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Abstract. Fixing a number field, the space of all ideal lattices, up to isometry, is naturally an Abelian
group, called the Arakelov class group. This fact, well known to number theorists, has so far not been
explicitly used in the literature on lattice-based cryptography. Remarkably, the Arakelov class group
is a combination of two groups that have already led to significant cryptanalytic advances: the class
group and the unit torus.
In the present article, we show that the Arakelov class group has more to offer. We start with the
development of a new versatile tool: we prove that, subject to the Riemann Hypothesis for Hecke L-
functions, certain random walks on the Arakelov class group have a rapid mixing property. We then
exploit this result to relate the average-case and the worst-case of the Shortest Vector Problem in
ideal lattices. Our reduction appears particularly sharp: for Hermite-SVP in ideal lattices of certain
cyclotomic number fields, it loses no more than a Õ(

√
n) factor on the Hermite approximation factor.

Furthermore, we suggest that this rapid-mixing theorem should find other applications in cryptography
and in algorithmic number theory.

1 Introduction

The task of finding short vectors in Euclidean lattice (a.k.a the approximate Shortest Vector Problem)
is a hard problem playing a central role in complexity theory. It is presumed to be hard even for quantum
algorithms, and thanks to the average-case to worst-case reductions of Ajtai [1] and Regev [40], it has become
the theoretical foundation for many kinds of cryptographic schemes. Furthermore, these problems appear
to have resisted the quantum cryptanalytic effort so far; the overlying cryptosystems are therefore deemed
quantum-safe, and for this reason are currently being considered for standardization.

Instantiations of these problems over ideal lattices have attracted particular attention, as they allow very
efficient implementations. The Ring-SIS [30,28,38] and Ring-LWE [43,29] problems were introduced, and
shown to reduce to worst-case instances of Ideal-SVP (the specialization of approx-SVP to ideal lattices).

In this work, we propose to recast algebraic lattice problems in their natural mathematical abstraction. It
is well known to number theorists (e.g. [41]) that the space of all ideal lattices (up to isometry) in a given field
is naturally an Abelian group, called the Arakelov class group. Yet, this notion has never appeared explicitly
in the literature on lattice-based cryptography. The relevance of this perspective is already illustrated by
some previous work which implicitly exploit Arakelov ideals [15,6] and even the Arakelov class group [39,26].
Beyond its direct result, our work aim at highligthing this powerful formalism for finer and more rigorous
analysis of computational problems in ideal lattices.

1.1 Our result

The first half of this work (Section 3) is dedicated to the development of a new versatile tool: we prove that,
subject to the Riemann Hypothesis for Hecke L-functions, certain random walks on the Arakelov class group
have a rapid mixing property. In the second half (Section 4), we exploit this result to relate the average-case
and the worst-case of Ideal-SVP, thanks to the interpretation of the Arakelov class group as the space of
all ideal lattices. Note that this reduction does not directly impact the security of existing schemes: apart



from the historical Fully Homomorphic Encryption scheme of Gentry [16],5 there exists no scheme based on
the average-case version of Ideal-SVP. The value of our result lies in the introduction of a new tool, and an
illustration of the cryptanalytic insights it offers.

A second virtue of our technique resides in the strong similarities it shares with a distant branch of
cryptography: cryptography based on elliptic curves [22], or more generally on Abelian varieties [23]. These
works established that the discrete logarithm problem in a randomly chosen elliptic curve is as hard as in
any other in the same isogeny class. The strategy consists in doing a random isogeny walk, to translate
the discrete logarithm problem from a presumably hard curve to a uniformly random one. The core of this
result is a proof that such walks are rapidly mixing within an isogeny graph (which are isomorphic to the
Cayley graph of the class group of a quadratic number field). As long as the length of the random walk is
polynomial, the reduction is efficient.

We proceed in a very similar way. The set of ideal lattices (up to isometry) of a given number field K
can be identified with the elements of the Arakelov class group (also known as the degree zero part Pic0

K of
the Picard Group). There are two ways to move within this group: given an ideal, one can obtain a new one
by ‘distorting’ it, or by ‘sparsifying’ it. In both cases, finding a short vector in the target ideal also allows to
find a short vector in the source ideal, up to a certain loss of shortness. This makes the length of the walk
even more critical in our case than in the case of elliptic curves: it does not only affect the running time, but
also the quality of the result.

Nevertheless, this approach leads to a surprisingly tight reduction. In the case of cyclotomic number fields
of conductor m = pk, under the Riemann Hypothesis for Hecke L-functions (which we abbreviate ERH for
the Extended Riemann Hypothesis), and a mild assumption on the structure of the class groups, the loss of
approximation factor is as small as Õ(

√
m). In other words:

Main Theorem (informal). If there exists a polynomial-time algorithm for solving Hermite-SVP with
approximation factor γ over random ideal lattices of Q(ζm), then there also exists an algorithm that solves
Hermite-SVP in any ideal lattice with approximation factor γ′ = γ ·

√
m · poly(logm).

In fact, this theorem generalizes to all number fields, but the loss in approximation factor needs to be
expressed in more involved quantities. The precise statement is the object of Theorem 4.5.

Prerequisites. The authors are aware that the theory of Arakelov class groups, at the core of the present
article, may not be familiar to all readers. Given space constraints, some definitions or concepts are introduced
very briefly. We found Neukirch’s textbook [36] to be a good primer.

1.2 Overview

The Arakelov class group. Both the unit group [9] and the class group [10] have been shown to play a key role
in the cryptanalysis of ideal lattice problems. In these works, these groups are exploited independently, in
ways that nevertheless share strong similarities with each other. More recently, both groups have been used
in combination for cryptanalytic purposes [39,26]. It therefore seems natural to turn to a unifying theory.

The Arakelov class group (denoted Pic0
K) is a combination of the unit torus T = LogK0

R/Log(O∗K) and of
the class group ClK . The exponent 0 here refers to elements of algebraic norm 1 (i.e., modulo renormalization),
while the subscript R indicates that we are working in the topological completion of K. By ‘a combination’
we do not exactly mean that Pic0

K is a direct product; we mean that there is a short exact sequence

0 −→ T −→ Pic0
K −→ ClK −→ 0.

That is, T is (isomorphic to) a subgroup of Pic0
K , and ClK is (isomorphic to) the quotient Pic0

K /T . The
Arakelov class group is an Abelian group which combines an uncountable (yet compact) part T and a finite
part ClK ; topologically, it should be thought of as |ClK | many disconnected copies of the torus T .
5 We here refer to the full fledge version of the scheme from Gentry’s PhD Thesis, which differs from the scheme
in [17], the latter having been broken already [8,15,9,6].
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A worst-case to average-case reduction for ideal-SVP. An important aspect of the Arakelov Class Group for
the present work is that this group has a geometric interpretation: it can essentially be understood as the
group of all ideal lattices up to K-linear isometries. Furthermore, being equipped with a metric, it naturally
induces a notion of near-isometry. Such a notion gives a new handle to elucidate the question of the hardness
of ideal-SVP: knowing a short vector in I, and a near-isometry from I to J , one can deduce a short vector
of J up to a small loss induced by the distortion of the near-isometry. This suggest a strategy towards
a worst-case to average-case reduction for ideal lattices, namely randomly distort a worst-case ideal to a
random one.

However, there are two issues with this strategy: first near-isometry leaves one stuck in a fixed class
of ClK ; i.e., one is stuck in one of the potentially many separated copies of the torus that constitute the
Arakelov class group. Second, even if |ClK | = 1, the torus might be too large, and to reach the full torus
from a given point, one may need near-isometry that are too distorted.

In the language of algebraic geometry, distortion of ideal lattices corresponds to the ‘infinite places’ of
the field K, while we can also exploit the ‘finite places’, i.e., the prime ideals. Indeed, if a is an integral ideal
of small norm and J = aI, then J is a sublattice of I and a short vector of J is also a somewhat short vector
of I, an idea already used in [10,39].

Random walk in the Arakelov class group. The questions of whether the above strategy for the self-reducibility
of ideal-SVP works out, and with how much loss in the approximation factor therefore boils down to the
following question:

How fast does a random walk in the Arakelov class group converges to the uniform distribution ?

