(i), µ}, µ ∈ S verifying the condition ρ(Γ 3 , P 1 , N ) is computed (note that s(i) < |S| ). The s(i) are thus sorted in decreasing order (line 16), and the first G(|Γ|) = G(1) elements of S (line 17) associated to the highest values of vector s are tested. For each tested value, a vector Γ k of size 2 is generated (line 18). The tested value is suppressed from the set S (line 19), and then the subset S k of S of values compatible with Γ k is created (line 20). If the size of S k plus the size of Γ k is greater than or equal to n, or, if there is still the possibility to generate a Γ vector of length n, then the search function is called again with a Γ set of size 2. The process is recursively reiterated until a length n Γ vector is found or until no more possibility remains to be explored. The complexity of the search is controlled by a vector G of size n. The k th value G(k) of G indicates that only the most "promising" G(k) branches will be explored inside each depth k recursive call of the search function. Note that when all the values of G are equal to N the search algorithm is exhaustive. It can be done in a limited time (less than a few days) only for low values of n. For large n, the first values of G are set to 1 or 2 for reducing the search space to a reasonable size. Note that |X| represents the cardinal of the set X.

Fig. 10 .

 10 Fig. 10. Minimum lifting degree N growth rate of new constructed codes versus dc = n for dv = m = 3, 4.

Fig. 11 .

 11 Fig. 11. Performance comparison of a (65220, 48915) SMC-structured QC-LDPC code, constructed by cyclic lifting of a masked 15 × 60 fully-connected base graph and lifting degree N = 1087, with a (64800, 48600) DVB-S2 code [30].
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 111111 a)∆ (mi) WHEN SECOND COLUMN OF P SMC 3×n IS P1 = [0, 1, a] T . ∆ (mi) 1 a 1 -a -1 -a -1 + a a∆ (mi) aa) ∆ (mi)1 -a -1 -a -1 + a 1 a TABLE IX

  

  vertible, is a necessary condition of the group. Furthermore, if a, b ∈ Z N , then we conventionally might use the notation ab to show a * b when there is no ambiguity later. Cyclic group): A cyclic group G is a group that is generated by a single non identity element of this group a under group operation. Every element of this group is constructed by repeatedly applying the group operation to a or its inverse. If this group is finite with r elements, it is displayed as a = {a i |i = 1, 2, • • • , r}.

	Definition 2.8 (Multiplicative group modulo N ): Let N be a positive integer. The integers
	co-prime (relatively prime) to N from the set {0, 1, . . . , N -1} of N non-negative integers form
	a group under multiplication modulo N , called the multiplicative group of integers modulo N .
	Another name for this group is group of units, and it is written as Z × N (even as (Z/N Z) × ). Since
	ϕ (N ) counts the number of positive co-prime integers (less than N ), |Z × N | = ϕ (N ).
	Definition 2.9 (

TABLE I NUMBER

 I OF NONEQUIVALENT POTENTIAL CYCLES OF SIZE 2k (k = 2, 3, 4, 5) WHICH ARE INVOLVED IN MATRIX Pm×n, WHEN, 2 ≤ m ≤ 5 AND 2 ≤ n ≤ 10.

  , Z × N 4 possesses four elements a = 101, 212, 1232, 1343 that have property I and all of them are suitable choices for constructing P 1 = [0, 1, a]. This is because, based on proposition 3.11, P 1 = [0, 1, a] with property I always constitutes a two-column matrix with girth 12. Moreover, Z × N 4 has 8 elements a = 100, 211, 334, 445, 898, 1210, 1231, 1342 with property II, and all of them are suitable candidates for constructing P 1 . Also, there are 24 elements in Z × N 4 that have property III, and among them, 16 are good candidate for constructing P 1 , which are a = 73, 142, 376, 512, 554, 593, 623, 746, 850, 857, 1067, 1178, 1301, 1331, 1370, 1412 .

TABLE II RATIO

 II OF PERMISSIBLE VALUES OF N BELONG TO THE SET {37, 38, • • • , 7400} AND THE AVERAGE NUMBER ā OF PERMISSIBLE a'S PER PERMISSIBLE Z × N . PERMISSIBLE a IN Z × N IS THE VALUE FOR WHICH 0| P1 HAS GIRTH GREATER THAN 8.

