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Introduction

Variance estimation is a challenging problem in surveys. In particular, the final weights used for estimation involve several statistical treatments (e.g., correction of unit non-response and calibration) which need to be accounted for. Bootstrap is an interesting tool, leading to the creation of so-called bootstrap weights released with the survey data set. These random weights can be used to compute repeatedly the bootstrap version of the parameter of interest, leading to a simulationbased variance estimator or confidence interval. The interest for practitioners is that no information other than the bootstrap weights is needed for variance estimation. In particular, a comprehensive description of the original sampling design and estimation process is not required, which would be the case under an analytic approach where the variance estimator needs to be explicitly written.

There is an extensive literature on bootstrap in survey sampling, see for example Shao and Tu (1995, Chapter 6), Davison and Hinkley (1997, Section 3.7), [START_REF] Davison | Resamping variance estimation in surveys with missing data[END_REF], [START_REF] Chauvet | Méthodes de Bootstrap en population finie[END_REF] and [START_REF] Mashreghi | A survey of bootstrap methods in finite population sampling[END_REF] for detailed reviews. One of these techniques is the so-called rescaled bootstrap proposed by [START_REF] Rao | Resampling inference with complex survey data[END_REF], which may be summarized as follows. First, initial bootstrap weights are obtained by using the classical i.i.d. bootstrap on the first-stage sample. Then, these weights may be rescaled so as to reproduce an unbiased variance estimator for the estimation of a total (linear case). As explained by [START_REF] Rao | Resampling inference with complex survey data[END_REF], the rescaled bootstrap may be applied to a variety of sampling designs including two-stage sampling and with/without-replacement sampling at the first stage. However, it is not straightforward to account for some practical features of a survey such as the treatment of unit non-response.

Alternatively, the classical i.i.d. bootstrap may be applied on the first-stage sample, without further rescaling. This is sometimes referred to as the bootstrap of Primary Sampling Units (PSUs) or with-replacement bootstrap. It leads to conservative variance estimation, in the sense that the sampling variance is overestimated if the first-stage sampling design is more efficient than with-replacement sampling. This is the approach that we pursue here, our paper aiming at being user-oriented. In particular, we do not propose particular modifications of the with-replacement bootstrap. Rather, we explain how this bootstrap method may be applied to account for sampling, treatment of non-response and calibration, and in so doing, what is the variance estimator that we aim at reproducing when estimating a total. We give some running examples to illustrate how bootstrap weights are computed in simple cases. Two SAS macros implementing the proposed bootstrap methods are presented, evaluated through a simulation study, and illustrated on a real survey dataset from the Panel for Urban Policy.

For simplicity of presentation, our terminology is that of household surveys, which is our original motivation for this paper. We consider two cases: first, when a sample of households only is selected; secondly, when a subsample of individuals is selected inside the selected households. Despite this specific terminology, our approach is general and may be applied to any other situation when a survey is performed by one-stage sampling (first case) or by two-stage sampling (second case).

We are in particular interested in household phone surveys, which have been extensively used at the French National Institute for Demographic Studies (INED) over the last decades. Originally, a sample of phone numbers was selected from a register of fixed-line numbers, and more recently the phone numbers used in the survey are randomly generated to account for households not covered in the registers (unlisted or cell numbers). In a second step, individuals are selected within the households, using classic selection methods (e.g., Kish individual). Phone surveys have proved to be efficient, specifically for sensitive subjects like sexuality, violence, or addictions. Some examples of surveys performed by INED include the national survey on violence against women in France in 2000 (ENVEFF), the national survey on violence and gender exchange in 2015 and 2018 (VIRAGE and VIRAGE overseas, respectively), or the national survey on the context of sexuality in France in 2006. The same protocol is likely to be used in a near future for surveys on similar subjects, like the one on young adults' sexuality or the one on birth control, to begin between 2021 and 2023.

The paper is organized as follows. In Section 2, our main notations are defined, and we consider the estimation of a total by accounting for sampling, unit non-response and calibration. We treat in Section 2.1 the situation when a sample of households only is selected (one-stage case), and in Section 2.2 the case when individuals are sub-sampled inside households (two-stage case). The basic bootstrap method is described in Section 3: the one-stage case is considered in Sections 3.1 and 3.2, and the two-stage case is considered in Sections 3.3 and 3.4. We explain in Section 3.5 how the basic bootstrap procedure may be applied to obtain an estimator of variance or a confidence interval. The proposed bootstrap methods are evaluated in Section 4 through a simulation study. We present in Section 5 the SAS program to perform bootstrap for the one-stage case, and apply it for illustration on a sample of households from the French Panel for Urban Policy. We present in Section 6 the SAS program to perform bootstrap for the two-stage case, and apply it for illustration on a sample of individuals from the French Panel for Urban Policy. The SAS programs are available as Supplementary material.

Notation and estimation

In this Section, we define our main notations and we describe the sampling and estimation process. We first consider in Section 2.1 the case when a sample of households only is selected, and we describe the estimation process which includes treatment of unit non-response and calibration. We indicate in each case what is the benchmark variance estimator considered, i.e. the variance estimator that we aim at reproducing for the estimation of a total with the bootstrap method proposed in Section 3. The case when individuals are sub-sampled inside households is covered in Section 2.2. The benchmark variance estimators for this second case are given in Appendix A.

Case of a sample of households only

We consider estimation for a population U hou of households. We let y k denote the value taken by some variable of interest for the household k. We are interested in the estimation of the total

Y hou = k∈U hou y k .
(2.1)

Sampling design

We suppose that a sample S hou is selected in U hou by means of a stratified one-stage sampling design. The population U hou is partitioned into H strata U 1 hou , . . . , U H hou , the samples S 1 hou , . . . , S H hou are selected inside independently, and the sample S hou is the union of these samples. We let π k denote the inclusion probability of some household k. The design weight is

d k = 1 π k . (2.2)
In case of full response, the estimator of

Y hou is Ŷhou = k∈S hou d k y k . (2.3)
We consider as a benchmark variance estimator

v mult ( Ŷhou ) = H h=1 n h n h -1 k∈S h hou   d k y k - 1 n h k ∈S h hou d k y k   2 ,
(2.4)

with n h the size of the sample S h hou . This variance estimator is unbiased if the samples are selected inside strata by multinomial sampling (Tillé, 2011, Section 5.4), a.k.a. sampling with replacement. It is conservative if the sampling designs used inside strata are more efficient than multinomial sampling (Särndal et al., 1992, Section 4.6), which we assume to hold true in the rest of the paper. The positive bias of this variance estimator is expected to be negligible if the sampling rates inside strata are so, which is often the case in phone surveys. This is illustrated by the results of our simulation study, see Section 4.

Treatment of non-response

In practice, the sample S hou is prone to unit non-response, which leads to the observation of a sub-sample of respondents S r,hou only. We let r k denote the response indicator of a household k, and p k denote the response probability of the household k. We suppose that the households respond independently of one another. Also, we suppose that unit non-response is handled through the method of Response Homogeneity Groups (RHGs), which is popular in practice (e.g. [START_REF] Brick | Unit non-response and weighted adjustments: a critical review[END_REF][START_REF] Juillard | Variance estimation under monotone non-response for a panel survey[END_REF]. Under this framework, it is assumed that the sample S hou may be partitioned into C RHGs denoted as S 1,hou , . . . , S C,hou such that the response probability p k is constant inside a RHG.