More specifically, this random walk has three parameters: a set P of finite places, i.e., a set of (small) prime
ideals, a length N for the discrete walk on finite places, and finally a variance s for a continuous walk (e.g.
a Gaussian) on infinite places. The loss in approximation factor will essentially be driven by BN/n · exp(s)
where B is the maximal algebraic norm of the prime ideals in P, and n the rank of the number field.

Because the Arakelov class group is abelian and compact, such a study is carried out by resorting to
Fourier analysis: uniformity is demonstrated by showing that all the Fourier coefficients of the distribution
resulting from the random walk tend to 0 except for the coefficient associated with the trivial character. For
discrete walks, one considers the Hecke operator acting on distributions by making one additional random
step, and shows that all its eigenvalues are significantly smaller than 1, except for the eigenvalue associated
with the trivial character. This is merely an extension to compact groups of the spectral gap theorem applied
to the Cayley graph of a finite abelian group, as done in [22].

Our study reveals that the eigenvalues are indeed sufficiently smaller than 1, but only for low-frequency
characters. But this is not so surprising: these eigenvalues only account for the discrete part of the walk,
using finite places, which leaves discrete distributions discrete, and therefore non-uniform over a continuous
group. To reach uniformity we also need the continuous walk over the infinite places, and taking it as a
gaussian effectively clears out the Fourier coefficients associated to high-frequency characters.

1.3 Related work

Relation to recent cryptanalytic works. The general approach to this result was triggered by a heuristic
observation made in [14], suggesting that the worst-case behavior of the quantum Ideal-SVP algorithm built
out of [15,6,9,10] could be made not that far of the average-case behavior they studied experimentally. More
specifically, we do achieve the hoped generalization of the class-group mixing theorem of [22,23] to Arakelov
class group; but we furthermore show that this result affects all algorithms, and not only the one they
studied.

We also remark that recent works [39,26] were already implicitly relying on Arakelov theory. More specif-
ically, the lattice given in Section 3.1 of [39] is precisely the lattice of Picard-class relation between the
appropriate set of (degree 0) Arakelov Divisors. In fact, our theorem also implies upper-bound for the cov-
ering radius of the those lattices, at least for suffficiently large factor bases, and with more effort one may
be able to eliminate Heuristic 4 from [39] or Heuristic 1 of [26].
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Prior self-reduction via random walks. As already mentioned, our result shares strong similarities with a
technique introduced by Jao, Miller and Venkatesan [22] to study the discrete logarithm problem on elliptic
curves. Just as ideal lattices can be seen as elements of the Arakelov class group, elliptic curves in certain
families are in bijective correspondence with elements of the class group of a quadratic imaginary number field.
In [22], they study (discrete) random walks in class groups, and show that they have a rapid mixing property.
They deduce that from any elliptic curve, one can efficiently find an isogeny (a group homomorphism) to a
uniformly random elliptic curve, allowing to transfer a worst case instance of the discrete logarithm problem
to an average case instance. Instead of the class group, which is finite, we study random walks in the Arakelov
class group, which is infinite, which leads us to consequences in lattice-base cryptography, an area seemingly
unrelated to elliptic curve cryptography.

Prior self-reduction for ideal lattices. Our self-reducibility result is not the first of its kind: in 2010, Gentry
already proposed a self-reduction for ideal-SVP [18], as part of his effort of basing Fully-Homomorphic
Encryption on worst-case problems [16]. Our result differs in several point:

– Our reduction does not rely on a factoring oracle, and is therefore classically efficient; this was already
advertised as an open problem in [18].

– The reduction of Gentry considers the Bounded Distance Decoding problem (BDD) in ideal lattices
rather than a short vector problem. Note that this distinction is not significant with respect to quantum
computers [40].

– The definition of average case distribution is significantly different, and we view the one of [18] as being
somewhat ad-hoc. Given that the Arakelov class group captures exactly ideal lattices up to isometry, we
consider the uniform distribution in the Arakelov class group as a much more natural and conceptually
simpler choice.

– The loss on the approximation factor of our reduction is much more favorable than the one of Gentry [18].
For example, in the case of cyclotomic number fields with prime-power conductor, Gentry’s reduction
(on BDD) seems to loose a factor at least Θ(n4.5), while our reduction (on Hermite-SVP) only loses a
factor Õ(

√
n) making a mild assumption on plus-part h+ of the class number.

Other Applications. Finally, we wish to emphasise that our rapid mixing theorem for Arakelov class groups
appears to be a versatile new tool, which has already found applications beyond hardness proofs for ideal
lattices.

One such application is the object of another work in progress. Namely, we note that many algo-
rithms [5,4,11] rely on finding elements a in an ideal I such that aI−1 is easy to factor (e.g. prime, near-prime,
or B-smooth). Such algorithms are analyzed only heuristically, by treating aI−1 as a uniformly sampled ideal,
and applying know results on the density of prime or smooth ideals. Our theorem allows to adjust this strat-
egy and make the reasoning rigorous. First, we show that if the class of the ideal I−1 is uniformly random,
one can rigorously analyze the probability of aI−1 being prime or smooth. Then, our random-walk theorem
allows to randomize I, while not affecting the usefulness of the recovered element a. However, due to space
constraints and thematic distance, we chose to develop this application in a another article.

As mentioned above, another potential application of random walk theorem may be the elimination of
Heuristics in cryptanalysis of Ideal and Module lattices [39,26].

2 Preliminaries

We denote by N,Z,Q,R the natural numbers, the integers, the rationals and the real numbers respectively.
All logarithms are in base e. For a rational number p/q ∈ Q with p and q coprime, we let size(p/q) refers to
log |p| + log |q|. We extend this definition to vectors of rational numbers, by taking the sum of the sizes of
all the coefficients.
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2.1 Number theory

Throughout this paper, we use a fixed number field K of rank n ≥ 3 over Q, having ring of integers OK ,
discriminant ∆, regulator R, class number h and group of roots of unity µK . We know from Minkowski [34,
pp. 261–264] that there exists an absolute constant c > 0 such that log |∆| ≥ c · n. The number field K
has n field embeddings into C, which are divided in nR real embeddings and nC conjugate pairs of complex
embeddings, i.e., n = nR + 2nC. These embeddings combined yield the so-called Minkowski embedding
Ψ : K → KR ⊆

⊕
σ:K↪→C C, α 7→ (σ(α))σ, where

KR =

{
x ∈

⊕
σ:K↪→C

C
∣∣∣∣ xσ = xσ

}
.

Here, σ equals the conjugate embedding of σ whenever σ is a complex embedding and it is just σ itself
whenever it is a real embedding. Note that we index the components of the vectors in KR by the embeddings
of K. Embeddings up to conjugation are called infinite places, denoted by ν. With any embedding σ we
denote by νσ the associated place; and for any place we choose a fixed embedding σν .

Composing the Minkowski embedding by the component-wise logarithm of the entries’ absolute values
yields the logarithmic embedding, denoted by Log.

Log : K∗ → LogKR ⊆
⊕

σ:K↪→C
R, α 7→ (log |σ(α)|)σ.

The multiplicative group of integral units O∗K under the logarithmic embedding forms a lattice, namely
the lattice ΛK = Log(O∗K) ⊆ LogKR. This so-called logarithmic unit lattice has rank ` = nR + nC − 1, is
orthogonal to the all-one vector (1)σ, and has covolume Vol(ΛK) =

√
n · 2−nC/2 ·R, where the 2−nC/2 factor

is due to the specific embedding we use (see Lemma A.1). We denote by H = Span(ΛK) the hyperplane of
dimension `, which can also be defined as the subspace of LogKR orthogonal to the all-one vector (1)σ. We
denote by T = H/ΛK the hypertorus defined by the logarithmic unit lattice ΛK .

Fractional ideals of the number field K are denoted by a, b, . . ., but the symbol p is generally reserved
for integral prime ideals of OK . The group of fractional ideals of K is denoted by IK . Principal ideals
with generator α ∈ K∗ are usually denoted by (α). For any integral ideal a, we define the the norm N (a)
of a to be the number |OK/a|; this norm then generalizes to fractional ideals and elements as well. The
class-group of OK , denoted by Cl(OK), is the quotient of the group IK by the subgroup of principal ideals
PrincK := {(α) , α ∈ K}. For any fractional ideal a, we denote the ideal class of a in Cl(OK) by [a].

