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In this paper, we establish sharp inequalities for trigonometric functions. We prove for 0

This improves some bounds framing the function sin(x) x and generalizes some inequalities chains.

A wellknown inequalities

For 0 < x < π/2 the following inequalities are wellknown in the literature that

(cos(x)) 1/3 < sin(x) x < 2 + cos(x) 3 (1) 
The left-hand side is known as Adamovic-Mitrinovic inequality (see [START_REF] Mitrinovic | Sur une inegalite elementaire ou interviennent des fonc-tions trigonometriques[END_REF][START_REF] Mitrinovic | Analytic inequalities[END_REF]), while the right-hand side is known as Cusa inequality. The latter one which was proved by Huygens was used to estimate the number π, [START_REF] Sandor | On Huygens' trigonometric inequality[END_REF]. The inequalities [START_REF] Mitrinovic | Sur une inegalite elementaire ou interviennent des fonc-tions trigonometriques[END_REF] have been attracted by many people and have inspired a lot of interesting papers, see for example [START_REF] Chen | Inequality chains for Wilker, Huygens and Lazarevic type inequalities[END_REF] and the references therein. By using inequalities involving several means, Neuman [START_REF] Chen | Inequality chains for Wilker, Huygens and Lazarevic type inequalities[END_REF] presented the following inequality chain generalizing the Adamovic-Mitrinovic inequality. For

x ∈ (0, π 2 ) we have (cos(x)) 1/3 < ( cos(x) sin(x) x

) 1/4 < ( sin(x) arctan(sin(x))

) 1/2 (2) < [ 1 2
(cos(x) + sin(x) 2x )

] 1/2 < [ 1 + 2 cos(x) 3 ] 1/2 < [ 1 + cos(x) 2 
] 2/3 < sin(x) x .
Thus the left inequality of (1.1) is improved. Yang [START_REF] Yang | Three families of two-parameter means constructed by trigonometric functions[END_REF] proved that for 0 < x < π 2 ,

sin(x) x < ( 2 
3 cos( x 2 ) + 1 
3

) 2 < (cos( x 3 )) 3 < 2 + cos(x) 3 (3) 
which improves the right inequality of (1).

Motivated by [START_REF] Mitrinovic | Sur une inegalite elementaire ou interviennent des fonc-tions trigonometriques[END_REF] and the dierent sharp bounds, in Sections 2 and 3 we establish nest inequalities than those known before for trigonometric functions

1 + x 4 15 < 1 + x 3 ( 1 - x 2 63 ) tan(x) 15 < 1 cos(x) ( sin(x) x ) 3 < 1 + x 3 tan(x) 15 .
By using certain estimates, we complete inequality chains (2) and (3), improving therefore inequality [START_REF] Mitrinovic | Sur une inegalite elementaire ou interviennent des fonc-tions trigonometriques[END_REF]. In Section 4 we examine the incidence of these results on the Wilker type inequalities. More precisely we establish the following inequality chain for 0 < x < π/2

1 2 ( sin(x) x ) 2 + tan(x) 2x > 1 + x 3 tan(x) 15 > 1 cos(x) ( sin(x) x ) 3 > 1 + x 3 ( 1 - x 2 63 ) tan(x) 15 > 2 3 ( sin(x) x ) + tan(x) 3x 2 2 The Adamovic-Mitrinovic inequality
The rst inequality in (1.1) is equivalent to

x tan(x) < ( sin(x) x ) 2 ; 0 < x < π 2
as well as equivalent to

1 cos(x) ( sin(x) x ) 3 > 1
The following result gives a lower estimate of Adamovic-Mitrinovic inequality better than those known. This allows in particular to slightly improve the chain (2)

Theorem 2-1 For 0 < x < π/2 the following inequalities hold cos(x) < ( cos(x) sin(x) x

) 3/4 < cos(x) + x 4 cos(x) 15 
< cos(x) + x 3 ( 1 - x 2 63 ) sin(x) 15 < ( sin(x) x ) 3 (4) 
Moreover, there exists 0 < x 0 < π/2 such that for 0 < x < x 0 < π/2 the following inequalities hold

