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New sharp inequalities related to classical

trigonometric inequalities

Abd Raouf Chouikha *

Abstract

In this paper, we establish sharp inequalities for trigonometric func-

tions. We prove for 0 < x < π
2

cos(x) + x3
(
1− x2

63

)
sin(x)

15
<

(
sin(x)

x

)3

< cos(x) +
x3 sin(x)

15
.

This improves some bounds framing the function
sin(x)

x and generalizes

some inequalities chains.

Key Words and phrases: Trigonometric functions; Inequalities.1

1 A wellknown inequalities

For 0 < x < π/2 the following inequalities are wellknown in the literature
that

(cos(x))1/3 <
sin(x)

x
<

2 + cos(x)

3
(1)

The left-hand side is known as Adamovic-Mitrinovic inequality (see [1-
2]), while the right-hand side is known as Cusa inequality. The latter one
which was proved by Huygens was used to estimate the number π, [3]. The
inequalities (1) have been attracted by many people and have inspired a lot
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of interesting papers, see for example [4] and the references therein.
By using inequalities involving several means, Neuman [4] presented the fol-
lowing inequality chain generalizing the Adamovic-Mitrinovic inequality. For
x ∈ (0, π

2
) we have

(cos(x))1/3 <

(
cos(x)

sin(x)

x

)1/4

<

(
sin(x)

arctan(sin(x))

)1/2

(2)

<

[
1

2
(cos(x) +

sin(x)

2x
)

]1/2
<

[
1 + 2 cos(x)

3

]1/2
<

[
1 + cos(x)

2

]2/3
<

sin(x)

x
.

Thus the left inequality of (1.1) is improved.
Yang [6] proved that for 0 < x < π

2
,

sin(x)

x
<
(
2

3
cos(

x

2
) +

1

3

)2

< (cos(
x

3
))3 <

2 + cos(x)

3
(3)

which improves the right inequality of (1).

Motivated by (1) and the di�erent sharp bounds, in Sections 2 and 3
we establish �nest inequalities than those known before for trigonometric
functions

1 +
x4

15
< 1 + x3

(
1− x2

63

)
tan(x)

15
<

1

cos(x)

(
sin(x)

x

)3

< 1 +
x3 tan(x)

15
.

By using certain estimates, we complete inequality chains (2) and (3), im-
proving therefore inequality (1). In Section 4 we examine the incidence of
these results on the Wilker type inequalities.
More precisely we establish the following inequality chain for 0 < x < π/2

1

2

(
sin(x)

x

)2

+
tan(x)

2x
> 1 +

x3 tan(x)

15
>

1

cos(x)

(
sin(x)

x

)3

> 1 + x3

(
1− x2

63

)
tan(x)

15
>

2

3

(
sin(x)

x

)
+

tan(x)

3x
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2 The Adamovic-Mitrinovic inequality

The �rst inequality in (1.1) is equivalent to

x

tan(x)
<

(
sin(x)

x

)2

; 0 < x <
π

2

as well as equivalent to

1

cos(x)

(
sin(x)

x

)3

> 1

The following result gives a lower estimate of Adamovic-Mitrinovic inequality
better than those known. This allows in particular to slightly improve the
chain (2)

Theorem 2-1 For 0 < x < π/2 the following inequalities hold

cos(x) <

(
cos(x)

sin(x)

x

)3/4

< cos(x) +
x4 cos(x)

15

< cos(x) + x3

(
1− x2

63

)
sin(x)

15
<

(
sin(x)

x

)3

(4)

Moreover, there exists 0 < x0 < π/2 such that for 0 < x < x0 < π/2 the

following inequalities hold[
1 + cos(x)

2

]2
< cos(x)+

x4 cos(x)

15
< cos(x)+x3

(
1− x2

63

)
sin(x)

15
<

(
sin(x)

x

)3

.

(5)

Proof Indeed, Let us consider the following trigonometric functions with
power series. We will use the Taylor expansions of sin(x), and cos(x)

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ ....+ (−1)k

x2k

2k!
+ (−1)k+1 cos θx

(2k + 2)!
x2k+2

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ ....+ (−1)k−1 x2k−1

(2k − 1)!
+ (−1)k

sin θx

(2k + 1)!
x2k+1
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where 0 < θ < 1.
It is easy to remark that

1− x2

2!
+

x4

4!
− x6

6!
< cosx < 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!

1− x2

3!
+

x4

5!
− x6

7!
<

sinx

x
< 1− x2

3!
+

x4

5!
− x6

7!
+

x8

9!
for 0 < x < π

2
.

