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Two scalar fields characterizing respectively pseudo-Holder exponents and local energy
transfers are used to capture the topology and the dynamics of the velocity fields in areas
of lesser regularity. The present analysis is conducted using velocity fields from two Direct
Numerical Simulations (DNS) of the Navier-Stokes equations in a triply periodic domain.
A ”typical irregular structure” is obtained by averaging over 200 most irregular events.
Such structure is similar to a Burgers vortex, with small non-axisymmetric corrections. A
possible explanation of such asymmetry is provided by a detailed time-resolved analysis
of birth and death of the irregular structures, which shows that they are connected to
vortex interactions, possibly vortex reconnection.

1. Introduction.

Batchelor & Townsend (1949) speculated about the nature of small scale turbulent
motions on the basis of hot wire velocity measurements in the Cavendish wind tunnel.
Their main conclusion was that the energy associated with small scales is intermittent
in space and time and organized into strong discrete vortices. Since then, progresses in
computer power and image velocimetry has made it possible to investigate in more detail
the nature and the properties of small scale turbulent motions, at scales of the order
of or below the Kolmogorov scale. For example, it is now well established that regions
where the vorticity supersedes the strain (the so-called Q criterion) are indeed organized
into small scale elongated coherent structures that display a complex dynamics (e.g.
Vincent & Meneguzzi 1994). In some circumstances, they may interact and reconnect
iteratively, following a self-similar vortex reconnection cascade. During reconnection, a
distinct −5/3 inertial range is observed for the kinetic energy spectrum, associated with
numerous resulting fine-scale bridgelets and thread filaments (e.g. Yao & Hussain 2020).

In the mean time, theoretical models of vortex reconnection using Biot-Savart model
have evidenced a self-similar process, resulting in a near finite time singularity at the
apex of the tent formed by the vortices (Kimura & Moffatt 2014). Another evidence for
quasi blow-up is provided by the ”zeroth law of turbulence” (see Frisch 1995), according
to which the non-dimensional energy per unit mass becomes constant at large Reynolds
number, implying a blow up of the enstrophy in the limit of zero viscosity. This suggests
that the small scale structure of turbulent motions is very irregular, and calls for specific
tools to analyze them. A suitable tool to deal with them was invented by Leray (1934)
and named ”weak formulation”. The main idea is to make a detour via the scale space,
and work with a coarse version of the initial field (a ”mollified” field), over a characteristic



2

scale (resolution) `. At any given resolution `, the mollified field is sufficiently regular,
so that all classical tools and manipulation of analysis of vector fields are valid. Limiting
behaviors as resolution ` → 0 can then be used to infer results and properties for the
rough field.

In previous work, we showed how these vector fields can be used to build two scalar
fields, that encode the regularity properties of the small scale motions: i) a pseudo-Holder
exponent h̃(x) built using the Wavelet Transform Modulus Maxima (WTMM) method
and providing the best local estimate of Hölder regularity compatible with the global
multi-fractal analysis (see Nguyen et al. 2019); ii) a local energy transfer DI

` (x) built
using the energy balance of the weak solutions to Navier–Stokes equations (Kuzzay et al.
2017; Dubrulle 2019).

In the present paper, we apply these tools to velocity fields issued from Direct Numer-
ical Simulations (DNS) of the Navier-Stokes equations in a triply periodic domain, to
capture the topology and the dynamics of the velocity fields in areas of lesser regularity.
We further compute a ”typical irregular structure” by averaging over 200 most irregular
events. Such typical structure is similar to a Burgers vortex, with small non-axisymmetric
corrections. A possible explanation of such asymmetry is provided by a detailed time-
resolved analysis of birth and death of the events, which shows that they are connected
to vortex interactions, possibly vortex reconnections.

2. Tools for studying irregular motions

In order to probe areas of lesser regularity in the flow, we use two different tools, based
upon weak formulation. The first one is based on velocity increments computed using
weak derivatives of the velocity field and quantifies its local regularity, while the second
is based upon weak divergence of the cube of the velocity increment, and characterizes
energy transfers across scales.

2.1. The local Hölder exponents.

To quantify the regularity of the field, we use the concept of Hölder continuity. A
velocity field is said to be h-Hölder continuous with some exponent h < 1 if there exists
C such that for ` small enough:

|u (x + `)− u (x) | < C`h. (2.1)

where u(x) is the velocity field.
This regularity condition is intermediate between simple continuity and differentiability

and is based on the velocity increment δu(x, `) = u(x + `)− u(x).
We have developed a method to compute an estimate of the local Hölder exponent

h̃(x) using a local statistical method (see Nguyen et al. 2019). The scalar field computed
using this method is continuous in space and shares the properties of the true Hölder
exponent. In particular, the value of h̃ gets lower for areas of lesser local regularity, which
makes it a good criterion to detect irregular events.

