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Abstract 32 

Temperature is a critical abiotic factor impacting all aspects of the biology of organisms, especially in 33 

ectotherms. As such, it is an important determinant of the potential invasive ability of organisms and 34 

may limit population expansion unless organisms can physiologically respond to changes in 35 

temperature either through plasticity or by adapting to their novel environment. Here, we studied 36 

the African clawed frog, Xenopus laevis, which has become invasive on a global scale. We compared 37 

adults from an invasive population of western France to individuals from two populations in the 38 

native range in South Africa. We measured the thermal dependence of locomotor performance in 39 

adults given its relevance to dispersal, predator escape, and prey capture. Our results show 40 

significant differences in the limits of the 80% performance breadth interval for endurance with the 41 

French population showing a left shift in its limits congruent with the colder climate experienced in 42 

France. The French invasive population was introduced only about 40 years ago suggesting a rapid 43 

shift in the thermal physiology. Given that all individuals were acclimated under laboratory 44 

conditions at 23 °C for two months this suggests that the invasive frogs have adapted to their new 45 

environment. These data may allow the refinement of physiologically informed species distribution 46 

models permitting better estimates of future ranges at risk of invasion.  47 

Key words: Invasion biology, Xenopus laevis, thermal performance curves, dispersal, adaptation  48 
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Introduction 49 

Biological invasions have increased dramatically over the past two centuries (Seebens et al. 2017). 50 

These invasions are due to anthropogenic causes (Liendo et al. 2015) and have changed patterns of 51 

biodiversity at a global scale (Simberloff et al. 2013). However, most introductions do not lead to 52 

invasions and a species can be invasive in one locality but not another (Mack et al. 2000). Indeed, in 53 

many cases intraspecific variation in invasion success has been demonstrated, raising the question of 54 

its drivers (Zenni and Nunez 2013). Species are often introduced in regions that differ dramatically in 55 

climate or habitat from their native ranges (Facon et al. 2006; Lodge 1993). Consequently, introduced 56 

species will face novel environments, stressors and a host of additional selective pressures that are 57 

different from those encountered in their native range (Novak 2007). Subsequently, these introduced 58 

populations tend to evolve different traits in their introduced compared to their native ranges 59 

(Maron et al. 2004). Many organisms that have established in novel environments have shown the 60 

potential for rapid adaptation (Richardson and Pysek 2006; Lavergne and Molofski 2007; Urban et al. 61 

2007), which can occur within 20 generations or less (Prentis et al. 2008). For example, invasive cane 62 

toads have been shown to rapidly evolve dispersal phenotypes due to spatial sorting (Shine et al. 63 

2011). Whereas certain life history and phenotypic traits of invading species may facilitate expansion 64 

by enabling them to outcompete indigenous species (Catford et al. 2008; Cortes et al. 2016), others 65 

may prove to be disadvantageous to the invader when environmental conditions change (Simberloff 66 

and Gibbons 2004). This suggests that a high degree of plasticity or adaptability would be beneficial 67 

for invasive species. 68 

Selection on dispersal capacity, particularly locomotor traits (Stevens et al. 2010), can be expected to 69 

occur in expanding invasive populations once established. However, the dispersal ability of an 70 

individual depends on many features, including temperature (Bestion et al. 2015). Understanding 71 

how temperature impacts locomotion and dispersal is thus critical to predict future range 72 

expansions. Temperature is a characteristic of an animal’s habitat and one of the dimensions of the 73 

ecologic niche (Magnuson et al. 1979). Cellular responses to temperature are linked to the 74 

metabolism supplying ATP for cellular maintenance, membrane and protein synthesis (Hulbert and 75 

