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Abstract: We study analytically and numerically the thermoelectric properties of a chain of cold
atoms with dipole-dipole interactions placed in an optical periodic potential. At small potential
amplitudes the chain slides freely that corresponds to the Kolmogorov-Arnold-Moser phase of
integrable curves of a symplectic map. Above a certain critical amplitude the chain is pinned by
the lattice being in the cantori Aubry phase. We show that the Aubry phase is characterized by
exceptional thermoelectric properties with the figure of merit ZT = 25 being 10 times larger than
the maximal value reached in material science experiments. We show that this system is well
accessible for magneto-dipole cold atom experiments that opens new prospects for investigations of
thermoelectricity.

Keywords: thermoelectricity; cold atoms; dipole-dipole interaction; Aubry phase; optical lattice

1. Introduction

The phenomenon of Aubry transition describes the transport properties of a chain of particles
linked by linear springs in a periodic potential. At a small potential amplitude the chain slides freely
while above a certain potential amplitude it is pinned by the potential. This system is known as
the Frenkel-Kontorova model [1]. The transition takes place at a fixed incommensurate density of
particles per period ν. In fact the equilibrium positions of particles are described by the Chirikov
standard map [2–4] that represents a cornerstone model of systems with dynamical chaos and
symplectic maps. Indeed, a variety of physical systems can be locally described by this map [5].
In the frame of map description a density of particles corresponds to a winding number of an invariant
Kolmogorov-Arnold-Moser (KAM) curve. Such curves cover the main part of the phase space at small
potential amplitudes (small kick amplitudes K of the map). At large amplitudes the main part of
phase space becomes chaotic and the KAM curves are transformed into cantori invariant sets which
correspond to the chain ground states at a given density, as it was proved by Aubry [6]. In addition to
nontrivial mathematical properties, the Frenkel-Kontorova model represents a fundamental interest
for incommensurate crystals of interacting particles [7].

An experimental realization of linear spring interactions between particles is not very realistic.
Thus in [8] it was proposed to consider a chain of Coulomb charges placed in a periodic potential.
It was shown that this system of a one-dimensional (1D) Wigner crystal in a periodic potential can be
locally described by the Chirikov standard map and the Frenkel-Kontorova model. Thus the Aubry-like
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transition from the sliding KAM phase to the Aubry pinned phase takes place at a certain critical
potential amplitude Kc. The dependence of Kc on the density ν is obtained by a local description in
terms of the Chirikov standard map [8,9]. For an experimental realization of the Aubry-like transition
it was proposed to use cold ions placed in both a periodic potential and a global harmonic trap [8].
The experimental studies of such a system had been started in [10,11]. The first signatures of the Aubry
transition have been reported by the Vuletic group with up to five ions [12]. The chains with a larger
number of ions are now under investigations in [13,14].

A significant interest for a Wigner crystal transport in a periodic potential is related to the
recent results showing that the Aubry phase is characterized by remarkable thermoelectric properties
with high Seebeck coefficient S and high figure of merit ZT [9,15]. The fundamental grounds of
thermoelectricity had been established in far 1957 by Ioffe [16,17]. The thermoelectricity is characterized
by the Seebeck coefficient S = −∆V/∆T (or thermopower). It is expressed through a voltage difference
∆V compensated by a temperature difference ∆T. Below we use units with a charge e = 1 and the
Boltzmann constant kB = 1 so that S is dimensionless (S = 1 corresponds to S ≈ 88 µV/K (microvolt
per Kelvin)). The thermoelectric materials are ranked by a figure of merit ZT = S2σT/κ [16,17] where
σ is the electric conductivity, T the temperature, and κ the material thermal conductivity.

At present, the request for efficient energy usage stimulated extensive investigations of various
materials with high characteristics of thermoelectricity as reviewed in [18–22]. The request is to
find materials with ZT > 3 that would allow an efficient conversion between electrical and thermal
forms of energy. The best thermoelectric materials created till now have ZT ≈ 2.6. At the same time,
the numerical modeling reported for a Wigner crystal in the Aubry phase reached values ZT ≈ 8 [9,15].