Moreover we may assert the following

1− 1

2
x2+

13

120
x4− 41

3024
x6 <

(
sinx

x

)3

< 1− 1

2
x2+

13

120
x4− 41

3024
x6+

671

604800
x8

On the other hand, thanks to Maple a calculation gives

(1− x2

2!
+
x4

4!
− x6

6!
)(1+

x4

15
) < cos(x)(1+

x4

15
) < (1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
)(1+

x4

15
)

< 1− x2

2
+

13x4

120
− 5x6

144
+

113x8

40320
< 1− x2

2
+

13x4

120
− 41x6

3024
<
(
sinx

x

)3

since

−5x6

144
+

113x8

40320
+

41x6

3024
=

−4x6

189
+

113x8

40320
=

x6

120960

(
−2560 + 339x2

)
< 0

for 0 < x < π/2.
Then, we have proved the right inequality of (4).
For the middle inequality it su�ces to write the di�erence

cos(x)+x3

(
1− x2

63

)
sin(x)

15
−(cos(x)+

x4 cos(x)

15
) =

x3

15

(
(1− x2

63
)(
sin(x)

x
)− cos(x)

)

Then we remark that

(1− x2

63
)(
sin(x)

x
)− cos(x) > (1− x2

63
)(1− x2

6
)− (1− x2

2
+

x4

24
)

=
20

63
x2 − 59

1512
x4 =

1

1512
x2
(
480− 59x2

)
> 0.

Thus we prove for 0 < x < π/2

cos(x) + x3

(
1− x2

63

)
sin(x)

15
> cos(x) +

x4 cos(x)

15

4



For the left inequality, notice that we have seen above that

1− 1

2
x2 +

13

120
x4 − 5

144
x6 < cos(x)(1 +

x4

15
).

On the other hand a calculation yields(
cos(x) sin(x)

x

)3/4

< 1− 1

2
x2 +

7

120
x4.

Now

1− 1

2
x2 +

13

120
x4 − 5

144
x6 − (1− 1

2
x2 +

7

120
x4) =

1

20
x4 − 5

144
x6 > 0

for 0 < x < π/2. So, (4) is proved.

To prove (5) it su�ces to notice that from the frame of cos(x) we deduce

1− 1

2
x2 +

5

48
x4 − 17

1440
x6 <

[
1 + cos(x)

2

]2
< 1− 1

2
x2 +

5

48
x4.

Now we have

1− 1

2
x2 +

5

48
x4 < 1− 1

2
x2 +

13

120
x4 − 5

144
x6 < cos(x) +

x4 cos(x)

15
.

as soon as x < x0 = 0.346410 < π
2
.

This means for 0 < x < x0 one has[
1 + cos(x)

2

]2
< cos(x) +

x4 cos(x)

15
.

Remark 2-2 We may assert that the following inequality chain holds
at least for 0 < x < x0 = 0.346410 < π

2

(cos(x)) <

(
cos(x)

sin(x)

x

)3/4

<

(
sin(x)

arctan(sin(x))

)3/2

<

[
1

2
(cos(x) +

sin(x)

2x
)

]3/2

<

[
1 + 2 cos(x)

3

]3/2
<

[
1 + cos(x)

2

]2
< cos(x) +

x4 cos(x)

15
<

(
sin(x)

x

)3

.

Thus, we enrich slightly the chain (2).
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3 The Cusa-Huygens inequality

The following result gives another estimate of this inequality better than
those known. This allows us in particular to extend and complete the chain
(2).

Theorem 3-1 For 0 < x < π/2 the following inequality holds(
sin(x)

x

)3

< cos(x) + cos(x)
x3(tan(x))

15
= cos(x) +

x3 sin(x)

15
(6)

Moreover there exists 0 < x1 < π/2 such that for 0 < x < x1 < π/2 the

following inequalities hold(
sin(x)

x

)3

< cos(x) +
x3 sin(x)

15
<

(
2

3
cos(

x

2
) +

1

3

)6

(7)

Proof Indeed, take again the Taylor expansions of sin(x) and cos(x)

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ ....+ (−1)k

x2k

2k!
+ (−1)k+1 cos θx

(2k + 2)!
x2k+2

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ ....+ (−1)k−1 x2k−1

(2k − 1)!
+ (−1)k

sin θx

(2k + 1)!
x2k+1

where 0 < θ < 1. We easily remark that

cosx < 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− x10

10!
+

x12

12!