Extra attention is paid to the cyclotomic number fields K = Q(ζm), for which we can prove sharper
results due to their high structure. These results rely on the size of the class group h+

K = |Cl(K+)| of the
maximum real subfield K+ = Q(ζm + ζ̄m) of K, which is often conjectured to be rather small [32,7]. In this
paper, we make the mild assumption that h+

K ≤ (log n)n.

Extended Riemann Hypothesis Almost all results in this paper rely heavily on the Extended Riemann
Hypothesis (in the subsequent part of this paper abbreviated by ERH), which refers to the Riemann Hypoth-
esis extended to Hecke L-functions (see [21, §5.7]). All statements that mention (ERH), such as Theorem 3.3,
assume the Extended Riemann Hypothesis.

Prime densities In multiple parts of this paper, we need an estimate on the number of prime ideals
with bounded norm. This is achieved in the following theorem, obtained from [2, Thm. 8.7.4].

Theorem 2.1 (ERH). Let πK(x) be the number of prime integral ideals of K of norm ≤ x. Then, assuming
the Extended Riemann Hypothesis, there exists an absolute constant C (i.e., independent of K and x) such
that

|πK(x)− li(x)| ≤ C ·
√
x (n log x+ log |∆|) ,

where li(x) =
∫ x

2
dt
ln t ∼

x
ln x .

5



Lemma 2.2 (Sampling of prime ideals, ERH). Let a basis of OK be known and let P = {p prime ideal of K | N (p) ≤
B} be the set of prime ideals of norm bounded by B ≥ max((12 log∆ + 8n + 28)4, 3 · 1011). Then one can
sample uniformly from P in expected time O(n3 log2B).

Proof. The sampling algorithm goes as follows. Sample an integer uniformly in [0, B] and check if it is a
prime. If it is, factor the obtained prime p in OK and list the different prime ideal factors {p1, . . . , pk} that
have norm bounded by B. Choose one pi uniformly as random in {p1, . . . , pk} and output it with probability
k/n. Otherwise, output ‘failure’.

Let q ∈ P be arbitrary, and let N (q) = q`. Then, the probability of sampling q equals 1
nB , namely

1
n times the probability of sampling q. Therefore, the probability of sampling successfully (i.e., no failure)
equals |P|nB ≥

1
2n logB , since |P| ≥ B

2 logB , by Lemma A.3.
The most costly part of the algorithm is the factorization of a prime p ≤ B in OK . This can be performed

using Kummer-Dedekind algorithm, which essentially amounts to factoring a degree n polynomial modulo p.
Using Shoup’s algorithm [42] (which has complexity O(n2 + n log p) [44, §4.1]) yields the complexity claim.

ut

2.2 The Arakelov class group

The Arakelov divisor group is the group

DivK =
⊕
p

Z×
⊕
ν

R

where p ranges over the set of all prime ideals of OK , and ν over the set of infinite primes (embeddings into
the complex numbers up to possible conjugation). We write an arbitrary element in DivK as

a =
∑
p

np · LpM +
∑
ν

xν · LνM,

with only finitely many non-zero np. We will consistently use the symbols a,b, e, . . . for Arakelov divisors.
Denoting ordp for the valuation at the prime p, there is a canonical homomorphism

L·M : K∗ → DivK , α 7−→
∑
p

ordp(α)LpM−
∑
ν

log |σν(α)| · LνM.

The divisors of the form LαM for α ∈ K∗ are called principal divisors. Just as the ideal class group is the
group of ideals quotiented by the group of principal ideals, the Picard group is the group of Arakelov divisors
quotiented by the group of principal Arakelov divisors. In other words, the Picard group PicK is defined by
the following exact sequence.

0→ K∗/µK
L·M−→ DivK → PicK → 0.

For any Arakelov divisor a =
∑

p np · LpM +
∑
ν xν · LνM , we denote its Arakelov class by [a]; in the same

fashion that [a] denotes the ideal class of the ideal a.
Despite the Arakelov divisor and Picard group being interesting groups, for our pursposes it is more

useful to consider the degree-zero subgroups of these groups. The degree map is defined as follows:

deg : DivK → R,
∑
p

np · LpM +
∑
ν

xν · LνM 7−→
∑
p

np · log(N (p)) +
∑
ν real

xν +
∑

ν complex

2 · xν .

The degree map sends principal divisors LαM to zero; therefore, the degree map is properly defined on PicK ,
as well. We subsequently define the degree-zero Arakelov divisor group Div0

K = {a ∈ Div0
K | deg(a) = 0}

and the Arakelov class group Pic0
K = {[a] ∈ PicK | deg([a]) = 0}.
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0 0 0

0 O∗K/µK K∗/µK PrincK 0

0 H Div0
K IK 0

0 T Pic0K ClK 0

0 0 0

L·MLog d0

Fig. 1: A commutative diagram of exact sequences.

Note that by ‘forgetting’ the infinite part of a (degree-zero) Arakelov divisor a, one arrives again at a
fractional ideal. This projection morphism

Div0
K → IK ,

∑
p

np · LpM +
∑
ν

xν · LνM 7−→
∏
p

pnp ,

has the hyperplane H ⊆ LogKR as kernel under the inclusion H → Div0
K , (xσ)σ 7→

∑
ν xσν LνM. This

projection morphism Div0
K → IK has the following section that we will use often in the subsequent part of

this paper.

d0 : IK → Div0
K , a 7−→

∑
p

ordp(a) · LpM− log(N (a))

n

∑
ν

LνM

The groups and their relations, that are treated above, fit nicely in the diagram of exact sequences given
in Figure 1, where the middle row sequence splits with the section d0. It will be proven useful to show that
the volume of the Arakelov class group roughly follows the square root of the field discriminant.

Lemma 2.3 (Volume of Pic0
K). We have Vol(Pic0

K) = hVol(T ) = hR
√
n2−nC/2, and

log Vol(Pic0
K) ≤ n

(
1

2
log(|∆|1/n) + log log(|∆|1/n) + 1

)
Proof. The volume of the Arakelov class group follows from the above exact sequence and the volume
computation of T in Lemma A.1. The bound on the logarithm is obtained by applying the class number
formula [37, VII.§5, Cor 5.11] and Louboutin’s bound [27] on the residue of the Dedekind zeta function at
s = 1:

Vol(Pic0
K) = hR

√
n2−nC/2 =

ρ
√
|∆|ωK

√
n

2nR(2
√

2π)nC
≤ ρ
√
|∆| ≤

√
|∆|
(
e log |∆|

n

)n
,

where ωK = |µK | is the number of roots of unity inK. For the bound on the logarithm, use n log(e log |∆|/n) =
n log log(|∆|1/n) + n. ut

We let U(Pic0
K) = 1

Vol(Pic0K)
· 1Pic0K

denote the uniform distribution over the Arakelov class group.

2.3 Lattices

A lattice Λ is a discrete subgroup of a real vector space. In the following, we assume that this real vector
space has dimensionm and that the lattice is full-rank, i.e., span(Λ) equals the whole real space. A lattice can
be represented by a basis (b1, · · · , bm) such that Λ = {

∑
i xibi , xi ∈ Z}. Important notions in lattice theory
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are the volume Vol(Λ), which is essentially the volume of the hypertorus span(Λ)/Λ (alternatively, Vol(Λ)
is the determinant of any basis of Λ); the first minimum λ1(Λ) = minv∈Λ\{0} ‖v‖ ; and the last minimum
λm(Λ), which equals the minimal radius r > 0 such that {v ∈ L | ‖v‖ ≤ r} is of full rank m.

We will be interested into the following algorithmic problem over lattices.

Definition 2.4 (γ-Hermite-SVP). Given as input a basis of a rank m lattice Λ, the problem γ-Hermite-
SVP consists in computing a non-zero vector v in λ such that

‖v‖ ≤ γ ·Vol(Λ)1/m.

For a rank-m lattice Λ ⊂ Rm, we let Λ∗ denote its dual, that is Λ∗ = {x ∈ Rm : ∀v ∈ Λ , 〈v, x〉 ∈ Z}.