Else 2000) and play a role in growth, reproduction, locomotor performance. Thus, these processes 76 

have direct fitness consequences (Johnston and Temple 2002; Guderley 2004). Temperature 77 

performance curves describe the physiological capacity of an organism to respond to variation in 78 

temperature (Sinclair et al. 2016; Angilletta 2006) and are a useful tool to quantify the potential for a 79 

species to thrive under varying thermal conditions. Locomotor performance is particularly relevant as 80 

it is fitness-relevant (Arnold 1983), impacting survival and prey capture (i.e. burst performance 81 
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traits), and dispersal (endurance capacity). In ectotherms, locomotor performance is directly 82 

dependent on temperature and as such variation in the temperature range in a novel area may 83 

determine the success of establishment and spread of an invasive species. However, the thermal 84 

environment often varies seasonally and daily, resulting in an intrinsic plasticity in the response of 85 

most animals to temperature (Osborn and Briffa 2006). Consequently, a greater plasticity in the 86 

dependence of locomotor performance on temperature may predispose certain organisms to 87 

become successful invaders. 88 

The African clawed frog, Xenopus laevis, is a principally aquatic frog native to sub-Saharan Africa 89 

(Furman et al. 2015) and is widely used in laboratories worldwide. This species shows important 90 

phenotypic differentiation between populations in its native range (Du Preez et al. 2009) suggesting 91 

that it is particularly plastic in its physiology. The escape or voluntary release of individuals has led to 92 

the establishment of populations on four continents: Asia, Europe, South America, and North 93 

America (Measey et al. 2012). The invasive population from France is of particular interest due to its 94 

ongoing expansion and has been well studied in terms of its morphology and physiology (Louppe et 95 

al. 2018, Padilla et al. 2019a,b), locomotor performance,  (Louppe et al. 2017), reproduction (Courant 96 

et al. 2017), behaviour (Kruger et al. 2019) and genetic composition (De Busschere et al. 2016). 97 

Moreover, negative impacts on native biota have been demonstrated (Courant et al. 2018a,b). 98 

Interestingly, the invasive population in France faces a different climate (Oceanic temperate) 99 

compared to the native climate in South Africa (Rödder et al. 2017; Table 1). Given that the 100 

population has expanded rapidly over the past 40 years (Vimercati et al. 2019) this suggests that they 101 

either show broad thermal tolerance and plasticity or that they have adapted to the local climate. 102 

Previous studies have suggested that future distribution scenarios for global invasions will be 103 

improved by the investigation of traits leading to invasiveness coupled to the dynamics of introduced 104 

species (Courchamp et al. 2017). Moreover, a comparison of suites of morphological or physiological 105 

traits from native and non-native populations may help to understand the relationship between 106 

adaptive responses and successful invasions (Garcia et al. 2013). Studies of the thermal sensitivity of 107 

locomotor performance can provide a useful means to understand how physiological traits can limit 108 

species distributions and may help to identify and characterise future range expansions (Chown et al. 109 

2010). The aim of the present study is to test whether the thermal sensitivity of locomotor 110 

performance differs in invasive and native populations (France and South Africa) of Xenopus laevis. 111 

Specifically, we test whether performance breadths and optimal temperatures for stamina and burst 112 

performance in addition to critical thermal limits differ between populations. To do so we analysed 113 
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terrestrial endurance and jumping capacities for individuals from the invasive (France) and native 114 

(South Africa) ranges. 115 

Materials and methods 116 

Individuals used in this study were caught in two different areas in South Africa (N = 30, 12 males and 117 

18 females; KwaZulu-Natal N = 15, 8 females and 7 males; Western Cape N = 15, 10 females and 5 118 

males). Animals from the two regions in South Africa showed no differences in their thermal 119 

responses (Stamina: F1,24 = 0.16; P = 0.69; Burst: F1,23 = 1.02; P = 0.322) and as such the data were 120 

pooled for all subsequent analyses. Individuals from the invasive population originated from western 121 

France (Deux-Sèvres; N = 43, 23 males and 20 females). Upon arrival in the laboratory in Paris each 122 

individual was pit-tagged allowing a unique identification. Animals were housed at the Function and 123 