= 1− 1

2
x2 +

1

24
x4 − 1

720
x6 +

1

40320
x8 − 1

3628800
x10 +

1

479001600
x12

1−x2

3!
+
x4

5!
−x6

7!
+
x8

9!
+
x10

11!
= 1−x2

6
+

x4

120
− x6

5040
+

x8

362880
− x10

39916800
<

sinx

x

for 0 < x < π
2
.
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By a calculation we deduce the following

(
sinx

x
)3 < 1− x2

2
+

13x4

120
− 41x6

3024
+

671x8

604800
− 73x10

1140480
+

597871x12

217945728000

On the other hand, thanks to Maple a calculation yields

cos (x) +
1

15
x3 sin (x)− (sin (x))3

x3

> 1− x2

2
+

x4

24
− x6

720
+

x8

40320
− x10

3628800
+

x12

479001600
− x14

87178291200

+
1

15
x3
(
x− 1

6
x3 +

1

120
x5 − 1

5040
x7 +

1

362880
x9 − 1

39916800
x11
)

−
(
1− x2

2
+

13x4

120
− 41x6

3024
+

671x8

604800
− 73x10

1140480
+

597871x12

217945728000

)

=
1

945
x6 − 1

1890
x8 +

1

19800
x10 − 2903

1135134000
x12 − 733

435891456000
x14

Moreover, we verify by Maple that the polynomial

1

945
− 1

1890
x2 +

1

19800
x4 − 2903

1135134000
x6 − 733

435891456000
x8

is non negative because it has no zeros in the interval 0 < x < π/2
Then, for 0 < x < π/2 we have

cos (x) +
1

15
x3 sin (x)− (sin (x))3

x3
> 0

So we proved Inequality (6).

Turn now to inequality (7). Notice that by the same way of calculation
and thanks to Maple we obtain the following(
2

3
cos(

x

2
) +

1

3

)6

> 1− 1

2
x2+

11

96
x4− 553

34560
x6+

11833

7741440
x8− 98851

928972800
x10

Moreover, a calculation yields

cos (x)+
1

15
x3 sin (x) < 1− 1

2
x2+

1

24
x4− 1

720
x6+

1

40320
x8− 1

3628800
x10

7



+
1

479001600
x12 +

x3

15

(
x− 1

6
x3 +

1

120
x5 − 1

5040
x7 +

1

362880
x9
)

= 1− 1

2
x2 +

13

120
x4 − 1

80
x6 +

13

22400
x8 − 7

518400
x10 +

89

479001600
x12

Therefore

cos (x)+
1

15
x3 sin (x)−

(
2

3
cos(

x

2
) +

1

3

)6

< 1−1

2
x2+

13

120
x4− 1

80
x6+

13

22400
x8

− 7

518400
x10+

89

479001600
x12−(1−x2

2
+
11x4

96
−553x6

34560
+
11833x8

7741440
− 98851x10

928972800
)

= − 1

160
x4 +

121

34560
x6 − 5243

5529600
x8 +

28769

309657600
x10 +

89

479001600
x12

We verify by Maple that the polynomial

− 1

160
+

121

34560
x2 − 5243

5529600
x4 +

28769

309657600
x6 +

89

479001600
x8

is non negative because it has no zeros in the interval 0 < x < π/2 .
This means for 0 < x < π

2
one has

cos(x) +
x3 sin(x)

15
<

(
2

3
cos(

x

2
) +

1

3

)6

.

So inequality (7) is then proved.

Remark 3-2 (i) We were forced to consider a polynomial at least of
order 12 in order to estimate trigonometric functions. Indeed, for a lower
order estimate we would have an increasing polynomial which changes sign
since it admits a root in the interval [0, π/2].

(ii) We may assert that the following inequality chain holds at least for
0 < x < π

2(
sin(x)

x

)3

< cos(x) + cos(x)
(tan(x))4

15
<

(
2

3
cos(

x

2
) +

1

3

)6

<
(
cos(

x

3
)
)9

<

(
2 + cos(x)

3

)3

.

Thus, we expand the chain (3).
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4 A wilker type inequalities

The Wilker inequality asserts that for 0 < x < π/2(
sin(x)

x

)2

+
tan(x)

x
> 2 (8)

This inequality has been proved by [7].
The Wilker-type inequalities have been attracted by many people and have
motivated a large number of research papers involving various generalizations
and improvements, see [8] for example.