We let p c denote the common response probability inside the RHG S c,hou . It is estimated by

pc = k∈S c,hou ω k r k k∈S c,hou ω k , (2.5)
with ω k some weight attached to the household k. The choice ω k = 1 leads to estimating p c by the unweighted response rate inside the RHG. The choice ω k = d k leads to estimating p c by the response rate inside the RHG, weighted by the sampling weights (e.g. [START_REF] Kott | Why one should incorporate the design weights when adjusting for unit nonresponse using response homogeneity groups[END_REF].

Accounting for the estimated response probabilities leads to the weights corrected for non-response (2.7)

d rk = d k pc(k) , ( 2 
Building on the multinomial variance estimator in (2.4) and on linearization for estimators reweighted for unit-non-response [START_REF] Kim | Nonresponse weighting adjustment using estimated response probability[END_REF], Section 2), our benchmark variance estimator is

v mult ( Ŷr,hou ) = H h=1 n h n h -1 k∈S h hou   d k u 1k - 1 n h k ∈S h hou d k u 1k   2 ,
(2.8)

with u 1k = ω k π k ȳrc(k) + r k pc(k) y k -ω k π k ȳrc(k) , and ȳrc = k∈S c,hou d k r k y k k∈S c,hou ω k r k .
This is a conservative estimator for the asymptotic variance of Ŷr,hou . A key assumption for this is that the response indicators r k are mutually independent.

Calibration

Lastly, the weights adjusted for non-response are calibrated on some auxiliary totals known on the population. For simplicity, we describe only the Generalized REGression estimator (GREG Särndal et al., 1992, Chapter 6). Let x k denote the vector of calibration variables at the household level, and X hou the total on the population U hou . For the sample S r,hou , this leads to the calibrated weights

w k = d rk 1 + x k λ hou , with λ hou =   k∈S r,hou d rk x k x k   -1
X hou -Xr,hou , (2.9) and where Xr,hou is the estimator of X hou , obtained by plugging x k into (2.7). The calibrated estimator is

Ŷcal,hou = k∈S r,hou w k y k .

(2.10)

The sampling and estimation steps are summarized in Figure 1. 

v mult ( Ŷcal,hou ) = H h=1 n h n h -1 k∈S h hou   d k u 2k - 1 n h k ∈S h hou d k u 2k   2 ,
(2.11)

with u 2k = ω k π k ērc(k) + r k pc(k) e k -ω k π k ērc(k) , and ērc = k∈S c,hou d k r k e k k∈S c,hou ω k r k ,
where we let

e k = y k -B r,hou x k with Br,hou =   k∈S r,hou d rk x k x k   -1 k∈S r,hou d rk x k y k (2.12)
denote the estimated regression residuals of the variable of interest on the calibration variables. This is a conservative estimator for the asymptotic variance of Ŷcal,hou .

Computation of household weights on an example

To fix ideas, we describe a small example. We consider a population U hou of N hou = 100 households. We suppose without loss of generality that a single stratum is used, and that a sample of n hou = 10 6 households is selected.

The sample is S = {A, B, . . . , J}. The inclusion probabilities of the selected units are (say)

π A = π B = π C = π D = 1 4 and π E = π F = π G = π H = π I = π J = 1 16 , (2.13)
resulting in the design weights

d A = d B = d C = d D = 4 and d E = d F = d G = d H = d I = d J = 16.
(2.14) Among the 10 selected households, 7 only are surveyed due to non-response. It is accounted for by using the method of Response Homogeneity Groups (RHGs), and we suppose that there are two RHGs: the units A, B, F and J in the first one, and the units C, D, E, G, H, and I in the second one. The units B, C and G are non-respondents. Inside each RHG, we compute estimated response probabilities, weighted by the design weights (ω k = d k ). This leads to

p1 = k∈S 1,hou d k r k k∈S 1,hou d k = d A + d F + d J d A + d B + d F + d J = 9 10 , p2 = d D + d E + d H + d I d C + d D + d E + d G + d H + d I = 13 18 .
(2.15)

The weights accounting for non-response are obtained for the respondents by dividing the sampling weights by the estimated response probabilities. This leads to the weights (2.17)

The sampling and estimation steps are summarized in Figure 2.

Case of a sample of households and individuals

We are interested in the population U ind of individuals associated to the population U hou of households considered in Section 2.1. If we let y l denote the value taken by some variable of interest for the individual l, the parameter of interest is

Y ind = l∈U ind y l .
(2.18)

Figure 2: Estimation steps for the weighting of households

Sampling design

Inside any sampled household k ∈ S hou , a subsample S ind,k of individuals is selected, and the sample S ind is the union of these samples. We let π l|k denote the conditional inclusion probability of the individual l inside the household k. The conditional design weight of l is

d l|k = 1 π l|k for any l ∈ k, (2.19)
and the non-conditional design weight is denote the set of all sampled individuals inside the responding households.

d l = d l|k × d k for any l ∈ k. ( 2 
The individuals in S r,ind are themselves prone to non-response, though it is usually expected to be to a smaller extent. This leads to the observation of a sub-sample of respondents S rr,ind only. We let r l denote the response indicator and p l denote the response probability of the individual l.

We suppose that the individuals respond independently of one another. Also, we suppose that this non-response is handled through the method of RHGs: the sample S r,ind may be partitioned into D RHGs denoted as S r1,ind , . . . , S rD,ind such that the response probability p l is constant inside a RHG.

We let p d denote the common response probability inside the RHG S rd,ind . It is estimated by (2.27)

pd = l∈S rd,ind ω l r l l∈S rd,ind ω l , ( 2 

Calibration

We let z l denote the vector of calibration variables at the individual level, and Z ind denote the total on the population U ind . For the sample S rr,ind , this leads to the calibrated weights

w l = d rrl 1 + z l λ ind , with λ ind =   l∈S rr,ind d rrl z l z l   -1 Z ind -Ẑrr,ind , (2.28)
and where Ẑrr,ind is the estimator of Z ind , obtained by plugging z l into (2.27). The calibrated estimator is

Ŷcal,ind = l∈S rr,ind w l y l .

(2.29)

The sampling and estimation steps are summarized in Figure 3. 

