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Trace formula for dg-categories

and Bloch’s conductor conjecture I

Bertrand Toën∗and Gabriele Vezzosi

Draft, October 2017

Abstract

We present an `-adic trace formula for smooth and proper admissible dg-categories over a base monoidal
dg-category. As an application, we prove (a version of) Bloch’s conductor conjecture ([Bl, Conjecture, p.
423]) under the additional hypothesis that the inertia group acts with unipotent monodromy.
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1 Introduction

In his seminal paper [Bl] Bloch introduced the so-called Bloch’s intersection number [∆X ,∆X ]S for a proper
regular scheme X −→ S over a henselian trait S. This number can be seen as the degree of the localized
top Chern class of the coherent sheaf Ω1

X/S and measures the relative singularities of X over S. In the same
paper Bloch introduced the famous conductor formula, which can be seen as a computation of the Bloch’s
intersection number in termes of the arithmetic geometry of X/S. It reads as follows.

Conjecture 1.0.1 We have

[∆X ,∆X ]S = χ(Xk̄, `)− χ(XK̄ , `)− Sw(XK̄),

where Xk̄ and XK̄ denotes the special and generic geometric fibers of X over S, χ(−, `) denotes `-adic Euler
characteristics and Sw(−) is the Swan conductor.

In [Bl] the above formula is proven in relative dimension 1. Further results implying special cases of
the above has been obtained since then (see section §5 for a more precise discussion about the known
cases), the most recent one being a proof in the geometric case (see [Sai]) . In the mixed characteristic
case, the conjecture is open in general oustide the cases covered by [Ka-Sa]. In particular, for isolated sin-
gularities the above conjecture already appeared in Deligne’s exposé [SGA7-I, Exp. XVI], and remains open.

The purpose of the present paper is to make a first step towards a new comprehension of the Bloch’s con-
ductor formula but bringing ideas from non-commutative and derived algebraic geometry. Before explaining
briefly these ideas let us mention the main result of the present work. We start by definition another Bloch’s
intersection number, called the categorical Bloch’s intersection number (see definition 5.0.2) and denoted by
[∆X ,∆X ]catS . It is defined as an intersection number in the setting of non-commutative algebraic geometry,
or more precisely as the Euler characteristic of the Hochschild complex of the (dg-)category of singularities
of the special fiber Xk. The precise comparison with the original Bloch’s number is not covered in this work
and will appear in a forthcoming paper. Having introduced this number we prove the following theorem.

Theorem 1.0.2 Assume that the monodromy action on H∗(XK̄ ,Q`) is unipotent, then we have

[∆X ,∆X ]catS = χ(Xk̄, `)− χ(XK̄ , `).

The above theorem covers new cases which are not covered by [Ka-Sa, Sai], as neither we assume that S
is of equicharacteristic nor that X is semi-stable over S. The unipotency condition is of course restrictive,
but we also present in our last sections ideas of how to deal with the general case.

Before finishing this introduction we would like to explain the main ideas leading to theorem 1.0.2 as we
feel that they are new to the subject and can be useful for other questions of geometrico-algebraic nature.
The key idea behind theorem 1.0.2 is that it is a direct consequence of a trace formula for dg-categories
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(a.k.a. non-commutative schemes). The general philosophy is explained in the authors survey [To-Ve]:
briefly, a scheme X over S provides a function π on X, simply by pulling-back a uniformizer on S. This
function can in turn be used to produce the non-commutative scheme MF (X/S) of matrix factorizations on
X. According to [BRTV] any non-commutative scheme has an `-cohomology theory, and the `-cohomology
of MF (X/S) is the inertia invariant part of vanishing cohomology. The theorem 1.0.2 is then a direct
consequence of the trace formula for non-commutative schemes announced in [To-Ve] and proved in this
work.

We want to add here that the trace formula for dg-categories (or non-commutative schemes) is a rather
formal statement which essentially consists of a formal use of symmetric monoidal ∞-categories. However,
the fact that the dg-category MF (X/S) is nice enough for the trace formula to make sense consists of sev-
eral non-trivial statements. The first result is that MF (X/S) is not only a dg-category but comes equiped
with an action of some monoidal category B (see section §4.1). This monoidal category is obtained as a
convolution dg-category of a derived groupoid and is not an object that can be described by classical alge-
braic geometry. The second statement is that, when considered over B, MF (X/S) is a smooth and proper
dg-category. This is, in our opinion, a deep and surprising result, which in characteristic zero is a well known
fact (see for instance [Pr]). The smooth and proper character of MF (X/S) insures for instance that our
categorical Bloch’s intersection number [∆X ,∆X ]catS is well defined (see definition 5.0.2). Finally, a third
result which is of independant interset, is a Kunneth formula for inertia invariant vanishing cohomology (see
Prop. 3.4.2). This formula is close to the Thom-Sebastanni theorem of [Il2], without being equivalent. It
sounds new to us particularly in the mixed characteristic situation. It has many important consequences for
us, one of them being that MF (X/S) is admissible to our trace formula when the monodromy is unipotent
(admissiblity is a technical condition that must be checked case by case). Another consequence is that it
paves the way to the general form of the Bloch’s conductor formula, as this explained in our section §6 and
will be investigated in a future work.

Acknowledgments. We thank all the spiders hanging around during the 2018 summer nights, who keept
compagny to the authors trying to write down a first version of this manuscript. We also thank M. Robalo
and A. Blanc for various conversations on the subject.

This work is part of a project that has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 741501).

Notations. [

• Throughout the text, A will denote a (discrete) commutative noetherian ring. When needed, A will be
required to satisfy further properties (such as being excellent, local and henselian) that will be made
precise in due course.

• L(A) will denote the A-linear dg-category of (fibrant and) cofibrant complexes localized with respect
to quasi-isomorphisms.

• dgCatA will denote the Morita ∞-category of dg-categories over A (see §2.1).

• Top denotes the∞-category of spaces (obtained, e.g. as the coherent nerve of the Dwyer-Kan localiza-
tion of the category of simplicial sets along weak homotopy equivalences). Sp denotes the∞-category
of spectra.
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2 A non-commutative trace formalism

2.1 ∞-Categories of dg-categories

We denote by A a commutative ring. We remind here some basic facts about the∞-category of dg-categories,
its monoidal structure and its theory of monoids and modules.

We consider the category dgCatA of small A-linear dg-categories and A-linear dg-functors. We remind
that an A-linear dg-functor T −→ T ′ is a Morita equivalence if the induced functor of the corresponding
derived categories of dg-modules f∗ : D(T ′) −→ D(T ) is an equivalence of categories (see [To1] for details).
The ∞-category of dg-categories over S is defined to be the localisation of dgCatA along these Morita
equivalences, and will be denoted by dgCatS or dgCatA. Being the ∞-category associated to a model
category, dgCatA is a presentable∞-category. As in [To1, § 4], the tensor product of A-linear dg-categories
can be derived to a symmetric monoidal structure on the ∞-category dgCatA. This symmetric monoidal
structure moreover distributes over colimits making dgCatA into a presentable symmetric monoidal ∞-
category. We have a notion of rigid, or dualizable, objects in dgCatA. It is a well known fact that
dualizable objects in dgCatS are precisely smooth and proper dg-categories over A (see [To2, Prop. 2.5]).

The compact objects in dgCatS are the dg-categories of finite type over A in the sense of [To-Va]. We

denote their full sub-∞-category by dgCatftS ⊂ dgCatS . The full sub-category dgCatftS is preserved by
the monoidal structure, and moreover any dg-category is a filtered colimit of dg-categories of finite type.
We thus have a natural equivalence of symmetric monoidal ∞-categories

dgCatS ' Ind(dgCatftS ).

We will from time to time have to work in a bigger ∞-category, denoted by ˜dgCatA, which contains
dgCatA as a non-full sub-∞-category. By [To2] we have a symmetric monoidal ∞-category dgCatlpA of

presentable dg-categories over A. We define ˜dgCatA has being the full sub-∞-category consisting of all
compactly generated dg-categories. The ∞-category dgCatA can be identified with the non-full sub-∞-

category of ˜dgCatA which consists of compact objects preserving dg-functors. This provides a faithful
embedding of symmetric monoidal ∞-categories

dgCatA ↪→ ˜dgCatA.

On the level of objects this embedding sends a small dg-category T to the compactly generated dg-category

T̂ of dg-modules over T o. An equivalent description of ˜dgCatA is as the ∞-category of small dg-categories
together with the mapping spaces given by the classifying space of all bi-dgmodules between small dg-
categories.

Definition 2.1.1 A monoidal A-dg-category is a unital and associative monoid in the symmetric monoidal
∞-category dgCatA. A module over a monoidal A-dg-category B will, by definition, mean a left B-module
in dgCatA in the sense of [Lu-HA].

The ∞-category of left B-modules will be denoted by dgCatB. For such a B-module T , we have a
morphism µ : B⊗A T → T in dgCatA, that will be simply denoted by (b, x) 7→ r⊗ x. For a weak-monoidal
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A-dg-category B, we will denote by B⊗-op the monoidal A-dg-category where the monoid structure is the
opposite to the one of B, i.e. b ⊗op b′ := b′ ⊗ b. Note that B⊗-op should not be confused with Bo (which
is still a monoidal A-dg-category), where the “arrows” and not the monoid structure have been reversed,
i.e. Bo(b, b′) := B(b′, b). By definition, a right B-module is a (left) B⊗-op-module. The ∞-category of right
B-module is simply denoted by dgCatB⊗-op or dgCatB. If B is a monoidal A-dg-category, then B⊗-op⊗AB
is again a monoidal A-dg-category, and B can be considered either as left B⊗-op ⊗A B (denoted by BL) or
as a right B⊗-op⊗AB-module (denoted by BR). For T a B-module, and T ′ a right B-module, then T ′⊗A T
is naturally a right B⊗-op ⊗A B-module, and we define

T ′ ⊗B T := (T ′ ⊗A T )⊗B⊗-op⊗AB B
L

which is an object in dgCatA.

Let B be a monoidal A-dg-category. We can consider the symmetric monoidal embedding dgCatA ↪→
˜dgCatA and thus B̂ as a monoid in ˜dgCatA. The ∞-category of B̂-modules in ˜dgCatA is denoted by
˜dgCatB, and its objects are called big B-modules. The natural ∞-functor dgCatB −→ ˜dgCatB is faithful

and its image consists of all big B-modules T̂ such that the morphism B̂⊗̂AT̂ −→ T̂ is a small morphism.

It is known that the symmetric monoidal ∞-category ˜dgCatA is rigid (see [To2]), and that for any T̂

its dual is given by T̂ o, and the evaluation and coevaluation morphisms are defined by T considered as
T o⊗a T -module. This formally implies that if T̂ is a big B-module, then its dual T̂ o is naturally a right big
B-module. We thus have two big morphisms

µ : B̂⊗̂AT̂ −→ T̂ µo : T̂ o⊗̂AB̂ −→ T̂ o.

By duality these morphisms also provides a third big morphism

h : T̂ o⊗̂AT̂ −→ B̂.

This last big morphism h is obtained by duality from

µ∗ : T̂ −→ B̂⊗̂AT̂

the right adjoint to µ. We now make the following definitions.

Definition 2.1.2 Let B be a monoidal dg-category and T a B-module. We say that

1. T is cotensored (over B) if the big morphism µo defined above is a small morphism

2. T is proper (or enriched) (over B) if the big morphism h defined above is a small morphism.

We can make the above definition more explicit in the following manner. Let B and T be as above. For
two objects b ∈ B and x ∈ T , we can define consider the dg-functor

xb : T o −→ L(A)

sending y ∈ T to T (µ(b, y), x), where µ : B ⊗A T −→ T is the B-module structure on T . Then, T is
cotensored over B if and only if for all b and x the above dg-module T o −→ L(A) is compact in the derived
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category D(T o) of all T o-dg-modules. When T is assumed triangulated then this is equivalent to ask for
the dg-module to be representable by an object xb ∈ T . In a similar manner, we can phrase the enriched
condition by requiring the for any x ∈ T and y ∈ T , the dg-module

Bo −→ L(A)

sending b to T (µ(b, x), y) to be compact (or representable if B is already assumed to be triangulated).

An important comment: by definition, when T is cotensored, the big right B-module T̂ o is in fact a small
right B-module. To put things differently, when T is cotensored then T o is naturally a right B-module in
dgCatA. This right module structure is the morphism in dgCatA

µo : T o ⊗A B −→ T o

which sends (x, b) ∈ T o ⊗A B to the cotensor xb ∈ T o.