2.4 Divisors and ideal lattices

It will be proven useful to view both ideals and Arakelov divisors as lattices in the real vector spaceKR, where
KR has its (Euclidean or maximum) norm inherited from the complex vector space it lives in. Explicitly,
the Euclidean and maximum norm of α ∈ K are respectively defined by the rules ‖α‖22 =

∑
σ |σ(α)|2 and

‖α‖∞ = maxσ |σ(α)|, where σ ranges over all embeddings K → C. By default, ‖α‖ refers to the Euclidean
norm ‖α‖2.

For any ideal a of K, we define the associated lattice L(a) to be the image of a ⊆ K under the Minkowski
embedding Ψ, which is clearly a discrete subgroup of KR. In particular, L(OK) is a lattice and we will
always assume throughout this article that we know a basis (b1, · · · , bn) of L(OK). For Arakelov divisors
a =

∑
p np · LpM +

∑
ν xν · LνM, the associated lattice is defined as follows.

L(a) =
{

(exνσ · σ(α))σ | α ∈
∏

pnp

}
= diag ((exνσ )σ) · L

(∏
pnp

)
⊆ KR,

where diag denotes a diagonal matrix. Note that we have

Vol(L(a)) =
√
|∆| N (a) and Vol(L(a)) =

√
|∆| ·

∏
σ

exνσ · N (
∏
p

pnp) =
√
|∆| · edeg(a)

The associated lattice L(a) of a divisor is of a special shape, which we call ideal lattices, as in the following
definition.

Definition 2.5 (Ideal lattices). An ideal lattice is an OK-module I ⊆ KR for which holds that there exists
an invertible x ∈ KR such that xI = L(a) for some ideal a of OK . We let IdLatK denote the set of all ideal
lattices.

Note that the lattices L(a) for a ∈ IK are special cases of ideal lattices, which we will call fractional ideal
lattices. Since the Minkowski embedding is injective, the map L(·) provides a bijection between the set of
fractional ideals and the set of fractional ideal lattices.

The set IdLatK of ideal lattices forms a group; the product of two ideal lattices I = xL(a) and J = yL(b)
is defined by the rule I · J = xyL(ab). It is clear that L(OK) is the unit ideal lattice and x−1 L(a−1) is the
inverse ideal lattice of xL(a). The map L : Div0

K → IdLatK ,a 7→ L(a) sends an Arakelov divisor to an ideal
lattice. The image under this map is the following subgroup of IdLatK .

IdLat0
K = {xL(a) | N (a)

∏
σ

xσ = 1 and xσ > 0 for all σ}.

Definition 2.6 (Isometry of ideal lattices). For two ideal lattices L,L′ ∈ IdLat0
K , we say that L and L′

are K-isometric, denoted by L ∼ L′, when there exists (ξσ) ∈ KR with |ξσ| = 1 such that (ξσ)σ · L = L′.

It is evident that being K-isometric is an equivalence relation on IdLat0
K that is compatible with the group

operation. Denoting IsoK for the subgroup {L ∈ IdLat0
K | L ∼ L(OK)} ⊂ IdLat0

K , we have the following
result.
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Lemma 2.7 (Arakelov classes are ideal lattices up to isometries). Denoting P : IdLat0
K → Pic0

K

for the map xL(a) 7−→
∑

p ordp(a)[p]+
∑
ν log(xσν )[ν] modulo principal divisors, we have the following exact

sequence.
0→ IsoK → IdLat0

K
P−→ Pic0

K → 0.

Proof. This Fact is standard (e.g. [41]), but we give its proof for completeness. It suffices to show that P
is a well-defined surjective homomorphism and its kernel is IsoK. In order to be well-defined, P must sat-
isfy P (xL(a)) = P (x′ L(a′)) whenever xL(a) = x′ L(a′). Assuming the latter, we obtain x−1x′ L(OK) =
L((a′)−1a) = L(αOK), for some α ∈ K∗, as the module is a free OK-module. This implies that (x−1x′)σ =
σ(ηα) for all embeddings σ : K → C, for some unit η ∈ O∗K . Therefore, P (xL(a)) − P (x′ L(a′)) =∑

p ordp(α)[p] +
∑
ν log((xσν )−1x′σν )[ν] = LηαM; i.e., their difference is a principal divisor, meaning that

their image in Pic0
K is the same.

One can check that P is a homomorphism, and its surjectivity can be proven by constructing an ideal
lattice in the pre-image of a representative divisor a =

∑
p np[p] +

∑
ν xν [ν] ∈ Div0

K of an Arakelov class [a],
e.g., (exνσ )σ · L(

∏
p p

np).
We finish the proof by showing that the kernel of P indeed equals IsoK. Suppose xL(a) ∈ ker(P ), i.e.,

P (xL(a)) =
∑

p ordp(a)[p] +
∑
ν log(xσν )[ν] = LαM is a principal divisor. This means that a = αOK and

x = (|σ(α)|−1)σ, i.e., xL(a) = (|σ(α)|−1)σ L(αOK) =
(
σ(α)
|σ(α)|

)
σ
· L(OK), so xL(a) ∼ L(OK), implying

xL(a) ∈ IsoK. This shows that kerP ⊆ IsoK. The reverse inclusion starts with the observation that xL(a) ∼
L(OK) directly implies that a = αOK is principal, by the fact that xL(a) is a freeOK-module. So, (xσσ(α))σ ·
L(OK) = xL(αOK) = (ξσ)σ · L(OK) for some (ξσ)σ ∈ KR with |ξσ| = 1. Therefore, |xσσ(ηα)| = |ξσ| =
1, i.e., |xσ| = |σ(ηα)|−1 for some unit η ∈ O∗K . From here one can directly conclude that P (xL(a)) =
P ((|σ(ηα)|−1)σ L(αOK)) = LηαM, a principal divisor. ut

Lemma 2.8. For any ideal lattice L in IdLatK , we have

λn(L) ≤
√
n · λn(L(OK)) ·Vol(L)1/n.

Moreover, it holds that λn(L(OK)) ≤
√
n ·
√
∆.

Proof. Write L = xL(a) and choose a shortest element xα ∈ xL(a). That means ‖xα‖ = λ1(xL(a)). Then
xL(a) ⊃ xL(αOK), and therefore

λn(xL(a)) ≤ λn(xL(αOK)) ≤ ‖xα‖∞λn(L(OK)) ≤ ‖xα‖2λn(L(OK))

≤ λ1(xL(a)) · λn(L(OK)) ≤
√
n · λn(L(OK)) ·Vol(xL(a))1/n

where the last inequality is Minkowski’s theorem. The bound on λn(L(OK)) is proven using Minkowski’s
second theorem (in infinity norm) and the fact that λ(∞)

1 (L(OK)) ≥ 1. ut

2.5 The Gaussian Function and Smoothing Errors

Let m be a fixed positive integer. For any parameter s > 0, we consider the n-dimensional Gaussian function

ρ(n)
s : Rn → C , x 7→ e−

π‖x‖2

s2 ,

(where we drop the (n) whenever it is clear from the context), which is well known to satisfy the following
basic properties.

Lemma 2.9. For all s > 0, n ∈ N and x, y ∈ Rn, we have
∫
z∈Rn ρs(z)dz = sn, FRn{ρs} =

∫
y∈Rn ρs(y)e−2πi〈y,·〉dy =

snρ1/s and ρs(x)2 = ρs/
√

2(x).
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The following two results (and the variations we discuss below) will play an important role and will be
used several times in this paper: Banaszczyk’s bound, originating from [3], and the smoothing parameter, as
introduced by Micciancio and Regev [31]. They allow us to control

ρs(X) :=
∑
x∈X

ρs(x) ,

for certain discrete subsets X ⊆ Rm. For ease of notation, we let

β(n)
z :=

(
2πez2

n

)n/2
e−πz

2

,

which decays super-exponentially in z (for fixed n). In particular, we have β(n)
t ≤ e−t

2

for all t ≥
√
n. The

following formulation of Banaszczyk’s lemma is obtained from [33, Equation (1.1)].