Computation of individual weights on an example

We continue the example initiated in Section 2.1.4. Recall that the sample of responding households is S r,hou = {A, D, E, F, H, I, J}. The set of all individuals inside the responding households is as follows (say):

(i 1 , i 2 , i 3 ) A (i 4 ) D (i 5 , i 6 ) E (i 7 , i 8 , i 9 ) F (i 10 , i 11 ) H (i 12 ) I (i 13 ) J .
(2.30)

We suppose that the sampling design consists in selecting one individual exactly inside each household. The set S r,ind of all sampled individuals inside the responding households is

S r,ind = {i 1 , i 4 , i 6 , i 8 , i 11 , i 12 , i 13 }.
(2.31)

From equations (2.23) and (2.16), the individual weights corrected for household non-response are therefore

d r1 = 40 3 , d r4 = 72 13 , d r6 = 576 13 , d r8 = 160 3 , d r11 = 576 13 , d r12 = 288 13 , d r13 = 160 9 .
(2.32) Among these 7 selected individuals, 4 only are surveyed due to non-response, accounted for by using the method of Response Homogeneity Groups (RHGs). We suppose that there are two RHGs: the units i 1 , i 6 , i 8 and i 11 in the first one, and the units i 4 , i 12 and i 13 in the second one. The units i 4 , i 11 and i 13 are non-respondents. Inside each RHG, we compute unweighted estimated response probabilities (ω l = 1). This leads to

p1 = l∈S r1,ind r l l∈S r1,ind 1 = 3 4 , p2 = l∈S r2,ind r l l∈S r2,ind 1 = 1 3 . (2.33)
The weights accounting for household/individual non-response are obtained for the respondents by dividing the weights in (2.32) by the estimated response probabilities. This leads to the weights We begin in Section 3.1 with the description of the basic step of the bootstrap method when a sample of households only is selected. An illustration is given in Section 3.2 on the example initiated in Section 2.1.4. The bootstrap method when individuals are sampled inside the households is described in Section 3.3, and an illustration is given in Section 3.4. In Section 3.5, we explain how the basic step of the proposed bootstrap method is used to perform variance estimation and to produce confidence intervals.

d rr1 = 160 9 , d rr6 = 2304 39 , d rr8 = 640 9 , d rr12 = 864 13 . ( 2 

Basic step of the bootstrap for households

Using the with-replacement bootstrap, we first draw inside the original sample S h hou selected in the stratum U h hou a with-replacement resample S h hou * of n h -1 units, with equal probabilities. For any k ∈ S h hou , we take

W k = n h n h -1 × Number of times the household k is selected in the resample S h hou * . (3.1)
The computation of the bootstrap weights accounting for the sampling design, for unit non-response and for the calibration is described in Algorithm 1. The steps refer to Figure 1.

The treatment of unit non-response in the bootstrap process deserves some explanations. Firstly, our approach is conditional on the response indicators r k . Contrarily to the sample membership indicators which are bootstrapped at Step 1 of Algorithm 1, the response indicators remain fixed in the bootstrap process. This is due to the fact that we aim at reproducing a variance estimator which considers the sample S hou as selected with replacement, and that in such case bootstrapping the r k 's is not needed. Secondly, accounting for unit non-response at Step 2 of Algorithm 1 is performed conditionally on the RHGs: we do not bootstrap the process leading to the building of the RHGs (e.g., [START_REF] Haziza | Construction of weights in surveys: A review[END_REF]. Finally, bootstrapping the response probabilities as described in equation (3.4) accounts for the estimation of the response probabilities p c . If we do not bootstrap these response probabilities and if we plug in equation (3.5) the original estimated probabilities pc , the response probabilities are treated as if they were known, which usually results in an overestimation of the variance [START_REF] Beaumont | Calibrated imputation in surveys under a quasi-model-assisted approach[END_REF][START_REF] Kim | Nonresponse weighting adjustment using estimated response probability[END_REF].

In the bootstrap process presented in Algorithm 1, the calibration step is performed on the true population total X hou . Following the bootstrap principle which states that the sample S hou is to the bootstrap sample S hou * what the population U hou is to the sample S hou , it could seem more intuitive to rather calibrate on the estimated totals Xhou obtained by plugging x k into equation (2.3). Both approaches seem valid for variance estimation, but the calibration variables x k may be prone to non-response on the sample S hou , making the estimator Xhou not possible to compute, while the total X hou is known from an external source.

An example of computation of bootstrap household weights

We continue with the example initiated in Section 2.1.4. The bootstrap is performed by first selecting a resample of n = 9 households, with replacement and with equal probabilities, among the original sampled households. In this example, we suppose that the household A is selected three times, that the household G is selected twice, and that the households D, E, H and I are selected once. Making use of equation (3.2), this leads to the bootstrap sampling weights

d A * = 40 3 d D * = 40 9 d E * = d H * = d I * = 160 9 d G * = 320 9 .
(3.9)

The bootstrap sampling weights are corrected for non-response in the same way than in the original correction of non-response: using the same RHGs, and weighted estimated probabilities. In this case, the first RHG contains only the unit A which is a respondent, so that p1 * = 1. 

d k * = W k d k . (3.2)
The bootstrap version of the full-response estimator given in (2.3) is

Ŷhou * = k∈S hou d k * y k . (3.3)
•

Step 2: we account for household unit non-response by computing the bootstrap estimated probabilities inside the RHGs

pc * = k∈S c,hou W k ω k r k k∈S c,hou W k ω k , (3.4)
and we compute the bootstrap weights corrected for non-response (3.6)

d rk * = d k * pc(k) * , (3.5 
•

Step 3: we account for the calibration by calibrating the weights d rk * on the totals X hou . This leads to the bootstrap calibrated weights The computation of the bootstrap weights is summarized in Figure 5. 

w k * = d rk * 1 + x k λ hou * , (3.7) with λ hou * =   k∈S r,hou d rk * x k x k   -1 X hou -Xr,

Computation of bootstrap weights for individuals

The computation of the bootstrap weights accounting for the sampling design, for household/individual non-response and for calibration is described in Algorithm 2. The steps refer to Figure 3. In addition to the bootstrap steps in Algorithm 1, note that Algorithm 2 involves bootstrapping the computation of response individual probabilities only. Note that the sub-sampling of individuals inside households does not need to be bootstrapped, as discussed in Section 3.1.

An example of computation of bootstrap individual weights

We continue with the example in Section 3.2. The bootstrap sample of households is constituted of A (three times), G (two times), and (3.20)

These bootstrap weights are corrected for individual non-response in the same way than in the original correction of individual non-response: using the same RHGs, and unweighted estimated probabilities. However, we need to account in these probabilities for the original bootstrap weights W k . In our case, the first RHG contains the individuals i 1 , i 6 and i 11 , and i 11 is a non-respondent.

The individual i 1 belongs to the household A, which has been selected three times (W A = 3) in the bootstrap sample. The individual i 6 belongs to the household E and the individual i 11 belongs to the household H, which have both been selected one time in the bootstrap sample (W E = W H = 1). The computation is similar for the second RHG, and leads to 

p1 * = W A + W E W A + W E + W H = 4 5 , p2 * = W I W D + W I = 1 2 , ( 3 

Bootstrap variance estimation and confidence intervals

In this Section, we are interested in parameters which may be written as smooth functions of totals. We explain how the basic step of the proposed bootstrap method is used to perform variance estimation and to produce confidence intervals. For brevity, we focus on parameters defined over the population of households U hou . The treatment for parameters of interest in the population of individuals U ind is similar.

Suppose that y k is a q-vector of interest variables, and that we are interested in some parameter θ hou = f (Y hou ) with f : R q → R a known, smooth function. In case of full response, the substitution estimator of θ hou is θhou = f ( Ŷhou ), (3.24)

see for example [START_REF] Deville | Variance estimation for complex statistics and estimators: linearization and residual techniques[END_REF]. In case of unit non-response at the household level, the estimator of θ hou corrected for unit non-response is θr,hou = f ( Ŷr,hou ), (3.25)

and the calibrated estimator of θ hou is θcal,hou = f ( Ŷcal,hou ).