Evolution laboratory of the National Museum of Natural History in Paris, France. Specimens from the 124 

native population were maintained in 30L aquaria, two per tank and those from the invasive 125 

population were housed in 65L aquaria with five to ten individuals per tank. Animals were fed thrice 126 

weekly with frozen heart beef or mosquito larvae. The temperature of water was maintained at 23°C 127 

and animals were acclimated at this temperature for two months before starting the experiments. All 128 

protocols were in accordance with the guidelines of institutional animal care and use committee at 129 

the MNHN. 130 

Morphometrics 131 

Body dimensions were measured following Herrel et al (2012). The mass was measured with a digital 132 

scale (Ohaus, Brooklyn, NY, USA; precision ± 0.1g) and snout-vent-length was measured using a pair 133 

of digital callipers (Mitutyo; precision ± 0.01 mm). 134 

Critical minimal and maximal temperatures  135 

Individuals were placed in individual containers with some water (to prevent dehydration) and put in 136 

an incubator (Aqualytic-LIEBHERR, TC 256 G/256 L/2-40°C) where temperature was decreased or 137 

increased slowly (an average of 2°C each 45 minutes and 1°C each 45 minutes from 6°C downwards 138 

for minimal temperature and from 28°C upwards for maximal temperature). Animals were warmed 139 

up slowly as their thermal inertia was substantial and faster rates resulted in animals being cooler or 140 

warmer than the temperature set on the incubator. Animals were inspected regularly and checked 141 

for the lack of a righting response. As soon as animals were no longer able to turn over after having 142 
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been placed on their back, we considered that temperature (measured with a thermocouple inserted 143 

into the cloaca) to be that animal’s critical temperature. 144 

Performance 145 

Stamina tests were performed at 19, 23, 27 and 31°C. We were unable to measure stamina at 16°C as 146 

animals warmed up during the stamina tests often up to 2°C above their initial temperature of 16°C. 147 

The muscle contractions occurring during repeated jumping likely produce enough heat to warm up 148 

the animals over the course of a stamina trial which lasted often five to six minutes at these low 149 

temperatures. Individuals were placed in individual containers with some water (to prevent 150 

dehydration) for 3h hours in an incubator set at the desired test temperature. For each trial, body 151 

temperature was recorded using a K-type thermocouple before and after performance. The room 152 

temperature was set as close as possible to the test temperature. Measures of stamina were 153 

performed by chasing animals individually until exhaustion (animals unable to right themselves when 154 

put on their back) across a 3m long circular track with a humified cork substrate (Herrel and 155 

Bonneaud 2012; Louppe et al. 2017). The total distance and time to exhaustion at the end of the trial 156 

were recorded. After each trial animals were returned to their tank, fed and left to rest for at least 2 157 

days. Trials were repeated twice per individual and the maximal time and distance were retained for 158 

further analyses. 159 

Burst performance was measured at 16, 19, 23, 27 and 31°C. Individuals were placed in small 160 

containers with some water for 3 hours in an incubator set at the desired test temperature. Jump 161 

force data were obtained via a force plate (Kistler Instruments AG, Type 5691A; see Herrel et al. 162 

2014). Animals were placed on the force plate and were stimulated to jump five or six times within a 163 

one-minute recording session. Forces were recorded at 500Hz and we used the Kistler Bioware 164 

software to extract peak X, Y and Z forces (in Newtons). We then calculated the vector sum of the 165 

three forces and used the resultant force in all further analyses. Three trials per individual were 166 

recorded and the maximum jump force across all jumps and all trials was retained for further 167 

analyses. 168 

Statistical analyses 169 

In order to fulfil assumptions of normality and homoscedasticity, all data were log10 transformed 170 

before analyses. Analyses were performed using R (version i386 3.4.2; R core team). To test for 171 

differences in locomotor performance (burst and stamina) between populations, univariate analyses 172 
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(ANOVAs) were run. Within populations (i.e. South Africa and France) we further tested for effects of 173 

temperature, mass, sex, snout-vent-length (SVL) and their interactions on locomotor performance 174 

using repeated measures multivariate analyses of variance (MANOVAs). Next, pairwise multiple 175 

comparisons tests (pairwise.t.test, “Stats” package version 3.4.2) with Bonferroni-Holm adjusted p-176 

values to test which temperatures differed from one another (temperature range: Stamina 177 