[ 1 + cos(x) 2 ] 2 < cos(x)+ x 4 cos(x) 15 < cos(x)+x 3 ( 1 - x 2 63 ) sin(x) 15 < ( sin(x) x ) 3 . ( 5 
)
Proof Indeed, Let us consider the following trigonometric functions with power series. We will use the Taylor expansions of sin(x), and cos(x)

cos(x) = 1 - x 2 2! + x 4 4! - x 6 6! + .... + (-1) k x 2k 2k! + (-1) k+1 cos θx (2k + 2)! x 2k+2 sin(x) = x - x 3 3! + x 5 5! - x 7 7! + .... + (-1) k-1 x 2k-1 (2k -1)! + (-1) k sin θx (2k + 1)! x 2k+1
where 0 < θ < 1.

It is easy to remark that

1 - x 2 2! + x 4 4! - x 6 6! < cos x < 1 - x 2 2! + x 4 4! - x 6 6! + x 8 8! 1 - x 2 3! + x 4 5! - x 6 7! < sin x x < 1 - x 2 3! + x 4 5! - x 6 7! + x 8 9!
for 0 < x < π 2 . Moreover we may assert the following

1- 1 2 x 2 + 13 120 x 4 - 41 3024 x 6 < ( sin x x ) 3 < 1- 1 2 x 2 + 13 120 x 4 - 41 3024 x 6 + 671 604800 x 8
On the other hand, thanks to Maple a calculation gives

(1- x 2 2! + x 4 4! - x 6 6! )(1+ x 4 15 ) < cos(x)(1+ x 4 15 ) < (1- x 2 2! + x 4 4! - x 6 6! + x 8 8! )(1+ x 4 15 ) < 1 - x 2 2 + 13x 4 120 - 5x 6 144 + 113x 8 40320 < 1 - x 2 2 + 13x 4 120 - 41x 6 3024 < ( sin x x ) 3 since - 5x 6 144 + 113x 8 40320 + 41x 6 3024 = -4x 6 189 + 113x 8 40320 = x 6 120960 ( -2560 + 339 x 2 ) < 0 for 0 < x < π/2.
Then, we have proved the right inequality of (4). For the middle inequality it suces to write the dierence

cos(x)+x 3 ( 1 - x 2 63 ) sin(x) 15 -(cos(x)+ x 4 cos(x) 15 ) = x 3 15 ( (1 - x 2 63 )( sin(x) x ) -cos(x)
)

Then we remark that

(1 - x 2 63 )( sin(x) x ) -cos(x) > (1 - x 2 63 )(1 - x 2 6 ) -(1 - x 2 2 + x 4 24 ) = 20 63 x 2 - 59 1512 x 4 = 1 1512 x 2 ( 480 -59 x 2 ) > 0.
Thus we prove for 0 < x < π/2

cos(x) + x 3 ( 1 - x 2 63 ) sin(x) 15 > cos(x) + x 4 cos(x) 15
For the left inequality, notice that we have seen above that

1 - 1 2 x 2 + 13 120 x 4 - 5 144 x 6 < cos(x)(1 + x 4 15
).

On the other hand a calculation yields 4) is proved.

( cos(x) sin(x) x ) 3/4 < 1 - 1 2 x 2 + 7 120 x 4 . Now 1 - 1 2 x 2 + 13 120 x 4 - 5 144 x 6 -(1 - 1 2 x 2 + 7 120 x 4 ) = 1 20 x 4 - 5 144 x 6 > 0 for 0 < x < π/2. So, (
To prove (5) it suces to notice that from the frame of cos(x) we deduce as soon as x < x 0 = 0.346410 < π 2 . This means for 0 < x < x 0 one has

1 - 1 2 x 2 + 5 48 x 4 - 17 1440 x 6 < [ 1 + cos(x) 2 ] 2 < 1 - 1 2 x 2 + 5 48 x 4 .

