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Abstract We consider the chemostat model with a side compartment connected by pure diffusion, and analyze its

asymptotic properties. We investigate conditions under which this spatial structure is beneficial for species survival

and conversion yield, compared to single chemostat. Under these conditions, we study the optimization problem for

the best structure (volume distribution and diffusion rate), which minimizes the volume required to attain a desired

conversion yield. The analysis reveals that particular configurations with a single tank connected by diffusion to the

input stream can be the most efficient.
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1 Introduction

The model of the chemostat has been developed as a mathematical representation of the apparatus invented in

the fifties simultaneously by Monod [1] and Novick & Szilard [2], for studying the culture of micro-organisms. The

chemostat setup consists of a microbial culture in a liquid media taking place in a vessel that is continuously fed with

a nutritive substrate, while the media is removed with the same flow, so that the volume of the liquid in the vessel

is kept constant. This way to cultivate micro-organisms is often called “continuous culture” as opposed to batch or
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sequential cultures, and is still today of prime importance (see for instance [3–5]). Its mathematical analysis has led

to the so-called “theory of the chemostat” [6–10]. This model is indeed widely used for industrial applications with

continuously fed “bioreactors” for fermentation [11, 12] or waste-water treatment [4, 5, 13], but also in ecology for

studying populations of micro-organisms (or plankton) in lakes, wetlands, rivers or aquaculture ecosystems [14–19].

In all the above situations, a water resource is assumed to receive continuously an input flow with nutrients and to

have an outlet of the same flow rate to keep its volume constant, justifying the application of the chemostat model

although quite far from the original experimental setup. However, the classical model of the chemostat assumes a

perfectly mixed media, which is often verified for small volumes. For industrial bioreactors or natural reservoirs with

large volumes (such as lakes), the validity of this assumption becomes questionable. This is why several extensions of

this model with spatial considerations have been proposed and studied in the literature.

The classical approaches for modeling non ideally mixed chemostats rely on a continuous representation of the

spatial dimension (with systems of Partial Differential Equations, as in [20–22]) or on a finite number of interconnected

compartments with different flow conditions in terms ofs systems of Ordinary Differential Equations, as in the “general

gradostat” model [23–25]). Most of the mathematical analysis available in the literature consider spatial heterogeneity

only in the axial dimension of the bioreactors as in tubular or “plug-flow” bioreactors [26–30] and (simple) gradostats

[31–34]. Surprisingly, configurations of tanks in parallel, rather than in series, have been much less investigated, apart

from simple considerations in chemical reaction engineering [36,37].

In many cases, the axial direction appears to be the one that generates the largest heterogeneity between the

input and output (when the main current lines are along this axis), especially for high and relatively thin tanks under

significantly large flow rate. From an operational view point, it is often reported that “dead zones” are observed

in bioreactors and that the effective volumes of the tanks have to be corrected in the models to provide accurate

predictions [36, 38–43]. Segregated habitats are also considered in lakes, where the bottom can be modeled as a dead

zone and nutrient mixing between the two zones is achieved by diffusion [44]. In a similar way, stagnant zones are

well-known to occur in porous media such as soils, at various extents depending on soil structure. The effect of these

dead zones on reactive and conservative mass transport, and in turn on the bio-geo-chemical cycles of elements, can

be significant [45, 46]. More generally, two-compartments models are used to describe ecological situations with two

environments or two“patches” [47–49]. The wording “dead-zone” might be slightly misleading as it can make believe

that a part of the reservoir (where there is no advection stream) has no biological activity. But this does not necessarily

mean that these “dead-zones” are entirely disconnected from other parts of the reactor. It is likely to be influenced

by diffusion rather than convection. This is why we prefer to qualify these zones as “lateral-diffusive compartments”.

The aim of the present work is to analyze the chemostat model with two compartments (or two vessels), one of them

being connected by “lateral-diffusion”, and to investigate conditions under which having this additional compartment

could be beneficial for the conversion yield compared to the classical chemostat model with a single compartment
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of the same total volume. This structure is sometimes called side-capacity or cross-flow model (see, e.g., [50–52])

and it can be seen as a particular case of the general gradostat. Historically, the gradostat has been invented as an

experimental device to mimic spatial heterogeneity in continuous culture [31, 32], and consists in tanks of identical

volumes connected in series and subject to the same dilution rate, which has led to the mathematical theory of the

gradostat [33, 34]. Later, this model has been generalized to the so-called “general gradostat” model which considers

more general networks of interconnected tanks with possible different volumes and dilution rates [7,23]. Nevertheless,

those results are too general to give explicit conditions on the parameters for the existence of a positive equilibrium

and its stability, and do not compare the performances of each configuration, which is the main purpose of the present

work. The structure considered here can be also seen as a limiting case of the pattern “chemostats in parallel with

diffusion connection” studied in [25], with only one vessel receiving an input flow rate. Nevertheless, this later reference

imposes some restrictions, such as linear reaction between species and removal rate large enough to avoid washout

with a single tank. In the present work, we conduct a deeper model analysis and investigate the effects of lateral

diffusion from two view points.

1. In terms of ecological impact, we study the effect of the diffusion on a given volume distribution regarding the

conversion yield. In particular, we aim at characterizing situations for which, having a structure with lateral

diffusion is better than having a single perfectly mixed volume.

2. In terms of economic benefits, we look for the best volume distribution which, for a given diffusion rate, minimizes

the total volume required to attain a desired level of conversion. This allows us to revisit the optimal design problem

with such configurations, that was previously tackled but considering tanks connected in series (see, e.g., [53–55]).

Finally, we aim at determining the diffusion rate parameter that gives the best volume reduction.

In practice, the diffusion rate parameter can be estimated with the help of inert tracers [35] and depends on the shape

of the reservoir relatively to the advective direction [36] (a thick reservoir is expected to have more lateral dispersion

than a thin one). The design of industrial reactors is a combination of static factors (shapes, interconnections...) and

dynamical considerations (mixing conditions, recirculation loops...) that can be chosen to adjust a communication

rate between tanks or zones of a reservoir [36, 37]. This is why we consider also the optimization with respect to this

communication parameter.

The article is organized as follows. In Section 2, we introduce the model describing the dynamics of the chemostat

composed of two compartments (one of them being connected by diffusion) and determine the steady states. We

investigate the conversion yield (according to the diffusion rate parameter) and characterize when this structure is

better than the single chemostat (i.e. a single perfectly mixed volume). Section 3 is then dedicated to optimal design

questions, firstly when the diffusion rate is fixed, and then when it can be adjusted. Particularly, Sub-section 3.3

presents a numerical illustration of the profit that can be obtained considering a lateral vessel. Finally, Section 4
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discusses and interprets the results, providing graphical interpretations. With a view to shorten the presentation, the

proofs of the preliminary results of Section 2 have been placed in the Appendix.