Thus, investigations of Wigner crystal transport in a periodic potential can help to understand
the conditions favoring high ZT values. At present, a hundred of cold trapped-ions can be routinely
kept for hours in experimental device [23] and thus such a system is promising for experimental
investigations of thermoelectricity [9]. However, for a typical distance between charges being `∼1 µm
the Coulomb interactions are rather strong and very high amplitudes of optical lattice potential
VA ∼ kB × 3 K (Kelvin) are required [9]. This is hard to reach experimentally since typical optical
potential amplitudes are VA ∼ kB × 10−3 K [24]. Thus to find a more suitable experimental realization
of Aubry transition we study here a chain of magneto-dipole atoms placed in an optical periodic
potential. The strength of interactions between nearby magneto-dipole atoms on a distance of
1 µm is significantly smaller compared to Coulomb interactions, and thus a significantly smaller
amplitude of the optical potential is required for the observation of the Aubry-like transition. Indeed,
the experimental investigations of quantum properties of cold magneto-dipole atoms allowed to
observe a number of interesting many-body effects (see e.g., [25–27]).

2. Methods

The chain of atoms with magneto-dipole interactions in 1D periodic potential is described by
the Hamiltonian:

H =
N

∑
i=1

(
Pi

2

2
+ V(xi)

)
+ UI ,

V(xi) = −K cos xi , UI = ∑
i>j

Udd

| xi − xj |3
(1)

Here xi, Pi are conjugated coordinate and momentum of atom i, and V(x) is an external periodic
optical potential of amplitude K. The magneto-dipole-dipole interactions are given by the UI ∝ Udd =

µ2/(`/2π)3 term with µ ≈ 10µB (for 164Dy atoms) and µB is the Bohr magneton (we assume all
magnetic momenta to be polarized) [25]. The Hamiltonian is written in dimensionless units where the
lattice period is ` = 2π and atom mass is m = 1. In the following we also take Udd = 1 so that K in (1) is
the dimensionless amplitude of the periodic potential and thus the physical interaction is UA = UddK.
In these atomic-type units, the physical system parameters are measured in units of ra = `/2π

for length, and of εa = µ2/ra
3 = Udd for energy. For ` = 1 µm the dimensionless temperature
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T = 1 (or kBT) corresponds to the physical temperature T = εa/kB = 100µB
2/(kB(`/2π)3) ≈ 25 nK

(nano-Kelvin) at µ = 10µB.
The thermoelectric properties of model (1) are determined in the framework of the Langevin

approach [9,15] with the equations of motion: Ṗi = v̇i = −∂H/∂xi + fdc − ηPi + gξi(t), ẋi = Pi = vi.
Here η describes phenomenologically the dissipative relaxation processes, and the amplitude of
Langevin force g is given by the fluctuation-dissipation theorem g =

√
2ηT; the random variables ξi

have normal distribution being δ−correlated, vi is atom velocity, fdc is a static force applied to atoms.
As in [9,15], we use η = 0.02, the results being not sensitive to this quantity. The computations of S
are done as it is described in [9,15]. At fixed temperature T, we apply a static force fdc which creates
an energy (voltage) drop ∆V = fdc2πL and a gradient of atom density ν(x) along the chain with L
potential periods and N atoms. Then, for fdc = 0 within the Langevin equations, we impose a linear
gradient of temperature ∆T along the chain, and in the stabilized steady-state regime, we determine
the charge density gradient of ν(x) along the chain (see e.g., Figure 2 in [15]). The data are obtained
in the linear regime of relatively small fdc and ∆T values. Then, the Seebeck coefficient, S = ∆V/∆T,
is computed using values of ∆V and ∆T for which the density gradient obtained from the application
of a voltage ∆V compensates the one obtained from the application of a gradient of temperature ∆T.
We used the computation times up to t = 108 to achieve the relaxation of the chain and to reach the
required statistical accuracy.