The method first involves measuring two statistical quantities. The first one is the
multifractal spectrum C(h) obtained using the WTMM method (see Kestener & Arneodo
2004). This corresponds to the rate function of the Hölder exponent, obtained in the `→ 0
limit as

Prob [ln(δu) = h ln(`/L)] ∼ eln(`/L)C(h) =

(
`

L

)C(h)

. (2.2)

In the multifractal interpretation of Parisi & Frisch (1985), the quantity D(h) = 3−C(h)
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corresponds to the fractal dimension of the sub-space of Hölder exponent h. The multi-
fractal spectrum is connected with the scaling exponents of the velocity structure function
through a Legendre transform property: ζ(p) = minh(ph+C(h)), where 〈

(
δu(x, `)

)p〉 ∼
`ζ(p).

The second statistical quantity is the fractal dimension of the boundaries of active
volumes as defined by Nguyen et al. (2019). These volumes characterize regions of large
velocity gradients in a turbulent vector field. An active volume Ap is defined by:

x ∈ Ap iff ‖δu(x, `)‖ > cpSp(`), (2.3)

where cp is a scale independent constant and Sp(`) is a threshold defined by:

Sp(`) = exp

(
〈ln
(
δu(x, `)

)(
δu(x, `)

)p〉
〈
(
δu(x, `)

)p〉
)
. (2.4)

From its definition, it can be shown that such threshold obeys the scaling law Sp(`) ∝
`h(p), with h(p) = dζ(p)/dp, which makes the definition of active volumes parallel to
the property of Hölder exponents from (2.1). This leads us to interprete the boundaries
of active volumes as sets corresponding to a given local Hölder exponent. The fractal
dimension of those boundaries can be measured using a box counting method.

The core of the method thus consists in matching the box counting dimensions from
the active volumes to the multifractal spectrum:

h`(p) = f`(cpSp(`)). (2.5)

This results in a direct correspondence from the velocity increments to the local Hölder
exponents:

h̃`(x) = f`(‖δu(x, `)‖). (2.6)

This matching also provides a value for the coefficients cp. Since these coefficients are scale
independent, they can be computed at one scale (e.g. in the inertial range, where scaling
laws extend over a wide interval) once and for all, and then be used at any other scale to
determine the function f`. The ` subscript denotes a dependency of the Hölder exponent
that we compute with respect to scale. Indeed, due to viscous effects, the velocity field
becomes more and more regular as ` decreases, i.e. h̃`(x) increases. At some locations
where the velocity field is irregular, however, such exponent may conserve a value of
h̃`(x) < 1 , even when we reach the dissipative range. The tracking of very irregular
areas will then be done by monitoring the lowest values of h̃`(x), at the Kolmogorov
scale ` = η.

The tilde marks the difference between our estimation and the real Hölder exponents.
Indeed, the field h̃`(x) computed using this method is continuous in space, at variance
with the standard multifractal picture. Nguyen et al. (2019) nevertheless proved that it
behaves like a real Hölder exponent and can be used to detect potential singularities. For
simplicity, we omit the subscript and tilde from the local Hölder exponent in the sequel.

2.2. The Duchon–Robert energy transfer.

Another indicator of regularity properties of the velocity field is the local transfer of
energy across scales. Indeed, a real singularity is expected to carry energy at a scale
`→ 0. As a consequence, we expect that very irregular fields carry energy at scale below
the Kolmogorov scale ` < η before it eventually gets dissipated through viscous effects.