We finish this part with some facts about existence of tensor products of modules over monoidal dg-
categories. As a general fact, dgCatA is a presentable symmetric monoidal∞-category, and as such for any
monoidal dg-category B there exists a tensor product ∞-functor

⊗B : dgCatB × dgCatB −→ dgCatA,

sending a left B-module T and a right B-module T ′ to T ⊗B T ′ (see [Lu-HA]). Assume furthermore that
T is a B-module which is also cotensored in the sense of definition 2.1.2, we thus have that T o is a right
B-module. In this case we can form

T o ⊗B T ∈ dgCatA.

When T is not cotensored, the object T ⊗B T o does not exist anymore. However, we can always consider the
presentable dg-categories T̂ and T̂ o as left and righht modules over B̂. Their tensor product T̂ o⊗̂

B̂
T̂ now

only make sense as a presentable dg-category which has no reason to be compactly generated. Of course,
when T is cotensored, this presentable dg-category is compactly generated and we have

̂T o ⊗B T ' T̂ o⊗̂B̂T̂ .

To finish, we pass the following easy but useful observation. Let B be a monoidal dg-category, and
assume that B is generated, as triangulated dg-category, but its unit object 1 ∈ B. Then, any big B-module
is small, and also cotensored.

2.2 The `-adic realization of dg-categories

We denote by SHS the stable A1-homotopy ∞-category of schemes over S (see [Vo, Def. 5.7] and [Ro, §
2]). It is a presentable symmetric monoidal ∞-category whose monoidal structure will be denoted by ∧S .
Homotopy invariant algebraic K-theory defines an E∞-ring object in SHS that we denote by BUS (a more
standard notation is KGL). We denote by BUS −Mod the ∞-category of BUS-modules in SHS . It is a
presentable symmetric monoidal ∞-category whose monoidal structure will be denoted by ∧BUS

.
As proved in [BRTV], there exists a lax symmetric monoidal ∞-functor

M− : dgCatS −→ BUS −Mod,
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which is denoted by T 7→ MT . The precise construction of the ∞-functor M− is rather involved and uses
in an essential manner the theory of non-commutative motives of [Ro] as well as the comparison with the
stable homotopy theory of schemes. Intuitively, the ∞-functor M− sends a dg-category T to the homotopy
invariant K-theory functor S′ 7→ HK(S′ ⊗S T ). To be more precise, there is an obvious forgetful ∞-functor

U : BUS −Mod −→ Fun∞(Smop
S ,Sp),

to the ∞-category of presheaves of spectra on the category SmS of smooth S-schemes. For a given dg-
category T over S, the presheaf U(MT ) is defined by sending a smooth S-scheme S′ = SpecA′ → SpecA = S
to HK(A′ ⊗A T ), the homotopy invariant non-connective K-theory spectrum of A′ ⊗A T (see [Ro, 4.2.3]).

The ∞-functor M− satisfies some basic properties which we recall here.

1. The ∞-functor M− is a localizing invariant, i.e. for any short exact sequence T0 ↪→ T −→ T/T0 of
dg-categories over A, the induced sequence

MT0 // MT // MT/T0

exhibits MT0 has the fiber of the morphism MT → MT/T0 in BUS −Mod.

2. The natural morphism BUS −→ MA, induced by the lax monoidal structure of M−, is an equivalence
of BUS-modules.

3. The ∞-functor T 7→ MT commutes with filtered colimits.

4. For any quasi-compact and quasi-separated scheme X, and any morphism p : X −→ S, we have a
natural equivalence of BUS-modules

MLPerf(X) ' p∗(BUX),

where p∗ : BUX −Mod −→ BUS −Mod is the direct image of BU-modules, and LPerf(X) is the
dg-category of perfect complexes on X.

We now let ` be a prime number invertible in A. We denote by Lct(Sét, `) the∞-category of constructible
Q`-complexes on the étale site Sét of S. It is a symmetric monoidal ∞-category, and we denote by

L(Sét, `) := Ind(Lct(Sét, `))

its completion under filtered colimits (see [Ga-Lu, Def. 4.3.26]). According to [Ro, Cor. 2.3.9], there exists
an `-adic realization ∞-functor r` : SHS −→ L(Sét, `). By construction, r` is a symmetric monoidal ∞-
functor sending a smooth scheme p : X −→ S to p!p

!(Q`), or, in other words, to the relative `-adic homology
of X over S.

We let T := Q`[2](1), and we consider the E∞-ring object in L(Sét, `)

Q`(β) := ⊕n∈ZT⊗n.

In this notation, β stands for T, and Q`(β) for the algebra of Laurent polynomials in β, so we could also
have written

Q`(β) = Q`[β, β
−1].
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As shown in [BRTV], there exists a canonical equivalence r`(BUS) ' Q`(β) of E∞-ring objects in L(Sét, `),
that is induced by the Chern character from algebraic K-theory to étale cohomology. We thus obtain a
well-defined symmetric monoidal ∞-functor

r` : BUS −Mod −→ Q`(β)−Mod,

from BUS-modules in SHS to Q`(β)-modules in L(Sét, `). By pre-composing with the functor T 7→ MT , we
obtain a lax monoidal ∞-functor

r` : dgCatS −→ Q`(β)−Mod.

Definition 2.2.1 The ∞-functor defined above

r` : dgCatS −→ Q`(β)−Mod

is called the `-adic realization functor for dg-categories over S.

From the standard properties of the functor T 7→ MT , recalled above, we obtain the following properties
for the `-adic realization functor T 7→ r`(T ).

1. The ∞-functor r` is a localizing invariant, i.e. for any short exact sequence T0 ↪→ T −→ T/T0 of
dg-categories over A, the induced sequence

r`(T0) // r`(T ) // r`(T/T0)

is a fibration sequence in Q`(β)−Mod.

2. The natural morphism
Q`(β) −→ r`(A),

induced by the lax monoidal structure, is an equivalence in Q`(β)−Mod.

3. The ∞-functor r` commutes with filtered colimits.

4. For any separated morphism of finite type p : X −→ S, we have a natural morphism of Q`(β)-modules

r`(LPerf(X)) −→ p∗(Q`(β)),

where p∗ : Q`(β) −Mod −→ Q`(β) −Mod is induced by the direct image Lct(Xét, `) −→ Lct(Sét, `)
of constructible Q`-complexes. If p is proper, or if A is a field, this morphism is an equivalence.

2.3 Chern character

As explained in [BRTV], there is a symmetric monoidal∞-category SHncB of non-commutative motives over
B. As an ∞-category it is the full sub-∞-category of ∞-functors of (co)presheaves of spectra

dgCatftA −→ Sp,

satisfying Nisnevich descent and A1-homotopy invariance.
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We consider Γ : L(Sét, `) −→ dgQ`
, the global section ∞-functor, taking an `-adic complex on Sét to its

hyper-cohomology. Composing this with the Dold-Kan construction RMapdgQ`
(Q`,−) : dgQ`

−→ Sp, we

obtain an ∞-functor
| − | : L(Sét, `) −→ Sp,

which morally computes hyper-cohomology of Sét with `-adic coefficients, i.e. for any E ∈ L(Sét, `), we have
natural isomorphisms

H i(Sét, E) ' π−i(|E|) , i ∈ Z.
By what we have seen in our last paragraph, the composite functor T 7→ |r`(T )| provides a (co)presheaves
of spectra

dgCatftA −→ Sp,

satisfying Nisnevich descent and A1-homotopy invariance. It thus defines an object |r`| ∈ SHncA . The fact
that r` is lax symmetric monoidal implies moreover that |r`| is endowed with a natural structure of a E∞-ring
object in SHncB .

Each T ∈ dgCatftA defines a corepresentable object hT ∈ SHncA , characterized by the (∞-)functorial
equivalences

RMapSHnc
B

(hT , F ) ' F (T ),

for any F ∈ SHncA . The existence of hT is a formal statement, however the main theorem of [Ro] implies
that we have natural equivalences of spectra

RMapSHnc
A

(hT , hA) ' HK(T ),

where HK(T ) stands for non-connective homotopy invariant algebraic K-theory of the dg-category T . In
other words, T 7→ HK(T ) defines an object in SHncA which is isomorphic to hB. By Yoneda lemma, we thus
obtain an equivalence of spaces

RMaplax−⊗(HK, |r`|) ' RMapE∞−Sp(S, |r`(A)|) ' ∗.

In other words, there exists a unique (up to a contractible space of choices) lax symmetric monoidal natural
transformation

HK −→ |r`|,
between lax monoidal ∞-functors from dgCatftA to Sp. We extend this to all dg-categories over A as usual

by passing to Ind-completion dgCatA ' Ind(dgCatftA ).

Definition 2.3.1 The natural transformation defined above is called the `-adic Chern character. It is
denoted by

Ch` : HK(−) −→ |r`(−)|.

Definition 2.3.1 contains a formal Grothendieck-Riemann-Roch formula. Indeed, for any B-linear dg-
functor f : T −→ T ′, the square of spectra

HK(T )
f! //

Ch`,T
��

HK(T ′)

Ch`,T ′

��
|r`(T )|

f!
// |r`(T ′)|

commutes up to a natural equivalence.
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2.4 Trace formula for dg-categories

Let C⊗ be a symmetric monoidal ∞-category ([To-Ve], [Lu-HA, Definition 2.0.0.7]).

Hypothesis 2.4.1 The underlying ∞-category C has small sifted colimits, and the tensor product preserves
small colimits in each variable.

Definition 2.4.2 Let C⊗ be a symmetric monoidal ∞-category satisfying hypo thesis 2.4.1. We denote by
Alg(C) the (∞, 2)-category of algebras in C⊗ denoted by Alg(1)(C⊗) in [Lu-COB, Definition 4.1.11].

Informally, one can describe Alg(C) as the (∞, 2)-category with:

• objects: associative unital monoids (=: E1-algebras) in C.

• MapAlg(C)(B,B
′) := BimodB′,B(C⊗), the ∞-category of (B′, B)-bimodules.

• The composition of 1-morphisms (i.e. of bimodules) is given by tensor product.

• The composition of 2-morphisms (i.e. of mrophisms between bimodules) is the usual composition.

Definition 2.4.3 Let B be an algebra in C and X a left B-module. Identify X with a 1- morphism X :
1C → B in Alg(C). A right B-dual of X is a right adjoint Y : B → 1C to X.

Unraveling the definition, we get that a right dual of X is a left B⊗-op-module Y , the unit of adjunction
(or coevaluation) is a map coev : 1C → Y ⊗B X in C, the counit of adjunction (or evaluation) is a map
ev : X ⊗ Y → 1C of (B,B)-bimodules; u and v satisfy usual compatibilities.
Note that, if a right B-dual of X exists then it is “unique” (i.e. unique up to a contractible space of choices).

If the right B-module Y is the right B-dual of the left B-module X, then we can define the trace of any
map f : X → X of left B-modules, as follows.
Recall that we have a coevaluation map in C coev : 1C → Y ⊗B X in C and an evaluation map of (B,B)-

bimodules ev : X ⊗ Y → 1C .
Consider the graph Γf defines as the composite

1C
coev // Y ⊗B X

id⊗f // Y ⊗B X.

We now elaborate on the evaluation map. Observe that

• B ∈ C has a left B⊗-op ⊗B-module structure that we will denote by BL.

• B ∈ C has a right B⊗-op ⊗B-module structure (i.e. a left B ⊗B⊗-op-module), that we will denote by
BR.

• ev : X ⊗ Y → BL is a map of left B ⊗B⊗-op- modules.

• the composite ev′ : Y ⊗X σ // X ⊗ Y ev // BR is a map of left (B⊗-op ⊗B)-modules
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Apply (−)⊗B⊗-op⊗B B
l to the composite

ev′ : Y ⊗X σ // X ⊗ Y ev // BR

to get

evHH : (Y ⊗X)⊗B⊗-op⊗B B
L // BR ⊗B⊗-op⊗B B

l =: HHC(B) .

Now observe that (Y ⊗X)⊗B⊗-op⊗B B
L ' Y ⊗B X in C.

Definition 2.4.4 The non-commutative trace of f : X → X over B is defined as the composite

TrB(f) : 1C
Γf // Y ⊗B X ' (Y ⊗X)⊗B⊗-op⊗B B

L evHH // BR ⊗B⊗-op⊗B B
L =: HHC(B) .

T rB(f) is a morphism in C.