We assume that the cold atoms are in contact with an external environment which is able to
play the role of thermostat (e.g., residual gas). In order to compute Seebeck coefficient, we need
a temperature gradient along the chain. In the Langevin equation, we can impose that the temperature
T is a function of the atom position x along the chain, T = T(x) = T0 + gx, where T0 is the
average temperature and g = dT/dx is a small temperature gradient. In cold atom experiments,
such a temperature gradient can be setup by multiple laser beams generating a zero average
fluctuating force f (x). The average of the square of the force, f 2(x), should change linearly along the
chain. Consequently, these laser beams induced fluctuating forces will create additional ion velocity
fluctuations with (δvi)

2 ∝ f 2(x) ∝ (T(x)− T0) = gx producing a temperature gradient along the
ion chain.

3. Results

3.1. Ground State Properties

The equilibrium static atom positions are determined by the conditions ∂H/∂xi = 0, Pi = 0 [6,8,9].
In the approximation of nearest neighbor interacting atom, this leads to the symplectic map for
recurrent atom positions xi

pi+1 = pi + (K/3)g(xi) , xi+1 = xi + 1/p1/4
i+1 , (2)

where the effective momentum pi = 1/(xi − xi−1)
4 is conjugated to xi and the kick function g(x) is

such as Kg(xi)/3 = −dV/dx|x=xi
/3 = −(K/3) sin xi. This map description assumes only nearest

neighbor interactions. Below, we show that it well describes the real situation with interactions between
all the atoms. This is rather natural since the nearest neighbor approximation worked already well
for ions with Coulomb interactions [8,9], moreover for dipole atoms, the interactions drop even faster
with the distance between atoms.

As in [9,15], the validity of the map (2) is checked numerically by finding the ground state
configuration using numerical methods of energy minimization described in [6,8] and taking into
account the long range nature of the interactions between all the atoms. The obtained ground state
positions, {x1, . . . , xN}, of the N atoms allows to recursively determine the N effective momenta,
{p1, . . . , pN}, by inverting the second equation of the map (2), pi = (xi+1 − xi)

−4. Once obtained,
the effective momenta can be used to compute successively N values {g(x1), . . . , g(xN)} of the kick
function g(x), by using the first equation of the map (2), (K/3) g(xi) = pi − pi+1. Figure 1 (top panels)
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shows that the map (2), obtained in the nearest neighbor approximation, is indeed valid since the
{g(x1), . . . , g(xN)} values fall on the top of the function g(x) = sin x analytically obtained from the
equations of motion derived from the Hamiltonian (1). This means that the description of the positions
of the N atoms in the ground state can be mapped on a dynamical problem of a fictitious kicked
particle taking successively the positions, {x1, . . . , xN}, and the momenta , {p1, . . . , pN}. The dynamics
of the fictitious kicked particle is governed by the map (2). Phase space portraits of the map (2) is given
in Figure 1 (middle panels). A phase space portrait (green points and curves) is obtained by taking
many different initial conditions (x0, p0) and computing many of the corresponding successive phase
space points (xi, pi). In Figure 1 (middle panels), we show the phase space portrait for KAM phase
(K = 0.02 < Kc, left panel) and for the Aubry phase (K = 0.1 > Kc, right panel). We observe that the
ground state positions of the atoms (red circles) are located, for K = 0.02 (left panel), on the top of
an invariant KAM curve which is a situation corresponding to a regular motion of the fictitious kicked
particle, and, for K = 0.1 (right panel), in the chaotic component of the phase space portrait which is
a situation corresponding to a chaotic motion of the fictitious kicked particle. All the chaotic dynamics
concepts used in the article are well documented in the literature (see, for example, [3,4]). Figure 1
(bottom panels) shows the hull function h(x) = (xi + π)[mod 2π] − π with x = (2π(i − 1)/ν +