2 Model Description and Equilibria Analysis

We consider configurations of one chemostat of volume V1 interconnected by Fickian diffusion with a tank of volume

V2, as depicted on Figure 1. This kind of configurations can be seen as a particular case of the general gradostat with

two compartments (see, e.g., [7]) or a parallel interconnection of two compartments (taking α = r = 1), as introduced

in [25]. Denoting by si, xi the concentrations of substrate and biomass in tank i = 1, 2, the model is written as follows

V2

1s  , x
1

2
s  , x

2

outs     = s
1

V
1

in
s

Q

d

Q

Fig. 1 Interconnection of a chemostat of volume V1 with a lateral compartement of volume V2.



ṡ1 = −µ(s1)x1 +
Q

V1
(sin − s1) +

d

V1
(s2 − s1)

ẋ1 = µ(s1)x1 −
Q

V1
x1 +

d

V1
(x2 − x1)

ṡ2 = −µ(s2)x2 +
d

V2
(s1 − s2)

ẋ2 = µ(s2)x2 +
d

V2
(x1 − x2)

(1)

(we have assumed, without any loss of generality, that the stochiometry of transformation of substrate into biomass is

equal to 1, which can be always obtained by simply rescaling the biomass concentrations xi). The parameters Q and

sin denote the flow rate and substrate concentration of the input stream, while the parameter d > 0 is the diffusion

coefficient between the two tanks Here, we assume that biomass is not prone to fix on the walls or aggregates into

biofilms, so that we consider the diffusion rate to be identical for the substrate and the micro-organisms. The specific

growth rate function of the micro-organisms is denoted µ and fulfills the usual assumption.

Hypothesis 1 The growth function µ(·) is an increasing concave function with µ(0) = 0.

A typical such instance of function µ is given by the well-known Monod law (see, e.g., [7, 8]):

µ(s) = µmax
s

K + s
. (2)
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Notice that, in [25], the authors assume that the growth rate function is linear.

On Figure 1, sout = s1 represents the output concentration of substrate that comes out of the system with flow

rate Q. Throughout the paper, we shall consider the ”conversion yield” as the ratio (sin− sout)/sin. For a given input

concentration sin, the lower is sout the higher is the conversion yield.

It is convenient for the following to introduce the function

β(s) = µ(s)(sin − s) (3)

for which one one can easily check the following property.

Lemma 2.1 Under Hypothesis 1, the function β is strictly concave on [0, sin] and there exists a unique value

ŝ = arg max
s∈(0,sin)

β(s). (4)

The value β(s) represents the steady-state growth rate of the micro-organisms when the substrate concentration is

equal to s at steady-state.

Let us start by some preliminary results, whose proofs can be found in the Appendix.

Lemma 2.2 The non-negative orthant R4
+ is invariant by dynamics (1) and any solution in R4

+ is bounded.

Although existence and stability of equilibria of interconnected chemostats have been studied in the literature in a

general setup (see, e.g., [7]), we particularize here the condition for which the washout state E0 = (0, sin, 0, sin)> is

the unique steady-state of the dynamics (1). For this purpose, we introduce the following polynomial:

P (X) = V1V2X
2 − (dV1 + (Q+ d)V2)X + dQ.

Proposition 2.1 Under Hypothesis 1, one has

(i) The washout equilibrium E0 is the unique steady state of (1) exactly when sin satisfies the condition

µ(sin) ≤ Q

V1
and P (µ(sin)) ≥ 0. (5)

It is then globally asymptotically stable on R4
+.
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(ii) When condition (5) is not fulfilled, there exists an unique positive steady state E? of (1) distinct from E0. Then,

for any initial condition except on a set of null measure, the solution of (1) converges asymptotically to E?, which

is moreover locally exponentially stable.

Let us underline that the condition (5) is more restrictive that the single condition µ(sin) ≤ Q
V1

(one can check that

P ( QV1
) < 0 when d > 0), which is the exact condition for wash-out in the single tank (i.e. d = 0). Differently to serial

configuration, the lateral connection is thus less prone to wash-out.

Now, we investigate how a second compartment influences the output concentration of the substrate, compared to

a single tank configuration of the same total volume V1 + V2. To this aim, we fix V1, V2 and Q, and study the output

map d→ s?1(d) at steady state, as a function of the diffusion parameter d. The benefits of the structured chemostat in

terms of conversion yield are discussed in Section 4. Proposition 2.1 gives implicitly the existence of the map s?1(·) for

the unique non-trivial steady-state of system (1), but it does not give explicit ranges of existence of this steady-state,

depending on the operating parameters Q and sin. This issue has not been addressed in former works, such as in [25],

where it has been simply assumed that the flow rate was “large enough” to avoid washout with a single tank.

Proposition 2.2 Let V = V1 + V2 and define the number

d̄ = V2µ(sin)
Q− V1µ(sin)

Q− (V1 + V2)µ(sin)
.

It follows that:

(i) If µ(sin) < Q/V , then the non-trivial equilibrium s?1(d) < sin exists when d ∈]0, d̄[.

(ii) If Q/V ≤ µ(sin) ≤ Q/V1, then the non-trivial equilibrium s?1(d) < sin exists when d > 0.

(iii) If µ(sin) > Q/V1, then the non-trivial equilibrium s?1(d) < sin exists when d ≥ 0.

Proof. When d = 0 (that is, when the lateral tank is detached), the classical equilibria analysis of the single chemostat

model with volume V1 (the reader may refer to e.g., [7,8]) ensures that the positive equilibrium s?1 exists exactly when

µ(sin) > Q/V1, which corresponds to the case (iii) on the proposition statement.

When d > 0, we prove cases (i)-(iii) by taking into account that it correspond to three different scenarios where

condition (5) is not fulfilled. For ease of reasoning, we rewrite P (µ(sin)) as

P (µ(sin)) = V2µ(sin)
(
V1µ(sin)−Q

)︸ ︷︷ ︸
∆1

+d
(
Q− (V1 + V2)µ(sin)

)︸ ︷︷ ︸
∆2

. (6)

(i) In this case, the non-trivial equilibrium exists when P (µ(sin)) < 0. Straightforwardly, one has ∆1 < 0, ∆2 > 0 and

then s?1(d) < sin exists when 0 < d < d̄ = −V2µ(sin)∆1/∆2.