Remark 2.4.5 LetB ∈ CAlg(C⊗), and let us still denote byB its image via the canonical map CAlg(C⊗)→
AlgE1

(C⊗). In this case, ModB(C⊗) is a symmetric monoidal ∞-category, and if X ∈ModB(C⊗) is a du-
alizable object (in the usual sense), then its (left and right) dual in ModB(C⊗) is also a right-dual of X
according to Definition 2.4.3. Thus, in his case, any f : X → X in ModB(C⊗), has two possible traces, a
non-commutative one (as in Definition 2.4.4

TrB(f) : 1C −→ HHC(B)

which is a morphism in C, and a more standard, commutative one

Trc
B(f) : B −→ B

which is a morphism on ModB(C⊗). The two traces are related by the following commutative diagram

1C
uB //

TrB(f)

��

B

TrcB(f)

��
HHC(B) a

// B

where a : HHC(B)→ B is the canonical augmentation (which exists since B is commutative), and uB : 1C →
B is the unit map of the algebra B in C.

The case of dg-categories. Let us specialize the previous discussion to dg-categories.
Let B be a monoidal dg-category, i.e. an associative and unital algebra in the symmetric monoidal

∞-category C = dgCatA, and we can apply the previous theory here.

Proposition 2.4.6 For any B-module T which is cotensored in the sense of definition, the big B-module

T̂ has a right dual in the symmetric monoidal ∞-category d̃gCatA. The underlying big dg-category of the

right dual is T̂ o.
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Proof. This is very similar to the argument used in [To2, Prop. 2.5 (1)]. We consider T̂ o and we define
evaluation and coevaluation maps as follows.

We consider the big morphism h introduced before definition 2.1.2

h : T̂ o⊗̂AT̂ −→ B̂.

The domain of this morphism is naturally a B̂-bimodule, and the morphism h has a canonical promotion to
a morphism of bimodules. This morphism h is then chosen to be our evalution morphism.

The coevaluation is obtained by duality. We start by the diagonal bimodule

T : (T o ⊗A T )o −→ L(A) = Â.

sending (x, y) to T (y, x). This morphism naturally descends to (T o ⊗B T )o and provides a dg-functor

(T o ⊗B T )o −→ Â.

Note that T o is naturally a right B-module because T is assumed to be cotensored (unless T o⊗BT would not

make sense). This dg-functor is an object in ̂T o ⊗B T ' T̂ o⊗̂AT̂ , and thus defines a coevaluation morphism

Â −→ T̂ o⊗̂AT̂ .

These two evaluation and coevaluation morphisms satisfy the required triangular identities and make T̂ o a
right dual to T̂ . 2

According to the previous proposition, and cotensored B-module T has a big right dual, so comes equiped
with big evaluation and coevaluation maps.

Definition 2.4.7 For a monoidal dg-category B and a B-module T ∈ dgCatB is saturated over B if

1. T is cotensored.

2. the evaluation and coevaluation maps are small.

In particular, if T saturated over B, and f : T → T is a morphism in dgCatB (!), then the trace

TrB(f : T → T ) : A→ HH(B/A) = BR ⊗B⊗-op⊗AB B
L

is also small, i.e. it is a morphism inside dgCatA.

Definition 2.4.8 A saturated T ∈ dgCatB is `⊗-admissible if the canonical map

r`(T
op)⊗r`(B) r`(T )→ r`(T

op ⊗B T )

is an equivalence in ShQ`
(S).
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The trace TrB(f) is a map A→ HH(B/A), hence it induces a map in Sp

K(TrB(f)) : K(A)→ K(HH(B/A))

which is actually a map of K(A)-modules (in spectra), since K is lax-monoidal. Hence it corresponds to an
element denoted as

[HH(T/B, f)] ≡ trB(f) ∈ K0(HH(B/A)).

Therefore, its image by the `-adic Chern character Ch`,0 := π0(Ch`)

Ch`,0 : K0(HH(B/A))→ HomD(r`(A))(r`(A), r`(HH(B/A))) ' H0(Sét, r`(HH(B/A))),

is an element Ch`,0([HH(T/B; f)]) ∈ H0(Sét, r`(HH(B/A))).

On the other hand, the trace of r`(f) is, by definition, a morphism

r`(A) ' Q`(β)→ HH(r`(B)/r`(A))

in Modr`(A)(ShQ`
(S)).

We may further compose this with the canonical map

HH(r`(B)/r`(A))→ r`(HH(B/A))

(given by lax-monoidality of r`(−)), to get a map

r`(A)→ r`(HH(B/A))

in Modr`(A)(ShQ`
(S)). This is the same thing as an element denoted as

trr`(B)(r`(f)) ∈ π0(|r`(HH(B/A))|) ' H0(Sét, r`(HH(B/A))).

Theorem 2.4.9 Let B a monoidal dg-category over A, T ∈ dgCatB a saturated and `⊗-admissible B-
module, and f : T → T map in dgCatB. Then, we have

Ch`,0([HH(T/B, f)]) = trr`(B)(r`(f))

in H0(Sét, r`(HH(B/A), r`)).

Proof. This is statement is a formal statement using uniqueness of right duals and its consequence: traces
are preserved by symmetric monoidal ∞-functors or lax symmetric monoidal ∞-functors satisfying our
admissibility condition. The key statement is the following lemma, left as an exercice to the reader, and
applied to our `-adic realization functor.

Lemma 2.4.10 Let F be a lax symmetric monoidal ∞-functors between presentable symmetric monoidal
∞-categories

F : C −→ D.
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Let B be a monoid in C, M a left B-module and f : M −→M an endomorphism of B-modules. We assume
that M has a right dual Mo and that the natural morphism

F (Mo)⊗F (B) F (M) −→ F (Mo ⊗B M)

is an equivalence. Then, F (M) has a right dual, and we have

F (Tr(f)) = i(Tr(F (f)))

as elements in π0(HomD(1, F (HH(B))), and i is induced by the natural morphism HH(F (B)) −→ F (HH(B)).

2

3 Invariant vanishing cycles

This section gathers general results about invariant vanishing cycles (I-vanishing cycles, for short), their
relations with dg-categories of singularities, and their behaviour under products. These results are partially
taken from [BRTV], and the only original result is Proposition 3.4.2 that can be seen as a form of Thom-
Sebastiani formula in the mixed-characteristic setting.

All along this section, A will be a strictly henselian excellent dvr with fraction field K = Frac(A), and
perfect (hence algebraically closed) residue field k. We let S = SpecA. All schemes over S are assumed
to be separated and of finite type over S. We denoted by i : s := Spec k −→ S the closed point of S, and
j : η := SpecK −→ S its generic point. For an S-scheme X, we denote by Xs := X ×S s its special fiber,
and Xη = X ×S η its generic fiber. Accordingly, we write Xs̄ := X ×S Spec k̄ and Xη̄ := X ×S SpecKsp for
the geometric special and geometric generic fiber, respectively.

3.1 Trivializing the Tate twist

We let ` be a prime invertible in k, and we denote by p the characteristic exponent of k. As k is algebraically
closed, we may, and will, choose once for all a group isomorphism

µ∞(k) ' µ∞(K) ' (Q/Z)[p−1]

between the group of roots of unity in k and the prime-to-p part of Q/Z. Equivalently, we have chosen a
given group isomorphism

lim
(n,p)=1

µn(k) ' Ẑ′,

where Ẑ′ := lim(n,p)=1 Z/n. In particular, we have selected a topological generator of lim(n,p)=1 µn(k),

corresponding to the image of 1 ∈ Z inside Ẑ′. The choice of the isomorphism above also provides a chosen
isomorphism Q`(1) ' Q` of Q`-sheaves on S, where (1) denotes, as usual, the Tate twist. By tensoring this
isomorphism, we get various chosen isomorphisms Q`(i) ' Q` for all i ∈ Z.
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We remind that the absolute Galois group I of K (which coincides with the inertia group in our case)
sits in an extension of pro-finite groups1

1 // P // I // It ' Ẑ′ // 1 ,

where P is a pro-p-group (the wild inertia subgroup). For any continuous finite dimensional Q`-representation
V of I, the group P acts by a finite quotient GV on V . Moreover, the Galois cohomology of V can then be
explicitly identified with the two-terms complex

V G 1−T // V G

where T is the action of the chosen topological generator of It. This easily implies that for any Q`-
representation V of I, the natural pairing on Galois cohomology

H i(I, V )⊗H1−i(I, V ∨) −→ H1(I,Q`) ' Q`

is non-degenerate. In other words, if we denote by V I the complex of cohomology of I with coefficients in
V , we have a natural quasi-isomorphism (V I)∨ ' (V ∨)I [1].

3.2 Reminders on actions of the inertia group

Let X −→ S be an S-scheme (separated and of finite type, according to our conventions). We recall from
[SGA7-II, Exp. XIII, 1.2] that we can associate to X a vanishing topos (X/S)νet which is defined as (a
2-)fiber product of toposes

(X/S)νet := (Xs)
∼
et ×s∼et η

∼
et.

Since S is strictly henselian, s∼et is in fact the punctual topos, and the fiber product above is in fact a product
of topos. The topos η∼et is equivalent to the topos of sets with continuous action of I = Gal(Ksp/k), where
Ksp denotes a seprable closure of K. Morally, (X/S)νet is the topos of étale sheaves on Xs, endowed with a
continuous action of I (see [SGA7-II, Exp. XIII, 1.2.4]).

As explained in [BRTV] we have an `-adic ∞-category D((X/S)νet,Z`). Morally speaking, objects of
this ∞-category consist of the data of an object E ∈ D(X̄s,Z`) together with a continuous action of I.
We say that such an object is constructible if E is a constructible object in D(X̄s,Z`), and we denote by
Dc((X/S)νet,Z`) the full sub-∞-category of constructible objects.

Definition 3.2.1 The ∞-category of ind-constructible I-equivariant `-adic complexes on Xs is defined by

DIic(Xs,Q`) := Ind(Dc((X/S)νet,Z`)⊗Z`
Q`).

The full sub-∞-category of constructible objects is DIc (Xs,Q`) := Dc((X/S)νet,Z`)⊗Z`
Q`.

Note that since we have chosen trivialisations of the Tate twists, Q`(β) is identified with Q`[β, β
−1]

where β is a free variable in degree 2. This is a graded algebra object in DIic(Xs,Q`), and we define the ∞-
category DIic(Xs,Q`(β)) as the ∞-category of Q`(β)-modules in DIic(Xs,Q`), or equivalently, the 2-periodic
∞-category of ind-constructible Q`-adic complexes on (X/S)νet.

1Note that the tame inertia quotient It is canonically isomorphic to Ẑ′(1), and it becomes isomorphic to Ẑ′ through our
choice.
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Definition 3.2.2 An object E ∈ DIic(Xs,Q`(β)) is constructible if it belongs to the thick triangulated sub-∞-
category generated by objects of the form E0(β) = E0⊗Q`

Q`(β) for E0 a constructible object in DI
ic(Xs,Q`).

The full sub-∞-category of DIic(Xs,Q`(β)) consisting of constructible objects is denoted DIc (Xs,Q`(β)).
Similarly, for any S-scheme X, we define Dc(X,Q`(β)) as the full sub-∞-category of objects in Dic(X,Q`(β))
generated by E0(β) for E0 constructible.

Note that strictly speaking an object of DIc (Xs,Q`(β)) is not constructible in the usual sense, as its
underlying object in Dic(Xs,Q`) is 2-periodic.

The topos (X/S)νet comes with a natural projection (X/S)νet −→ (Xs)
∼
et whose direct image is an ∞-

functor denoted by
(−)I : DIic(Xs,Q`) −→ Dic(Xs,Q`)

called the I-invariants functor. This ∞-functor preserves constructibility. The ∞-categories DIic(Xs,Q`)
and Dic(Xs,Q`) carries natural symmetric monoidal structures and the∞-functor (−)I comes equipped with
a natural lax symmetric monoidal structure (being induced by the direct image of a morphism of toposes).
Moreover, (−)I is the right adjoint of the symmetric monoidal ∞-functor U : Dic(Xs,Q`) −→ DIic(Xs,Q`)
endowing objects in Dic(Xs,Q`) with the trivial action of I. This gives DIic(Xs,Q`) the structure of a
Dic(Xs,Q`)-module via Dic(Xs,Q`)×DIic(Xs,Q`)→ DIic(Xs,Q`) : (E,F ) 7→ U(E)⊗F . This bi-functor dis-
tributes over colimits, thus by the adjoint theorem, we get an enrichment of DIic(Xs,Q`) over Dic(Xs,Q`).
Note that DIic(Xs,Q`) is also enriched over itself.

It is important to notice that the I-invariants functor commutes with base change in the following sense.
Let f : Spec k −→ Xs be a geometric point. The morphism f defines a geometric point of (Xs)

∼
et and thus

induces a geometric morphism of toposes

η∼et −→ (X/S)νet.