[19,23,27,31°C]; Burst [16,19,23,27,31°C]). For each individual thermal performance curves 178 

(Angilletta, 2009) were created using the minimum convex polygon method (van Berkum, 1986). 179 

Optimal temperatures as well as temperature breadths Tpb80 and Tpb95 were analysed using univariate 180 

analyses of variance (ANOVAs) to test for differences between populations and performance traits. 181 

Results 182 

Within the native population (South Africa) a significant difference in snout-vent-length (SVL) (F1,24 = 183 

36.56; P < 0.001;) and mass (F1,24 = 40.22; P < 0.001) was observed with females being larger than 184 

males (Table 2). No differences in mass and SVL were observed between sexes in our sample of the 185 

invasive population (France). 186 

Stamina 187 

Temperature significantly affected the maximal distance jumped until exhaustion in native (F3,54 = 188 

58.87, P < 0.001;) and invasive X. laevis (F1,32 = 42,68; P < 0.001; Fig. 1, Table 3). Snout-vent length had 189 

a significant effect on the maximum distance jumped in native X. laevis (F3,96 = 159.04, P < 0.001). 190 

Temperature also had a significant impact on the time spent jumping until exhaustion for the native 191 

(F3,54 = 113.52, P < 0.001) and invasive populations (F3,96 = 151.48, P < 0.001). Moreover, the time 192 

spent jumping was dependent on the mass of the individuals (F3,54 = 2.98, P = 0.04). In the invasive 193 

population, a significant interaction between sex and temperature was observed (F3,96 = 3.76, P = 194 

0.013). Post-hoc tests showed that, in terms of distance, French frogs performed significantly 195 

differently between each temperature (P < 0.001) in contrast to frogs from South Africa which 196 

differed for some but not all temperatures (Table 4). Post-hoc tests on the time to exhaustion 197 

showed significant differences between all temperatures for both populations (Invasive: P < 0.001; 198 

native: P < 0.05). Native frogs performed significantly better than invasive frogs at 23 °C (F1,64 = 47.91, 199 

P < 0.001), 27 °C (F1,64 = 34.01, P < 0.001), and 31 °C (F1,64 = 21.99, P < 0.001), but not 19 °C (F1,64 = 200 

0.448, P = 0.51). The time to exertion further differed significantly between populations at all tested 201 

temperature (P < 0.001, for all temperatures) with invasive frogs becoming exhausted sooner.  202 
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Burst performance 203 

Temperature significantly affected burst performance in the native population (F4,70 = 20.854; P < 204 

0.001; Fig. 2, Table 5). Snout-vent length and mass also significantly impacted jump force in these 205 

animals (SVL: F1,17 = 10.77, P = 0.004; mass: F1,17 = 7.17, P = 0.015). In the invasive population, 206 

temperature also significantly affected jump force (F4,118 = 17.73, P < 0.001; Fig. 2, Table 5). Jump 207 

force was further also dependent on snout-vent length and sex in the invasive population (SVL: F4,118
 208 

= 2.94, P = 0.023; sex: F4,118=5.25, P < 0.001). Post-hoc tests demonstrated significant differences 209 

between some, but not all, temperatures irrespective of the population of origin (Table 6). No 210 

significant differences in burst performance were detected between populations at the different test 211 

temperatures (P > 0.05; Table 5). 212 

Optimal temperature, critical temperatures, and performance breadths 213 

Temperature optima varied significantly between populations for stamina (ToptFrance: 19.36°C; 214 

ToptSouth Africa: 21.56 °C; F1,56 = 28.3, P < 0.001; Table 7). For burst performance no differences in 215 

optimal temperature were detected, however (ToptFrance: 23.94°C; ToptSouth Africa: 24.48°C; P > 0.05). 216 