(ii) In this case, the non-trivial equilibrium exists when P (µ(sin)) < 0. Straightforwardly, one has ∆1 < 0, ∆2 < 0
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and then s?1(d) < sin exists for any d > 0.

(iii) In this case, the non-trivial equilibrium exists for any value of P (µ(sin)), and then s?1(d) < sin exists for any

d ≥ 0. ut

Remark 2.1 One can easily check how the two extreme situations (no diffusion and infinite diffusion) are recovered:

(i) When µ(sin) > Q/V1, the non trivial equilibrium of system (1) satisfies s?1(0) = s?,01 , where s?,01 = µ−1
(
Q
V1

)
is

the non-trivial steady state of a single chemostat model with volume V1. In other case one has limd→0+ s?1(d) = sin.

(ii) When µ(sin) ≥ Q/V , the non trivial equilibrium of system (1) verifies limd→+∞ s?1(d) = s?,∞1 , where s?,∞1 =

µ−1
(
Q
V

)
is the non-trivial steady state of the single chemostat model with volume V = V1 + V2.

Proposition 2.3 Let ŝ be defined in (4) and V = V1 + V2. It follows that:

(i) If µ(sin) < Q/V , then the map d→ s?1(d) admits a minimum at d? < d̄, that is strictly less than sin.

(ii) If µ(sin) ≥ Q/V and s?,∞1 < ŝ, then the map d → s?1(d) admits a minimum in d? < +∞, that is strictly less

than s?,∞1 .

(iii) If µ(sin) ≥ Q/V and s?,∞1 ≥ ŝ, then the map d→ s?1(d) is decreasing and s?1(d) > s?,∞1 for any d > 0.

Proof. s? = (s?1, s
?
2) ∈ (0, sin)× (0, sin) is solution ofd

(
s?2 − s?1

)
=
(
V1µ(s?1)−Q

)(
sin − s?1

)
,

d
(
s?1 − s?2

)
= V2µ(s?2)

(
sin − s?2

)
.

(7)

If one differentiates system (7) with respect to d, it follows that

(
s?2 − s?1

)
+ d
(
∂ds

?
2 − ∂ds?1

)
= ∂ds

?
1

(
Q+ V1µ

′(s?1)(sin − s?1)− V1µ(s?1)
)︸ ︷︷ ︸

Ω1

,

(
s?1 − s?2

)
+ d
(
∂ds

?
1 − ∂ds?2

)
= ∂ds

?
2

(
V2µ

′(s?2)(sin − s?2)− V2µ(s?2)
)︸ ︷︷ ︸

Ω2

,

which can be rewritten as Ω1 + d −d

d −Ω2 − d


︸ ︷︷ ︸

Γ

∂ds
?
1

∂ds
?
2

 = (s?2 − s?1)

 1

1

 .

Remark that one has

Ω1 + d = dφ′1(s?1), Ω2 + d = dφ′2(s?2), det(Γ) = d2
(
1− φ′1(s?1)φ′2(s?2)

)
.
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It can be proved that one has necessarily det(Γ) < 0 (see the proof of Proposition 2.1 in the Appendix), and then the

derivatives ∂ds
?
1 and ∂ds

?
2 can be defined as

∂ds
?
1 = (s?2 − s?1)

−Ω2

det(Γ)
, ∂ds

?
2 = (s?2 − s?1)

Ω1

det(Γ)
. (8)

Let us first show that Ω1 > 0 by proving that φ′1(s?1(d)) > 1. From Proposition 2.1, one has that the positive

steady-state fulfills

0 < s?1(d) < λ1(sin) = min(sin, s
?,0
1 ).

Since φ1 is concave (equivalently, φ′1 is decreasing) on [0, λ1(sin)], one has that φ′1(s?1(d)) > φ′1(λ1(sin)).

– If µ(sin) ≤ Q/V1, then λ1(sin) = sin and φ′1(sin) = 1 + Q−V1µ(sin)
d > 1.

– If µ(sin) > Q/V1, then λ1(sin) = s?,01 and φ′1(s?,01 ) = 1 + V1

d µ
′(s?,01 )(sin − s?,01 ) > 1.

One has then φ′1(λ1(sin)) > 1 in any case, which proves that Ω1 > 0. Therefore one has ∂ds
?
2 > 0, i.e., s?2(·) is an

increasing map. Now, notice that Ω2 = V2β
′(s?2(d)) and its sign depends on the relative position of s?2(d) with respect

to parameter ŝ.

(i) Since s?2(·) is increasing, limd→0 s
?
2(d) = 0, limd→d̄ s

?
2(d) = sin and ŝ ∈ (0, sin). By using the Mean Value Theo-

rem, it follows that there exists a unique value d ∈]0, d̄[ (denoted by d?) such that s?2(d?) = ŝ, with β′(s?2(d)) > 0

for d < d? and < 0 for d > d?. Consequently, ∂ds
?
1 admits a unique minimum in d?, as sgn(∂ds

?
1(d)) = −sgn(Ω2).

(ii) Since s?2(·) is increasing, limd→0 s
?
2(d) = 0, limd→+∞ s?2(d) = s?,∞1 and ŝ ∈ (0, s?,∞1 ). By using the Mean Value

Theorem, it follows that there exists a unique value d > 0 (denoted by d?) such that s?2(d?) = ŝ. Consequently,

∂ds
?
1 admits a unique minimum in d?, with s?1(·) decreasing on [0, d?[ and increasing on ]d?,+∞[. As s?1(·) is

increasing on ]d?,+∞[ and limd→+∞ s?1(d) = s?,∞1 (see Remark 2.1), one necessarily has s?1(d?) < s?,∞1 .

(iii) Since s?2(·) is increasing, limd→+∞ s?2(d) = s?,∞1 and ŝ > s?,∞1 , one has that β′(s?2(d)) > 0, i.e., s?1(d) is decreasing

for any d > 0. As limd→+∞ s?1(d) = s?,∞1 , it follows that s?1(d) > s?,∞1 . ut

A schematic representation of the three possible situations given by Proposition 2.3 is depicted on Figure 2. As

recalled in Remark 2.1, the limiting case d = +∞ represents in these pictures the configuration of a single chemostat

of volume V . In case (a), there is no positive equilibrium when d is larger than d̄. Then, the only possible steady-state

is the wash-out (remind that one has s1 = sin at wash-out). In cases (b) and (c) the output concentration for the

single chemostat at non wash-out steady state is represented by the value s?,∞1 .
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0

(a) µ(sin) < Q
V

0

(b) µ(sin) ≥ Q/V and s?,∞1 < ŝ

0

(c) µ(sin) ≥ Q/V and s?,∞1 ≥ ŝ

Fig. 2 Plot of the function d→ s?1(d) for the three situations depicted in Proposition 2.3.