π)[mod 2π]− π. Indeed, for K → 0, i.e., for a vanishing optical potential, we have h(x) = x. For
K < Kc, the hull function h(x) still follows this linear law with smooth deviations, while, for K > Kc,
we obtain the devil’s staircase corresponding to the fractal cantori structure of the chaotic phase space.
The transition from the smooth hull function, which is typical for a sliding chain in the KAM phase,
to the devil’s staircase, which is typical for a pinned chain in the Aubry phase, is visible in Figure 1
(bottom panels). Thus, with ν = 89/55 ' νg = (1 +

√
5)/2 = 1.618..., i.e., 89 atoms (in their ground

state) distributed in 55 optical potential wells, the Aubry transition takes place at a certain Kc inside
the interval 0.02 < Kc < 0.1.

The equations of motion can be linearized in a vicinity of equilibrium positions and, in this
way, we obtain the phonon spectrum ω(k) of small oscillations with k = i/N being a scaled mode
number. The examples of spectrum are shown in Figure 2 (left panel). At K = 0.02, in the KAM
phase, we have ω ∝ k corresponding to the acoustic modes, while at K = 0.1, inside the Aubry phase,
we have appearance of an optical spectral gap related to the atomic chain pinned by the potential. Such
a modification of the spectrum properties is similar to the cases of the Frenkel-Kontorova model [6] and
the ion chain [8,9]. Figure 2 (right panel) shows that the minimal spectral frequency ω0(K) is practically
independent of the optical potential amplitude K inside the KAM phase at K < Kc (being close to zero
with ω0 ∝ 1/L) and it increases with K inside the Aubry phase being independent of L for K > Kc.
Thus, the critical Kc values can be approximately determined as an intersection of a horizontal line
ω0 = const with a curve of growing ω0(K) at K > Kc. From these properties, we obtain numerically
that Kc ≈ 0.019 for the Fibonacci density ν ≈ νg = 1.618... We obtained also Kc ≈ 0.14 for ν = 2.618,
and Kc ≈ 0.4 for ν = 3.618.
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Figure 1. Functions related to the dynamical map obtained from the ground state equilibrium positions
{x1, . . . , xN} of the atoms at K = 0.02 (left column) and K = 0.1 (right column). Top row: the red
circles show the reconstructed kick function g(x) using the the ground state positions {x1, . . . , xN}.
The dashed curved gives the theoretical form of the kick function g(x) = − sin x. Middle row: phase
space portrait of the (x, p)-map (2) (green points) and the actual ground state positions of the atoms (red
circles). Bottom row: the atom positions are shown via the hull function h(x) = (xi + π)[mod 2π]− π

versus x = (2π(i− 1)/ν+π)[mod 2π]− π; the positions of the two atoms at the chain ends are fixed.
Here we have N = 89 atoms and L = 55 periods, ν = 89/55.

0
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ωk
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ω0(K)
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K

Figure 2. Left panel: phonon spectrum ω(k) for K = 0.02 (open circles) and K = 0.1 (full circles) for
ν = N/L = 89/55. Right panel: dependence of the lowest phonon frequency ω0 on K for the lattice
with N dipole atoms in L lattice periods at density ν ≈ νg = 1.618...: N/L = 55/34 (blue curve), 89/55
(green curve), 144/89 (black curve); the arrow marks the point of the Aubry transition at Kc = 0.019
defined as it is described in the text.

3.2. Density Dependence of Aubry Transition

The dependence of Aubry transition point Kc(ν) can be obtained from the local description of
the map (2) by the Chirikov standard map. For that, the equation of xi+1 in (2) is linearized in pi+1
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near the resonant value pr that leads to the standard map form yi+1 = yi − Keff sin xi, xi+1 = xi − yi+1
with yi ∝ pi and Keff = (2π)5K/(12ν5) (see details in Appendix A and [9]). The last KAM curve is
destroyed at Keff ≈ 1 [2,3] that gives

Kc ≈ 12(ν/2π)5 ≈ 0.0136(ν/νg)
5 , νg = 1.618... (3)

The numerically obtained dependence Kc(ν) is shown in Figure 3 for three different chain lengths
L. On average, it is well described by the theory (3) taking into account that Kc is changed by almost
four orders of magnitude for the considered range 0.5 ≤ ν ≤ 3.5. There are certain deviations in the
vicinity of integer resonant densities ν = 1, 2, 3 which should be attributed to the presence of a chaotic
separatrix layer at such resonances that reduces significantly the critical Kc for KAM curve destruction
(similar effect has been discussed for the ion chains [9]).