Lemma 2.10 (Banaszczyk’s Bound). Whenever r/s ≥
√

n
2π ,

ρs
(
(Λ+ t) \Br

)
≤ β(n)

r/s · ρs(Λ) ,

where Br = Br(0) = {x ∈ Rn
∣∣ ‖x‖2 < r}.

Definition 2.11 (Smoothing parameter). Given an ε > 0 and a lattice Λ, the smoothing parameter
ηε(Λ) is the smallest real number s > 0 such that ρ1/s(Λ

∗) ≤ ε.

Lemma 2.12 (Smoothing Error). Let Λ ∈ Rn be a full rank lattice, and let s ≥ ηε(Λ). Then, for any
t ∈ Rn,

(1− ε) sn

detΛ
≤ ρs(Λ+ t) ≤ (1 + ε)

sn

detΛ
. (1)

We have the following two useful upper bounds for full-rank n-dimensional lattices Λ [31, Lemma 3.2 and
3.3]: ηε(Λ) ≤

√
log(2n(1 + 1/ε)) · λn(Λ) for all ε > 0 and η1(Λ) ≤ η2−n(Λ) ≤

√
n/λ1(Λ∗) ≤

√
n · λn(Λ). The

latter leads to the following corollary.

Corollary 2.13. Let L be an ideal lattice in IdLatK . Let t ∈ Rn be arbitrary and s ≥ n · λn(L(OK)) ·
Vol(L)1/n. Then it holds that ∣∣∣∣ρs(L− t) ·Vol(L)

sn
− 1

∣∣∣∣ ≤ 2−n, (2)

Proof. By the assumption on s and by Lemma 2.8, we have s ≥ n · λn(L(OK)) · Vol(L)1/n ≥
√
n · λn(L) ≥

η2−n(Λ). The result follows then from Lemma 2.12.

2.6 Gaussian distributions and statistical distance

Statistical distance. For two random variables X and Y , we let SD(X,Y ) denote their statistical distance
(or total variation distance). This distance is equal to 1/2 of the `1 distance between the two corresponding
measures. In particular, if X and Y live in a countable set S, then

SD(X,Y ) =
1

2
·
∑
s∈S
|P(X = s)− P(Y = s)|.

Continuous Gaussian distribution. For a real vector space H of dimension m, a parameter s > 0 and a center
c ∈ H, we write GH,s,c the continuous Gaussian distribution over H with density function ρs(x− c)/sm for
all x ∈ H. When the center c is 0, we simplify the notation as GH,s.
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Discrete Gaussian distributions. For any lattice L ⊂ Rm, we define the discrete Gaussian distribution over
L of standard deviation s > 0 and center c ∈ Rm by

∀x ∈ L , GL,s =
ρs(x− c)
ρs(L− c)

.

When the center c is 0, we simplify the notation as GL,s.
Observe that we use almost the same notation for discrete Gaussian distributions and for continuous ones.

What allows us to make a distinction between them are the indexes L or H (if the index is a lattice, then
the distribution is discrete whereas if the index is a real vector space, then the distribution is continuous).

The following lemma states that one can sample from a distribution statistically close to a discrete
Gaussian distribution over a lattice L (provided that the standard deviation s is large enough).

Proposition 2.14 (Theorem 4.1 of [19]). There exists a probabilistic polynomial time algorithm that
takes as input a basis (b1, · · · , bn) of a lattice L ⊂ Rn, a parameter s ≥

√
n ·maxi ‖bi‖ and a center c ∈ Rn

and outputs a sample from a distribution ĜL,s,c such that SD(GL,s,c, ĜL,s,c) ≤ 2−n.

We will call Klein’s algorithm [25] the algorithm mentioned in Proposition 2.14. We note that Theorem 4.1
of [19] states the result for a statistical distance negligible (i.e., of the form n−ω(1)), but the statement and
the proof can be easily adapted to other statistical distances.

3 Random Walk Theorem for the Arakelov Class Group

In this section, we prove Theorem 3.3, on random walks in the Arakelov class group. Starting with a point
in the hyperplane H ⊆ Div0

K , sampled according to a Gaussian distribution, we prove that multiplying this
point sufficiently often by small random prime ideals yields a random divisor that is very close to uniformly
distributed in the Arakelov class group (i.e., modulo principal divisors). The proof of Theorem 3.3 requires
various techniques, extensively treated in Sections 3.2 to 3.6, and summarised in the following.

Hecke operators. The most important tool for proving Theorem 3.3 is that of a Hecke operator, whose
definition and properties are covered in Section 3.2. This specific kind of operator acts on the space of
probability distributions on Pic0

K , and has the virtue of having the characters of Pic0
K as eigenfunctions.

Eigenvalues of Hecke operators. The aim of the proof is showing that applying this Hecke operator repeatedly
on an appropriate initial distribution yields the uniform distribution on Pic0

K . The impact of consecutive
applications of the Hecke operator can be studied by considering its eigenvalues of the eigenfunctions (which
are the characters of Pic0

K). Classical results from analytic number theory show that the eigenvalues of these
characters are (in absolute value) sufficiently smaller than 1, whenever the so-called analytic conductor of
the corresponding character is not too large. An exception is the unit character, which is fixed under each
Hecke operation. This classical result and how to apply it in our specific setting is covered in Section 3.3.

The analytic conductor. The Hecke operator thus quickly ‘damps out’ all characters with small analytic
conductor (except the unit character). In Section 3.4, we examine which quantities of a character of Pic0

K

define the analytic conductor. It turns out that this analytic conductor is closely related to how the character
acts on the hypertorus defined by the log unit lattice. The higher the frequency of this character on the
hypertorus, the larger the analytic conductor. This frequency can be measured by the norm of the uniquely
associated dual log unit lattice point of the character. In fact, we establish a bound on the analytic conductor
of a character in terms of the norm of its associated dual lattice point.
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Fourier analysis on the hypertorus. To summarize, low-frequency (non-trivial) characters on Pic0
K (i.e., with

small analytic conductor) are quickly damped out by the action of the Hecke character, whereas for high-
frequency characters we do not have good guarantees on the speed at which they damp out. To resolve this
issue, we choose an initial distribution whose character decomposition has only a negligible portion of high-
frequency oscillatory characters. An initial distribution that nicely satisfies this condition is the Gaussian
distribution (on the hypertorus). To examine the exact amplitudes of the occuring characters of this Gaussian
distribution, we need Fourier analysis on this hypertorus, as covered in Section 3.5.

Splitting up the character decomposition. In this last part of the proof, which is covered in Section 3.6,
we write the Gaussian distribution into its character decomposition, where we seperate the high-frequency
characters, the low-frequency ones and the unit character. Applying the Hecke operator often enough damps
out the low-frequency ones, and as the high-frequency characters were only negligibly present anyway, one
is left with (almost only) the unit character. This corresponds to a uniform distribution.

3.1 Main result

Definition 3.1 (Random Walk Distribution in Div0
K). We denote by WDiv0

K
(B,N, s) the distribution

on Div0
K that is obtained by the following random walk procedure.

Sample x ∈ H ⊆ logKR according to a centered Gaussian distribution with standard deviation s. Sub-
sequently, sample N ideals pj uniformly from the set of all prime ideals with norm bounded by B. Finally,
output x+

∑N
j=1 d

0(pj), where x ∈ Div0
K is understood via the injection H ↪→ Div0

K .

Definition 3.2 (Random Walk Distribution in Pic0
K). By WPic0K

(B,N, s), we denote the distribution
on the Arakelov class group obtained by sampling a from WDiv0

K
(B,N, s) and taking the Arekalov class

[a] ∈ Pic0
K .

Theorem 3.3 (Random Walks in the Arakelov Class Group, ERH). Let ε > 0 and s > 0 be
any positive real numbers and let k ∈ N>0 be a positive integer. Putting s′ = min(

√
2 · s, 1/η1(Λ∗K)),

there exists a bound B = Õ(n2k[n2(log log(1/ε))2 + n2(log(1/s′))2 + (log∆K)2]) such that for any N ≥
`
2 ·log(1/s′)+ 1

2 log(Vol(Pic0K))+log(1/ε)+1

k logn , the random walk distribution WPic0K
(B,N, s) is ε-close to uniform in

L1(Pic0
K), i.e., ∥∥∥WPic0K

(B,N, s)− U(Pic0
K)
∥∥∥

1
≤ ε.