This view was formalized by Duchon & Robert (2000). They define local energy
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Run L λ η 〈u2〉1/2 ε ηkmax Re Reλ
I 0.79 0.19 0.0083 0.54 0.089 2.1 570 140
II 0.94 0.48 0.034 0.55 0.097 8.5 104 53

Table 1. Parameters used in the simulations with resolution 7683. L is the integral scale, λ is
the Taylor scale, η is the Kolmogorov scale, 〈u2〉1/2 is the rms velocity, ε is the energy dissipation
rate, ηkmax characterizes the resolution (ηkmax > π is well resolved), Re is the Reynolds number
based on the integral scale, and Reλ is the Taylor based Reynolds number.

transfers from large to small scales at scale ` using a wavelet transform:

D`
I(x) =

1

4

∫
∇Ψ `(y) · δu(x,y)‖δu(x,y)‖2dy (2.7)

where Ψ `(x) = Ψ(x/`)/`3 and Ψ is a regular, even, non negative function with norm 1.
Similarly, one can compute the energy locally dissipated by viscosity by the following

(see Dubrulle 2019):

D`
ν =

ν

2

∫
∇2Ψ `(y)‖δu(x,y)‖2dy. (2.8)

If the velocity is locally Hölder continuous with exponent h, δu ∼ `h, so then D`
I ∼

`3h−1 and D`
ν ∼ ν`2h−2. The two terms are balanced at a scale:

ηh ∝ ν1/(h+1). (2.9)

This corresponds to the classical Kolmogorov scale η for h = 1/3, which is the value
predicted by Kolmogorov (1941). This also means that the regularizing scale ηh gets
lower than Kolmogorov scale if h < 1/3. Note that a real singularity occurs with a
Hölder coefficient of h = −1 since η−1 = 0, so that the velocity field is never regularized.

These estimates show that the regions where the local energy transfer D`
I stays larger

than the dissipation D`
ν for a scale ` close to Kolmogorov scale are very irregular and

can be interpreted as quasi singularities. In practice, this corresponds to extreme values
of D`

I .

3. Events in simulations.

In order to search for extreme events at the dissipative scale, we used the two
simulations described by Nguyen et al. (2019). For the sake of convenience, the parameters
for the simulation are reported in the table 1. Run I has larger Reynolds number, but
a small dissipative range. Run II has a smaller Reynolds number, but an extended
dissipative range. In the sequel, we use both runs as complementary tools to extract
the indicators of irregularity.

3.1. Calibration of the local Hölder.

The WTMM method is difficult to use in the dissipative range as it requires scaling
laws to work over a wide range of scale. As a consequence, the method we use to get the
local Hölder exponents requires to compute the cp coefficients in the inertial range using
the Run I. All wavelets transforms are performed using a Mexican wavelet. Indeed, we
are probing the dissipative scales were the local Hölder exponent is expected to reach
values above 2 (i.e. the velocity field is expected to be at least twice differentiable in most
of the space). The first three moments of the Mexican wavelet are null, which allows to
measure Hölder exponents up to 3 (see Arneodo et al. 2000).

As our objective is to probe for very singular events, we must increase the range of p
compared to our previous work in order to increase the range of velocity increments to
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Figure 1. (a) Thresholds Sp(`) for various values of p computed in the inertial range using
the velocity fields from Run I. (b) Thresholds Sp(`) for the same p computed in the dissipative
range using the velocity fields from Run II.

which we can assign a value of Hölder exponent h̃. The thresholds Sp(`) are thus computed
with up to p = 12 in the vicinity of the inertial range, as shown in figure 1a. One problem
with this method is that the convergence is not guaranteed for the highest values of p. We
indeed observe that the scaling laws used to determine h(p) in the inertial range for p > 9
are less accurate. As a consequence, the values of local Hölder corresponding to extreme
events are subject to approximations. Using the process described in the previous paper,
we are able to extract the coefficients cp by matching the multifractal spectra from the
WTMM with the results from boxcounting.

In parallel, we compute the thresholds Sp(`) around the dissipative range for the Run
II, as well as the power laws Sp(`) ∝ `h(p) as shown in figure 1b. Because the flows are
similar and the coefficient cp do not depend on the scale, we can use the result from
the inertial range to compute the mapping function from the velocity increments to the
local Hölder exponents at the scale ` = 0.06 ≈ 2η using (2.5) and (2.6). This scale
is within the dissipative range but large enough such that the wavelets are guaranteed
to be well resolved. This also guarantees that we do not reach the limit value of h =
3. The mapping function obtained is reported in figure 2. Because the nature of the
method giving this mapping function is statistical, we do not expect it to reach the
values of velocity increments corresponding to the rarest events. In order to at least give
an estimation of the local Hölder exponent in this case, we have to use extrapolation.
Furthermore, the values of h given for ‖δu‖ > 2 correspond to order p > 10 which relies
on imperfectly converged statistics. We use a conservative extrapolation for higher values
of velocity increments, but we can estimate an error on the value of h of the order of 0.2
for h close to 0.