We thus have an inverse image functor

f∗ : DIc (Xs,Q`) −→ Dc(η,Q`) = Dc(I,Q`).

where Dc(I,Q`) is the ∞-category of finite dimensional complexes of `-adic representations of I. As usual,
the square of ∞-functors

DIc (Xs,Q`)
(−)I //

f∗

��

Dc(Xs,Q`)

f∗

��
Dc(I,Q`)

(−)I
// Dc(Q`)

comes equipped with a natural transformation

f∗((−)I)⇒ (f∗(−))I .

It can be checked that this natural transformation is always an equivalence. In particular, for any geometric
point x in Xs, we have a natural equivalence of `-adic complexes (E)Ix ' (Ex)I , for any E ∈ DIc (Xs,Q`).
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The dualizing complex ω of the scheme Xs can be used in order to obtain a dualizing object in DI
c (Xs,Q`)

as follows. We consider ω as an object in DI
c (Xs,Q`) endowed with the trivial I-action. We then have an

equivalence of ∞-categories
DI : DIc (Xs,Q`) −→ DIc (Xs,Q`)

op

sending E to RHom(E,ω), where RHom denotes the natural enrichment of DIc (Xs,Q`) over itself. We
obviously have a canonical biduality equivalence D2

I ' id. The duality functor DI is compatible with the
usual Grothendieck duality functor D for the scheme Xs up to a shift, as explained by the following lemma.

Lemma 3.2.3 For any object E ∈ DIc (Xs,Q`), there is a functorial equivalence in Dc(Xs,Q`)

d : D(EI)[−1] ' (DI(E))I .

Proof. Taking I-invariants is a lax monoidal ∞-functor, so we have a natural map EI ⊗ DI(E)I −→ (E ⊗
DI(E))I , that can be composed with the evaluation morphism E⊗DI(E) −→ ω to obtain EI ⊗DI(E)I −→
ωI . As the action of I on ω is trivial, we have a canonical equivalence ωI ' ω ⊗ QI

` ' ω ⊕ ω[−1]. By
projection on the second factor we get a pairing EI ⊗ DI(E)I −→ ω[−1], and thus a map

DI(E)I −→ D(EI)[−1].

We claim that the above morphism is an equivalence in Dc(Xs,Q`). For this it is enough to check that the
above morphism is a stalkwise equivalence. Now, the stalk of the above morphism at a geometric point x
of Xs can be written as

(E(x)∨)I −→ (E(x)I)∨[−1]

where E(x) := H∗x(X,E) ∈ Dc(Q`) is the local cohomology of E at x, and (−)∨ is now the standard linear
duality over Q`. The result now follows from the following well-known duality for Q`-representations of I:
for any finite dimensional Ql-representation V of I, the fundamental class in H1(I,Q`) ' Q`, induces a
canonical isomorphism of Galois cohomologies

H∗(I, V ∨) ' H1−∗(I, V )∨.

2

3.3 Invariant vanishing cycles and dg-categories

From [SGA7-II, Exp. XIII] and [BRTV, 4.1], the vanishing cycles construction provides an ∞-functor

φ : Dc(X,Q`) −→ DIc (Xs,Q`).

Applied to the constant sheaf Q`, we get this way an object denoted by νX/S (or simply νX if S is clear) in

DIc (Xs,Q`).

Definition 3.3.1 The I-invariant vanishing cycles of X relative to S (or I-vanishing cycles, for short) is
the object

νIX := (νX)I ∈ Dc(Xs,Q`).
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There are several possible descriptions of invariant vanishing cycles. First of all, by its very definition,
νIX is related to the I-invariant nearby cycles ψIX := (ψX)I by means of an exact triangle in Dc(Xs,Q`)

QI
`

// ψIX
// νIX . (1)

Another description, in terms of local cohomology, is the following. We let U = XK be the open complement
of Xs inside X, and jX : U ↪→ X and iX : Xs ↪→ X the corresponding immersions. Then, the I-vanishing
cycles enters in an exact triangle in Dc(Xs,Q`)

νIX
// Q`

// i!X(Q`)[2]. (2)

Triangle (2) follows from the octahedral axiom applied to the triangles (1) and

Q` −→ QI
` ' Q` ⊕Q`[−1] −→ Q`[−1],

taking also into account the triangle

i!XQ` −→ Q` −→ i∗X(jX)∗j
∗
XQ` ' ψIX .

We get one more description of νIX (or rather, of νIX(β) := νIX ⊗ Q`(β)) using the `-adic realization
of the dg-category of singularities studied in [BRTV], at least when X is a regular scheme with smooth
generic fiber. Let Sing(Xs) = Cohb(Xs)/Perf(Xs) be the dg-category of singularities of the scheme Xs. This
dg-category is naturally linear over the dg-category Perf(Xs), and thus we can take its `-adic realization
r`(Sing(Xs)) (see [BRTV]) which is a Q`(β)-module in Dic(Xs,Q`). When X is a regular scheme and XK is
smooth over K, we have from [BRTV] a canonical equivalence in Dc(Xs,Q`(β))

νIX(β)[1] ' r`(Sing(Xs)) (3)

where νIX(β) stands for νIX ⊗Q`(β).

We conclude this section with another description of νIX(β), see equivalence (5), this time in terms of
sheaves of singularities. We need a preliminary result.

Lemma 3.3.2 We assume that S is excellent. Let p : X → S be a separated and finite type morphism.
Then, we have

1. r`(Perf(X)) ' Q`,X(β) in Dic(X,Q`).

2. r`(Coh
b(X)) ' ωX(β) in Dic(X,Q`), where ωX ' p!(Q`) is the `-adic dualizing complex of X2.

3. There exists a canonical map ηX : Q`(β) −→ ωX(β) in Dc(X,Q`(β)), called the 2-periodic `-adic
fundamental class of X.

2Note that since S is excellent, X is excellent so that ωX exists by a theorem of Gabber ([ILO, Exp. XVII, Th. 0.2]).
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Proof: First of all, finite type and separated morphisms of neotherian schemes are compactifiable (Nagata
theorem) and we can thus assume that X is proper over S.

(1) follows immediately from [BRTV, Prop. 3.9 and formula (3.7.13))]. In order to prove (2) we first
produce a map α : r`(Coh

b(X)) → ωX(β). In the notations of [BRTV, §3], we first construct a map
αmot : M∨X(Cohb(X)) → p!(BUS) =: ωmot

X in SH(X), whose étale `-adic realization will be α. Since p
is proper, αmot is the same thing, by adjunction, as a map p∗(M∨X(Cohb(X))) → BUS in SH(S). Now,
p∗(M∨X(Cohb(X))) is just M∨S(Cohb(X))), where Cohb(X) is viewed as a dg-category over S, via p. If Y is
smooth over S, we have by [Pr, Prop. B.4.1], an equivalence of S-dg-categories

Cohb(X)⊗S Cohb(Y ) ' Cohb(X ×S Y ) (4)

Through this identification, M∨S(Cohb(X)) ∈ SH(S) is the ∞-functor Y 7→ KH(Cohb(X ×S Y )), and
KH(Cohb(X ×S Y )) is equivalent to the G-theory spectrum G(X ×S Y ) of X ×S Y , by A1-invariance
of G-theory. Since S is regular, BUS ' GS := G(−/S) canonically in SH(S), and we can take the
map M∨S(Cohb(X))) → BUS ' GS to be the push forward p∗ on G-theories G(X ×S −) → G(−/S).
This gives us a map αmot : M∨X(Cohb(X)) → p!(BUS) =: ωmot

X . Now observe that by [BRTV, formula
(3.7.13)], the étale `-adic realization of p!(BUS) is canonically equivalent to p!(Q`(β)) ' ωX(β) (since
étale `-adic realization commutes with six operations, [BRTV, Rmk. 3.23]). Therefore, we get our map
α : r`(Coh

b(X)) → ωX(β). Checking that α is an equivalence is a local statement, i.e. it is enough to
show that if j : V = Spec, A ↪→ X is an open affine subscheme, then j∗(α) is an equivalence. Now,
j∗r`(Coh

b(X)) ' r`(j
∗Cohb(X)) ' r`(Coh

b(V )), and j∗ωX ' j!ωX ' ωV , so j∗α identifies with a map
r`(Coh

b(V )) → ωV (β). Since V is affine and of finite type over S, we can choose a closed immersion
i : V ↪→ V ′, with V ′ affine and smooth (hence regular) over S. Let h : V ′ \ V ↪→ V ′ be the complementary
open immersion. Since V ′ and V ′ \ V are regular, by Quillen localization and the properties of the nc
realization functor M∨ (see [BRTV]), we get a cofiber sequence

M∨V ′(Cohb(V )/V ′)→ BUX′ → h∗BUV ′\V ,

where the notation Cohb(V )/V ′ means that Cohb(V ) is viewed as a dg-catgeory over V ′, via i. In other
words,M∨V ′(Coh

b(V )/V ′) ' i∗M∨V (Cohb(V )). If we apply i∗ to this cofiber sequence, and compare what we
obtain to the application of i∗ to the standard localization sequence

i∗i
!BUV ′ → BUV ′ → h∗h

∗BUV ′ = h∗BUV ′\V ,

we finally get, after étale `-adic realization, that ωV (β) ' i!Q`(β) ' r`(Coh
b(V )). This implies that j∗α is

also an equivalence.
By (1) and (2), the map in (3) is finally obtained by applying r` to the inclusion Perf(X)→ Cohb(X).

2

Remark 3.3.3 Note that the proof of Lemma 3.3.2 also shows that a 2-periodic `-adic fundamental class
map ηU : Q`(β) −→ ωU (β) is also defined for any open subscheme U ↪→ X over S, for X proper over S.

Definition 3.3.4 Let X/S be a proper S-scheme, as above. The sheaf of singularities of X is defined to be
the cofiber of the 2-periodic `-adic fundamental class morphism ηX (Lemma 3.3.2 (3))

ωoX := Cofib(ηX : Q`(β) −→ ωX(β)).
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By construction of ηX in Lemma 3.3.2, ωoX is then the `-adic realization r`(Sing(X)) of the dg-category
Sing(X), considered as a dg-category over X.

Remark 3.3.5 If p : X → S is a proper lci map from a derived scheme X , we can still define a 2-periodic
`-adic fundamental class map ηX , as in Lemma 3.3.2. This can be done by observing that the pushforward
on G-theories along the inclusion of the truncation t0X → X is an equivalence, and that p being lci we
have a natural inclusion Perf(X ) → Cohb(X ). We further observe that in this case, while the ∞-category
Dc(X ,Q`(β)) only depends on the reduced subscheme (t0X )red, and the same is true for the objects Q`,X (β)
and ωX (β), in contrast, the morphism ηX does depend on the derived structure on X , and thus it is not a
purely topological invariant.

Let us come back to X a regular scheme, proper over S. We have a canonical equivalence in Dc(Xs,Q`(β))

νIX(β)[1] ' ωoXs
. (5)

This is a reformulation of the equivalence (3), in view of Lemma 3.3.2.

Remark 3.3.6 When X is not regular anymore, but still proper and lci3 over S, there is nonetheless a
natural morphism νIX(β)[1] −→ ωoXs

, constructed as follows. Consider again the triangle (2)

νIX
// Q`

// i!X(Q`)[2].

On X, we do have the 2-periodic `-adic fundamental class ηX : Q`(β) −→ ωX(β), and by taking its !-pullback
by i!X , we get a morphism i!X(Q`)(β) −→ ωXs(β). This produces a sequence of morphisms

νIX(β) // Q`(β) // i!X(Q`)[2](β) = i!X(Q`)(β) // ωXs(β).

The resulting composite morphism Q`(β)→ ωXs(β) is the 2-periodic `-adic fundamental class of Xs. More-

over, by construction, the composition νIX(β) // Q`(β) // ωXs(β) is canonically the zero map, and

this induces the natural morphism
αX : νIX(β)[1] −→ ωoXs

we were looking for. Summing up, the morphism αX always exists for any proper, lci scheme X over S, and
is an equivalence whenever X is regular.

3.4 A Künneth theorem for invariant vanishing cycles

In this section, we consider two S-schemes X and Y (separated of finite type), such that that XK and YK
are smooth over K, and both X and Y are regular and connected. For simplicity4 we also assume that X
and Y are flat over S. We set Z := X ×S Y , and consider this as a scheme over S. We have Zs ' Xs ×s Ys,
and the ∞-category DI

c (Zs,Q`) comes equipped with pull-back functors

p∗ : DI
c (Xs,Q`) −→ DI

c (Zs,Q`)←− DI
c (Ys,Q`) : q∗.