Cases (a) and (b) are situations for which spatial heterogeneity is beneficial for the conversion yield, while case

(c) is always less efficient than a perfectly mixed volume. In case (a), there exists a positive steady-state for any d

between 0 and d̄, which is therefore better than the wash-out of the single chemostat. In case (b), the concentration

s?1 at steady-state is lower than the single chemostat one, provided that the parameter d is large enough, differently to

case (a). Notice that case (a) corresponds to inputs that lead to the wash-out of a perfectly mixed reactor of volume

V , which is usually not considered in the literature because it has no practical interest. However, we show here that

a spatial heterogeneity could allow a substrate conversion, under such inputs conditions. In both cases (a) and (b),

it can be seen that the output substrate concentration depends on parameter d and has a minimum at some value

d∗, for which the conversion yield improves the one obtained with a single tank of volume V . In contrast, when case

(c) occurs, the output concentration systematically decreases with parameter d, and is always larger compared to a

perfectly mixed volume V . This point will be discussed in Section 4.

Remark 2.2 The limit case V1 = 0 corresponds to a single tank (of volume V2) connected by diffusion to the input

pipe with flow rate Q (see Figure 3). There is no biological activity in the pipe, but simply a dilution given by the

V2

2
s  , x

2

d

outs

in
s

Q

Fig. 3 The limiting case of V1 = 0. Input charged with substrate at a concentration sin flows with rate Q along a pipe. Due to diffusion,
substrate reacts with biomass at the lateral tank and leaves the pipe with flow rate Q.
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mass balance at the connection point:Q(sin − sout) = d(sout − s2)

−Qxout = d(xout − x2)
⇒ sout =

Qsin + ds2

Q+ d
, xout =

dx2

Q+ d
(9)

Then the dynamics in the tank with (sout, xout), instead of (s1, x1), is given by the equations


ṡ2 = −µ(s2)x2 +

Qd

(Q+ d)V2
(sin − s2)

ẋ2 = µ(s2)x2 −
Qd

(Q+ d)V2
x2

which is equivalent to have a single tank of volume V2 with input flow rate Qd/(Q + d) and output concentration

sout = (Qsin + ds2)/(Q + d). We shall bear in mind that this configuration is playing a role in the optimization

problem of the next section. The limit case V2 = 0 corresponds to the chemostat model with one tank of volume V1,

or equivalently having no diffusion (i.e., d = 0).

3 Optimal Configurations

In this section, we aim at characterizing the most efficient configurations, that are the best parameters of the structured

chemostat depicted on Figure 1 (reactor volumes and diffusion rate) minimizing the total volume, the output substrate

concentration being prescribed at steady state. Let us underline that this criterion is equivalent to minimizing the

mean residence time in the process, which is commonly defined as

t̄ =

∫ +∞

0

tsout(t)dt∫ +∞

0

sout(t)dt

when at time 0 there is a uniform unitary concentration of the substrate (i.e. si(0) = 1 for any i) with no biological

activity and input concentration at any future time (i.e. x(·) ≡ 0 and sin = 0). One can easily show that t̄ = V/Q,

where V is the total volume, whatever is the spatial configuration. More details about the mean residence time can

be found for instance in [51, Chapter 15].

This section is organized as follows. In Sub-section 3.1, we first tackle the problem when the diffusion parameter

is fixed. Then, in Sub-section 3.2 we address the full optimization problem in which the diffusion parameter is also

considered as an optimization variable. Interpretations of the optimal results are presented in Section 4.
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3.1 Parameter d is Fixed

We target here situations for which the diffusion parameter d is imposed by the hydrodynamics conditions between

the two patches, and aim at characterizing the most efficient distribution of the volumes.

Given a nominal desired value sref < sin as output of the process, we look for solutions of the optimization problem

min
(V1,V2)∈R2

+

{V1 + V2 : such that s1 = sref at steady state }, (10)

that we denote by (V opt
1 , V opt

2 ).

For the analysis of the solution of problem (10), it is convenient to introduce the functions

g(s) =
1

β(s)
and G(s) = (g(sref)− g(s)) (s− sref), (11)

defined on ]0, sin[, where β is given in (3). Notice that function g admits a unique minimum at ŝ (by Lemma 2.1) and

satisfies lims→0 g(s) = lims→+∞ g(s) = +∞. As we will see later, the function G is proportional to the difference of

the residence times between the one and two tanks configurations, for a given value of the substrate concentration in

the lateral vessel.

The solution to the optimization problem (10) is given by the following proposition.

Proposition 3.1 Define

α = max
(

0, sref −
Q

d
(sin − sref)

)
.

The solution of problem (10) satisfies:

(i) If ŝ ≤ α, then V opt
1 = 0 and V opt

2 = dg(α)(sref − α).

(ii) If ŝ ∈]α, sref [, then V opt
1 = Q/µ(sref) + dg(sref)(s

opt
2 − sref) and V opt

2 = dg(sopt
2 )(sref − sopt

2 ), where

sopt
2 =

 sG, if α ∈ [0, sG],

α, if α ∈]sG, ŝ[,

sG being the unique minimum of the function G on the interval [α, sref ]. Moreover, G′(sopt
2 ) > 0 when sopt

2 = α.

(iii) If ŝ ≥ sref , then V opt
1 = Q/µ(sref) and V opt

2 = 0.

Proof. We replace the value of s1 in system (21)-(22) by sref :
0 =

Q

V1
(sin − sref) +

d

V1
(s2 − sref)− µ(sref)(sin − sref),

0 =
d

V2
(sref − s2)− µ(s2)(sin − s2).

(12)
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Considering function g, system (12) can be written as


V1 = Qg(sref)(sin − sref) + dg(sref)(s2 − sref) := v1(s2),

V2 = dg(s2)(sref − s2) := v2(s2).

(13)

Thus, given model parameters d, Q, sin and sref , the volumes are completely characterized by variable s2 and solving

the optimization problem (10) is equivalent to look for solutions of the problem

min
s2∈S2

v1(s2) + v2(s2), (14)

where S2 is the set of admissible values of s2. That is, the solution of problem (10) is given by
(
v1(sopt

2 ), v2(sopt
2 )

)
,

where sopt
2 is solution of problem (14). In order to determine the admissible set S2, we take into account that both

values V1, V2 must be non-negative and proceed as follows:

(a) v1(s2) ≥ 0⇔ Qg(sref)(sin − sref) + dg(sref)(s2 − sref) ≥ 0⇔ s2 ≥ sref − Q
d (sin − sref).