(3.26)

In each case, a bootstrap variance estimator is obtained by applying a large number of times (say B) the basic step of the bootstrap method in Algorithm 1, and then by computing the dispersion of the bootstrap estimators. This is summarized in Algorithm 3. A rigorous proof for the consistency of this bootstrap variance estimator is beyond the scope of this paper, but a heuristic justification is given in Appendix B. and similarly for θr,hou and θcal,hou .

The bootstrap variance estimator may be used to compute a normality-based confidence interval with targeted level 1 -2α. For example, the confidence interval when using the full-response estimator θhou is

IC nor (θ hou ) = [ θhou ± u 1-α Vboot θhou 0.5
],

(3.28)

with u 1-α the quantile of order 1 -α of the standard normal distribution. This confidence interval is expected to be conservative, since the proposed bootstrap method is conservative too.

We also consider the percentile and the reverse percentile (a.k.a. basic) bootstrap confidence intervals. They can be directly computed from the bootstrap weights and are therefore attractive from a data user's perspective, unlike more computationally intensive methods like the t-bootstrap (e.g. [START_REF] Davison | of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF][START_REF] Shao | The jackknife and bootstrap[END_REF]. For θhou , the percentile confidence interval is obtained by using the distribution of θhou * as an approximation of the distribution of θhou . It makes use of the ordered bootstrap estimates θ(1) hou * , . . . , θ(B) hou * to form the confidence interval

IC per (θ hou ) = θ(L) hou * , θ(U) hou * , (3.29)
with targeted level 1-2α, where L = αB and U = (1-α)B. The reverse percentile confidence interval is obtained by viewing the distribution of ( θhou * -θhou ) as an approximation of the distribution of ( θhou -θ hou ). It leads to the confidence interval

IC rev (θ hou ) = 2 θhou - θ(U) hou * , 2 θhou - θ(L) hou * . (3.30)
The properties of the bootstrap variance estimator and of the three confidence intervals are evaluated in the simulation study performed in Section 4 for the estimation of a total.

Simulation Study

In order to evaluate the proposed bootstrap method, we conducted a simulation study on an artificial population. We first generate a population U hou containing N hou = 100, 000 households, with four auxiliary variables x 1 , . . . , x 4 generated from a gamma distribution with shape and scale parameters 2 and 5. Inside the population, we generate three variables of interest y 1 , . . . , y 3 according to the following models

y 1k = 10 + x 1k + x 2k + σ k , y 2k = 10 + x 1k + x 3k + σ k , (4.1) 
y 3k = 10 + x 3k + x 4k + σ k ,
where k is generated according to a standard normal distribution. We set σ = 10, which results in a coefficient of determination of approximately 0.50 for each model. The auxiliary variables 1, x 1k , x 2k are used as calibration variables at the household level in this simulation study. The three variables of interest therefore correspond to cases when the calibration model is well specified (y 1 ), partly well specified (y 2 ), or poorly specified (y 3 ). The population U hou is randomly split into five response homogeneity groups (RHG) of equal sizes. The response probability p c inside the RHG c is equal to 0.5 for the first group, 0.6 for the second group, ..., and 0.9 for the fifth group, resulting in an average response rate of 70% for the households.

Inside each household k, we generate N k individuals, where N k -1 is generated according to a Poisson distribution with parameter 1, which results in an average number of 2 individuals per household. Inside the corresponding population U ind , we generate four auxiliary variables z 1 , . . . , z 4 with shape and scale parameters 2 and 0.5. Also, we generate three variables of interest y 4 , y 5 , y 6 according to the following models y 4l = 5 + 0.5z 1l + 0.5z 2l + σ η η l , y 5l = 5 + 0.5z 1l + 0.5z 3l + σ η η l , (4.2)

y 6l = 5 + 0.5z 3l + 0.5z 4l + σ η η l ,
where η l is generated according to a standard normal distribution. We set σ η = 0.4, which results in a coefficient of determination of approximately 0.6 for each model. The auxiliary variables 1, z 1l , z 2l are used as calibration variables at the individual level in this simulation study. The three variables of interest therefore correspond to a case when the calibration model is well specified (y 4 ), partly well specified (y 5 ), or poorly specified (y 6 ).

The population U ind is split into five RHGs as follows. The individuals which are alone in their household form a separate RHG, with a response probability of 1. The rationale behind this choice is that in such case, the individual is somewhat equivalent to his/her household, and that the non-response is modeled at the household level. Among the rest of the individuals living in a household k with N k = 2 individuals or more, the variables z 1 and z 2 are used to form four RHGs of approximately equal size. The response probability p d ranges from 0.80 to 0.95 in these four remaining RHGs. This results in an overall response rate of approximately 90% for the individuals.

Inside the population U hou , we select a sample S hou of n hou = 1, 000 households by simple random sampling without replacement. Note that the sampling rate is small (1 % ), so that simple random sampling with/without replacement are not much different, and the bias of the bootstrap variance estimators is expected to be small under this set-up. The non-response is generated according to the RHG household model, which results in a sample S r,hou of responding households. The estimated response probabilities pc are obtained from equation (2.5), with equal weight ω k = 1. Inside each k ∈ S r,hou , one Kish individual is randomly selected with equal probabilities, which results in the sample of individuals S r,ind . Inside S r,ind , the non-response is generated according to the RHG individual model, resulting in a sample S rr,ind of responding individuals. The estimated response probabilities pd are obtained from equation (2.25), in three possible ways: equal weights ω l = 1, sampling weights ω l = d l , or individuals weights corrected for the household non-response ω l = d rl .

The sampling and non-response steps are repeated C = 1, 000 times. On each sample S hou , we compute the full-response estimator given in (2.3), and on each sample S r,hou , we compute the estimator adjusted for non-response Ŷr,hou given in (2.7) and the estimator Ŷcal,hou given in (2.10) with the set of calibration variables x k = (1, x 1k , x 2k ) . On each sample S rr,ind , we compute the estimator adjusted for non-response Ŷrr,ind given in (2.27) and the estimator Ŷcal,ind given in (2.29) with the set of calibration variables z l = (1, z 1l , z 2l ) . For these five estimators, we compute the coefficient of variation

CV ( Ŷ ) = 100 × M SE( Ŷ ) Y , (4.3)
with M SE( Ŷ ) a simulation-based approximation of the mean square error of Ŷ , obtained from an independent run of 10, 000 simulations.

For these five estimators, we also compute the bootstrap variance estimators obtained by applying Algorithm 3 with B = 1, 000. So as to measure the bias of a variance estimator v( Ŷ ), we use the Monte Carlo Percent Relative Bias

RB{v( Ŷ )} = 100 × C -1 C c=1 v c ( Ŷc ) -M SE( Ŷ ) M SE( Ŷ ) , (4.4)
where v c ( Ŷc ) stands for the variance estimator in the c-th sample. As a measure of stability of v( Ŷ ), we use the Relative Stability

RS{v( Ŷ )} = 100 × C -1 C c=1 v c ( Ŷc ) -M SE( Ŷ ) 2 1/2 M SE( Ŷ ) . (4.5)
Also, we compute the coverage rates of the confidence interval associated to the percentile Bootstrap, to the basic bootstrap and to the normality-based confidence interval, with nominal one-tailed error rate of 2.5% in each tail.