3Note that a morphism of finite type between regular schemes is lci, since we can check that its relative cotangent complex
has perfect amplitude in [−1, 0].

4In the non-flat case, the fiber product of X and Y over S, to be considered below, should be replaced by the derived fiber
product.
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By taking their tensor product, we get an external product functor

� := p∗(−)⊗ q∗(−) : DI
c (Xs,Q`)×Dc(Ys,Q`) −→ DI

c (Zs,Q`).

For two objects E ∈ DI
c (Xs,Q`) and F ∈ DI

c (Ys,Q`), we can define the Künneth morphism in Dc(Zs,Q`)

k : (E � F )I [−1] −→ EI � F I

as follows. Since Grothendieck duality on Zs is compatible with external products, in order to define k it is
enough to define its dual

D(EI)� D(F I) −→ D((E � F )I)[1].

By Lemma 3.2.3, the datum of such a morphism is equivalent to that of a morphism

DI(E)I � DI(F )I −→ DI(E � F )I .

We now define k as the map induced by the composite

DI(E)I � DI(F )I
µ
(−)I // (DI(E)� DI(F ))I

(µDI
)I
// DI(E � F )I

where µ(−)I is the lax monoidal structure on (−)I , and µDI
the one on DI

5.

Definition 3.4.1 With the above notations, the I-invariant convolution of the two objects E ∈ DI
c (Xs,Q`)

and F ∈ DI
c (Ys,Q`) is defined to be the cone of the Künneth morphism, and denoted by (E ~ F )I . By

definition it sits in a triangle

(E � F )I [−1]
k // EI � F I // (E ~ F )I .

The main result of this section is the following proposition, relating the I-invariant convolution of
vanishing cycles on X and Y to the dualizing complex of Z. It can be also considered as a computation of
the `-adic realization of the ∞-category Sing(Z) of singularities of Z.
Note that, as X and Y are generically smooth over S, so is Z, and thus the 2-periodic `-adic fundamental
class map ηZ : Q`(β) −→ ωZ(β) of Lemma 3.3.2 is an equivalence over the generic fiber. Therefore, ωoZ is
supported on Zs, and can be considered canonically as an object in Dc(Zz,Q`).

Proposition 3.4.2 With the above notations and assumptions, there is a canonical equivalence

ωoZ ' (νX ~ νY )I(β)

in Dc(Zs,Q`(β)).

Proof. The proof of this proposition will combine various exact triangles together with an application of
Gabber’s Künneth formula for nearby cycles.

To start with, the vanishing cycles νZ of Z sits in an exact triangle in DIc (Zs,Q`)

Q`
// ψZ // νZ ,

5Note that µDI is in fact an equivalence.
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where ψZ = ψZ(Q`) is the complex of nearby cycles of Z over S. According to [Be-Be, Lemma 5.1.1] or [Il1,
4.7]), we have a natural equivalence in DIc (Zs,Q`), induced by external product

ψZ ' ψX � ψY .

The object νZ then becomes the cone of the tensor product of the two morphisms in DIc (Zs,Q`)

Q` −→ p∗(ψX) Q` −→ q∗(ψY )

where p and q are the two projections from Z down to X and Y , respectively. Now, cones of tensor products
are computed via the following well known lemma (see B.0.1 for a proof).

Lemma 3.4.3 Let C be a stable symmetric monoidal ∞-category, and

u : x→ y v : x′ → y′

two morphisms. Let C(u) be the cone of u, C(v) be the cone of v, and C(u ⊗ v) the cone of the tensor
product u⊗ v : x⊗ x′ → y ⊗ y′. Then, there exists a natural exact triangle

C(u)⊗ x′
⊕
x⊗ C(v) // C(u⊗ v) // C(u)⊗ C(v).

The above lemma implies the existence of a natural exact triangle in DIc (Zs,Q`)

νX � νY // νZ // νX � νY ,

which, by taking I-invariants, yields an exact triangle in Dc(Zs,Q`)

(T1) νIX � ν
I
Y

// νIZ
// (νX � νY )I .

The dualizing complex ωZs = (Zs → s)!Q` of Zs ' Xs ×s Ys is canonically equivalent to ωXs � ωYs (see
Lemma B.0.2). Moreover, the virtual fundamental class of Zs

ηZs : Q`(β) −→ ωZs(β) ' ωXs � ωYs(β)

simply is the external tensor product of the virtual fundamental classes of Xs and Ys. By Lemma 3.4.3 we
thus get a second exact triangle in Dc(Zs,Q`(β))

(T2) ωoXs
� ωoYs

// ωoZs
// ωoXs

� ωoYs .

There is a morphism from the triangle (T1) to the triangle (T2) which is defined using the natural morphism

αZ : νIZ(β)[1] −→ ωoZs

introduced in Remark 3.3.6. In fact, Z is proper and lci over S (since X/S is flat and lci6, and being lci
is stable under flat base change and composition), and the map αZ is defined for any proper, lci scheme Z

6Again, note that a morphism of finite type between regular schemes is lci, since we can check that its relative cotangent
complex has perfect amplitude in [−1, 0].
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over S, being an equivalence when Z is regular with smooth generic fiber. Using the compatible maps αX ,
αY and αZ we get a commutative square

νIX(β)[1]� νIY (β)[1]

αZ⊕αY

��

// νIZ(β)[1]

αZ

��
ωoXs
� ωoYs

// ωoZs
.

This produces a morphism from triangle (T1) (tensored by Q`(β)[1]) to triangle (T2)

νIX(β)[1]� νIY (β)[1] //

��

νIZ(β)[1] //

αZ

��

(νX � νY )I(β)[1]

��
ωoXs
� ωoYs

// ωoZs
// ωoXs

� ωoYs .

(6)

Since X and Y are regular with smooth generic fibers, the maps αX and αY are equivalences, therefore the
leftmost vertical morphism is also an equivalence. Thus the right hand square is a cartesian square.

Now, the rightmost vertical morphism can be written, again using the equivalences αX and αY , as

(νX � νY )I(β)[1] −→ (νIX(β)[1])�Q`(β) (νIY (β)[1]) ' (νIX � ν
I
Y )[2](β)

This morphism is the Künneth map k of Definition 3.4.1 tensored by Q`[2](β) ' Q`(β), and thus its cone is
(νX ~ νY )I(β). In order to finish the proof of the proposition it then remains to show that the cone of the
middle vertical morphism in (6)

αZ : νIZ(β)[1] −→ ωoZs

can be canonically identified with ωoZ .
For this, we remind the exact triangle (2) tensored by Q`(β)

Q`(β) // i!Z(Q`(β)) // νIZ(β)[1].

Using the fundamental class ηZ : Q`(β)→ ωZ(β), we get a morphism of triangles

Q`(β) //

id

��

i!Z(Q`(β)) //

i!Z(ηZ)

��

νIZ(β)[1]

��
Q`(β) // i!Z(ωZ(β)) // ωoZs

.

The right hand square is thus cartesian, so that the cone of the vertical morphism on the right is canonically
identified with the cone of the vertical morphism in the middle. By definition, this cone is i!Z(ωoZ). Since
ZK is smooth over K, the `-complex ωoZ is supported on Zs, and thus i!Z(ωoZ) is canonically equivalent to
ωoZ , and we conclude. 2

Corollary 3.4.4 We keep the same notations and assumptions as in Proposition 3.4.2, and we further
assume one of the following conditions:
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1. the I-action on νX and on νY is tame, or

2. the reduced scheme (Xs)red is smooth over k.

Then, there is a canonical equivalence

ωoZ ' (νX � νY )I(β)

in Dc(Zs,Q`(β)).

Proof. It is enough to prove that under any one of the two assumptions, (νX~νY )I is canonically equivalent
to (νX � νY )I . If the scheme (Xs)red is smooth over k, then we have νIX(β) = 0. Indeed, triangle (2) can be
then re-written

νIX
// Q`

// Q`[2n+ 2]

where n is the dimension of Xs. By tensoring by Q`(β), we get a triangle

νIX(β) // Q`(β)
b // Q`[2n+ 2](β) ' Q`(β)

where b is an equivalence. Therefore, νIX(β) = 0, and, by definition of I-invariant convolution, this implies
that (νX ~ νY )I ' (νX � νY )I .

Assume now that the action of I on νX and νY is tame. This means that the action of I factors through
the natural quotient I −→ It, where It is the tame inertia group, which is canonically isomorphic to Ẑ′,
the prime-to-p part of the profinite completion of Z. As we have chosen a topological generator T of It
(see Section 3.1), the actions of I are then completely caracterized by the automorphisms T on νX and νY .
Moreover, νIX is then naturally equivalent to the homotopy fiber of (1−T ) : νX → νX , and similarly for νIY .
From this it is easy to see that the Künneth map

(νX � νY )I [−1] −→ νIX � ν
I
Y

fits in an exact triangle

(νX � νY )I [−1] // νIX � ν
I
Y

// (νX � νY )I

where the second morphism is induced by the lax monoidal structure on (−)I . We conclude that there is a
natural equivalence (νX ~ νY )I ' (νX � νY )I . 2

4 Dg-categories of singularities

4.1 The monoidal dg-category B and its action

We keep our standing assumptions: A is an excellent strictly henselian dvr with perfect residue field k and
fraction field K. We let S = Spec, A and s = Spec k, as usual, and choose an uniformizer π of A.

We let G := s×hS s (derived fiber product), considered as a derived scheme over S. The derived scheme
G has a canonical structure of groupoid in derived schemes acting on s. The composition in the groupoid
G induces a convolution monoidal structure on the dg-category of coherent complexes on G

� : Cohb(G)⊗A Cohb(G) −→ Cohb(G).
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More explicitly, we have a map of derived schemes

G×s G
q // G,

defined as the projection on the first and third components s×S s×S s→ s×S s. We then define � by the
formula

E � F := q∗(E �s F )

for two coherent complexes E and F on G. More generally, if X −→ S is any scheme, with special fiber Xs

(possibly a derived scheme, by taking the derived fiber at s), the groupoid G acts naturally on Xs via the
natural projection

qX : G×s Xs ' (s×S s)×s (s×S X) ' s×S Xs −→ Xs.

This defines an external action

� : Cohb(G)⊗A Cohb(Xs) −→ Cohb(Xs)

by E �M := (qX)∗(E �sM).
The homotopy coherences issues for the above �-structures can be handled using the fact that the

construction Y 7→ Cohb(Y ) is in fact a symmetric lax monoidal ∞-functor from a certain ∞-category of
correspondences between derived schemes to the ∞-category of dg-categories over A. As a result, Cohb(G)
is endowed with a natural structure of a monoid in the symmetric monoidal ∞-category dgCatA, and that,
for any X/S, Cohb(Xs) is naturally a module over Cohb(G) in dgCatA. However, for our purposes it will
be easier and more efficient to provide explicit models for both Cohb(G) and its action on Cohb(Xs). This
will be done locally in the Zariski topology in a similar spirit to [BRTV, Section 2]; the global construction
will then be obtained by a rather straightforward gluing procedure.

4.1.1 The weak-monoidal dg-categories B+ and B

Let KA be the Koszul commutative A-dg-algebra of A with respect to π

KA : A
π // A

sitting in degrees [−1, 0]. The canonical generator of KA in degree −1 will be denoted by h. In the same
way, we define the commutative A-dg-algebra

K2
A := KA ⊗A KA

which is the Koszul dg-algebra of A with respect to the sequence (π, π). As a commutative graded A-algebra,
K2
A is SymA(A2[1]), and it is endowed with the unique multiplicative differential sending the two generators

h and h′ in degree −1 to π (and hh′ to π · h′ − π · h).
Moreover, K2

A has a canonical structure of Hopf algebroid over KA, in which the source and target map
are the two natural inclusions KA −→ K2

A, whereas the unit is given by the multiplication K2
A → KA. The

composition (or coproduct) in this Hopf algebroid structure is given by

∆ := id⊗ 1⊗ id : KA ⊗A KA = K2
A −→ K2

A ⊗KA
K2
A = KA ⊗A KA ⊗A KA.
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Finally, the antipode is the automorphism of K2
A exchanging the two factors KA. This structure of Hopf

algebroid endows the dg-category Mod(K2
A), of K2(A)-dg-modules, with a unital and associative monoidal

structure �. It is explicitely given for two object E and F , by the formula

E � F := E ⊗KA
F

where the KA ⊗A KA ⊗A KA-module on the rhs is considered as a K2
A module via the map ∆. The unit of

this monoidal structure is the object KA, viewed as a K2
A-module by the multiplication K2

A → KA. It is not
hard to see that � preserves cofibrant K2

A-dg-modules; more generally it makes Mod(K2
A) into a monoidal

model category in the sense of [Ho, Ch. 4]. Note however that the unit KA is not cofibrant in this model
structure.