(b) v2(s2) ≥ 0⇔ dg(s2)(sref − s2) ≥ 0⇔ s2 ≤ sref .

Moreover, we have to impose variable s2 to be non-negative, since it describes a (substrate) concentration. One

concludes that S2 = [α, sref ].

For analytical purposes, we rewrite problem (14) as

min
s2∈[α,sref ]

Qg(sref)(sin − sref)︸ ︷︷ ︸
A

+dG(s2). (15)

The term QA corresponds to the optimal volume obtained with a single tank, and with a view to reduce this value,

we aim to characterize solutions of problem (15) with values of the function G being negative.

The cases considered in the proposition statement are treated separately.

(i) ŝ ≤ α: Since function g is increasing on the right of ŝ, then g(sref) ≥ g(s2) for all s2 ∈ [α, sref ]. Consequently,

function G is negative on [α, sref ] and is minimized for sopt
2 = α.

(ii) ŝ ∈]α, sref [: In order to find sopt
2 on [α, sref ] such that G(sopt2 ) is minimum, we look for critical points of G, which

satisfy

g′(s) = H(s) :=
g(sref)− g(s)

s− sref
.

By construction, function g′ is increasing on ]0, sin[, g′(ŝ) = 0 (since g is strictly convex, being equal to 1/β and

β strictly concave by Lemma 2.1), g′(·) < 0 on ]0, ŝ[ and g′(·) > 0 on ]ŝ, sin[. Moreover, it is easy to see that the

equation H(s) = 0 has two solutions (and not more, as g is strictly convex): sref and s̄ref := {s ∈]0, ŝ[: g(s̄ref) =

g(sref)}. In addition, it follows that H(·) > 0 on [0, s̄ref [ and H(·) < 0 on ]s̄ref , sref [. As a result, we can state
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that any critical point of function G belongs to the interval ]s̄ref , ŝ[.

We show that there exist a unique critical point sG ∈]s̄ref , ŝ[ of G by proving that function H is decreasing on

this interval:

H ′(s) =
−g′(s)(s− sref)−

(
g(sref)− g(s)

)
(s− sref)2

= −g
′(s) +H(s)

s− sref
< 0.

Since we look for the minimum value of function G on the interval [α, sref ], one has that sopt
2 depends on the

value of α. A direct conclusion is that G′(sopt
2 ) = 0 when sopt

2 = sG, while G′(sopt
2 ) > 0 when sopt

2 = α.

(iii) sref ≤ ŝ: One has that s2 ≤ sref ≤ ŝ for all s2 ∈ [α, sref ]. Since function g is decreasing on the left of ŝ, then

g(sref) ≤ g(s2). Consequently, function G is non-negative on [α, sref ] and the optimal value which makes it equal

to zero is sopt
2 = sref . ut

Remark 3.1 From Proposition 3.1, one concludes that the particular configuration with V1 = 0 (as the one depicted

in Figure 3) is optimal if ŝ ≤ α or sG < α < ŝ < sref .

3.2 Characterization of the Best Value of the Parameter d

Here, we consider that it is possible to play with the communication rate between the two patches, in addition to the

distribution of the volumes, which leads us to consider that the parameter d can be also optimized.

Given a nominal desired value sref < sin as output of the process, we look for solutions of the optimization problem

min
(V1,V2,d)∈R3

+

{V1 + V2 such that s1 = sref at steady state }, (16)

that we denote by (V ∗1 , V
∗
2 , d

∗).

Proposition 3.2 The solution of problem (16) satisfies:

(i) If ŝ < sref , then V ∗1 = 0, V ∗2 = Q(sin − sref)g(ŝ) and d∗ = Q sin−sref
sref−ŝ .

(ii) If ŝ ≥ sref , then V ∗1 = Q/µ(sref), V
∗
2 = 0 and d∗ can take any value on the interval [0,+∞[.

Proof. In order to solve problem (16), we rely on the optimization results obtained in Section 3.1. Thus, (V ∗1 , V
∗
2 , d

∗) =

(V opt
1 (d∗), V opt

2 (d∗), d∗), where d∗ minimizes V opt
1 (d) + V opt

2 (d) and V opt
1 , V opt

2 are given by Proposition 3.1.

(i) From Proposition 3.1, one easily deduces that the total volume V opt(d) = V opt
1 (d) + V opt

2 (d) fulfills

V opt(d) =


Q

µ(sref )
+ dG(sopt(d)), if 0 ≤ d < d∗ (case (ii) in Proposition 3.1),

Q(sin − sref)g(sref − Q
d (sin − sref)), if d ≥ d∗ (case (i) in Proposition 3.1),
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where sopt must be now seen as a function of parameter d.

We analyze the monotonicity of function V opt.

(a) When 0 ≤ d < d∗, one has that

∂V opt

∂d
= G(sopt(d))− d∂G

∂s
|s=sopt(d)

∂sopt(d)

∂d
.

From Proposition 3.1, it follows that having G(sopt(d)) < 0 and sopt(d) corresponds either to sG (with G′(sG) = 0)

or to α (with G′(α) > 0). In both cases one has ∂V opt

∂d < 0, that is, V opt is decreasing on [0, d∗[.

(b) When d ≥ d∗, one has that

∂V opt

∂d
=
Q2

2d2
(sin − sref)

2g′(sref −
Q

d
(sin − sref)).

By definition, ŝ is the only value satisfying g′(ŝ) = 0 and so d∗ is the only critical point of function V opt.

It remains to prove that d∗ is a minimum of function V opt. But one has

∂2V opt

∂d2
(d∗) =

Q3

4(d∗)4
(sin − sref)

3g′′(ŝ),

which is positive as g is strictly convex. Therefore V opt is increasing on [d∗,∞[.

From these two points we conclude that the optimal value of d is d∗.