	-	a (1 -a) = 1 a 3 = 1 a 4 = 1 a 5 = 1
	Ratio of permissible N 's	13%	60%	51%	24%
	ā's per permissible N	2.72	3.63	8.46	5.75

TABLE IV EXPONENT

 IV MATRICES OF THE SHORTEST QC-LDPC CODES WITH GIRTH 10, CONSTRUCTED FROM A 3 × n FULLY-CONNECTED BASE GRAPH CONSIDERING COMBINATION OF SMC AND IRS METHODS (Nmin IS THE SMALLEST LIFTING DEGREE. a IS THE GENERATOR OF CYCLIC SUBGROUP a OF Z × N . THE LIFTING DEGREE OF THE SHORTEST EXISTING CODES IS GIVEN BETWEEN BRACKETS. ONLY THE SECOND ROW OF THE EXPONENT MATRIX ARE LISTED)

	n Rate	N min	a	Second Row of Exponent Matrix
	4 0.263	37 (37 [14], [18]) 27 0, 1, 3, 24	
	5 0.406	61 (61 [14], [18]) 48 0, 1, 3, 7, 12	
	6 0.503	91 (91 [18])	17 0, 1, 3, 7, 25, 38	

TABLE V EXPONENT

 V MATRICES OF THE SHORTEST QC-LDPC CODES WITH GIRTH 12, CONSTRUCTED FROM A 3 × n FULLY-CONNECTED BASE GRAPH CONSIDERING COMBINATION OF SMC AND IRS METHODS (Nmin IS THE SMALLEST LIFTING DEGREE. a IS THE GENERATOR OF CYCLIC SUBGROUP a OF Z × N . THE LIFTING DEGREE OF THE SHORTEST EXISTING CODES IS GIVEN BETWEEN BRACKETS. ONLY THE SECOND ROW OF THE EXPONENT MATRIX ARE LISTED) We limited the running time of our search program to 72 hours, and the smallest successful lifting degree was N = 2689 using a core i7 desktop computer with a 3.5 GHz CPU and 8 GB RAM running in parallel. As an example of the later situation where there is no bound for N we can look at girth g = 12 exponent matrices. We performed cubic regression for both of the cases d v = m = 3, 4. Regression models RM g=12

	n Rate	N min	a	Second Row of Exponent Matrix
	4 0.263	73 (73 [14], [18]) 9 0, 1, 3, 13
	5 0.406	151 (151 [21]) 119 0, 1, 3, 108, 139
	6 0.503	271 (271 [21]) 29 0, 1, 3, 7, 67, 144
	7 0.573	427 (457 [21]) 136 0, 1, 3, 18, 209, 300, 388
	8 0.626	619 (691 [21]) 367 0, 1, 3, 216, 312, 318, 462, 529
	9 0.667	921 (991 [21]) 632 0, 1, 3, 84, 224, 361, 410, 849, 916
	10 0.700	1303 (1447 [21]) 12080, 1, 14, 5, 89, 349, 383, 562, 1130, 1152
	11 0.727	2011 (2161 [21]) 18060, 1, 30, 10, 3, 122, 454, 654, 937, 1095, 1699
	12 0.750	2883 (4730 [14]) 24440, 1, 522, 442, 965, 11, 902, 1145, 1857, 2091, 2632, 2775
	13 0.769	3769 (5851 [33]) 33060, 1, 154, 1257, 2564, 3099, 1636, 19, 1539, 2519, 2855, 3111, 3250
	14 0.785	4953	15440, 1, 108, 1546, 1331, 4308, 3839, 4746, 2558, 457, 486, 1252, 4262, 4911
	15 0.80	6321	2273	0, 1, 4380, 4051, 1613, 5328, 827, 3891, 5171, 4342, 1637, 2135, 4082, . . . 4694, 5905
				m=3
	and RM g=12 m=4 presented below are respectively derived for the cases m = 3 (4 ≤ n ≤ 13) and
	m = 4 (5 ≤ n ≤ 9).		
	RM g=12 m=3 (n) = 4.422299611n 3 -55.13985257n 2 + 303.524031n -535.7821601
	RM g=12 m=4 (n) = 132.6276493n

N

[START_REF] Karimi | On the Girth of Quasi-Cyclic Protograph LDPC Codes[END_REF]

,

[START_REF] Amirzade | Lower Bounds on the Lifting Degree of QC-LDPC Codes by Difference Matrices[END_REF]

. So for the code with d c = n > 21 (see Table

IV

) where there is no reported value, we use this lower bound as the input value of N within algorithm 1. The lower bound of N for the case (m, n) = (3, 22) is 1387, and algorithm 1 takes this as an input and increases N up to the point that it encounters first success. 3 -2135.788568n 2 + 11973.00351n -22484.20244