The results are presented in Table 1 for the estimation on the population of households. The coefficient of variation of the calibrated estimator Ŷcal,hou is smaller when the calibration variables are explanatory for the variable of interest, as expected. We observe a slight positive bias of the bootstrap variance estimator for the full-response estimator Ŷhou , but almost no bias for the reweighted estimators Ŷr,hou and Ŷcal,hou . The bootstrap variance estimator is slightly less stable with the reweighted estimators, which is likely due to the additional variability associated to the correction of unit non-response. Concerning the confidence intervals, we note that the coverage rates are well respected in all cases and for the three studied methods.

We now turn to the result on the population of individuals, which are presented in Table 2. We observe that the relative bias of the bootstrap variance estimator is very small in all cases. The choice of the weights ω k used in the estimation of the response probabilities seem to have no effect on the coefficient of variation of the estimators, but the use of the weights ω l = d rl adjusted for household non-response yields slightly more stable variance estimators for Ŷrr,ind . The coverage rates are approximately respected in all cases. 

SAS Program for one-stage sampling

In this Section, we present the SAS macro developed to implement the proposed methodology for a sampling of households only (one-stage sampling). The parametrization of the SAS program for computing bootstrap weights is presented in Section 5.1. For clarity, a small example is presented in Section 5.2. An illustration for the Panel for Urban Policy is given in Section 5.3.

Program for computing bootstrap weights

The parameters related to the database are:

• BASE: library containing the SAS table with the list of sampled units. The default value is BASE=WORK.

• ECHMEN : SAS table containing the list of sampled units in the population. The non-respondents need also to be included in this table.

The parameters related to the bootstrap are:

• ITBOOT: number of bootstrap iterations. The default value is ITBOOT=1000.

The parameters related to the variables needed in the SAS table are:

• IDMEN: list of variables identifying the statistical unit. They need to be character variables. Weights adjusted for household non-response ω l = d rl y 4 1.99 -0.71 8.9 2.5 2.3 4.8 2.6 2.7 5.3 2.5 2.4 4.9 Ŷrr,ind y 5 1.99 -0.82 8.9

3.1 2.2 5.3 2.9 2.5 5.4 2.5 2.2 4.7 y 6 1.99 -0.26 9.1 3.1 2.3 5.4 3.0 3.0 6.0 2.9 2.5 5.4 y 4 0.29 1.70 10.6 2.7 3.4 6.1 2.6 3.3 5.9 2.5 3.3 5.8 Ŷcal,ind y 5 0.39 1.38 11.3 2.1 2.7 4.8 2.2 3.0 5.2 1.7 3.0 4.7 y 6 0.47 0.61 10.9 2.5 2.8 5.3 2.3 3.0 5.3 2.3 2.8 5.1

• STMEN: list of variables of stratification used for the sample selection.

• DMEN: sampling weight.

• RMEN: response indicator (1 for a respondent, 0 for a non-respondent).

• DRMEN: sampling weight, corrected for non-response. The values are only needed for the respondents.

• DCMEN: calibrated weight. The values are only needed for the respondents.

• GHRMEN: list of variables identifying the response homogeneity groups.

• WGHRMEN: weighting used in the computation of the response probabilities inside RHGs. With WGHRMEN=0, the response rates are not weighted. This is the default value. With WGHRMEN=1, the response rates are weighted by the design weights.

• XMENQUANT: list of quantitative variables used in the calibration. The values are only needed for the respondents.

• XMENQUALI: list of qualitative variables used in the calibration. The values are only needed for the respondents.

The parameters related to the output are:

• SORT_MEN: SAS table containing the bootstrap sampling weights WB_D1,...,WB_D&ITBOOT for the whole sample.

• SORT_RMEN: SAS table containing the bootstrap weights WB_N1,...,WB_N&ITBOOT corrected for non-response, and the bootstrap weights WB_C1,...,WB_C&ITBOOT corrected for non-response and calibration, for the sub-sample of respondents.

A small example

We consider the example treated in Section 2.1.4. The sample is as follows:

data ech; input idm$ stmen$ dmen rmen ghrmen$ drmen dcmen x0 We can obtain B = 1, 000 bootstrap weights as follows. Since WGHRMEN=1, it is supposed that when unit non-response has been originally corrected by the method of RHGs, the response rates inside RHGs were weighted by the sampling weights. %BOOTUP_1DEG(BASE=work,ECHMEN=ech, ITBOOT=1000, IDMEN=idm,STMEN=stmen,DMEN=dmen, RMEN=rmen,DRMEN=drmen,DCMEN=dcmen,GHRMEN=ghrmen,WGHRMEN=1, XMENQUANT=x0 x1,XMENQUALI=, SORT_MEN=ech_boot,SORT_RMEN=echr_boot);

Application to the French panel for urban policy

The Panel for Urban Policy (PUP) is a survey in four waves, conducted between 2011 and 2014 by the French General Secretariat of the Inter-ministerial Committee for Cities (SGCIV). The survey aims at collecting information about security, employment, precariousness, schooling and health, for people living in the Sensitive Urban Zones (ZUS). We are only interested in the 2011 wave of the survey. A sample of households is selected, and all the individuals living in the selected households are theoretically surveyed.

The sample of households is obtained by two-stage sampling, see for example [START_REF] Chauvet | Coupling methods for multistage sampling[END_REF]; [START_REF] Chauvet | Inference for two-stage sampling designs with application to a panel for urban policy[END_REF]. Firstly, the population of districts is partitioned into 4 strata, and a global sample of n I = 40 districts is selected by means of probability proportional to size sampling inside strata. A sample of households is then selected at the second-stage inside each selected district by means of simple random sampling, in such a way that the final inclusion probabilities of households are approximately equal inside strata (self-weighted sampling design). For the purpose of illustration, the two-stage selection of the households is not considered here, and the sample of households is viewed as directly selected by means of stratified simple random sampling.

The sample contains 2, 971 households, but due to unit non-response only 1, 256 households are observed. Non-response is accounted for by using Response Homogeneity Groups, defined with respect to five auxiliary variables: housing construction period, type of dwelling (apartment/house), number of rooms, low-income housing (yes/no), region. By using a logistic regression and the score method (e.g. [START_REF] Haziza | On the construction of imputation classes in surveys[END_REF], we obtain 8 response homogeneity groups. The five auxiliary variables used in the definition of the RHGs are also used for calibration.

We are interested in four categorical variables related to security, town planning and residential mobility. The variable y 1 gives the perceived reputation of the district (good, fair, poor, no opinion). For each proportion, we give the normality-based confidence interval making use of the bootstrap variance estimator, the percentile bootstrap and the basic bootstrap confidence intervals, see Section 3.5. We use the with-replacement Bootstrap presented in Algorithm 1 with B = 1, 000 resamples.

The results with a nominal one-tailed error rate of 2.5 % are presented in Table 3. The three confidence intervals are very similar in all cases.

SAS Program for two-stage sampling

In this Section, we present the SAS macro developed to implement the proposed methodology for a sampling of households and a sub-sampling of individuals (two-stage sampling). The parametrization of the SAS program for computing bootstrap weights is presented in Section 6.1. For clarity, a small example is presented in Section 6.2. An illustration for the Panel for Urban Policy is given in Section 6.3.

Program for computing bootstrap weights

The SAS macro %BOOTUP_2DEG enables to compute bootstrap weights for a household survey with sub-sampling of individuals, and to account for correction of unit non-response via Response Homogeneity groups, and for the calibration of weights, both for households and individuals.