Now we have

[ 1 + cos(x) 2 ] 2 < cos(x) + x 4 cos(x) 15 .
Remark 2-2 We may assert that the following inequality chain holds at least for 0

< x < x 0 = 0.346410 < π 2 (cos(x)) < ( cos(x) sin(x) x ) 3/4 < ( sin(x) arctan(sin(x)) ) 3/2 < [ 1 2 (cos(x) + sin(x) 2x ) ] 3/2 < [ 1 + 2 cos(x) 3 ] 3/2 < [ 1 + cos(x) 2 ] 2 < cos(x) + x 4 cos(x) 15 < ( sin(x) x ) 3
.

Thus, we enrich slightly the chain (2).

3 The Cusa-Huygens inequality

The following result gives another estimate of this inequality better than those known. This allows us in particular to extend and complete the chain (2).

Theorem 3-1 For 0 < x < π/2 the following inequality holds ( sin(x) x

) 3 < cos(x) + cos(x) x 3 (tan(x)) 15 = cos(x) + x 3 sin(x) 15 (6) 
Moreover there exists for 0 < x < π/2 the following inequalities hold ( sin(x) x

) 3 < cos(x) + x 3 sin(x) 15 < ( 2 
3 cos( x 2 ) + 1 3 
) 6

Proof Indeed, take again the Taylor expansions of sin(x) and cos(x)

cos(x) = 1 - x 2 2! + x 4 4! - x 6 6! + .... + (-1) k x 2k 2k! + (-1) k+1 cos θx (2k + 2)! x 2k+2 sin(x) = x - x 3 3! + x 5 5! - x 7 7! + .... + (-1) k-1 x 2k-1 (2k -1)! + (-1) k sin θx (2k + 1)! x 2k+1
where 0 < θ < 1. We easily remark that

cos x < 1 - x 2 2! + x 4 4! - x 6 6! + x 8 8! - x 10 10! + x 12 12! = 1 - 1 2 x 2 + 1 24 x 4 - 1 720 x 6 + 1 40320
x 8 -1 3628800

x 10 + 1 479001600

x 12 1-

x 2 3! + x 4 5! - x 6 7! + x 8 9! + x 10 11! = 1- x 2 6 + x 4 120 - x 6 5040 + x 8 362880 - x 10 39916800 < sin x x for 0 < x < π 2 .
By a calculation we deduce the following is non negative because it has no zeros in the interval 0 < x < π/2 Then, for 0 < x < π/2 we have

( sin x x ) 3 < 1 - x 2 2 +
cos (x) + 1 15 x 3 sin (x) - (sin (x)) 3 x 3 > 0
So we proved Inequality [START_REF] Yang | Three families of two-parameter means constructed by trigonometric functions[END_REF].

Turn now to inequality [START_REF] Sumner | Inequalities involving trigonometric functions[END_REF]. Notice that by the same way of calculation and thanks to Maple we obtain the following

( 2 3 cos( x 2 ) + 1 
3 is non negative because it has no zeros in the interval 0 < x < π/2 . This means for 0 < x < π 2 one has

) 6 > 1 - 1 2 x 2 +
cos(x) + x 3 sin(x) 15 < ( 2 
3 cos( x 2 ) + 1 3 
) 6

.

So inequality ( 7) is then proved.

Remark 3-2 (i) We were forced to consider a polynomial at least of order 12 in order to estimate trigonometric functions. Indeed, for a lower order estimate we would have an increasing polynomial which changes sign since it admits a root in the interval [0, π/2].

(ii) We may assert that the following inequality chain holds at least for

0 < x < π 2 ( sin(x) x ) 3 < cos(x) + cos(x) (tan(x)) 4 15 < ( 2 
3 cos( x 2 ) + 1 3 
) 6 < ( cos( x 3 ) 
) 9 < ( 2 + cos(x) 3 
) 3
.

Thus, we expand the chain (3).