10−4

10−3

10−2

10−1

100
Kc

0.5 1 1.5 2 2.5 3 3.5
ν

Figure 3. Dependence of the Aubry transition critical threshold Kc on the atomic density ν shown for
different chain lengths L = 34 (blue curve), 55 (green curve) and 89 (black curve). The red full curve
shows the theoretical dependence (3), the dashed cyan curve shows the fit with Kc = 0.0137(ν/νg)α,
νg = 1.618... and α = 4.82± 0.08.

3.3. Seebeck Coefficient

The dependencies of S on potential amplitude and temperature are shown in Figure 4 for two
Fibonacci-like values of density ν ≈ 1.618 and ν ≈ 2.618. The results clearly show that in the KAM
phase K < Kc we have only rather moderate values of S ∼ 1 being close to those value of noninteracting
particles (a similar result was obtained in [9,15]). In the Aubry phase at K > Kc, we have an increase of
S with the increase of K/Kc, and a decrease of S with the increase of T/Kc. This is rather natural since at
T � Kc the lattice pinning effect disappears due to the fact that the atom energies become significantly
larger than the barrier height, and we approach to the case without potential corresponding to the
KAM phase. The maximal obtained values are as high as S ≈ 10–15 being still smaller those obtained
for ion chains [9,15]. Nevertheless, as shown below, we find very large figure of merit ZT values in
this regime.
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Figure 4. Dependence of the Seebeck coefficient S on the rescaled potential amplitude K/Kc (left
column) and temperature T/Kc (right column) for N/L = 34/21 = ν ≈ 1.618 (top row) and N/L =

55/21 = ν ≈ 2.618 (bottom row). Left: color curves show the cases T/Kc = 0.5, 1, 2, 3, 4 for N/L =

34/21 and T/Kc = 0.3, 0.8, 1.3, 1.6, 2.3 for N/L = 55/21 (black, violet, blue, green, red from top to
bottom curves). Right: K/Kc = 0, 2, 4, 6, 8 for N/L = 34/21 and N/L = 55/21 (black, violet, blue,
green, red from bottom to top curves). Here, Kc = 0.019 for ν = 34/21 and Kc = 0.14 for ν = 55/21.

3.4. Figure of Merit

To obtain the value of ZT we need to compute the conductivity of atoms, σ, and their thermal
conductivity, κ. The value of σ is defined through the current J of atoms induced by a static force
fdc for a chain with periodic boundary conditions: j = νvat/2π where vat is the average velocity of
atoms and σ = j/ fdc; for K = 0, we have σ = σ0 = ν/(2πη). The heat flow J is induced by the
temperature gradient due to the Fourier law with the thermal conductivity κ = J/(∂T/∂x). The
heat flow is computed as it is described in [9,15] and in Appendix B. The values of σ and κ drop
exponentially with the increase of K inside the Aubry phase at K > Kc (see Figures A1 and A2 in
Appendix B). The computations performed for various chain lengths at fixed density confirm that the
obtained values of S, σ, κ are independent of the chain length for T > Kc confirming that the results
are obtained in the thermodynamic limit (see Figure A3 in Appendix C). For T � Kc, the pinning is
too strong and much larger computation times are needed for numerical simulations to reduce the
fluctuations.

We note that, for cold atoms in an optical lattice, a static force can be created by a modification
of the lattice potential or by lattice acceleration. There is now a significant progress with the
temperature control of cold ions and atoms (see, for example, [28–30]) and we expect that a generation
of temperature gradients for measurements of κ and S can be realized experimentally.