Below, we instantiate Theorem 3.3 with specific choices of ε and k that are tailored to give an optimal
approximation factor in Section 4. As a consequence, the value of B in Corollary 3.4 is exponential in n.
We note however that this value could be made as small as polynomial in n and log∆, but at the cost of a
slightly worse approximation factor for the reduction of Section 4.

The key difference between those two instantiations is how we deal with the smoothing parameter of the
dual log-unit lattice, η1(Λ∗K). In the general case, we rely on works of Dobrolowski and Kessler [13,24] to
lower bound the first minimum of the primal log unit lattice. In the case of cyclotomics, we obtain a sharper
bound by resorting to the analysis of dual cyclotomic unit lattice from Cramer et al. [9].

Corollary 3.4 (Application to General Number Fields, ERH).
Let s > 1/`, there exists a bound B = Õ(∆1/ logn) such that for

N ≥ (n− nC)(log n)2

log(∆)

(
1 +

30 log log n

log n

)
+
n log n

log∆

[
1

2
log(∆1/n) + log log(∆1/n)

]
holds that the random walk distribution WPic0K

(B,N, s) satisfies

SD
(
WPic0K

(B,N, s), U(Pic0
K)
)
≤ 2−n.
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Corollary 3.5 (Application to Prime-Power Cyclotomic Number Fields, ERH). Let K = Q(ζpk)

be a prime-power cyclotomic number field and assume h+
K = Cl(K+) ≤ (log n)n. For s = 1/ log2(n), there

exists a bound B = Õ(n2+2 logn) such that, for N ≥ n
2 logn

(
1/2 + 8 log(log(n))

logn

)
, the random walk distribution

WPic0K
(B,N, s) satisfies

SD
(
WPic0K

(B,N, s), U(Pic0
K)
)
≤ 2−n.

The proof of these corollaries can be found in Appendices B.1 and B.2.

3.2 Hecke Operators

A key tool to analyse random walks on Pic0
K are Hecke operators, which allow to transform a given distri-

bution into a new distribution obtained by adding one random step.

Definition 3.6 (The Hecke operator). Let P be a finite subset of prime ideals of the number field K,
and let Pic0

K be the Arakelov class group. Then we define the Hecke operator HP : L2(Pic0
K)→ L2(Pic0

K) by
the following rule:

HP(f)(x) :=
1

|P|
∑
p∈P

f(x− [d0(p)])

Lemma 3.7 (Eigenfunctions of the Hecke operator). The Hecke operator HP : L2(Pic0
K)→ L2(Pic0

K)

has the characters χ ∈ P̂ic0
K as eigenfunctions, with eigenvalues λχ = 1

|P|
∑

p∈P χ([d0(p)]), i.e.,

HP(χ) = λχχ.

Proof. We have HP(χ)(x) = 1
|P|
∑

p∈P χ(x − [d0(p)]) = 1
|P|
∑

p∈P χ(x)χ([d0(p)]). So HP(χ) = λχχ with
λχ = 1

|P|
∑

p∈P χ([d0(p)]). ut

Note that HP(1Pic0K
) = 1Pic0K

, for the trivial character 1Pic0K
, so λ1

Pic0
K

= 1. For any other character χ it is
evident from the above that |λχ| ≤ 1.

3.3 Bounds on Eigenvalues of Hecke Operators

Using results from analytic number theory, one can prove the following proposition.

Proposition 3.8 (Bound on the eigenvalues of the Hecke operator, ERH). Let P be the set of
all primes of K with norm bounded by B ∈ N. Then the eigenvalue λχ of any non-constant eigenfunction

χ ∈ P̂ic0
K of the Hecke operator satisfies

λχ = O

(
log(B) log(Bn ·∆ · q∞(χ))

B1/2

)
,

where q∞(χ) is the infinite part of the analytic conductor of the character χ, as in Definition 3.11 (cf. [21,
Eq. (5.6)]).

The proof of this proposition can be found in Appendix B.3.
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3.4 The Analytic Conductor

In the bounds of Section 3.3, the infinite part of the analytic conductor q∞(χ) of a character χ : Pic0
K → C

plays a large role. In this section, we show that this infinite part of the analytic conductor is closely related
to the dual logaritmic unit lattice point `∗ ∈ Λ∗K that is uniquely associated with the character χ|T : T → C.

The infinite part of the analytic conductor can be defined using the so-called local parameters of the
character χ ∈ Pic0

K . To define these, we need F 0 = {(aν)ν ∈
⊕

ν infinite Kν |
∏
ν |aν |ν = 1}, the norm-

one subgroup of the product of the completions Kν of K with respect to the infinite place ν. Characters
η : F 0 → C are of the form

η((aν)ν) =
∏
ν

(
aν
|aν |

)uν
eivν log |aν |ν , (3)

where vν ∈ R, and uν ∈ Z or uν ∈ {0, 1} depending on whether ν is complex or real (see [35, §3.3, eq. 3.3.1]).
In all these definitions, the absolute value | · |ν equals | · |2C or | · |R depending on whether ν is complex or real.

Since there is the inclusion ι : F 0 → Pic0
K , (aν)ν 7−→

∑
ν log |aν |ν · LνM, we must have that χ ◦ ι is of the

form described in Equation (3) for all χ ∈ Pic0
K . This leads to the following definition.

Definition 3.9 (Local parameters of a character on Pic0
K). For a character χ : Pic0

K → C, the
numbers kν(χ) = |uν |+ ivν (for all infinite places ν) are called the local parameters of χ, where uν and vν
are the numbers appearing in the formula of χ ◦ ι : F 0 → C in Equation (3).

As characters on the Arakelov class group are actually very special Hecke characters (i.e., characters on
the idèle class group), the local parameters are very restricted. This is described in the following lemma.

Lemma 3.10. Let χ ∈ P̂ic0
K and let `∗ ∈ Λ∗K such that χ|T = χ`∗ = e2πi〈`∗,·〉. Then we have kν(χ) = 2πi`∗σν ,

where σν is an embedding associated with the place ν.

Proof. As the map ι : F 0 → Pic0
K only depends on the absolute values of (aν)ν , it is clear that uν = 0 in

the decomposition of χ ◦ ι as in Equation (3). It remains to prove that vν = 2πi`∗σν . The units O∗K ⊆ F 0

map to one under χ ◦ ι, since any principal divisor maps to one. Here, the inclusion O∗K → F 0 is defined by
η 7→ (σν(η))ν , where σν is a fixed embedding associated with the infinite place ν. This means that

χ ◦ ι(η) =
∏
ν

eivν log |σν(η)|ν = exp

(
i
∑
σ

vνσ log |σ(η)|C

)
= 1 for all η ∈ O∗K , (4)

where the last sum is over all embeddings σ : K → C, where νσ is the place associated with the embedding
σ, and where | · |C is the standard absolute value on C. Vectors of the form (vνσ )σ satisfying Equation (4) are
precisely the vectors (vνσ )σ ∈ 2πΛ∗K ⊆ logKR. By Definition 3.9, one directly obtains kν(χ) = 2πi`∗σν . ut

Definition 3.11 (The infinite part of the analytic conductor). Let χ ∈ P̂ic0
K be a character with

local parameters kν(χ), where ν ranges over the infinite places of K. Then, we define the infinite part of the
analytic conductor to be

q∞(χ) =
∏

ν real
(3 + |kν |)

∏
ν complex

(3 + |kν |)(3 + |kν + 1|)

Remark 3.12. Above definition of the infinite part of the analytic conductor is obtained from [21, p. 95, eq.
(5.6) with s = 0], where it is described in a slightly different form. In [21], the functional equation lacks the
complex L-functions LC. Instead, those are replaced by LR(s)LR(s + 1) = LC(s) (see [37, Ch. 7, Prop 4.3
(iv)]. This means that the local parameters κσ, κσ̄ as in [21, p. 93, eq. (5.3)] must equal kν , kν + 1 for the
embeddings {σ, σ̄} associated with the complex place ν (cf. [21, p. 125]).