Definition 4.1.1 The monoidal dg-category B+
str is defined to be Modc(K2

A), the dg-category of all cofibrant
dg-modules over K2

A which are perfect over A, together with the unit object KA. It is endowed with the
monoidal structure � described above.

By Appendix B, the localization of the dg-category B+
str along all quasi-isomorphisms, defines a weak-

monoidal dg-category (in the sense of Appendix A).

Definition 4.1.2 The weak-monoidal dg-category B+ is defined to be the localization

W−1
eq (B+

str),

where Weq is the set of quasi-isomorphisms. It is naturally a unital and associative monoid in the symmetric
monoidal ∞-category dgCatA.

Remark 4.1.3 Note that B+ defined above is a model for Cohb(G), for our derived groupoid G = s ×S s
above. Indeed, the commutative dga K2

A is quasi-isomorphic to the normalization of the simplicial algebra
k⊗L

A k. Now, since G→ S is a closed immersion, a quasi-coherent complex E on G is coherent iff its direct
image on S is coherent, hence perfect, S being regular. In particular, we have that Cohb(G) is equivalent
to the dg-category of all cofibrant K2

A-dg-modules which are perfect over A The latter dg-category is also
naturally equivalent to the localization of B+

str along quasi-isomorphisms7

We now introduce the weak monoidal dg-category B, defined as a further localization of B+. This will
be our main “base monoid” for the module dg-categories we will be interested in.

Definition 4.1.4 The weak monoidal dg-category B is defined to be the localization

B := LW (B+),

where W is the set of morphisms in B+ whose cone is perfect as a K2
A-dg-module.

As B+ it itself defined as a localization of B+
str, B can also be realized as localization of B+

str directly. Inside
B+
str we have the quasi-isomorphisms Weq of dg-modules, and also the morphisms Wpe between dg-modules

whose cones are perfect over K2
A. Then, by definition, we have a natural equivalence

B ' LWeq∪WpeB+
str.

7We leave to the reader to check that adding the unit objet KA does not change the localization.
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Since the monoidal structure � is compatible with both Weq and Wpe, this presentation implies that B
comes equipped with a natural structure of an associative and unital monoid in dgCatA. Note, moreover,
that B comes equipped with a natural morphism of monoids

B+ −→ B

given by the localization map.

4.1.2 The local actions

Let now X = SpecR be a regular and flat scheme over A. As done above for the monoid structure on B+, we
will define a strict model for Cohb(Xs), together with a strict model for the Cohb(G)-action on Cohb(Xs). In
order to do this, let KR be the Koszul dg-algebra of R with respect to π, which comes equipped with a natural
map KA −→ KR of cdga’s over A. We consider Modc(KR), the dg-category of all cofibrant KR-dg-modules
which are perfect as R-modules (note that R is regular, and see Remark 4.1.3). The same argument as in
Remark 4.1.3 then shows that this dg-category is naturally equivalent to Cohb(Xs). Moreover, Modc(KR)
has a structure of a B+

str-module dg-category defined as follows. For E ∈ B+
str, and M ∈ Modc(KR), we can

define
E �M := E ⊗KA

M,

where, in the rhs, we have used the “right” KA-dg-module structure on E, i.e. the one induced by the
composition

KA
∼ // A⊗A KA

id⊗u // KA ⊗A KA ,

u : A→ KA being the canonical map. As E is either the unit or it is cofibrant over K2
A (and thus cofibrant

over KA), E⊗KA
M is again a cofibrant KR-module, and again perfect over R, i.e. E�M ∈ Modc(KR). By

localization along quasi-isomorphisms, (see Proposition 4.1.5 for details) we obtain that Cohb(Xs) carries a
natural B+-module structure as an object in the symmetric monoidal ∞-category dgCatA.

We now apply a similar argument in order to define a B-action on Sing(Xs). Let again X = SpecR be
a regular scheme over A, and consider Modc(KR) as a B+

str-module dg-category as above. Let WR,pe be the
set of morphisms in Modc(KR) whose cones are perfect dg-modules over KR. By localization we then get
a B-module structure on LWR,pe

Modc(KR). Note that the localization LWR,pe
Modc(KR) is a model for the

dg-category Sing(Xs), which therefore comes equipped with the structure of a B-module in dgCatA.

We gather the details of above constructions in the following

Proposition 4.1.5 Let X = SpecR be a regular scheme, flat over S = SpecA, and Xs its special fiber.
Then there is a canonical B+-module structure (resp., B-module structure) on Cohb(Xs) (resp., on Sing(Xs)),
inside dgCatA.

Proof. This is an easy application of the localization results presented in Appendix B.
We first treat the case of B+ and T := Cohb(Xs). If T str := Modc(Xr) and WT,eq denotes the quasi-
isomorphisms in T str, we have W−1

T,eqT
str ' T in dgCatA. Analogously, W−1

eq B+
str ' B+ in dgCatA. In order

to apply the localization result of Appendix B, we need to prove that the tensor product � : B+
str⊗A T str →
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T str (defined in 4.1.2) sends Weq ⊗ id ∪ id⊗WT,eq to WT,eq. If L,L′ ∈ B+
str, E,E

′ ∈ T str, and w′ : L → L′,
w : E → E′ are quasi-isomorphisms, then w′ � idE is again a quasi-isomorphism (because L, and L′ are
cofibrant over K2

A, hence over KA, and thus w′ is in fact a homotopy equivalence), and the same is true for
idL � w (since L is cofibrant over KA). Therefore, � does send Weq ⊗ id ∪ id ⊗WT,eq to WT,eq, and there
is an induced canonical map (Weq⊗ id∪ id⊗WT,eq)−1B+

str⊗A T str →W−1
T,eqT

str ' Cohb(Xs). By composing

this with the natural equivalence (Weq⊗ id∪ id⊗WT,eq)−1B+
str⊗A T str →W−1

eq B+
str⊗AW

−1
T,eqT

str (Appendix

B), we finally get our B+-module structure on Cohb(Xs) inside dgCatA.
We now treat the case of B and T = Sing(Xs). Here, we consider the pairs (T str = Modc(Xr),WT ) where
WT are the maps in T str whose cones are perfect over KR, and (B∗str,W ), where W are the maps in B+

str

whose cones are perfect over K2
A. We have W−1B∗str ' B, and W−1

T T str ' Sing(Xs), and we need to prove
that both W � id and id �WT are contained in WT . Let u : L → L′ ∈ W and v : E → E′ ∈ WT , and
C(−) denote the cone construction. We have C(idL � v) ' L ⊗KA

C(v) and C(u � idE) ' C(u) ⊗KA
E.

By hypothesis, L is perfect over A hence over KA (since KA is perfect over A), and C(v) is perfect over
KA, since X → S is lci (as a map of finite type between regular schemes), and thus KA → KR is derived
lci (recall that X/S is flat so that Xs is also the derived fiber), and pushforward along a lci map preserves
perfect complexes. So, C(idL � v) ∈ WT . On the other hand, the “right-hand” map KA → K2

A (with
respect to which L and L′ are viewed as KA-dg-modules in the definition of �) is derived lci, hence C(u) is
perfect over KA, being perfect over K2

A by hypothesis. Moreover, since s → S is a closed immersion, E is
perfect over KA iff (X → S)∗E is perfect (= coherent, S being regular) over S; but (Xs → X)∗E is perfect
by hypothesis, and pushforward along X → S preserves perfect complexes, since X/S is lci. Therefore
C(u � idE) ∈ WT , and we deduce that � does send W ⊗ id ∪ id ⊗WT to WT . This gives us an induced
canonical map (W ⊗ id ∪ id ⊗ WT )−1B+

str ⊗A T str → W−1
T T str ' Sing(Xs). By composing this with the

natural equivalence (W ⊗ id∪ id⊗WT )−1B+
str⊗A T str →W−1B+

str⊗AW
−1
T T str (Appendix B), we finally get

our B-module structure on Sing(Xs) inside dgCatA.
2

Lemma 4.1.6 The natural morphism

Cohb(Xs)⊗B+ B −→ Sing(Xs)

is an equivalence of B-modules.

Proof. This is a reformulation of [BRTV, Proposition 2.31]. 2

4.1.3 The global actions

We now let X be a regular scheme, not necessarily affine anymore. We have by Zariski descent

Cohb(Xs) ' lim
SpecR⊂X

Modc(KR),

where the limit is taken over all affine opens SpecR of X. The right hand side of the above equivalence is
a limit of dg-categories underlying B+-module structures (Proposition 4.1.5). As the forgetful functor from
B+-modules to dg-categories reflects limits, this endows Cohb(Xs) with a unique structure of B+-module.
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In the same way, we have Zariski descent for Sing(Xs) in the sense that

Sing(Xs) ' lim
SpecR⊂X

LWR,pe
(Modc(KR)).

The right hand side of the above equivalence is a limit of dg-categories underlying B-module structures
(Proposition 4.1.5). As the forgetful functor from B-modules to dg-categories reflects limits, this makes the
dg-category Sing(Xs) into a B-module in a natural way.

An important property of these B+ and B-module structures is given in the following proposition.

Proposition 4.1.7 Let X be a flat regular scheme over S.

1. The B+-module structure on Cohb(Xs) is cotensored.

2. The B-module structure on Sing(Xs) is cotensored.

Proof. This follow formally from the fact that the monoidal dg-categories B+ and B are generated by their
unit objects. 2

4.2 Künneth formula for dg-categories of singularities

In the previous section we have seen that, for any regular scheme X over S, the dg-category Sing(Xs) are
equipped with a natural B-module structure. In this section we compute tensor products of dg-categories
of singularities over B.

From a general point of view, let T ∈ dgCatA be a B-module, and assume that T is also co-tensored over
B (Def. 4.1.7). Then T o has a natural structure of a B⊗−op-module given by co-tensorisation (see Appendix
A). By Proposition 4.1.7, we may take T = Sing(Xs), so that T o is a B⊗−op-module. In particular, if we
have another regular scheme Y , we are entitled to take the tensor product

Sing(Xs)
o ⊗B Sing(Ys),

which is a well defined object in dgCatA. We further assume, for simplicity, that X and Y are also flat
over S. The main result of this section is the following proposition, which is a categorical version of our
Künneth formula for vanishing cycles (Proposition 3.4.2).

Proposition 4.2.1 Let X and Y be two regular schemes, flat over S. There is a natural equivalence in
dgCatA

Sing(Xs)
o ⊗B Sing(Ys) ' Sing(X ×S Y ).

Proof. First of all, we claim that the result is local onX×SY . Indeed, we have two prestacks of dg-categories
on the small Zariski site Zzar:

U ×S V 7→ Sing(Us)
o ⊗B Sing(Vs) U ×S V 7→ Sing(U ×S V )
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for any two affine opens U ⊂ X and V ⊂ Y . These two prestacks are stacks of dg-categories, and thus we
have equivalences in dgCatA

Sing(Xs)
o ⊗B Sing(Ys) ' lim

U⊂X,V⊂Y
Sing(Us)

o ⊗B Sing(Vs) (7)

Sing(X ×S Y ) ' lim
U⊂X,V⊂Y

Sing(U ×S V ). (8)

The stack property (8) is proved in [BRTV, 2.3] (where it is moreover shown that this is a stack for the
h-topology). The stack property (7) is indeed a consequence of the same descent argument for dg-categories
of singularities. Indeed, we have the following lemma.

Lemma 4.2.2 Let Z be an S-scheme, and F be a stack of OZ-linear dg-categories. Assume that F is a
B⊗−op-module stack8, and let T0 be a B-module dg-category. Then, the prestack F ⊗B T0 of dg-categories of
ZZar, sending W ⊂ Z to F (W )⊗B T0 is a stack.

Proof of Lemma 4.2.2. It is an application of the main result of [To2]. We denote, as usual, by
T̂ := RHom(T, Â) the (non-small) dg-category of all T o-dg-modules. By the main result of [To2], the
dg-category

lim
W⊂Z

̂(F (W )⊗B T0)

is compactly generated, and its dg-category of compact objects is equivalent in dgCatA to limW⊂Z F (W )⊗B
T0. Moreover, we have

̂(F (W )⊗B T0) ' F̂ (W )⊗̂B̂T̂0,

where ⊗̂ is the symmetric monoidal structure on presentable dg-categories. As ⊗̂ is rigid when restricted to
compactly generated dg-categories, we have that ⊗̂B̂ distributes over limits on both factors. We thus have

̂(F (Z)⊗B T0) ' lim
W⊂Z

F̂ (W )⊗̂B̂T̂0.