There were no significant differences between populations in their 80 and 95% thermal performance 217 

breadths (all P > 0.05). However, there are significant differences in the upper and lower limits of the 218 

performance breadth interval (80%: F1,56=6.87, P < 0.01; 95%: F1,56=35.07, P < 0.005; Table 7, Figs. 1,2) 219 

indicating a left-shift of the temperature performance curve. Critical temperatures did not 220 

significantly differ between populations (CTmin: F1,50=0.079, P = 0.78; CTmax F1,68=3.31, P = 0.07; Table 221 

8). 222 

Discussion 223 

Critical temperatures 224 

When organisms are confronted with temperatures approaching their thermal tolerance limits, they 225 

can often avoid these using behavioural strategies (Sinclair et al. 2016). Outside its physiological 226 

range an organism cannot maintain locomotor function and ultimately cannot survive (Angilletta 227 

2009). This is a direct consequence of the thermal sensitivity of metabolic processes (Gillooly et al. 228 

2001). Behavioural modulation may be less easy for principally aquatic animals like X. laevis and 229 

consequently the thermal tolerance limits can be expected to be broad. The thermal tolerance limits 230 

measured here were relatively broad. However, ectotherms from high latitudes often have even 231 

broader thermal breadths as thermal tolerance breadth increase with increasing latitude (Sunday et 232 
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al. 2011). In our study thermal limits did not differ significantly between the native and invasive 233 

populations (France: 4.1 to 31.7 °C; South Africa: 4.3 to 31.4 °C) (Table 8). Thus, the invasive 234 

population has conserved the same physiological limits as the native population, in accordance with 235 

the idea that thermal ecology is conserved in many reptiles and amphibians (Sinervo et al. 2010). 236 

Moreover, if the limits in the native range are broad enough to cover the range of active 237 

temperatures in the invasive range, no changes would be expected. 238 

Locomotor performance 239 

Metabolism imposes strong constraints on resource allocation to fitness-relevant traits (Brown et al. 240 

2004). Previous studies have suggested that thermal performance curves tend to have the same 241 

shape, with performance increasing with increasing temperature until a maximum is reached at the 242 

optimal temperature (Topt) and then rapidly decreasing (Angilletta et al. 2002). Invasive and native 243 

populations in our study showed similar shapes of the thermal performance curve (Figs. 1, 2). 244 

Interestingly, the temperature optima differed between the different performance traits with burst 245 

performance showing a higher optimal temperature than endurance capacity. This is in accordance 246 

with previous studies showing that thermal optima and preferences can differ for different 247 

performance tasks (Huey and Stevenson 1979; Van Damme et al. 1991, Martin and Huey 2008, Herrel 248 

and Bonneaud 2012). Burst performance appears to be physiologically optimised at higher 249 

temperatures than endurance capacity. In many animals jump performance increases with increasing 250 

temperature (James et al. 2007, 2012) until a physiological limit threshold (Hirano and Rome 1984). 251 

Moreover, it has been shown that the power produced by the iliotibialis muscle in Xenopus tropicalis 252 

increases with temperature, suggesting that warmer is better for burst performance (Herrel and 253 

Bonneaud 2012, James et al. 2012), in accordance with our results.  254 

Optimal temperatures for endurance capacity differed between native and invasive populations 255 

(South Africa: 21.56°C, France: 19.36°C). Moreover, the absolute endurance was significantly greater 256 

in frogs from the native population, except at 19°C. Thus, invasive frogs performed relatively better 257 

at cooler temperatures compared to the native South African frogs. In France, the climate is colder 258 

than in South Africa (Table 1), a significantly different climatic niche compared to that in the native 259 

range (Rödder et al. 2017). The observed differences in thermal optima appear correlated with 260 

differences in environmental temperatures (Table 1), in accordance with the prediction that the 261 

thermal optimum will be set at the temperature most encountered in the environment (Huey and 262 