The parameters with equality sign are mandatory. All identifying variables must be of character type.

The parameters related to the database are:

• BASE: library containing the SAS tables ECHMEN and "ECHIND". The default value is BASE=WORK.

• BASESOR: library containing the output. The default value is BASESOR=WORK.

• ECHMEN= : SAS table containing the list of sampled households in the population. The household non-respondents need also to be included in this table.

• ECHIND= : SAS table containing the list of sampled individuals inside all the responding households. The individual non-respondents need also to be included in this table.

The parameters related to the bootstrap are:

• ITBOOT: number of bootstrap iterations. The default value is ITBOOT=1000.

The parameters related to the variables needed in the household SAS table ECHMEN are:

• IDMEN=: list of variables identifying the household. This variable is required in both ECHMEN and ECHIND.

• STMEN: list of variables of stratification used for the sample selection.

• DMEN: sampling weight of the household.

• RMEN: response indicator of the household (1 for a respondent, 0 for a non-respondent).

• DRMEN: sampling weight of the household, corrected for non-response. The values are only needed for the respondents.

• GHRMEN: list of variables identifying the response homogeneity groups for households.

• WGHRMEN: weighting used in the computation of the response probabilities inside RHGs:

-With WGHRMEN=0, the response rates are not weighted. This is the default value.

-With WGHRMEN=1, the response rates are weighted by the design weights DMEN.

• XMENQUANT: list of quantitative variables used in the calibration. The values are only needed for the respondents.

• XMENQUALI: list of qualitative variables used in the calibration. The values are only needed for the respondents.

The parameters related to the variables needed in the household SAS table ECHIND are:

• ID_IND=: list of variables identifying the individual (character variable).

• R_IND: response indicator of the individual (1 for a respondent, 0 for a non-respondent).

• DR_IND: weight of the individual, corrected for both household and individual unit nonresponse. The values are only needed for the respondents.

• PIKSACI=: conditional inclusion probability of the individual inside its household.

• GHR_IND: list of variables identifying the response homogeneity groups.

• WGHR_IND: weighting used in the computation of the response probabilities inside RHGs:

-With WGHR_IND=0, the response rates are not weighted. This is the default value.

-With WGHR_IND=1, the response rates are weighted by the design weights of individuals.

-With WGHR_IND=2, the response rates are weighted by the weights of individuals, adjusted for household unit non-response.

• XINDQUANT: list of quantitative variables used in the calibration. The values are only needed for the respondents.

• XINDQUALI: list of qualitative variables used in the calibration. The values are only needed for the respondents.

The parameters related to the output are:

• SORT_MEN: SAS table containing all the sampled households, and the bootstrap sampling weights WB_D1,...,WB_D&ITBOOT for the whole sample.

• SORT_RMEN: SAS table containing all the responding households, and the bootstrap weights -WB_N1,...,WB_N&ITBOOT corrected for non-response, -WB_C1,...,WB_C&ITBOOT corrected for non-response and calibration. We can obtain B = 1, 000 bootstrap weights as follows. Since WGHRMEN=1, it is supposed that when unit non-response of households has been originally corrected by the method of RHGs, the response rates inside RHGs were weighted by the sampling weights. Since WGHR_IND=0, it is supposed that when unit non-response of individuals has been originally corrected by the method of RHGs, the response rates inside RHGs were unweighted.

%bootup_2deg (base=work,echmen=echmen,echind=echind, itboot=1000, idmen=idm,stmen=stmen,dmen=dmen,drmen=drmen,rmen=rmen,ghrmen=ghrmen,wghrmen=1, xmenquant=x0,xmenquali=x1, id_ind=idi,r_ind=rind,dr_ind=dr2_ind,piksaci=piksaci,ghr_ind=ghrind,wghr_ind=0, xindquant=xi1 xi2,xindquali=, sort_men=sort_men_test,sort_rmen=sort_rmen_test, sort_rind=sort_rind_test);

Application to the French panel for urban policy

We continue the illustration initiated in Section 6.3. The sample of responding households contains 3, 098 individuals who are theoretically surveyed, but due to unit non-response we observe a subset of 2, 804 individual respondents only. Non-response is accounted for by using Response Homogeneity Groups, defined with respect to eight auxiliary variables: three at the individual level (sex, age, nationality), and five at the dwelling level (housing construction period, type of dwelling, number of rooms, low-income housing or not, region). By using a logistic regression and the score method, we obtain 8 response homogeneity groups. The three individual auxiliary variables used in the definition of the RHGs are also used for calibration.

We are interested in three variables of interest. The variable y 5 is quantitative, and gives the number of children. The variable y 6 indicates whether the individual has one or several jobs (one, several, none, no answer). The variable y 7 indicates whether the individual benefits from a complementary full medical cover (yes, no, no answer). For the variable y 5 , we compute the estimator of the total adjusted for non-reponse and the calibrated estimator given in equations (2.27) and (2.29), respectively. For the two other variables of interest and for each category g, we are interested in the proportion θ g,ind = l∈U ind 1(y k = g) N ind , (6.1)

with N ind the total number of individuals. The estimator of θ g,ind adjusted for non-response is θgrr,ind = l∈S rr,ind d rrl 1(y l = g) For each parameter, we give the normality-based confidence interval making use of the bootstrap variance estimator, the percentile bootstrap and the basic bootstrap confidence intervals. We use the with-replacement Bootstrap presented in Algorithm 2 with B = 1, 000 resamples. The results with a nominal one-tailed error rate of 2.5 % are presented in Table 4. The three confidence intervals are very similar in all cases.

Conclusion and Future work

In this paper, we have explained how the with-replacement bootstrap may be applied to household surveys, in order to account for the whole variability of the sampling process including sampling and non-response, and to a posteriori adjustments like calibration. The methods have been illustrated on a toy example for clarity of exposition, evaluated via a simulation study and applied to a French panel for urban policy. To make the implementation of the method easier for users, we have developed two SAS macros which are available as Supplementary Material.

The results in the simulation study show that both the bootstrap variance estimators and three bootstrap confidence intervals work well in case of a small sampling fraction. While the bootstrap variance estimator is known to be conservative in this case, the coverage properties of confidence intervals in such context remain unclear. This is an interesting matter for further research.

We have considered the situation when the survey is performed at one time only. If we wish to perform longitudinal estimations, units are typically followed over time. If we are also interested in cross-sectional estimations at several times, additional samples are selected at posterior waves and mixed with the original sample. Bootstrap variance estimation in the context of longitudinal surveys is a very important matter for further investigation.

B Justification for the bootstrap variance estimator

We provide some heuristic justification for the estimation of the total Y hou . The case of a complex parameter can be handled similarly, by means of the linearization technique [START_REF] Deville | Variance estimation for complex statistics and estimators: linearization and residual techniques[END_REF]. For the estimation of Y hou , we consider the case of the calibration estimator Ŷcal,hou only, since the case of Ŷhou and Ŷr,hou can be handled similarly.

We follow the same approach as in [START_REF] Kim | Nonresponse weighting adjustment using estimated response probability[END_REF]. We first write and where e k is given in (2.12).