Note that we did not compute an estimate of the local Hölder exponent for very small
values of velocity increment. This does not affect our study of very singular events.

3.2. Statistical study using uncorrelated data.

The first step to characterize extreme events at the dissipative scale is to get statistics
using uncorrelated velocity fields. For that purpose, we use 90 velocity fields of Run II
saved over 50 turnover time. On those fields, we compute the local Hölder exponents
using the mapping function from figure 2. We then extract all events where the local
Hölder exponents get below the threshold value of h = 0.7. This value is low enough for
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Figure 2. Function linking the velocity increment to a value of local Hölder exponent at the
scale 2η. The blue dots stands for the values coming directly from the estimation method. The
continuous red line corresponds to the function actually used to compute Hölder exponents
in the vicinity of quasi singularities. The dotted red lines materialize the uncertainty in the
extrapolated part.

the corresponding velocity field to be considered very irregular at the dissipative scale,
but high enough to collect an adequate amount of statistics. 470 distinct events fulfilling
this condition were detected.

Additionally, we also compute various scalars to help characterizing the corresponding
events. Those include the vorticity, the inter scale energy transfer D`

I and the viscous
dissipation at this scale D`

ν . The invariants of the mollified velocity gradients Q and R
are also computed using a Mexican wavelet transform at the same scale for the sake of
coherence and comparison with the local Hölder exponent. For an incompressible flow,
this leads to:

Q = −1

2
Tr(A2

`), (3.1)

R = −det(A`) (3.2)

where:

A`,ij = −
∫
∇jG`(y)ui(x + y)dy. (3.3)

with G` the mexican wavelet at scale `. Meanwhile, we choose a Gaussian for the function
Ψ used for the computations of D`

I and D`
ν from (2.7) and (2.8). This would be the

equivalent of computing the derivatives with a Gaussian wavelet.
As the events display arbitrary orientation, they are reoriented such that their main
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axis is oriented along the x-axis. This axis is determined by the local Hölder exponent
using the first eigenvector of the covariance matrix of h. We have checked that such
axis also corresponds to the axis along which vorticity lines extend. We also observe
in the energy transfer terms that the events are not axisymmetrical around this first
axis. This leads us to determine a secondary axis using the orientation of the dissipative
pattern of D`

ν which is oriented along the y-axis in the following figures. Visualizations
of physical quantities in a sub-domain of 1.7 cubic Taylor scale around each event are
provided in the Supplementary Materials. The events are sorted by minimum value of
h, from the most to the least singular. All the figures are made in the reference frame
of the structure by removing the mean velocity computed over each sub domain. The
figures are composed of visualization of the velocity field and vorticity field in three
orthogonal planes intersecting at the most singular point; visualizations of isosurfaces
for the vorticity, local Hölder exponent h, local energy transfer D`

I , and local viscous
dissipation D`

ν ; scatter plot of Q and R colored by local Hölder and local energy transfer;
and streamlines of velocity.

From the point of view of the Hölder exponent, the most singular event observed
reaches a minimum value of h = ±0.2. We observe a total of 33 events with a Hölder
coefficient lower than 1/3, value under which the regularizing scale ηh from (2.9) gets
lower than the Kolmogorov scale η. On one hand, the small number of events considering
the amount of statistics used (more than 40 millions data points) is a testimony of their
rarity. On the other hand, the inequality ηh < η means that those are events that might
have been under-resolved by the simulation despite the intense energy transfers (more
than 100 times the average dissipation rate ε).

The extreme values are only reached in a small region. As a result, the choice of the
extrapolation of the mapping function in figure 2 has little effect on the results presented
below.

A more direct look at those events shows that they all appear to be vortices, with
different behaviour of the helicity within the structures. This is confirmed quantitatively
by the velocity gradient tensor invariants Q and R. Indeed, the center of the events,
defined as the point of minimum local Hölder exponent, is always in the Q > 0 regions
corresponding to vortices (see Ooi et al. 1999). We do not observe a particular bias toward
the vortex stretching or the vortex compressing region in this dataset.

For a large majority of our events, the helicity changes sign over the structure (we
call them roll vortices). An example of such event is displayed in figure 3a. Some of
them appear off centered as the change of helicity does not happen at the same location
as the minimum of Hölder exponent. This might still be the effect of the large scale
velocity not being completely removed. In few cases, the helicity does not change sign
over the structure (we call them screw vortices). The most singular event where a change
of helicity does not appear within the boundaries of the cube extracted is only the 152th
most singular (see figure 3b). Meanwhile, we do not observe any qualitative difference in
the energy transfer terms or the velocity gradient tensor invariants between roll vortices
and screw vortices. This leads us to believe that there is no clear separation between
these two categories and that these events share the same mechanism.