With the computed values of σ, κ, S , we determine the figure of merit ZT. Its dependence on K
and T is shown in Figure 5 for ν ≈ 1.618 and 2.618 (additional data are given in Figures A4 and A5 in
Appendices D and E). For ν ≈ 1.618, we obtain the maximal values ZT ≈ 5 being comparable with
those of ion chain reported in [15]. However, for ν ≈ 2.618, we find significantly larger maximal values
with ZT ≈ 25. We attribute such large ZT values to the significantly more rapid spatial drop of dipole



Appl. Sci. 2020, 10, 2090 8 of 13

interactions comparing to the Coulomb case, arguing that this produces a rapid decay of the heat
conductivity with the increase of K > Kc.
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Figure 5. Color map of the figure of merit ZT values for density ν = N/L = 34/21 ≈ 1.618
(top panel) and ν = N/L = 55/21 ≈ 2.618 (bottom panel); numbers mark isocontour values of ZT.
Here, Kc = 0.019 for ν = 34/21 and Kc = 0.14 for ν = 55/21.

4. Discussion

The obtained results show that a chain of dipole atoms in a periodic potential is characterized by
outstanding values of the figure of merit ZT ≈ 25 being by a factor 10 larger than the actual ZT values
reached till present in material science [22]. Thus, the experiments with cold dipole atoms in the Aubry
phase of an optical lattice open new prospects for experimental investigation of fundamental aspects
of thermoelectricity.

We note that for a laser wavelength λ = 564 nm, the optical lattice period is ` = λ/2 = 282 nm,
and thus for ν ≈ 2.6, we have the Aubry transition at the potential amplitude VA/kB = TA =

0.14εa/kB ≈ 200 nK. Such potential amplitude and temperature are well reachable with experimental
setups at T ≈ 20 nK used in [27]. At the same time at T ≈ 200 nK the wave length of Dy atoms becomes
λDy = h̄/

√
2mDykBT ≈ 90 nm < ` being only a few times smaller than the lattice period `. Thus the

quantum effects can start to play a role. However, their investigations require a separate study.
Since such Aubry phase parameters are well accessible for experiments, it may be also interesting

to test the quantum gate operations of atomic qubits, formed by two atomic levels, with dipole
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interaction between qubits. Such a system is similar to ion quantum computer in the Aubry phase
discussed in [31]. As argued in [31,32], the optical gap of Aubry phase should protect gate accuracy.
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Appendix A. Local Description by the Chirikov Standard Map

The local description of the map (2) by the Chirikov standard map is done in the standard way: the
second equation for the phase change of xi+1 is linearized in the momentum pi+1 near the resonances
defined by the condition xi+m− xi = mp−1/4

r = 2πm′ where m and m′ are integers. This determines the
resonance positions in momentum with pr(ν) = (ν/2π)4 with ν = m/m′. Then the Chirikov standard
map is obtained with the variables yi = αr(pi − pr) + p−1/4

r , αr = 1/(4pr
5/4) and Keff = K(2π/ν)5/12.

The critical Keff value is defined by the condition Keff ≈ 1 that leads to the Equation (3).

Appendix B. Numerical Computation of Conductivity

The dependence of the rescaled effective conductivity σ/σ0 is shown in Figure A1.

10−2

10−1

100

σ/σ0

0 2 4 6 8
K/Kc

10−2

10−1

100

σ/σ0

0 2 4 6 8
K/Kc

Figure A1. Dependence of the rescaled conductivity of the atom chain σ/σ0 on the rescaled potential
amplitude K/Kc at different rescaled temperatures T/Kc. Left panel: T/Kc = 0.25 (black curve), 1
(blue curve), 2 (green curve), 3 (red curve), curves from bottom to top, ν = 34/21 ≈ 1.618, Kc ' 0.019.
Right panel: same values of T/Kc with the same order of curves, ν = 55/21 ≈ 2.618, Kc ' 0.14. Here
σ0 = ν/(2πη).