Kingsolver 1993; Navas et al. 2008). Variation in muscle contraction kinetics can explain variation in 263 

locomotor speed (John-Alder 1989) and oxygen transport relevant for endurance capacity. In 264 
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amphibians, the maximal rate of oxygen consumption is strongly dependent on temperature 265 

(Seymour 1972). Indeed, even the resting or basal metabolism in amphibians increases with 266 

temperature (Whitford 1973). In contrast to endurance capacity, native and invasive populations 267 

performed equally well for burst performance. It has been demonstrated previously that force 268 

production is less temperature dependent compared to muscle contractive velocity or metabolic rate 269 

(Herrel et al. 2007) and as such the lack of differences in the thermal dependence of jump force is 270 

not unexpected. 271 

Performance breadths 272 

In addition to the shift in the thermal optimum for endurance capacity, a shift in the 80% thermal 273 

performance limits for endurance capacity was observed between the native and invasive 274 

populations. Indeed, the thermal performance curve shows a left-shift towards cooler temperatures 275 

of about two degrees in the invasive population. Consequently, the invasive French population 276 

appears better adapted to lower temperatures for endurance. However, the absolute breadth of the 277 

performance curve did not differ between populations showing that the overall shape of the 278 

performance curve did not evolve. This may suggest a level of intrinsic constraint to the ability in X. 279 

laevis to broaden its temperature performance curve beyond certain physiological limits. 280 

Plasticity has a clear and ubiquitous role in promoting phenotypic changes in response to climate 281 

variation (Pigliucci 2005, Urban et al. 2014). As temperature affects both locomotion and skeletal 282 

muscle performance, some ectotherms show acclimation under different thermal environments in 283 

order to maintain skeletal muscle and locomotor performance (Johnston and Temple, 2002; Padilla 284 

et al., 2018a). However, other studies have shown that thermal physiology may evolve. For example, 285 

in Limnodynastes peronii differences appear among populations with populations from cooler 286 

environments tending to perform better at lower temperatures (Wilson 2001). As the invasive 287 

population expressed differences in the optimal temperature for endurance and shifts in the thermal 288 

limits despite being kept in a common environment for several months at identical temperatures, our 289 

results suggest that X. laevis has effectively adapted to the thermal environment of its invasive range 290 

in France. As French individuals are derived from two distinct genetic lineages from southern Africa 291 

(De Busschere et al. 2016), the genetic admixture could have facilitated the observed thermal 292 

adaptation. 293 

Species distribution models (SDM) are commonly used in ecological and evolutionary studies and use 294 

geographic information on species presence and absence in different climatic zones (Brown 2014) to 295 
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make predictions on future ranges under different scenarios of climate change (Ilhow et al. 2016). 296 

However, our data show rapid changes in the thermal performance of dispersal capacity (i.e. 297 

endurance) in the invasive population of X. laevis that are not taken into account in these SDMs. 298 

Although the future distribution of X. laevis is likely to increase with climate change (Ilhow et al. 299 

2016), these predictions do not include the ability of X. laevis to rapidly adapt to different climatic 300 

conditions and likely underestimate the future invasion potential of the species. Future modelling 301 

efforts should focus on incorporating physiological information on the thermal dependence of 302 

dispersal as well as potential for adaptation. 303 
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Figure legends 489 

Figure 1: temperature performance curves illustrating the impact of temperature on endurance 490 

capacity in terms of distance (A, C) and time (B, D) for X. laevis from France (A, B) and South Africa (C, 491 

D). Indicated are the 80% thermal performance breadths for each trait and each population. Symbols 492 

represent means ± standard errors of the mean. 493 

Figure 2: temperature performance curves illustrating the impact of temperature on jump force for 494 

X. laevis from France (top) and South Africa (bottom). Indicated are the 80 % thermal performance 495 

breadths for each trait and each population. Symbols represent means ± standard errors of the 496 

mean. 497 