TABLE VI EXPONENT

 VI MATRICES OF THE SHORTEST QC-LDPC CODES WITH GIRTH 10, CONSTRUCTED FROM A 4 × n FULLY-CONNECTED BASE GRAPH CONSIDERING COMBINATION OF SMC AND IRS METHODS (Nmin IS THE SMALLEST LIFTING DEGREE. a IS THE GENERATOR OF CYCLIC SUBGROUP a OF Z × N . THE LIFTING DEGREE OF THE SHORTEST EXISTING CODES IS GIVEN BETWEEN BRACKETS. ONLY THE SECOND ROW OF THE EXPONENT MATRIX ARE LISTED)

	n Rate	N min	a	Second Row of Exponent Matrix
	5 0.200	133 (139 [21]) 11 0, 1, 5, 21, 54
	6 0.333	223 (241 [21]) 39 0, 1, 3, 9, 45, 59
	7 0.428	271 (307 [21]) 28 0, 1, 3, 7, 141, 221, 255
	8 0.500	403 (409 [21]) 87 0, 1, 3, 7, 111, 159, 233, 303
	9 0.555	541 (577 [21]) 129 0, 1, 3, 99, 264, 314, 353, 401, 423
	10 0.600	703 (787 [21]) 26 0, 1, 9, 123, 353, 443, 498, 501, 609, 663
	11 0.636	919 (1039 [21]) 52 0, 1, 3, 158, 113, 349, 509, 677, 702, 725, 772
	12 0.666 1213 (1381 [21]) 217 0, 1, 3, 653, 1088, 798, 29, 195, 370, 476, 574, 713
	13 0.692 1459	339 0, 1, 487, 1313, 1053, 740, 533, 398, 504, 662, 664, 685, 970
	14 0.714 1939 18220, 1, 3, 1590, 1357, 112, 579, 152, 254, 323, 417, 848, 975, 1863
	15 0.733 2539 22320, 1, 3, 920, 1533, 278, 2515, 1504, 333, 538, 317, 404, 769, 1437, 2383
	16 0.750 3991 37010, 1, 3, 869, 1448, 1062, 777, 2220, 3507, 10, 30, 41, 164, 845, 1632, 1808
	17 0.764 4909 4335	0, 1, 3, 1721, 2868, 467, 4807, 2761, 679, 792, 675, 1916, 4687, 32, 50, . . . 3314, 3559

TABLE VII EXPONENT

 VII MATRICES OF THE SHORTEST QC-LDPC CODES WITH GIRTH 12, CONSTRUCTED FROM A 4 × n FULLY-CONNECTED BASE GRAPH CONSIDERING COMBINATION OF SMC AND IRS METHODS (Nmin IS THE SMALLEST LIFTING DEGREE. a IS THE GENERATOR OF CYCLIC SUBGROUP a OF Z × N . THE LIFTING DEGREE OF THE SHORTEST EXISTING CODES IS GIVEN BETWEEN BRACKETS. ONLY THE SECOND ROW OF THE EXPONENT MATRIX ARE LISTED)

	n Rate	N min	a	Second Row of Exponent Matrix
	5 0.200	571 (607 [21]) 461 0, 1, 17, 184, 482
	6 0.333	1087 (1201 [21]) 829 0, 1, 4, 142, 1018, 1055
	7 0.428	2203 (2371 [21]) 19170, 1, 4, 130, 443, 1082, 1397
	8 0.500	4489 (6607 [10]) 37890, 1, 942, 1062, 1547, 2202, 1312, 3692
	9 0.555	8966 (12071 [10]) 39770, 1, 4987, 6942, 11, 17, 1158, 2049, 3754

  Table VIII). In fact for every index m i , each of the differences ∆ (m i ) , a∆ (m i ), and (1 -a)∆ (m i ) is calculated by considering elements in the same column but different pairs of rows of P SMC 3×n . As a result, potential cycles C m,n 2k , aC m,n 2k , and (1 -a)C m,n 2k have the same length but different paths in P SMC and a 3 = 1, where a ∈ Z × N , one can also follow the same argument by considering the values in Table IX. As result #C 4,n 2k,a ≤

		3×n
	and they concurrently are either activated or not-activated. So #C 3,n 2k,a ≤	#C 3,n 2k 3 . For the case
	m = 4 #C 4,n 2k 3 .	

TABLE VIII LOOKUP

 VIII 

TABLE TO ∆ (mi), a∆ (mi) AND

  2 γ 4 . . .

	p 15,2 γ 4

In the case that QC-LDPC code is not fully-connected, m and n are often noted by dv and dc in the literature, respectively

Note that in this context an inevitable cycle could be considered both as potential and activated. In fact, before assigning values to the elements of P an inevitable cycle is called Inevitable Potential Cycle (IPC) while it is called Inevitable Activated Cycle (IAC) afterward.