In a recent experiment, Debue et al. (2020) also found that extreme events of D`
I ,

besides screw and roll vortices, also appear under the shape of ”U-turns” characterized
by sudden change of direction for the velocity streamlines. In our data, we do not observe
any ”U-turns”. More precisely, while some events look similar to what was found by
Debue (see event 107 in Supplementary Materials), a more detailed examination shows
that they are actually tighter vortices. A possible explanation for this difference is that
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Figure 3. (a): Streamlines of velocity for a ”roll-vortex” event. Two different colors of
streamlines are used to visualize the change of direction: the axial velocity is oriented away
from the x = 0 plane. This is event 2 from the Supplementary Materials. (b): Streamlines of
velocity for a ”screw-vortex” event. The axial velocity is oriented toward x > 0. This is event
151 from the Supplementary Materials.

we have access to smaller scales compared to Debue et al. (2020), which combined with
the absence of experimental noise allows us to better identify the vortices.

3.3. Typical event

As we have extracted and reoriented the extreme events along a common direction,
we can average them in order to extract a ”typical” event. In order to do so, two points
must be considered. First, the method used to reorient the events does not discriminate
a direction. As a result, a naive average would lead the contributions from vortices
rotating in opposite direction to cancel each other. Symmetrizing the fields such that
all the vortices have a positive helicity at one given location near the center solves this
problem. Also, our statistics might not be sufficient to converge to the average. Therefore,
any interpretation regarding e.g. symmetry properties of the object must be done with
caution. We have nevertheless checked that computing the same average for events coming
for only half of the fields still gives the same results both qualitatively and quantitatively.

We compute the average of our 200 strongest events (for reproducibility, this corre-
sponds to all events with a local Hölder exponent h < 0.65). We provide a visualization
for this averaged event in figure 4 as well as in the Supplementary Materials for more
details. The visualization includes the average of the local Hölder exponent h, the energy
transfer D`

I and the energy dissipation D`
ν for the 200 events. Because they are not

linear functions of the velocity field, they do not correspond to the values that would be
computed from the averaged velocity.

The streamlines of the ”typical” event match the pattern of roll vortices, with a
change of helicity at the x = 0 plane, corresponding to the location of the minimum
of Hölder exponent. This seems to be the typical behavior for extremely singular events.
In particular, one might recognize in the streamlines the profile of a Burgers vortex (see
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Figure 4. (a): Streamlines of velocity. The axial velocity is oriented away from the x = 0 plane.
The red (resp. blue) isosurface corresponds to an helicity of H = 12 (resp. H = −12). (b):
The magenta isosurface corresponds to the local Hölder exponent h = 0.75. The red isosurface
corresponds to D`

I = 60ε. The blue isosurface corresponds to D`
ν = 40ε.
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Figure 5. (a) Fit of the component of the vorticity ωx adimensionned by the Kolmogorov time
scale τν in the x = 0 plane for the averaged event. The vorticity along the z (resp. y) direction
is represented with blue circles (resp. red crosses) while the Burgers fit is shown as a black
continuous curve. (b) Colormap of ωxτν in the x = 0 plane for the averaged event.

Burgers 1948). An axisymmetrical Burgers vortex can be characterized by its vorticity
profile:

ωx(r) =
Γ

2πν
exp

(
−σr

2

2ν

)
. (3.4)

We can fit the profile of vorticity in the plane x = 0. This provides the values Γ = −3.2
and σ = 1.2. The fit works very well in the z direction but fails in the y direction, as
illustrated in figure 5a. Note that the non axisymmetric Burger vortex would not provide
a better result as the vorticity changes sign in the y direction. This asymmetry in the
vorticity can be visualized in figure 5b.
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We likewise observe a very strong non axisymmetry of the averaged D`
I and D`

ν . While
the invariance by a rotation of π around the x-axis is a consequence of the orientation of
the events before averaging, we do confirm the presence of structures of D`

I and D`
ν

on both sides of the axis in individual events. A possible explanation to these non
axisymmetric structures would be that extreme events correspond to an interaction
between vortices of different strength, so that the weakest, least singular vortex is canceled
out in the process of averaging. Furthermore, the reversal of helicity observed appears
similar to what happens around a vortex reconnection (see Yao & Hussain 2020). In the
sequel, we refine such hypothesis using time resolved data. Indeed, because of the way
those events were extracted, it is not clear whether the snapshots captured are before,
during or after the peak of the event.