(ii) This is a direct consequence of the statement (iii) in Proposition 3.1, since in this case the optimal volumes,

solution of problem (10), do not depend on parameter d. ut

3.3 Numerical Illustration

One may wonder how much could be gained (in terms of residence time or total volume) by using the proposed

structure. Nevertheless, it is difficult to quantify the overall profit since the optimal design depends on parameters sin,

sref , Q, µ(·) and d (when it is not fixed beforehand). As an illustrative example, we compare the total optimal volumes

V opt(0), V opt(Q) and V opt(d∗) obtained by solving problem (10) for the Monod Function (2) with the following

parameters

µmax K Q sin

1 0.5 1 10

and different values of the reference concentration sref . In this case one obtains ŝ ≈ 1.79. The value of the diffusion

coefficient d has been taken equal to 0, Q and d∗, respectively. The case d = Q responds to the“simple gradostat” for

which all the communication rates are identical [7, 33,34]. For the optimal case d = d?, d? depends on sref .
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Figure 4-(a) compares the three values of diffusion coefficient while the associated optimal volumes are depicted

in Figure 4-(b). Notice that V opt(0) corresponds to the volume of the single-tank chemostat.

0

(a) Considered diffusion parameters (seen as
functions of sref).

0

(b) Optimal volumes associated to the diffusion
parameters in (a).

Fig. 4 Comparison of volumes V opt(0), V opt(Q) and V opt(d∗) necessary to obtain sref at output of the main vessel. The solid, dashed

and dotted lines in (b) represent, respectively, the values of sref for which the optimal design is composed of two tanks (of volumes V opt
1

and V opt
2 ), a single tank of volume V opt

2 or a single tank of volume V opt
1 .

From Figure 4-(b) we remark that, when d = Q, there exists a certain value of parameter sref in which the optimal

design transits from having two to one tank. Proposition 3.2 infers that this transition occurs when sref = sin+ŝ
2 (in

this case, one has sref ≈ 5.9). One can observe that, for this particular value of sref , the single-tank volume is reduced

approximately to its half and, in general, the volume reduction becomes more significant as the value sref increases.

In those cases the gains are quite significant.

4 Discussion and Interpretation of the Results

This section is devoted to the analysis of the impact of the lateral diffusion from both ecological and economic points

of view.

4.1 In Terms of Ecological Impact

In Section 2, we have investigated the conversion yield of the proposed structured chemostat and compared it with

the one of a single-tank chemostat. Our main result, presented in Proposition 2.3, can be interpreted depending on

the global removal rate D = Q/V and a threshold ŝ (that is defined as the maximizer of the function β defined in

(3)) as follows:
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1. If D > µ(sin), a spatial distribution of the total volume V could avoid the extinction of the micro-organisms while

it happens when the volume V is perfectly mixed. Therefore, the lateral-diffusive compartment plays the role of a

“refuge” for the micro-organisms under large removal rates.

2. If D ∈ [µ(ŝ), µ(sin)], a spatial distribution of the total volume V increases systematically the output substrate

concentration with respect to that obtained if the volume V would be perfectly mixed. Spatialization is thus a

penalizing factor for the conversion yield.

3. If D < µ(ŝ), a spatial distribution of the total volume V could reduce the output substrate concentration obtained

when the volume V is perfectly mixed (and therefore improves the conversion yield), but this is not systematic.

This means that for small removal rates D (as often met, for instance, in soil ecosystems) one cannot know if a

perfectly mixed model under- or over-estimates the expected output level of conversion.

We have also analyzed the influence of the diffusion parameter d on the conversion yield in cases 1 and 3 and shown

the existence of a most efficient value d?. Finally, this study reveals that a lateral-diffusive compartment is beneficial

only for contrasted situations (i.e., large or small removal rates), which does not appear to be an intuitive property.

4.2 In Terms of Economic Benefits

In Section 3, we studied optimal choices of the main design parameters (tanks volumes and diffusion rate) that

minimize the residence time (or equivalently the total required volume) for a given conversion yield. Our main result,

presented in Propositions 3.1 and 3.2, states that, when the desired substrate output concentration is above certain

threshold (more precisely, when sref > ŝ), the volume of a single-tank chemostat can be reduced by using the structure

with lateral diffusion. This result complements the work in [29,53,55,57,58], where the authors propose a methodology

to diminish the volume of a single-tank chemostat when sref ≤ ŝ, by using either N CSTR (“Continuous Stirred Tank

Reactor”) in series or a CSTR connected in series to a PFR (“Plug Flow Reactor”). We distinguish between the

following cases:

a. The diffusion coefficient between the two tanks is imposed by the hydrodynamical conditions. Depending on model

parameters sin, sref , Q, d and µ(·), the optimal structure may be composed of two tanks (of non null volumes V opt
1

and V opt
2 ) or a a single lateral tank (of volume V opt

2 ) connected by diffusion to the main stream.

b. The communication rate of substrate and biomass between the two tanks can be adjusted, typically by means of

membrane or pair of pumps in each direction. The diffusion coefficient can be then optimized as well. The optimal

structure is necessarily a single lateral tank (of volume V opt
2 ) connected by diffusion (with optimal diffusion rate

d∗ = Q sin−sref
sref−ŝ ) to the main stream.

So an important message of this study is that the particular structure of a single tank connected by diffusion to a

pipe that conducts the input stream, as depicted on Figure 3, can be an efficient configuration, better than a single
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tank directly under the main stream. To our knowledge, this result is new in the literature.

The mathematical analysis has also revealed that the function g, i.e. the inverse of the function β defined in (3), is

playing an important role in determining if the best configuration is composed of one or two tanks (more precisely the

relative position of the output reference value sref with respect to the minimizer ŝ of g). It has to be underlined that

this is exactly the same function than the one used for the optimal design of tanks in series (for which a discussion

about the relative position of sref with respect to ŝ informs if one or two tanks in series is the best, see, e.g., [53,54]),

but with two main differences here:

1. Due to the particular considered structure, there is a trichotomy (one single mixed tank, two tanks, or one single

lateral tank) instead of the dichotomy (one or more tanks) found for the problem with tanks in series. This

trichotomy is discussed below with the help of the additional parameter α = max(0, sref − Q
V (sin − sref)).

2. For small values of sref (compared to ŝ), a lateral-diffusion compartment does not bring any improvement compared

to a single perfectly mixed tank, while this is the opposite for tanks in series (i.e. several tanks are better than a

single one when sref < ŝ).

These points can be grasped by the following graphical interpretation. Consider the total volume V required to obtain

the output concentration sref at steady state. In our case, it can be written in terms of the function g as follows

V = Qg(sref)(sin − sref)︸ ︷︷ ︸
A

+d (g(sref)− g(s?2))(s?2 − sref)︸ ︷︷ ︸
B

(17)

where s?2 is the steady state in the second compartment. One can notice that the number A is proportional to

the volume necessary for a single chemostat to have sref as substrate concentration at steady state. Therefore, a

configuration with a lateral-diffusive compartment would require a smaller volume than that of the single chemostat

exactly when the number B is negative. Figure 5 illustrates that this is possible only when sref is above the minimizer

ŝ of the function g. Furthermore, the quantity B is equal to G(s?2), where the function G defined in (11) admits a

unique minimum at sG ∈ [0, sref ].