See section 7 of[START_REF] Li | LDPC code designs, constructions, and unification[END_REF] for masking technique.

IV. NUMERICAL RESULTS

To present our results in comparison with the state-of-the-art, we have performed the following experiment: Given a fixed girth g (g = 10, 12), for each size m × n of the exponent matrix, we start by the smallest value of N reported in the literature as providing for a QC-LDPC code obtained from a cyclic lifting of degree N of the fully-connected m × n exponent matrix. For this value of N , we apply the proposed search algorithm to see if we can find an exponent matrix of the form (2) for a QC-LDPC code of girth g. If we succeed, we then reduce the value of N into the nearest smaller integer value for which Z × N contains at least one eligible cyclic subgroup to form P 1 , and repeat the same experiment. We continue until the proposed algorithm fails to provide an answer. At that point, we report the previous value of N along with the corresponding exponent matrix found by the algorithm. These results are presented in Tables IV-VII for values of (m, g) = (3, 10), [START_REF]Digital Video Broadcasting (DVB)[END_REF][START_REF] Asvadi | Lowering the Error Floor of LDPC Codes Using Cyclic Liftings[END_REF], [START_REF] Ccsds | Short Blocklength LDPC codes for TC synchronization and channel coding[END_REF][START_REF] O'sullivan | Algebraic construction of sparse matrices with large girth[END_REF], and (4, 12), respectively. To present the exponent matrices, we have only provided the second row along with the generator element a of the corresponding cyclic subgroup. In the tables, we have also reported the d c = n, rate and the minimum found lifting degree N . Although our proposed algorithm has the capability to find very high rate codes with girth g = 10, 12, Tables IV-VII contain the codes with lengths below 100K bits. This is because most of the implemented LDPC code in the literature have lengths below 100K bits. In the tables, we have additionally provided the best available results (in terms of minimum N ) in the literature even for the search-based results or the explicit (i.e., deterministic) constructions for comparison. Note that, due to the lack of published results for exponent matrices with a large row degree d c , we apply search algorithm 1 either by considering some proposed lower bounds (of lifting degree N ) in the literature or with our conjecture of lifting degree N as a primary input of this algorithm. If input parameter N is considered as a lower bound then algorithm 1 has to test N every time and moves upward up to the point that it achieves the first success. Otherwise (i.e., if there is no lower bound or upper bound), we need to guess the starting point of N . This conjecture of N comes from studying the general trend of the lifting degree growth rate of previous N s of smaller exponent matrices with the same girth. Here we used nonlinear regression to predict the new input values of N where "cubic polynomial" is considered as to be the regressions model (RM). As an example of former situation with a lower bound, we can look at girth g = 10 exponent matrices. When g = 10 and the exponent matrix is of size m × n, there is a lower bound equal to (m 2 -m)(n 2 -n) 2 + 1 for the lifting degree So, if our underlined exponent matrix is of size 3 × n (resp., 4 × n) and there is no bound for the size of N , we estimate it with N RM g=12 m=3 (n) (resp., N RM g=12 m=4 (n) ). As we are not sure if this approximated value of N is a lower bound or upper bound, our search program would be run for two cases in parallel: 1) upward check and 2) downward check. During this process and at a time when the program sees a success by decreasing N , it will terminate the upward manner and will focus only on downward movement. This process is continued until the processing time is over. As a result, for a girth 12 exponent matrix of size (m, n) = (3, 14), we could not find an accurate bound for its lifting degree (see Table V); however, we estimated it as N RM g=12 m=3 (14) = 5040. We ran our search program for it, and after 24 hours of running, the smallest successful N was 4953. The point-to-point growth rate curves to all the values of N found by our search program, by proposed bounds, and by estimations are included in Fig. 10 for further comparison and investigation.

As pointed out in the introduction, the exponent matrices of fully-connected codes reported in Tables IV to VII can be used to construct other practical LDPC codes (regular or irregular). As an example of such construction methods, we considered the (64800, 48600) DVB-S2 standard code Error Rate (FER) as well as the Bit Error Rate (BER) performances of these codes. As it can be seen from this figure, C masked has better performance in waterfall region and it gains 0.15 dB at FER= 10 -5 under SP decoder with 50 decoding iterations.

V. CONCLUSION

We have proposed a search-based method for the construction of fully-connected QC-LDPC block codes capable of achieving girths g = 10, 12 with lengths close to the lower bounds.

To ease the search, we sieved through the multiplicative ring of integers. We showed that by