3.4. Link with the energy transfers

While there are extreme events with negative energy transfer D`
I , i.e. energy going to

the larger scales, this does not appear in the averaged event. This means that a typical
extreme event transfer energy to smaller scales so that the average of the term D`

I stays
positive around the region of low regularity.

We further observe that the energy transfer D`
I , and the dissipation energy transfer

D`
ν , do not reach their maxima at the same location. Most of the energy transfer happens

slightly earlier on the streamlines than the peak of dissipation. We currently do not have
a physical explication for this phenomenon.

3.5. Temporal evolution of an event.

In order to maximize the number and intensity of events in the time resolved dataset,
we choose the initial state of the simulation such that it will include a snapshot rich in
extreme events from the Run II. Starting from the previous snapshot, we save a velocity
field every 20 time steps (or about 0.2τν where τν is the Kolmogorov time). We collect
this way 100 velocity fields 7683 resolved in time.

From those, we detect 28 events that are below the threshold of h = 0.7 for more than
10 time steps. The strongest event actually reaches h = 0.05. We also extend the time
window for a few selected events in order to try and observe their birth and decay. Movies
of the corresponding time evolution can be found in the Supplemental Materials. For
each events, we plot isosurfaces of vorticity (with red and blue coloring corresponding to
positive and negative helicity respectively), local Hölder increments, energy transfers D`

I

and dissipation D`
ν . We also plot the time evolution of the extrema for these quantities.

Those results appear to confirm the relation between extreme events of local Hölder
exponent and vortex interaction. Indeed, most of the events observed are localized around
two or more vortices. Moreover, we find several that are linked with vortex reconnection.
One such event is represented figure 6. In this figure, we observe a peak of energy transfers
and dissipation as the reconnection begins (figure 6d), followed by a drop of local Hölder
exponent as it proceeds (figure 6f). It is however still unclear whether the irregular
structure is caused by the reconnection itself or more generally by the interaction between
the two resulting vortices.

In these events, extrema of D`
I , D

`
ν and h are sometimes but not always concomitant.

Figure 6 in particular shows that the peak of energy transfer to the lower scales occurs
at the beginning of the reconnection (figure 6d), while the Hölder exponent has not yet
dropped below 0.7. This chronology is reasonable as the building of irregular small scale
structures detected using the local Hölder exponent requires some energy at the lower
scales.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Snapshots of event 22: (a-b): Before the reconnection. (c-d): Beginning of
reconnection. (e-f) Toward the end of reconnection. (a-c-e): Isosurfaces of vorticity W = 60
colored in red and blue respectively for positive and negative helicity. (b-d-f) Isosurface h = 0.7
in magenta, D`

I = 100ε in red, D`
ν = 5ε in blue.

4. Discussion

In this paper, we have used the tool developed by Nguyen et al. (2019) to extract
extremely singular events from numerical turbulent velocity fields. These events have
been analyzed using local energy transfers at the Kolmogorov scale as well as the velocity
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gradient tensor invariants. From these analysis, we derive several characteristics common
to most singular events.

The first observation is that most events are ”roll vortices”, i.e. vortices with a change
of helicity at the most singular point. The average structure computed from the 200 most
singular events is similar to a Burgers vortex, with a weak non axisymmetry.

The second observation is that the local energy transfers around singular events are
both away from the vortex axis and strongly non axisymmetric. The averaged event,
as well as the individual events, exhibit two regions of energy transfer to lower scales
D`
I located on both side of the main axis. The same observation can be done about the

viscous energy dissipation D`
ν . To explain these facts, we emit the hypothesis that the

extreme events are caused by interactions between at least two vortices, which would
explain the non axisymmetry. This hypothesis is supported by the analysis of the time
resolved data which shows that the singular events are associated with several vortices
close to one another. Some cases involve a vortex reconnection, but we are unable to
confirm the impact on the singularity of the event.

As those results are obtained from simulation data, all events detected are regularized
at lower scale by the numerical scheme. In this case, the pseudo spectral method is
filtering out wave numbers higher than kmax. As the small scales are expected to have
a non negligible contribution for very singular events, using simulation data might have
prevented us from observing more singular events. It would be interesting to reproduce
this study using very well resolved experimental data, in order to validate the conclusions
of the present work.
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