Lemma 3.13. Let q∞(χ) be the infinite part of the analytic conductor of the character χ ∈ P̂ic0
K , and let

`∗ ∈ Λ∗K be such that χ|T = χ`∗ , where Λ∗K is the dual lattice of the log-unit lattice. Then we have

q∞(χ) ≤
(
4 + 2π ‖`∗‖ /

√
n
)n
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Proof. Let |`∗| denote the vector `∗ where all entries are replaced by their absolute value. Then, by applying
subsequently the triangle inequality, the inequality between ‖·‖1 and ‖·‖2 and the arithmetic-geometric mean
inequality, one obtains

4
√
n+ 2π ‖`∗‖2 ≥ ‖4 + 2π|`∗|‖2 ≥

1√
n
‖4 + 2π|`∗|‖1 ≥

√
n

(∏
σ

(4 + 2π|`∗σ|)

)1/n

≥
√
nq∞(χ`∗)

1/n.

Dividing by
√
n and raising to the power n yields the claim. ut

3.5 Fourier analysis on the Hypertorus

Definition 3.14. Let H ⊆ LogKR be the hyperplane where the log unit lattice ΛK = Log(O∗K) lives in.
Recall the Gaussian function ρs : H → R, x 7→ e−π‖x‖

2/s2 . Denoting T = H/ΛK , , we put ρs|T : T → R, x 7→∑
`∈ΛK ρs(x+ `).

As we have (see Lemma A.2)
∥∥s−`ρs∥∥H,1 =

∫
H
s−`ρs(x)dx = 1, and

∥∥s−`ρs|T∥∥T,1 =
∫
T
s−`ρs|T (x)dx = 1,

both functions s−`ρs and s−`ρs|T can be seen as probability distributions on their respective domains Rm
and T .

Lemma 3.15 (Fourier coefficients of the periodized Gaussian). The function s−`ρs|T ∈ L2(T )
satisfies

s−`ρs|T =
∑

`∗∈Λ∗K

a`∗χ`∗

where a`∗ = 1
Vol(T )ρ1/s(`

∗), where Λ∗K is the dual lattice of the log unit lattice ΛK , and where χ`∗(x) =

e−2πi〈x,`∗〉.

Proof. Note that
〈
χ`∗1 , χ`∗2

〉
= Vol(T ) · δ`∗1 ,`∗2 . Identifying T̂ and Λ∗K via the map χ`∗ 7→ `∗, taking a funda-

mental domain F of ΛK and spelling out the definition of ρs|T , we obtain, for all `∗ ∈ Λ∗K ,

a`∗ =
1

Vol(T )

〈
s−`ρs|T , χ`∗

〉
=

1

Vol(T )

∫
x∈F

∑
`∈ΛK

s−`ρs(x+ `)χ`∗(x)dx

=
1

Vol(T )

∫
x∈H

s−`ρs(x)χ`∗(x)dx =
1

Vol(T )
FH(s−`ρs)(`

∗) =
1

Vol(T )
ρ1/s(`

∗).

ut

3.6 Conclusion

Theorem 3.16 (ERH). Let P be the set of primes of K of norm at most B, and let H = HP the Hecke

operator for this set of primes. Then, for all r, s > 0 with rs >
√

`
4π , we have

∥∥∥∥HN (s−nρs)−
1

Vol(Pic0
K)

1Pic0K

∥∥∥∥2

2

≤
ρ 1√

2s
(Λ∗K)

Vol(T )

(
c2N + β

(`)√
2rs

)
(5)

with c = O
(

log(B) log(Bn·∆·(4+2πr/
√
n)n)

B1/2

)
.
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Proof. As s−`ρs = 1
Vol(T )

∑
χ∈T̂ ρ1/s(`

∗)χ`∗ (see Lemma 3.15), Vol(Pic0
K) = hK Vol(T ), and every χ ∈ T̂ has

exactly hK extensions [12, Cor. 3.6.2] to characters on Pic0
K , we directly deduce that

s−`ρs =
1

Vol(Pic0
K)

∑
χ`∗∈T̂

∑
χ′∈P̂ic0K
χ′|T=χ`∗

ρ1/s(`
∗)χ′.

Therefore, by the fact that the characters χ′ are eigenfunctions of the operator H = HP (see Lemma 3.7),

HN (s−`ρs) =
1

Vol(Pic0
K)

∑
χ`∗∈T̂

ρ1/s(`
∗)

∑
χ′∈P̂ic0K
χ′|T=χ`∗

λNχ′χ
′

where, λ1
Pic0

K

= 1. Therefore, by Parseval’s theorem [12, Thm. 3.4.8] and the fact that ρ2
1/s = ρ 1√

2s
,∥∥∥∥HN (s−`ρs)−

1

Vol(Pic0
K)

1Pic0K

∥∥∥∥2

2

=
1

Vol(Pic0
K)

∑
χ`∗∈T̂

ρ 1√
2s

(`∗)
∑

χ′∈P̂ic0K
χ′|T=χ`∗
χ′ 6=1

Pic0
K

|λχ′ |2N .

In order to bound this quantity, we split above sum into a part where ‖`∗‖ > r, and a part where ‖`∗‖ ≤ r.
For the former part we can namely bound the Gaussian ρ 1√

2s
(`∗) whereas for the latter part we can bound the

eigenvalues λχ′ (see Proposition 3.8). For the part where ‖`∗‖ > r, we use the assumption
√

2sr >
√
`/(2π)

to apply Banaszczyk’s bound (see Lemma 2.10) , and the fact that |λχ′ | ≤ 1.

1

Vol(Pic0
K)

∑
‖`∗‖>r

ρ 1√
2s

(`∗)
∑
χ′∈X̂

χ′|T0=χ`∗

|λχ′ |2N

︸ ︷︷ ︸
≤hK

≤
ρ 1√

2s
(Λ∗K \ rB)

Vol(T )
≤
β

(`)√
2rs
· ρ 1√

2s
(Λ∗K)

Vol(T )
(6)

For the part where ‖`∗‖ < r, we have, by Lemma 3.13 that q∞(χ) ≤ (4 + 2πr/
√
n)n, and therefore, by

Proposition 3.8, |λχ′ | ≤ c = O
(

log(B) log(Bn·∆·(4+2πr/
√
n)n)

B1/2

)
. So,

1

Vol(Pic0
K)

∑
‖`∗‖≤r

ρ 1√
2s

(`∗)
∑
χ′∈X̂

χ′|T=χ`∗

|λχ′ |2N

︸ ︷︷ ︸
≤hK ·c2N

≤
c2N · ρ 1√

2s
(Λ∗K)

Vol(T )
(7)

Combining Equations (6) and (7), we obtain the result. ut

Proof (of Theorem 3.3). Let 1 > ε > 0, s > 0 and k ∈ N>0 be given. As 1/s̃ = max( 1√
2s
, η1(Λ∗K)) ≥ η1(Λ∗K),

the smoothing parameter of Λ∗K , we have

ρ 1√
2s

(Λ∗K)/Vol(T ) ≤ ρ1/s̃(Λ
∗
K)/Vol(T ) ≤ 2 · s̃−`. (8)

By applying subsequently Hölder’s inequality (i.e., ‖f ·1‖1 ≤ ‖f‖2‖1‖2) and the inequality ρ1/s(Λ
∗
K)/Vol(T ) ≤

2s̃−` in Equation (5), we obtain (for rs ≥
√

`
4π )∥∥HN (s−nρs)− U(Pic0
K)
∥∥2

1
≤ 2 Vol(Pic0

K) · s̃−`(c2N + β
(`)√

2rs
) (9)
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In the following, we will bound the two summands in Equation (9) seperately. Putting6

r =
1√
2s
·max

(√
`,

√
2 + ` log(1/s̃) + 2 log(1/ε) + log(Vol(Pic0

K))

)
,

implies 2 ·Vol(Pic0
K) · s̃−` · β(`)√

2rs
≤ ε2/2. Subsequently, choose7

B = Õ
(
n2k · [log(∆)2 + n2 log(1/s̃)2 + n2 log(log(1/ε))2]

)
,

such that c ≤ 1/nk, where c = O
(

log(B) log(Bn·∆·(4+2πr/
√
n)n)

B1/2

)
, as in Theorem 3.16. Finally, taking any

N ≥ `/2·log(1/s̃)+log(1/ε)+ 1
2 log(Vol(Pic0K))+1

k logn and noting that c
1

k logn ≤ 1/e, we deduce 2 Vol(Pic0
K)·s̃−`c2N ≤ 1

2ε
2.