We can obtain a similar expansion for the bootstrap calibrated estimator Ŷcal,hou * , conditionally on the sample S hou and on the sample of respondents S r,hou . We first obtain 

  .6) with c(k) the RHG of the household k. The estimator of Y hou adjusted for non-response is Ŷr,hou = k∈S r,hou d rk y k .
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 1 Figure 1: Sampling and estimation steps for a household sample

  weights are calibrated to match exactly the population size N hou = 100 and an auxiliary total X 1,hou = 60. Note that, using the sample of respondents, we obtain Nr,hou = 112 and X1r,hou = 66.53. The calibrated weights are w A = 4.01, w D = 4.87, w E = w H = 19.98, w F = 15.63, w I = 19.49, w J = 16.03.

  .25) with ω l some weight attached to the individual l. The choice ω l = 1 leads to estimating p d by the unweighted response rate inside the RHG. The choice ω l = d l leads to estimating p d by the response rate inside the RHG, weighted by the individual sampling weights. The choice ω l = d rl leads to estimating p d by the response rate inside the RHG, weighted by the individual sampling weights corrected of household unit non-response. We compare these different choices in the simulation study performed in Section 4. Accounting for the estimated response probabilities leads to the individual weights corrected for household/individual non-response d rrl = d rl pd(l) with d(l) the RHG containing l. (2.26) The estimator of Y ind adjusted for household/individual non-response is Ŷrr,ind = l∈S rr,ind d rrl y l .

Figure 3 :

 3 Figure 3: Sampling and estimation steps for a household sample with sub-sampling of individuals

  .34) Finally, the weights are calibrated to match exactly the population size N ind = 200 and an auxiliary total Z 1,ind = 450. Note that, using the sample of respondents, we obtain Nr,ind = 214.4 and Ẑ1r,ind = 451.3. The calibrated weights are w 1 = 19.61, w 6 = 53.93, w 8 = 78.43, w 13 = 48.04.(2.35)The sampling and estimation steps are summarized in Figure4.
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 4 Figure 4: Estimation steps for the weighting of individuals

  ) with c(k) the RHG containing the household k. The bootstrap version of the estimator corrected for unit non-response given in (2.7) is Ŷr,hou * = k∈S r,hou d rk * y k .

  hou * and Xr,hou * = k∈S r,hou d rk * x k . The bootstrap version of the calibrated estimator given in (2.10) is Ŷcal,hou * = k∈S r,hou w k * y k . (3.8) and to the bootstrap weights corrected for non-response d rA * = 40 3 d rD * = 280 39 d rE * = d rH * = d rI * = 1120 39 . (3.11) Finally, the weights are calibrated to match the population size N hou = 100 and the auxiliary total X 1,hou = 60. This leads to the bootstrap calibrated weights w A * = 11.30 w D * = 8.00 w E * = w H * = 24.35 w I * = 32.00 (3.12)
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 5 Figure 5: Computation of bootstrap household weights

ZFigure 6 :

 6 Figure 6: Computation of bootstrap household weights

Algorithm 3

 3 Bootstrap variance estimation for an estimation over the population of households 1. Repeat B times the bootstrap procedure described in Algorithm 1. Let us denote Ŷ b hou * , Ŷ b r,hou * and Ŷ b cal,hou * for the bootstrap estimators of totals computed on the b-th sample. Also, let us denote θb hou * , θb r,hou * and θb cal,hou * for the associated bootstrap estimators of θ hou .

  Ŷcal,hou = Ŷr,hou + B r,hou X hou -Xr,hou = Ŷr,hou + B hou X hou -Xr,hou+ O p (N n -1 ) = B hou X hou + Êr,hou + O p (N n -1 ), (B.1)withE k = y k -B hou x k and B hou = hou ω k (1 -r k /p c ) k∈S c,hou ω k r k = 1 p c k∈S c,hou ω k (1 -r k /p c ) k∈S c,hou ω k + O p (n -1 Ēc,hou + O p (N n -1 ) = k∈S hou d k ω k π k Ēc(k),hou + r k p c(k) E k -ω k π k Ēc(k),hou + O p (N n -1 ), (B.3) with Ēc,hou = ( k∈U c,hou E k )/( k∈U c,hou ω k π k ). From (B.1) and (B.3), we have Ŷcal,hou = B hou X hou + k∈S hou d k A k + O p (N n -1 ), (B.4) with A k = ω k π k Ēc(k),hou + r k p c(k) E k -ω k π k Ēc(k),hou .From (B.4), the asymptotic variance of Ŷcal,hou is that of k∈S hou d k A k . If the sampling design used inside the strata is more efficient than multinomial sampling, a conservative variance estimator isv HH ( Ŷcal,hou ) = a k = ω k π k ērc(k),hou + r k pc(k) e k -ω k π k ērc(k),hou , (B.6) with ērc,hou = k∈S c,hou d k r k e k k∈S c,hou ω k r k , (B.7)

  Ŷcal,hou * = B r,hou X hou + êr,hou * +O p * (N n -1 hou ω k W k (1 -r k /p c ) k∈S c,hou ω k + O p * (n -1 ), (B.9)where O p * stands for the order of magnitude in probability, conditionally on S hou and S r,hou . This leads to êr,hou * =k∈S hou d k W k ω k π k ērc(k),hou + r k pc(k) e k -ω k π k ērc(k),hou + O p * (N n -1). (B.10) From (B.8) and (B.10), we obtain Ŷcal,hou * = B r,hou X hou + k∈S hou d k W k a k + O p * (N n -1 ). (B.11) Therefore, the variance of Ŷcal,hou * conditionally on S hou and S r,hou (say, V * ) is approximately V * ( Ŷcal,hou * ) . v mult ( Ŷcal,hou ) is given in equation (2.11).

  

  

  Computation of bootstrap household weights accounting for non-response and calibration•Step 1: we account for the sampling of households by computing, for any k ∈ S hou , the bootstrap sampling weight

	Algorithm 1			
	=	13 21	,	(3.10)

The second RHG contains D, E, G (non-respondent), H and I. This leads to p2 * = d D * + d E * + d H * + d I * d D * + d E * + d G * + d H * + d I *

  D, E, H and I (one time). Due to household non-response, we observe A, D, E, H and I only. From equations (2.29) and (2.30), this results in the bootstrap sample of individuals S r,ind * = {i 1 , i 4 , i 6 , i 11 , i 12 }. (3.19) The bootstrap weights of households corrected for unit non-response are given in equation (3.11). From equation (3.13), the bootstrap weights of individuals adjusted for household non-response are

	d r1 * = 40 d r4 * =	280 39	d r6 * =	2240 39	d r11 * =	2240 39	d r12 * =	1120 39	.