Proposition 3.1 states that, when sref > ŝ, the optimal value of s?2 is sG when α ≤ sG and α in other case, the

later scenario corresponding to the particular configuration with V1 = 0. A graphical interpretation of the optimized

structures obtained when parameter d is fixed is given in Figure 6. These pictures read as follows. In (a) and (b), the

main tank is not void and QA represents the volume necessary for a single chemostat when operating at the desired

steady state sref (without diffusion). In case (a), it is optimal to have a single tank, whose volume is thus QA. In case

(b), dB represents the optimal volume of the lateral tank and dC the amount of volume that is gained on the main

tank compared to the single tank configuration. Thus, one has V1 = QA− dC and V2 = dB as optimal configuration.

Finally, on (c) the limiting of V1 = 0 highlighted in Remark 2.2 is optimal with V2 = dB, accordingly to Proposition
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g

sinsrefŝ s?2

A
-B

(a) sref > ŝ (B is negative)

g

ŝsrefs?2 sin

A

B

(b) sref < ŝ (B is positive)

Fig. 5 Graphical representation of quantities A and |B| in (17).

3.2. Notice that all the quantities A, B, C can be determined graphically, once the numbers sG and α are computed.

Only α depends on the parameter d. When the diffusion rate can be chosen, the optimized configurations are cases

(a) or (c), depending of the position of sref relatively to ŝ, but never case (b).

(a) sref < ŝ (b) α ≤ sG < ŝ < sref (c) ŝ ≤ α or sG < α < ŝ < sref

Fig. 6 Graphical representation of the optimized configurations when parameter d is fixed.

Finally, let us recall from the theory of optimal design of chemostats in series that the first tank (when it is optimal

to have more than one tank) has systematically a substrate concentration s?1 above ŝ at steady state (see, e.g., [53,54]).

Thus, for a economic view point, we can state that a lateral-diffusive compartment for the first tank of an optimal

series of chemostats could systematically improve the performance of the overall process.
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5 Conclusions

In this work, we have identified situations for which the chemostat pattern with a compartment connected by “lateral

diffusion” is beneficial for ecological or economic considerations, and characterized the optimal configurations. We

have also proposed graphical interpretations of the results.

The analysis has first revealed two thresholds on the input nutrient concentration which allow to distinguish three

kind of situations for guaranteeing the existence of a positive equilibrium depending on the diffusion rate d: I. d has to

be positive but below a maximal value d̄, II. d has simply to be positive, III. d can take any non-negative value. When

the positive equilibrium exists, we have proved that it is necessary asymptotically stable (although not necessarily

hyperbolic).

We have also studied the impact of the diffusion rate d on the conversion yield and concluded that there exists an

optimal value of d that maximizes the conversion yield (which is then necessarily better than for a single tank) for

either small or large values of the removal rate, which did not appear to be an intuitive result to us. This property

implies that in natural habitats (such as in soil ecosystems) the type of feeding (by convection or diffusion) from a

given flow rate could have a significant impact on the effective conversion yield.

In terms of residence time (or equivalently total volume) required for achieving a given conversion yield, we have

provided conditions that discriminate which configurations between one or two tanks are the best. Our conclusion

is that a lateral compartment is beneficial compared to a single chemostat when the conversion yield is not too

important (i.e. when the output concentration is not too small compared to the input one). Surprisingly, we have also

found that the limiting case of a single tank purely connected by diffusion to the advective stream (as depicted on

Figure 3), and not crossed by the stream as in the classical chemostat, can provide the minimal volume. For economic

benefits, we can state that a lateral diffusive compartment for the first tank of an optimal series of chemostat could

systematically improve the performance of the overall process. Therefore, the analysis of combinations of series and

lateral diffusive compartments (which is out of the scope of the present study) would most probably exhibit other

non-intuitive configurations that have not yet been considered in the literature. Consideration of biomass attachment

or biofilms (leading to different diffusion coefficients for the substrate and the micro-organisms) should be also relevant

to study.



20 Maŕıa Crespo, Alain Rapaport

Appendix: Proofs of the Primary Results of Section 2.

Proof of Lemma 2.2.
Define zi = sin − si − xi for each tank i = 1, 2 and consider the dynamics (1) in (z, s) coordinates:

ż1 = −
Q

V1
z1 −

d

V1
(z1 − z2),

ṡ1 = −µ(s1)(sin − s1 − z1) +
Q

V1
(sin − s1) +

d

V1
(s2 − s1),

ż2 = −
Q

V2
(z2 − z1),

ṡ2 = −µ(s2)(sin − s2 − z2) +
d

V2
(s1 − s2).

(18)

This system has a cascade structure with a first independent sub-system linear in z

ż =

−
Q+ d

V1

d

V1
d

V2
−
d

V2


︸ ︷︷ ︸

M

z, (19)

where one has

tr(M) = −
Q+ d

V1
−

d

V2
< 0 and det(M) =

Qd

V1V2
> 0.

Therefore the matrix M is Hurwitz and any solution z of (19) converges exponentially to 0. Then, the solution s can be written as the
solution of the non-autonomous dynamics

ṡ = F(t, s) =


(
Q

V1
− µ(s1)

)
(sin − s1) +

d

V1
(s2 − s1) + µ(s1)z1(t)

−µ(s2)(sin − s2) +
d

V2
(s1 − s2) + µ(s2)z2(t)

 . (20)

Notice that, for any (t, s), one has
∂F1(t, s)

∂s2
=

d

V1
> 0 and

∂F2(t, s)

∂s1
=

d

V2
> 0,

and so the dynamics (20) is cooperative (see, e.g., [56]).