Passing to the sub-dg-categories of compact objects, we find that

F (Z)⊗B T0 ' lim
W⊂Z

F (W )⊗B T0

which is the statement of the lemma. 3

The previous lemma immediately implies the stack property (7).
We are thus reduced to the case where X and Y are both affine, and we have to produce an equivalence

Sing(Xs)
o ⊗B Sing(Ys) ' Sing(X ×S Y )

that is compatible with Zariski localization on X and Y .

In this case we start by the following.

8I.e., F is a stack on ZZar with values in the ∞-category of B⊗−op-modules in dgCatA.
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Lemma 4.2.3 There is a natural equivalence of dg-categories over A

Lcoh(Xs)
o ⊗B+ Lcoh(Ys) ' LZs

coh(Z),

where Z := X ×S Y , and the right hand side is the dg-category of coherent complexes on Z with cohomology
supported on the special fiber Zs. T his equivalence is furthermore functorial in X and Y .

Proof of lemma 4.2.3. We use the strict models introduced in our last section. Let X := SpecB and
Y := SpecC, and KB and KC the Koszul dg-algebras of B and C with respect to the element π. As in our
last section we have the Hopf dg-algebroid K2

A and its monoidal dg-category of modules K2
A−Modc. It acts

on both, KB −Modc and KC −Modc, the dg-categories of cofibrant KB (resp. KC) dg-modules which are
perfect over B (resp. over C).

We define a dg-functor

φ : (KB −Modc)o ⊗K2
A−Modc KC −Modc −→ B ⊗A C −Modc,

where B ⊗A C −Modc is the category of B ⊗A C-dg-modules which are also perfect over B ⊗A C. This
dg-functor sends a pair of objects (E,F ) to the object D(E)⊗KA

F , where D(E) = HomKB
(E,KB) is the

KB-linear dual of E over KB. After localization with respect to quasi-isomorphism we get a well defined
morphism in dgCatA

φ : Lcoh(Xs)
o ⊗B+ Lcoh(Ys) −→ Lcoh(Z).

In order to finish the proof, we have to check two conditions.

1. The image of φ generates (by shifts, sums, cones and retracts) the full sub-dg-category LZs
coh(Z).

2. The dg-functor φ above is fully faithful.

Now, on the level of objects the dg-functor φ sends a pair (E,F ), of coherent sheaves on Xs and Ys, to
the coherent sheaf on Z

j∗(E �k F ),

where j : Zs ↪→ Z is the closed embedding and E�k F is the external product of E by F on Zs = Xs×s Ys.
It is known that coherent complexes of the form E �k F generate Lcoh(Zs). As the coherent sheaves of the
form j∗(G), for G ∈ Lcoh(Zs), clearly generate the dg-category LZs

coh(Z), we see that condition (1) above is
satisfied.

It now remains to show that φ is fully faithful. Given two pairs of objects (E,F ), (E′, F ′) ∈ Lcoh(Xs)×
Lcoh(Ys), we have the induced morphism by φ

RHom(E′, E)⊗B+(1) RHom(F, F ′) −→ RHom(j∗(D(E)� F ), j∗(D(E′)� F ′)),

where here B+(1) denotes the algebra of endomorphism of the unit in B+. As we have already seen B+ ' k[u]
as an E1-algebra. As Xs and Ys are Gorenstein scheme, the structure sheaf O is dualizing complex, and the
above morphism can also be written as

RHom(E,E′)⊗k[u] RHom(F, F ′) −→ RHom(j∗(E � F ), j∗(E
′ � F ′)).
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Both sides of the above morphisms enter in a distinguished triangle. On the left hand side, for any two
k[u]-dg-modules M and N , we have a triangle of A-dg-modules

M ⊗k N //M ⊗k N //M ⊗k [u]N,

where the morphism on the right is the natural projection. This exact triangle comes from the usual exact
triangle of k[u] bi-dgmodules

k[u]⊗k k[u] // k[u]⊗ k[u] // B.

On the right hand side, we have by adjunction

RHom(j∗(D(E)� F ), j∗(D(E′)� F ′)) ' RHom(j∗j∗(D(E)� F ),D(E′)� F ′)).

The adjunction map j∗j∗ → id, provides an exact triangle of coherent sheaves on Zs

E �k F [1] // j∗j∗(E �k F ) // E �k F.

The coboundary of this triangle is a map

E �k F −→ E �k F [2]

is precisely given by the action of k[u]. We thus have another exact triangle

RHom(E,F )⊗k RHom(E′, F ′) // RHom(E,F )⊗k RHom(E′, F ′) //

// RHom(j∗(D(E)� F ), j∗(D(E′)� F ′)).

By inspection, the morphism φ is compatible with these two triangles and provides an equivalence as wanted

RHom(E,E′)⊗k[u] RHom(F, F ′) −→ RHom(j∗(E � F ), j∗(E
′ � F ′)).

2

4.3 Saturatedness

As a consequence of the Kunneth formula for dg-categories of singularities we prove the following result.

Proposition 4.3.1 Let X be a regular and flat S-scheme.

1. If X is proper over S, then the dg-category Cohb(Xs) is proper over B+.

2. The dg-category Sing(Xs) is always smooth over B.

Proof: (1) We have to show that the big morphism

h : ̂Cohb(Xs)o ⊗A Cohb(Xs) −→ B̂+ ' Ĉoh(G).
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is small. Here G = s×S s and the morphism above is obtained as follows. The derived scheme G is a derived
groupoid which acts on Xs by means of the natural projection on the last two factors

µ : G×s Xs = s×S s×S X −→ Xs.

The projection on the first and third factors provides another morphism

p : G×s Xs −→ Xs.

The morphism p and µ put together define a morphism of derived schemes

q : G×s Xs −→ Xs ×S Xs.

Finally, we have the projection r : G×s Xs −→ G. The dg-functor

h : ̂Cohb(Xs)o ⊗A Cohb(Xs) −→ ̂Cohb(G)

is then obtained as follows. For two coherent complexes E and F on Xs, we form the external Hom
HomA(E,F ) which is a coherent complex on Xs ×S Xs. We have

h(E,F ) ' r∗(q∗HomA(E,F )).

This is a quasi-coherent complex on G. It turns out that q and r are local complete intersection morphisms
of derived schemes and moreover r is proper. This implies that q∗ and r∗ preserve coherent complexes, and
thus that h(E,F ) is coherent on G.

(2) We have Sing(Xs) ' Cohb(Xs) ⊗B+ B, thus (1) implies that Sing(Xs) is proper over B. To prove
it is smooth we need to prove that the coevaluation big morphism A −→ Sing(Xs)

o ⊗B Sing(Xs) is a small
morphism. Using our Kunneth for dg-category of singularities 4.2.1 this morphism corresponds to the data
of an ind-object in Sing(X ×S X). This object is the structure sheaf of the diagonal ∆X inside X ×S X
which is an object in Sing(X ×S X). This shows that the coevaluation morphism is a small morphism and
thus that Sing(Xs) is smooth over B. 2

5 Bloch’s conductor formula with unipotent monodromy

Our base scheme is a discrete valuation ring S = SpecA, with perfect residue field k, and fraction field
K. Let p : X −→ S be proper and flat morphism of finite type, and of relative dimension n. We assume
that the generic fiber XK is smooth over K, and that X is a regular scheme. We write K̄ for the separable
closure of K (inside a fixed algebraic closure).
In his 1985 paper [Bl], Bloch formulated the following conductor formula conjecture which is a kind of vast
arithmetic generalization of Gauss-Bonnet formula, where an intersection theoretic (coherent) term, the
Bloch’s number, is conjectured to be equal to an arithmetic (étale) term, the Artin conductor. We address
the reader to [Bl] and [Ka-Sa] for more detailed definitions of the various objects involved in the statement.

Conjecture 5.0.1 [Bloch’s conductor Conjecture] Under the above hypotheses on p : X → S, we have
an equality

[∆X ,∆X ]S = χ(Xk̄, `)− χ(XK̄ , `)− Sw(XK̄),
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where χ(Y, `) denotes the Q`-adic Euler characteristic of a variety Y , for ` prime to the characteristic of
k, Sw(XK̄) is the Swan conductor of the Gal(K̄/K)-representation H∗(XK̄ ,Q`), and [∆X ,∆X ]S is Bloch’s
number of X/S, i.e. the degree in CH0(k) ' Z of Bloch’s localised self-intersection (∆X ,∆X)S ∈ CH0(Xk) of
the diagonal in X. The (negative of the) rhs is called the Artin conductor of X/S, and denoted by Art(X/S).

It is easy to see that the conjecture above can be reduced to the strictly henselian case (k algebraically
closed). We will thus assume from now that k is algebraically closed.
The conjecture 5.0.1 is known in several special cases that we remind below.

1. When k is of characteristic zero, the formula follows from the work of [Kap]. When furthermore Xs

has only isolated singularities the formula was known as the Milnor formula stating that the dimension
of the space of vanishing cycles equals the dimension of the Jacobian ring.

2. When S is of equicharacteristic the formula has been proved recently in [Sai], based on Beilinson’s
theory of singular support of `-adic sheaves. The case of isolated singularities already appeared in
[SGA7-I, Exp. XVI].

3. When X is semi-stable over S, that is the reduced divisor (Xs)red ⊂ X is simple normal crossing, the
formula has been proved in [Ka-Sa].

In view of the previous known case, one of the major open case is for isolated singularities in mixed
characteristic, which is the conjecture appearing in Deligne’s exposé [SGA7-I, Exp. XVI].

We now introduce a new definition for the Bloch number [∆X .∆X ]S in terms of dg-categories of singu-
larities. We will denote this new number differently, as we do not make a precise comparison in the present
work.

We start by considering Sing(Xs), the dg-category of singularities ox the special fiber. It comes equiped
with its canonical B-module structure described in proposition 4.1.7. As X is proper over S we know by
proposition 4.3.1 that Sing(Xs) is saturated over B. We can thus form the trace of the identity of Sing(Xs),
which is a morphism in dgCatA

A −→ HH(B).

This morphism is by definition determined by a perfect HH(B)o-dg-module, and thus provides a class in
K-theory

[HH(Sing(Xs))] ∈ K0(HH(B)).

The Chern character of this element belongs to H0(S, r`(HH(B))) which by lax monoidality has a natural
morphism

H0(S, r`(HH(B))) −→ H0(S,HH(r`(B))).

We have already seen that the realization r`(B) is naturally equialent to i∗(Q`(β) ⊕ Q`(β)[1]) which is a
commutative monoid in SHS . As such it has a canonical projection

HH(r`(B)) −→ i∗(Q`(β)).

All together, the composition of the Chern map and this projection induces a well defined morphism

K0(HH(B)) −→ H0(S, i∗(Q`(β))) ' Q`.

The above morphism is by definition the rank function and will simpy de denoted by χ.
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Definition 5.0.2 With the notations as above, the categorical Bloch number of X/S is defined by

[∆X ,∆X ]catS := χ([HH(Sing(Xs)]) ∈ Q`.

The number defined above is a priori only an `-number. We will not investigate this in the present paper
but it can be shown that it is in fact an integer and that it always coincides with the original definition of
the Bloch’s intersection number appearing in the conjecture 5.0.1.

We now arrive at our main theorem.

Theorem 5.0.3 With X/S as above, and assume that the inertia subgroup I := Gal(K̄/Kunr) ⊆ Gal(K̄/K)
acts unipotently on H∗(XK̄ ,Q`). Then we have

[∆X ,∆X ]catS = χ(Xk̄, `)− χ(XK̄ , `).

Proof: We apply our trace formula 2.4.9 for T = Sing(Xs) and f = id. For this we need to check that
the conditions of theorem 2.4.9 are satisfied.

By Prop. 4.3.1, we know that T is saturated over B. Moreover, because the action of I is unipotent it
is also tame, and thus by Cor. 3.4.4 we have the Kunneth formula

r`(Sing(X ×S X)) ' (H(Xs, νX)⊗Q`
H(Xs, νX)I(β),

where as usual νX denotes vanishing cycles on Xs. Moreover, by Kunneth for dg-categories of singularities
we have the canonical equivalence of Prop. 4.2.1

T o ⊗B T ' Sing(X ×S X).

Putting these together, and using the main theorem of [BRTV] we see that the morphism

r`(T
o)⊗r`(B) r`(T ) −→ r`(T

o ⊗B T )

is equivalent to the Kunneth map (tensored with Q`(beta))

H(Xs, νX [−1])I ⊗QI
`
H(Xs, νX [−1])I −→ (H(Xs, νX)⊗Q`

H(Xs, νX))I [−2].