A wilker type inequalities

The Wilker inequality asserts that for 0 < x < π/2

( sin(x) x ) 2 + tan(x) x > 2 (8) 
This inequality has been proved by [START_REF] Sumner | Inequalities involving trigonometric functions[END_REF]. The Wilker-type inequalities have been attracted by many people and have motivated a large number of research papers involving various generalizations and improvements, see [START_REF] Chen | Sharpness of Wilker and Huygens type inequalities[END_REF] for example.

A related inequality no less interesting is Huygens inequality asserts that for 0 <| x |< π/2

2 sin(x) x + tan(x) x > 3 (9) 
Chen and Sandor [START_REF] Chen | Inequality chains for Wilker, Huygens and Lazarevic type inequalities[END_REF] proved the following inequality chain for 0 <| x |< π/2

1 2 ( sin(x) x ) 2 + tan(x) 2x > 1 cos(x) ( sin(x) x ) 3 > 2 3 ( sin(x) x ) + tan(x) 3x > ( sin(x) x ) 2 3 ( tan(x) x ) 1 3 > 1 2 ( x sin(x) ) 2 + x 2 tan(x) > 2 3 ( x sin(x) ) + x 3 tan(x) > 1 (10) 
We propose the following Theorem 4-1 For 0 < x < π/2 the following inequalities holds 1 2

( sin(x) x ) 2 + tan(x) 2x > 1 + x 3 (tan(x)) 15 > 1 cos(x) ( sin(x) x ) 3 (11) 
Proof Consider the left inequality and we write dierence after multiplying by cos(x) one gets is non negative because it has no zeros in the interval 0 < x < π/2 . This means for 0 < x < π 2 one has

1 2 cos (x) (sin (x)) 2 x 2 + 1 2 sin (x) x -cos (x) - 1 15 x 3 sin (x) 1 -( 1 2 )x 2 + ( 1 24 )x 4 -( 1 720 )x 6 < cos(x) x -( 1 
1 2 ( sin(x) x ) 2 + tan(x) 2x > 1 + x 3 (tan(x)) 15 .
So the left inequality (11) is then proved.

The right inequality has been already proved by Theorem 3-1.

Concerning the Huygens inequality we propose to prove the following Theorem 4-2 For 0 < x < π/2 the following inequalities holds ) > 0

1 cos(x) ( sin(x) x ) 3 > 1+x 3 ( 1 - x 2 63 ) tan ( 
The left inequality has been already proved by Theorem 3-2.

Remark (4-3)

We may deduce from Theorems 4-1 and 4-2 the following inequality chain for 0 < x < π/2 . Thus, we have completed the inequality chain (10).

) 3 11> 1 + x 3

 313 

  Note as we saw above the framing of trigonometric functions, then we get

																	x) 15	>	2 3	(	sin(x) x	)	+	tan(x) 3x	. (12)
	Proof	Consider the right inequality we multiply the dierence by cos(x).
	Then we have cos(x) + x 3	( 1 -	x 2 63	)	sin(x) 15	>	2 3	(	sin(x) cos(x) x	)	+	sin(x) 3x	.
					cos(x) > 1 -	1 2	x 2 +	1 24	x 4 -	1 720	x 6
					sin(x) > x -	1 6	x 3 +	1 120	x 5 -	1 5040	x 7
	Therefore after simplication						
	cos(x) + x 3	( 1 -	x 2 63	)	sin(x) 15	> 1 -	1	x 2 +	13 120	x 4 -	41 3024	x 6
	A simple calculation yields					
	2 3	sin (x) cos (x) x	+	sin (x) 3x		< 1 -	1 2	x 2 +	11 120	x 4 -	43 5040	x 6
	Finally for 0 < x < π/2 one has					
	cos(x) + x 3	( 1 -	x 2 63	)	sin(x) 15	-	2 3	(	sin(x) cos(x) x	)	+	sin(x) 3x	>	x 4 60	-	19x 6 3780
							=	1 3780	x 4			

( 63 -19 x 2