A related inequality no less interesting is Huygens inequality asserts that
for 0 <| x |< π/2

2
sin(x)

x
+

tan(x)

x
> 3 (9)

Chen and Sandor [4] proved the following inequality chain
for 0 <| x |< π/2

1

2

(
sin(x)

x

)2

+
tan(x)

2x
>

1

cos(x)

(
sin(x)

x

)3

>
2

3

(
sin(x)

x

)
+

tan(x)

3x
>

(
sin(x)

x

) 2
3
(
tan(x)

x

) 1
3

>
1

2

(
x

sin(x)

)2

+
x

2 tan(x)
>

2

3

(
x

sin(x)

)
+

x

3 tan(x)
> 1 (10)

We propose the following

Theorem 4-1 There exists 0 < x2 < π/2 such that for 0 < x < x2 the

following inequalities holds

1

2

(
sin(x)

x

)2

+
tan(x)

2x
> 1 + x3 (tan(x))

15
>

1

cos(x)

(
sin(x)

x

)3

(11)

Proof Consider the left inequality and we write di�erence after mul-
tiplying by cos(x) one gets

1

2

cos (x) (sin (x))2

x2
+

1

2

sin (x)

x
− cos (x)− 1

15
x3 sin (x)

9



Notice that by simple calculations

1− (
1

2
)x2 + (

1

24
)x4 − (

1

720
)x6 < cos(x)

x− (
1

6
)x3 + (

1

120
)x5 − (

1

5040
)x7 < sin(x)

cos(x)(sin(x))2

2x2
>

1

2
− 5

12
x2 +

91

720
x4 − 41

2016
x6 +

7381

3628800
x8

Therefore

1

2

cos (x) (sin (x))2

x2
+
1

2

sin (x)

x
−cos (x)− 1

15
x3 sin (x) >

1

2
−5x2

12
+
91x4

720
−41x6

2016

+
7381x8

3628800
+

1

2
− x2

12
+

x4

240
− x6

10080
+

x8

725760
− 1 +

x2

2
− x4

24
+

x6

720

−x3

15

(
x− x3

6
+

x5

120
− x7

5040

)

=
4x4

45
− 2x6

105
+

1231x8

604800
− x3

15

(
x− x3

6
+

x5

120
− x7

5040

)

=
x4

45
− x6

126
+

179x8

120960
+

x10

75600

We verify by Maple that the polynomial

x4

45
− x6

126
+

179x8

120960
+

x10

75600
=

x4 (13440− 4800x2 + 895x4 + 8x6)

604800

is non negative because it has no zeros in the interval 0 < x < π/2 .
This means for 0 < x < π

2
one has

1

2

(
sin(x)

x

)2

+
tan(x)

2x
> 1 + x3 (tan(x))

15
.

So the left inequality (11) is then proved.

The right inequality has been already proved by Theorem 3-1.

Concerning the Huygens inequality we propose to prove the following
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Theorem 4-2 For 0 < x < π/2 the following inequalities holds

1

cos(x)

(
sin(x)

x

)3

> 1+x3

(
1− x2

63

)
tan(x)

15
>

2

3

(
sin(x)

x

)
+
tan(x)

3x
. (12)

Proof Consider the right inequality we multiply the di�erence by cos(x).
Then we have

cos(x) + x3

(
1− x2

63

)
sin(x)

15
>

2

3

(
sin(x) cos(x)

x

)
+

sin(x)

3x
.

Note as we saw above the framing of trigonometric functions, then we get

cos(x) > 1− 1

2
x2 +

1

24
x4 − 1

720
x6

sin(x) > x− 1

6
x3 +

1

120
x5 − 1

5040
x7

Therefore after simpli�cation

cos(x) + x3

(
1− x2

63

)
sin(x)

15
> 1− 1

2
x2 +

13

120
x4 − 41

3024
x6

A simple calculation yields

2

3

sin (x) cos (x)

x
+

sin (x)

3x
< 1− 1

2
x2 +

11

120
x4 − 43

5040
x6

Finally for 0 < x < π/2 one has

cos(x) + x3

(
1− x2

63

)
sin(x)

15
− 2

3

(
sin(x) cos(x)

x

)
+

sin(x)

3x
>

x4

60
− 19x6

3780

=
1

3780
x4
(
63− 19x2

)
> 0

The left inequality has been already proved by Theorem 3-2.

Remark (4-3) We may deduce from Theorems 4-1 and 4-2 the fol-
lowing inequality chain for 0 < x < π/2

1

2

(
sin(x)

x

)2

+
tan(x)

2x
> 1 + x3 (tan(x))

15
>

1

cos(x)

(
sin(x)

x

)3

11



> 1 + x3

(
1− x2

63

)
tan(x)

15
>

2

3

(
sin(x)

x

)
+

tan(x)

3x
.
Thus, we have completed the inequality chain (10).
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