The fact that this morphism is an equivalence is now a consequence of the following lemma.

Lemma 5.0.4 Let Duni(I,Q`) be the full sub-∞-category of Dc(SpecK,Q`) consisting of all object E for
which the action of I on H i(E) is unipotent. Then the invariant ∞-functor induces an equivalence of
symmetric monoidal ∞-categories

(−)I : Duni(I,Q`) ' Dpe(Q`[ε1]),

where Q`[ε1] is the free commutative dg-algebra generated by ε1 is degree 1, and Dpe(Q`[ε1]) is its ∞-category
of perfect dg-modules.
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Proof: This is a well known fact. The ∞-functor

(−)I : Dc(SpecK,Q`) −→ Dc(Q`)

is lax symmetric monoidal so induces a lax monoidal ∞-functor

(−)I : Dc(SpecK,Q`) −→ D(QI
` ).

It is easy to see that QI
` is canonically equivalent to Q`[ε1], and the choice a such an equivalence only depends

on the choice of a generator of H1(I,Q`) ' Q`. We thus have an induced lax symmetric monoidal∞-functor

(−)I : Dc(SpecK,Q`) −→ D(Q`[ε1]).

The above ∞-functor is in fact symmetric monoidal, as it preserves unit objects and Dc(SpecK,Q`) is
generated by the unit object Q`. Finally, (−)I is also an equivalence for the same reason. 2

The above lemma implies that the Kunneth map

H(Xs, νX [−1])I ⊗QI
`
H(Xs, νX [−1])I −→ (H(Xs, νX [−1])⊗Q`

H(Xs, νX [−1]))I

is an equivalence and thus that T is admissible over B as wanted.
We have checked the conditions for the trace formula 2.4.9 so we have

Ch(HH(T/B)) = Tr(id : r`(T ))

in H0(S, r`(HH(B))). We use our morphism χ in order to get an equality in Q`

χ(Ch(HH(T/B)) = χ(Tr(id : r`(T ))).

We now have to identify the two sides of the above formula. On the left hand side, we have by definition our
Bloch number [∆X ,∆X ]catS . Unfolding the definition, and using lemma 5.0.4 above the right hand side can
be described as follows. The dg-algebra QI

` is such that K0(QI
` ) ' Z. Viewing Z inside Q`, this isomorphism

is induced by sending the class of dg-module E to the trace of the identity inside HH0(QI
` ) ' Q`. Using

the functoriality of the trace for the morphism of commutative dg-algebras QI
` −→ QI

` (beta), we see that
the right hand side of our formula simply is the trace of the identity on H(Xs, νX [−1]) as an object inside
Duni(I,Q`). This trace is easy to compute, as it equals 1 on the unit object Q`. As the unit object generates
Duni(I,Q`), we have that the trace of the identity on any object E equals the Eule characteristic of the
underlying complex of Q`-spaces.

We thus have shown that

[∆X ,∆X ]catS =
∑
i

(−1)idimQ`
H i−1(Xs, νX).

However, by proper base change the complex H(Xs, νX) appears in an exact triangle

H(Xk̄,Q`) // H(XK̄ ,Q`) // H(Xs, νX).

We therefore have shown the equality

[∆X ,∆X ]catS = χ(Xk̄, `)− χ(XK̄ , `)

as required. 2
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6 Further comments

We end this paper by few comments about our theorem 5.0.3 and the general strategy. A first comment is of
course that unipotent monodromy is a rather restrictive condition as it implies in particular tameness and
thus our theorem does not see any interesting arithmetic aspects such as the Swan conductor. However, we
would like to convince the reader here that this is only the beginning of the story and that the our Kunneth
formula for invariant vanishing cycles Prop. 3.4.2 will most probably allow to also treat non-tame situation.

As a first comment, we note that the dg-category T := Sing(Xs) together with its B-module recovers the
entire Galois action on vanishing cohomology as follows. For each totally ramified finite cover S′ −→ S of
group G, we consider DS′ := Sing(S′s), the dg-category of singularities of the special fiber of S′ over S. By
Prop. 3.4.2, we have

r`(T ⊗B DoS′) ' (H(Xs, νX)⊗Q`
Q`(G))I(β),

where Q`(G) = r`(DS′) is the reduced group algebra of G. If we denote by I ′ ⊂ I the kernel of the quotient
map I → G we thus obtained

r`(T ⊗B DoS′) ' cofib(H(Xs, νX)I → H(Xs, νX)I
′
)(β).

By passing to the limit this produces a manner to recover the cofiber (tensor Q`(β) as usual) of the morphism

H(Xs, νX)I → H(Xs, νX).

Moreover, as each G acts on DS′ we can also reconstruct the action of I on this cofiber.
This comment makes very plausible the fact that theorem 5.0.3 can be pursued beyond the unipotent

case, by making use of the tensor product T ⊗B DoS′ (for a cover S′ → S making the monodromy unipotent)
and then applying our trace formula for the G action on it. This idea is currently under investigation.

A Localizations of monoidal dg-categories

In this appendix we remind some basic facts about localizations of dg-categories introduced in [To1]. The
purpose of the section is to explain the multiplicative properties of the localization construction. In particu-
lar, we explain how localization of strict monoidal dg-categories gives rise to monoids in dgCatA, and thus
to monoidal dg-categories in the sense of our definition 2.1.1.

Let T be a dg-category over A, together with W a set of morphisms in Z0(T ), the underlying category
of T (this is the category of 0-cycles in T , i.e. Z0(T )(x, y) := Z0(T (x, y))). For the sake of brevity, we will
just say that W is set of maps in T . In other words, we allow W not to be strictly speaking a subset of the
set of morphisms in T , but just a set together with a map W → Mor(T ) from W to the set of morphisms
in T . Recall that a localization of T with respect to W , is a dg-category LWT together with a morphism in
dgCatA

l : T −→ LWT

such that, for any U ∈ dgCatA, map induced by l on mapping spaces

Map(LWT,U) −→Map(T,U)
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is fully faithful and its image consists of all T → U sending W to equivalences in U (i.e. the induced functor
[T ]→ [U ] sends elements of W to isomorphisms in [U ]).

As explained in [To1], localization always exists, and are unique up to a contractible space of choices
(because they represents an obvious ∞-functor). We will describe here a model for (T,W ) 7→ LWT which
will have nice properties with respect to tensor products of dg-categories. For this, let dgcatW,cA be the
category of pairs (T,W ), where T is a dg-category with cofibrant hom’s over A, and W a set of maps in T .
Morphisms (T,W ) −→ (T ′,W ′) in dgcatW,cA are dg-functors T −→ T ′ sending W to W ′.

We fix once for all a factorization

∆1
A

j // Ĩ
p // ∆

1
A,

with j a cofibration and p a trivial fibration. Here ∆1
A is the A-linearisation of the category ∆1 that

classifies morphisms, and ∆
1
A is the linearisation of the category that classifies isomorphisms. For an object

(T,W ) ∈ dgcatW,cA we define W−1T by the following cocartesian diagram in dg-categories∐
W ∆1

A
//

��

T

��∐
W Ĩ //W−1T,

where
∐
W ∆1

A −→ T is the canonical dg-functor corresponding to the set W of morphisms in T .

Lemma A.0.1 The canonical morphism l : T −→W−1T defined above is a localization of T along W .

Proof. According to [To1], the localization of T can be construced as the homotopy push-out of dg-categories∐
W ∆1

A
//

��

T

��∐
W A // LWT.

The lemma then follows from the observation that when T has cofibrant hom’s, then the push-out diagram
defining W−1T is in fact a homotopy push-out diagram. 2

The construction (T,W ) −→W−1T clearly defines a functor

dgcatW,cA −→ dgcatcA

from dgcatW,cA to dgcatcA, the category of dg-categories with cofibrant hom’s. Moreover, this functor comes

equipped with a natural symmetric colax monoidal structure. Indeed, dgcatW,cA is a symmetric monoial
category, where the tensor product is given by

(T,W )⊗ (T ′,W ′) := (T ⊗A T ′,W ⊗ id ∪ id⊗W ′).

We have a natural map
T ⊗A T ′ −→ (W−1T )⊗A ((W ′)−1T ′),
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which by construction has a canonical extension

(W ⊗ id ∪ id⊗W ′)−1(T ⊗A T ′) −→ (W−1T )⊗A ((W ′)−1T ′).

The unit in dgcatW,cA is (A, ∅), which provides an canonical isomorphism (∅)−1A ' A. These data endow
the functor (T,W ) 7→W−1T with a symmetric colax monoidal structure. By composing with the canonical
symmetric monoidal ∞-functor dgcatcA −→ dgCatA, we get a symmetric colax monoidal ∞-functor

dgcatW,cA −→ dgCatA,

which sends (T,W ) to W−1T . By [To3, Ex. 4.3.3], this colax symmetric monoidal ∞-functor is in fact
monoidal. We thus have a symmetric monoidal localization ∞-functor

W−1(−) : dgcatW,cA −→ dgCatA.

As a result, if T is a (strict) monoid in dgcatW,cA , then W−1T carries a canonical structure of a monoid
in dgCatA. This applies particularly to stict monoidal dg-categories endowed with a compatible notion
of equivalences. By MacLane coherence theorem any such a structure can be turned into a strict monoid
in dgcatW,cA , and by localization into a monoid in dgCatA. In other words, the localization of a monoidal
dg-categorie along a set of maps W that is compatible with the monoidal structure, is a monoid in dgCatA.
The same is true for dg-categories which are modules over a given monoidal dg-category.

B Auxiliary results

In this Appendix, for the readers’ convenience, we simply collect the proofs of some technical results that
are used in the main text. Most of them are easy and/or probably well-known, and we claim no originality,
but we were not able not locate them in the literature.

Lemma B.0.1 Let C be a stable symmetric monoidal ∞-category, and

u : x→ y v : x′ → y′

two morphisms. Let C(u) be the cone of u, C(v) be the cone of v, and C(u ⊗ v) the cone of the tensor
product u⊗ v : x⊗ x′ → y ⊗ y′. Then, there exists a natural exact triangle

C(u)⊗ x′
⊕
x⊗ C(v) // C(u⊗ v) // C(u)⊗ C(v).

Proof. Factor u⊗ v as x⊗ x′ u⊗id // y ⊗ x′ id⊗v // y ⊗ y′ , and apply the octahedral axiom to the triangles

x⊗ x′ u⊗id // y ⊗ x′ f // C(u)⊗ x′

y ⊗ x′ id⊗v // y ⊗ y′ // y ⊗ C(v)
d′

[1]
// y ⊗ x′[1] ,
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to get a triangle

C(u)⊗ x′ // C(u⊗ v) // y ⊗ C(v)
[1]

θ // C(u)⊗ x′[1]

together with the compatibility θ = f [1]◦d′. Now observe that θ◦ (u⊗ idC(v)) = 0, and apply the octahedral
axiom to the triangles

x⊗ C(v)
u⊗id // y ⊗ C(v) // C(u)⊗ C(v) ,

y ⊗ C(v)
θ // C(u)⊗ x′[1]

f // C(u⊗ v)[1]

to conclude. 2

Lemma B.0.2 Let k be an algebraically closed field, pX : X → s := Spec k, pY : Y → s be proper morphisms
of schemes, and p1 : Z := X ×s Y → X, p2 : Z := X ×s Y → Y the natural projections. If ωZ , ωX , ωY
denote the Q`-adic dualizing complexes of Z, X, and Y , respectively, there is a canonical equivalence

a : p∗1ωX ⊗ p∗2ωY −→ ωZ .

Proof. We first exhibit the map a. We denote simply by HomT (−,−) the derived internal hom in Dc(T,Q`)
(so that D := HomZ(−, ωZ) is the Q`-adic duality on Z). By adjunction, giving a map a is the same thing
as giving a map ωX → (p1)∗HomZ(p∗2ωY , p

!
2ωY ). Since pX is proper, by [SGA4-III, Exp XVIII, 3.1.12], we

have a canonical equivalence

(p1)∗HomZ(p∗2ωY , p
!
2ωY ) −→ p!

X(pY )∗HomY (ωY , ωY ).

Therefore, we are left to define a map

ωX ' p!
XQ` → p!

X(pY )∗HomY (ωY , ωY ),

and we take p!
X(α) for this map, where α is the adjoint to the canonical map Q` ' p∗YQ` → HomY (ωY , ωY ).

One can then prove that a is an equivalence, by checking it stalkwise. 2
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