Table 1 :

 1 Coefficient of variation of the estimator of the total, Relative Bias and Relative Stability of the Bootstrap variance estimator, and Nominal One-Tailed Error Rates of the percentile bootstrap and of the basic bootstrap for 3 variables on the population of households

				Percentile bootstrap	Basic bootstrap	Normality-based
		CV	RB RS	L	U	L+U	L	U L+U	L	U	L+U
		y 1 1.47 2.48 7.2	2.2 3.1	5.3	2.1 3.3	5.4	2.2 3.2	5.4
	Ŷhou	y 2 1.48 0.73 6.6	2.6 3.3	5.9	2.7 3.4	6.1	2.6 3.2	5.8
		y 3 1.48 1.11 6.6	2.6 2.7	5.3	2.7 3.0	5.7	2.4 2.7	5.1
		y 1 1.82 0.42 8.7	2.4 2.4	4.8	2.3 2.7	5.0	2.3 2.6	4.9
	Ŷr,hou	y 2 1.83 -0.76 8.2	2.7 2.8	5.5	2.5 3.0	5.5	2.2 2.7	4.9
		y 3 1.82 0.72 8.4	2.8 2.1	4.9	2.8 2.2	5.0	2.8 1.9	4.7
		y 1 1.29 1.27 8.3	2.4 2.7	5.1	2.8 2.8	5.6	2.8 2.7	5.5
	Ŷcal,hou y 2 1.58 -0.55 8.2	2.5 3.5	6.0	2.8 3.9	6.7	2.8 3.6	6.4
		y 3 1.82 0.49 8.4	2.9 1.8	4.7	3.0 2.2	5.2	2.9 2.0	4.9

Table 2 :

 2 Coefficient of variation of the estimator of the total, Relative Bias and Relative Stability of the Bootstrap variance estimator, and Nominal One-Tailed Error Rates of the percentile bootstrap and of the basic bootstrap for 3 variables on the population of individuals

				Percentile bootstrap	Basic bootstrap	Normality-based
	CV	RB	RS	L	U	L+U	L	U L+U	L	U	L+U
						Equal weights ω l = 1				
	y 4 2.01 0.31	9.6	2.0 3.2	5.2	1.9 3.3	5.2	1.9 3.0	4.9
	Ŷrr,ind y 5 2.02 -0.17 9.6	2.4 3.4	5.8	2.2 3.7	5.9	2.3 3.5	5.8
	y 6 2.02 -0.24 9.6	2.2 3.3	5.5	2.0 3.7	5.7	2.0 3.2	5.2
	y 4 0.29 1.72 10.8	2.1 2.4	4.5	2.1 2.3	4.4	2.1 2.2	4.3
	Ŷcal,ind y 5 0.39 1.04 11.3	2.3 2.5	4.8	2.3 2.5	4.8	2.2 2.4	4.6
	y 6 0.47 1.90 11.2	2.8 2.1	4.9	2.2 2.5	4.7	2.3 2.0	4.3
					Sampling weights ω l = d l			
	y 4 2.00 -0.08 9.5	1.8 3.8	5.6	1.7 3.8	5.5	1.7 3.4	5.1
	Ŷrr,ind y 5 2.00 0.14	9.4	1.9 3.3	5.2	2.2 3.5	5.7	1.8 3.5	5.3
	y 6 1.99 0.61	9.3	1.7 3.2	4.9	1.7 3.4	5.1	1.7 3.2	4.9
	y 4 0.29 -0.57 10.3	2.9 2.4	5.3	3.3 2.2	5.5	3.0 2.3	5.3
	Ŷcal,ind y 5 0.39 0.40 11.6	2.4 3.2	5.6	2.7 3.3	6.0	2.3 3.2	5.5
	y 6 0.47 -0.05 11.2	2.3 2.2	4.5	1.8 2.3	4.1	1.8 2.3	4.1

  The variable y 2 indicates if a member of the household has witnessed trafficking (never, rarely, sometimes, no opinion). The variable y 3 indicates if some significant roadworks have been done in the neighborhood in the twelve last months (yes, no, no opinion). The variable y 4 indicates if the household intends to leave the district during the next twelve months (certainly/probably, certainly not, probably not, no opinion). For each category g of each variable y, we are interested in the proportion

	θ g,hou =	k∈U hou 1(y k = g) N hou	,		(5.1)
	with N hou the total number of households. The estimator of θ g adjusted for non-response is
	θgr,hou =	k∈S r,hou d rk 1(y k = g) k∈S r,hou d rk	,	(5.2)
	see equation (2.7). The calibrated estimator of θ g is		
	θgcal,hou =	k∈S r,hou w k 1(y k = g) k∈S r,hou w k	,	(5.3)
	see equation (2.10).			

  We consider the example treated in Section 2.2.4. The sample of households and the sample of individuals are as follows:

	6.2 A small example	
	data echmen;		
	input idm$ stmen$ dmen rmen ghrmen$ drmen x0 x1;
	cards;		
	A 1 4 1 aa 4.44 1 1	
	B 1 4 0 aa .	. .	
	C 1 4 0 bb .	. .	
	D 1 4 1 bb 5.54 1 0	
	E 1 16 1 bb 22.15 1 1	
	F 1 16 1 aa 17.78 1 0	
	G 1 16 0 bb .	. .	
	H 1 16 1 bb 22.15 1 1	
	I 1 16 1 bb 22.15 1 0	
	J 1 16 1 aa 17.78 1 1	
	;run;		
	data echind;		
	input idm$ idi$ piksaci drmen dr1_ind rind ghrind$ phat_ind dr2_ind xi1 xi2;
	cards;		
	A i01 0.34 04.44 13.06 1 g1 0.67 19.59 1 3
	A i02 0.33 04.44 13.45 0 g2 .	.	. .
	A i03 0.33 04.44 13.45 1 g1 0.67 20.18 1 3
	D i04 1.00 05.54 05.54 0 g2 .	.	. .
	E i05 0.33 22.15 67.12 1 g2 0.50 134.24 1 3
	E i06 0.34 22.15 65.15 0 g2 .	.	. .
	E i07 0.33 22.15 67.12 1 g1 0.67 100.68 1 3
	• SORT_RIND: SAS table containing all the responding individuals inside the responding house-F i08 0.33 17.78 53.88 1 g2 0.50 107.76 1 3
	holds, and the bootstrap weights F i09 0.33 17.78 53.88 0 g2 .	.	. .
	F i10 0.34 17.78 52.29 0 g1 . -WB_N1,...,WB_N&ITBOOT corrected for household non-response, . . . H i11 0.50 22.15 44.30 1 g2 0.50 88.60 1 2
	-WB_NN1,...,WB_NN&ITBOOT corrected for both household non-response and individual non-H i12 0.50 22.15 44.30 1 g1 0.67 66.45 1 2
	response, I i13 1.00 22.17 22.17 0 g1 .	.	. .
	-WB_C1,...,WB_C&ITBOOT corrected for non-response and calibration. J i14 1.00 17.78 17.78 1 g2 0.50 35.56 1 1
	;run;		

  .27). The calibrated estimator of θ g,ind is θgcal,ind = l∈S rr,ind w l 1(y l = g)

	see equation (2l∈S rr,ind w l	,	(6.3)
	see equation (2.29).		
	l∈S rr,ind d rrl	,	(6.2)

 CI [0.194,0.241] [0.201,0.249] [0.503,0.559] [0.018,0.036] [0.193,0.240] [0.200,0.248] [0.504,0.560
A Benchmark variance estimators for the sample of individuals

We first consider the estimator Ŷind in equation (2.21), that we use in case of full response. The benchmark variance estimator is

We now consider the estimator Ŷrr,ind given in equation (2.27), which is adjusted for the nonresponse of both households and individuals. The benchmark variance estimator is

where

where the first linearized variable û1k is similar to that given in equation (2.8), while the second linearized variable u 3k accounts for the estimation of the individual response probabilities. We have for the first linearized variable