The heat conductivity is computed from the Fourier law J = κ(∂T/∂x). Here J is the heat flow
computed as described in [9,15]. Namely, it is computed from forces acting on a given atom i from
left and right sides being respectively f L

i = ∑j<i 3/|xi − xj|4, f R
i = −∑j>i 3/|xi − xj|4. For an atom

moving with a velocity vi, these forces create left and right energy flows JL,R = 〈 f L,R
i vi〉t . In a steady

state, the mean atom energy is independent of time and JL + JR = 0. But, the difference of these
flows gives the heat flow along the chain: J = (JR − JL)/2 = 〈( f R

i − f L
i )vi/2〉t . Such computations

of the heat flow are done with fixed atom positions at chain ends. In addition, we perform time
averaging using accurate numerical integration along atom trajectories that cancels contribution of
large oscillations due to quasi-periodic oscillations of atoms. In this way, we determine the thermal
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conductivity via the relation κ = 2π JL/∆T. The obtained results for κ are independent of small ∆T.
It is useful to compare κ with its value κ0 = σ0Kc. The dependence of κ/κ0 on K at different T is shown
in Figure A2.
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κ/κ0
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K/Kc

Figure A2. Dependence of the rescaled heat conductivity of the atom chain κ/κ0 on the rescaled
potential amplitude K/Kc at different rescaled temperatures T/Kc. The rescaled parameters are the
same as in Figure A1. Here σ0 = ν/(2πη), κ0 = σ0Kc.

Appendix C. Independence of Chain Length

Here in Figure A3, we present results at different chain lengths for fixed atom density showing
that the Seebeck coefficient is independent of the system size.

0

1

2

3

4

5
S

0 2 4 6 8
K/Kc

0

5

S

0 2 4 6 8
K/Kc

Figure A3. Dependence of the Seebeck coefficient S on the rescaled potential amplitude K/Kc

at different rescaled temperatures T/Kc. Left panel: T/Kc = 1 (black curve/symbols), 2 (blue
curve/symbols), 4 (red curve/symbols); here ν = N/L = 34/21 ≈ 1.618 (full circles), 55/34 (triangles),
89/55 (squares) with colors from bottom to top; Kc = 0.019. Right panel: same as in the left panel for
T/Kc = 0.8, 1.3, 1.6 at same color order for ν = N/L = 55/21, 89/34, 144/55 ≈ 2.618 at same symbol
order; Kc = 0.14.

We found similar independence of the chain length for σ, κ and power factor PS = S2σ/σ0.

Appendix D. Additional Data for ZT

Additional data for the figure of merit ZT are given in Figure A4.
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Figure A4. Dependence of ZT on the rescaled potential amplitude K/Kc (left column) and on the
rescaled temperature T/Kc (right column) for N/L = 34/21 = ν ≈ 1.618 (top row) and N/L =

55/21 = ν ≈ 2.618 (bottom row). Left: color curves show the cases T/Kc = 0.5, 1, 2, 3, 4 for N/L =

34/21 and T/Kc = 0.3, 0.8, 1.3, 1.6, 2.3 for N/L = 55/21 (black, violet, blue, green, red from top to
bottom curves). Right: K/Kc = 0, 2, 4, 6, 8 for N/L = 34/21 and N/L = 55/21 (black, violet, blue,
green, red from bottom to top curves). Here Kc = 0.019 for ν = 34/21 and Kc = 0.14 for ν = 55/21.

Appendix E. Additional Data for Power Factor

Additional data for the power factor PS = S2σ/σ0 are given in Figure A5.
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Figure A5. Dependence of the power factor PS = S2σ/σ0 on system parameters. Left panel: ν =

N/L = 34/21, T/Kc = 0.25, 1, 2, 4.25 (black, blue, green, red colors), Kc = 0.019. Right panel:
ν = N/L = 55/21, T/Kc = 0.25, 0.5, 1.5, 2.5 (black, blue, green, red colors), Kc = 0.14.
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