Define F̌1(t, s) := − Q
V1
s1−µ(s1)(sin− s1) + d

V1
(s2− s1) +µ(s1)z1(t), for which it follows that F1(t, s) > F̌1(t, s) for any (t, s). Proposition

2.1 in [56] allows to state that any solution of (20) with si(0) ≥ 0 (i = 1, 2) satisfies si(t) ≥ ši(t) (i = 1, 2) for any t > 0, where š is solution
of the dynamics

˙̌s = F̌(t, š) =

[
F̌1(t, š)
F2(t, š)

]
, š(0) = 0

As one has F̌(t,0) = 0 for any t, the solution š is identically null and one obtains that si(t) (i = 1, 2) stays non-negative for any positive t.
Similarly, x can be written as a solution of a non-autonomous cooperative dynamics

ẋ = L(t,x) =


(
µ(s1(t))−

Q+ d

V1

)
x1 +

d

V1
x2

d

V2
x1 +

(
µ(s2(t))−

d

V2

)
x2


with L(t,0) = 0, which allows to conclude that xi(t) (i = 1, 2) stays non-negative for any positive t.
Finally, the convergence of z to 0 provides the boundedness of the solutions s(t), x(t). ut

Proof of Proposition 2.1.
From the two last equations of (1), one has s1 + x1 = s2 + x2 at steady-state, and from the two first ones s1 + x1 = sin. The values s1, s2
at steady state are then solutions of the system of two equations

0 =

(
Q

V1
− µ(s1)

)
(sin − s1) +

d

V1
(s2 − s1) (21)

0 = −µ(s2)(sin − s2) +
d

V2
(s1 − s2) (22)

and x1, x2 at steady state are uniquely defined from each solution (s1, s2) of (21)-(22). Clearly, (sin, sin) is a solution of (21)-(22). We
look for (positive) solutions different to (sin, sin). Posit

λ1(sin) := max

{
s1 ∈ [0, sin]: µ(s1) ≤

Q

V1

}
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From equations (21)-(22), a solution different to (sin, sin) has to satisfy s1 > s2 > 0 and then from equation (21), one has also s1 < λ1(sin).

Define then the functions:

φ1(s1) := s1 −
Q− V1µ(s1)

d
(sin − s1) = s1 −

Q

d
(sin − s1) +

V1

d
β(s1),

φ2(s2) := s2 +
V2µ(s2)

d
(sin − s2) = s2 +

V2

d
β(s2).

so that any solution of (21)-(22) fulfills s2 = φ1(s1) and s1 = φ2(s2). One has

φ′1(s1) = 1 +
V1

d
µ′(s1)(sin − s1) +

Q− V1µ(s1)

d
.

Therefore, φ1 is increasing on [0, λ1(sin)], with φ1(0) = −(Q/d)sin < 0 and φ1(λ1(sin)) = λ1(sin) > 0. Thus, φ1 is invertible on
[−(Q/d)sin, λ1(sin)] with

φ−1
1 (0) ∈]0, λ1(sin)[.

From Lemma 2.1, it follows that φ1 and φ2 are strictly concave functions on [0, sin]. Consider then the function

γ(s2) = φ2(s2)− φ−1
1 (s2) s2 ∈ [0, sin],

which is also strictly concave on [0, sin]. Then, a solution (s1, s2) can be written as a solution of

γ(s2) = 0, s1 = φ2(s2) with s2 ∈ [0, λ1(sin)].

Notice that one has γ(sin) = 0, and as γ is strictly concave, it cannot have more than two zeros. Therefore there is at most one solution
(s1, s2) different to (sin, sin). Furthermore, one has γ(0) = −φ−1

1 (0) < 0. Now, distinguish two different cases:

– When λ1(sin) < sin (or equivalently µ(sin) > Q/V1), one has

γ(λ1(sin)) =
QV2

dV1
(sin − λ1(sin)) > 0.

By using the Mean Value Theorem, one concludes that there exists s2 ∈ (0, λ1(sin)) such that γ(s2) = 0.

– When λ1(sin) = sin (that is when µ(sin) ≤ Q/V1), the function γ takes positive values on the interval [0, sin] if and only if γ′(sin) < 0
(γ being strictly concave on [0, sin]), or equivalently when the condition

φ′2(sin) <
1

φ′1(sin)

is fulfilled. Notice that one has φ′1(sin) > 0 because λ1(sin) = sin. So the condition can be also written as
φ′1(sin)φ′2(sin) < 1. From the expressions of φ1 and φ2, one can write this condition as

(d+Q− V1µ(sin))(d− V2µ(sin))

d2
< 1,

and check that this exactly amounts to require sin to satisfy P (µ(sin)) < 0.

We conclude that there exists a positive steady state if and only if µ(sin) > Q/V1 or P (µ(sin)) < 0 and that this steady state (when it
exists) is unique.

Let us study now the stability of the steady-states. Due to the cascade structure of the dynamics (1) that is made explicit in the proof
of Lemma 2.2, the Jacobian matrix in the (z, s) coordinates depends only on s and is equal to

J(s) =

[
M 0

N(s) Ja(s)

]
with Ja(s) =

−
d

V1
φ′1(s1)

d

V1
d

V2
−
d

V2
φ′2(s2)

 , N(s) =

[
µ(s1) 0

0 µ(s2)

]

where the matrix M defined in (19) is Hurwitz. Accordingly to Proposition 2.1, the equilibrium E? 6= E0 exists when P (µ(sin)) > 0 or
µ(sin) > Q/V1.

– When P (µ(sin)) > 0, one has φ′1(sin)φ′2(sin) < 1 or equivalently det(Ja(s0)) < 0. Then E0 is a saddle point (with a stable manifold
of dimension one).

– When µ(sin) > Q/V1, notice that the equilibrium E0 is not necessarily hyperbolic (as one can have P (µ(sin)) = 0 which implies then
det(Ja(s0)) = 0) and we cannot conclude its stability properties directly.

As already mentioned in Lemma 2.2, the dynamics is cooperative in the (z, s) coordinates. Moreover it is irreducible when µ(s1) or µ(s2)
is non null. But one has

si = 0 ⇒ ṡi ≥
Q

Vi
sin > 0 (i = 1, 2)
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The domain D = R2 × (R+ \ {0})2 is thus invariant and one can consider without loss of generality initial conditions in D. Then, the
dynamics is strongly monotone on D. As any forward orbit of (18) in D is bounded (see Lemma 2.2), we can use the property of strongly
monotone systems (see for instance Theorem C.8 in [7]) to conclude that for any initial condition of (1) in R4

+, except on a set of null
measure, the trajectory solution converges asymptotically to an equilibrium. Finally, when the equilibrium E? exists, the analysis conducted
in the proof of Proposition 2.1 allows us to deduce the inequalities φ′1(s?1) > 0 and γ′(s?2) > 0, which in turn imply φ′1(s?1)φ′2(s?2) > 1, and
so φ′2(s?2) > 0. Then, one has tr(Ja(s?)) < 0 and det(Ja(s?)) > 0 i.e. J(s?) is Hurwitz, which proves that the attractive equilibrium E? is
also locally exponentially stable. ut
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