Combining above two bounds, we can bound the right-hand side of Equation (9) by ε2. Taking square
roots gives the final result. ut

4 Worst-Case to Average-Case Reduction

In this section, we give a worst case to average case reduction for approx-Hermite-SVP in fractional ideal
lattices. In the case of prime power cyclotomic number fields (under the assumption that h+

k ≤ (log n)n), our
reduction increases the approximation factor by a factor Õ(

√
n). In the more general case, the approximation

factor increases by a factor Õ(n ·∆1/(2n)).
Our reduction works as follows. Given as input a fractional ideal a, we randomize it using the random

walk of the previous section, in order to obtain something uniform in the Arakelov class group. More formally,
we multiply a by N prime ideals pi chosen uniformly among the prime ideals of norm smaller than B (where
N and B are the ones of Theorem 3.3). We then multiply the resulting ideal a

∏
i pi by an element x ∈ KR

sampled such that Log(x) follows a Gaussian distribution of small standard deviation. Observe that this
means that the coordinates of x are somehow balanced and so multiplication by x does not change too much
the geometry of the ideal. Using Theorem 3.3, the obtained ideal lattice L = xL(a ·

∏
i pi) has a uniform

class in the Arakelov class group. This will be essentially our average case distribution for ideals.8
Assume now that one can efficiently find a small vector v in the randomized ideal x · L(a ·

∏
i pi). Then

x−1 · v is an element of L(a) (because L(a ·
∏
i bi) is a subset of L(a)). Since x does not distort the geometry

too much, this element x−1 · v is still small compared to Vol(L(a ·
∏
i pi))

1/n = Vol(L(a))1/n · N (
∏
i pi)

1/n.
The approximation factor we get is then roughly equal to N (

∏
i pi)

1/n ≤ BN/n. Using the values of N and
B in Corollaries 3.4 and 3.5, we obtain the claimed approximation factors.

The first subsection below describes the average case distribution we consider, and give some insight
on why we have to modify slightly the simple ‘uniform in the Arakelov class group’ distribution mentioned
above. In the second sub-section, we show that the randomization procedure described above indeed produces
an ideal of the desired average case distribution. Finally, we prove the reduction in the last sub-section.

4.1 The average case distribution

As said in the introduction, the average case distribution we would like to use is the one obtained by sampling
a uniformly distributed Arakelov class [a], and then considering the associated ideal lattice L (defined up to
K-isometries, see Lemma 2.7). This distribution however, suffers from the following difficulty: we don’t have
a unique way of representing an ideal lattice L = xL(a), and its representation as a pair (x,L(a)) may leak
some information on the random walk we performed to obtain it.

6 We use the bound β(`)
α ≤ e−α

2

for α ≥
√
`

7 In this bound on B one would expect an additional log(log(Vol(Pic0K)). But as it is bounded by log(log(∆)) (see
Lemma 2.3), it can be put in the hidden polylogarithmic factors.

8 One can observe that this randomization process outputs an ideal lattice instead of a fractional ideal. This will be
solved by multiplying once again the ideal lattice by an element with small distortion.
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Algorithm 1 Randomized function Extractς,M : IdLatK → IK
Require: An ideal lattice L
Ensure: A fractional ideal lattice L(b)
1: Sample c = (cσ)σ uniformly in {(xσ)σ : |xσ| = M , ∀σ}.
2: Sample v ← DL,ς,c.
3: return L(b) = v−1 · L ⊂ KR.

A natural way to obtain a unique representation of a lattice is to compute the Hermite Normal Form
(HNF) of the lattice. This however cannot be done here as our lattice has real coefficients, whereas the HNF
basis can be computed only for rational lattices. We then choose a second natural option which consists in
sampling a new basis from our original basis, by sampling Gaussian vectors until we obtain sufficiently many
of them to form a basis of the lattice. This is a probabilistic analogue of the “quantum fingerprint” used
in [15]. This new basis provably reveals nothing about the original one, except an upper bound on the size
of its vectors.

In our case, because we would like to exploit the ideal structure, we simply sample one Gaussian element
v in the ideal lattice L. We then obtain a sub-lattice L(vOK) of L. This sub-lattice might have a geometry
very different from the one of L. However, if we sample v from a Gaussian distribution centered not in 0 but
in (M,M, · · · ,M) for some large M , then we can expect v to be balanced. Hence multiplying or dividing
L by v will only slightly change the geometry of L, and idea already exploited by [18]. For this reason, we
finally consider the ideal v−1L. It’s geometry is close to the one of L, and it is a fractional ideal. In particular,
we can now have a canonical representation of it (by computing it’s HNF basis for instance), which does not
reveal anything about the random walk used to generate it.

Building on these ideas, we now formally describe our average case distribution. Let us start by describing
a randomized function Extractς,M (parameterized by some ς > 0 and M > 0), that extracts from a Arakelov
class [a] a fractional ideal b, such that the distribution of b is independent from the representation of [a].
We first describe the function Extractς,M from ideal lattices to fractional ideals, and we will later extend it
to Arakelov classes.

Lemma 4.1. The function Extractς,M outputs L(b) for a fractional ideal b ⊂ K. More precisely, b is the
inverse of an integral ideal and has an algebraic norm larger than (

√
nς+M)−n with overwhelming probability

(i.e., probability at least 1− 2−Ω(n)).

Proof. Let us write the ideal lattice L as L = xL(c) for some fractional ideal c. The element v is in L, so it is
of the form xΨ(w) for some w ∈ c. In particular, there exists an (integral) ideal d such that (w) = cd. Putting
everything together we obtain that v−1L = Ψ(w)−1L(c) = L(d−1). To conclude the proof, we need an upper-
bound on the algebraic norm of d. Since L in is IdLat0

K , we know that | N (x)| ·N (c) = 1. We also know that
with overwhelming probability, every coordinate of v is smaller than

√
nς+M , and so | N (v)| ≤ (

√
nς+M)n.

We conclude by using the fact that | N (v)| = | N (x)| · N (c) · N (d). ut

Let us now show that the function Extractς,M is constant (as a probability distribution) over K-isometric
ideal lattices.

Lemma 4.2. Let L and L′ be two ideal lattices such that L ∼ L′ (i.e., there exists (ξσ)σ ∈ KR, with |ξσ| = 1
for all σ, such that (ξσ)σ ·L = L′). Then the two probability distributions Extractς,M (L) and Extractς,M (L′)
are identical.

Proof. Let ξ = (ξσ) ∈ KR be as in the lemma. Observe that the multiplication by ξ is an isometry. This means
that for any v ∈ L and c ∈ KR, the probability that DL,ς,c outputs v is the same as the one that DL′,ς,ξc

outputs ξv. In both cases, the ideal output by the Extractς,M function will be v−1 ·L = (ξv)−1 ·L′. Finally,
observe that the distribution of ξc is the same as the one of c (uniform among {(xσ)σ : |xσ| = M for all σ}.
We then conclude that both distributions are identical. ut
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Since Extractς,M is constant over all classes of ideal lattices modulo IsoK = {L ∈ IdLat0
K | L ∼ L(OK)} ⊂

IdLat0
K , we can view it as a randomized function from IdLatk / IsoK to IK . But recall that we have an

isomorphism between IdLatK / IsoK and Pic0
K . Using this isomorphism, we finally can finally define a function

Extractς,M from Pic0
K to IK , such that for any ideal lattice L, it holds that the distributions Extractς,M (L)

and Extractς,M (P (L)) are identical (where P is defined in Lemma 2.7).
We now describe our average case distribution, which we will refer to as Dperfect

ς,M (parameterized by two
parameters ς,M > 0):

Dperfect
ς,M := Extractς,M (U(Pic0

K)), (10)

where U(Pic0
K) is the uniform distribution over Pic0

K . Observe that we do not have an efficient algorithm to
sample from the distribution Dperfect

ς,M . The main reason for that is that we don’t know how to sample exactly
from the uniform distribution over the Arakelov class group. Also, the class [a] might not be representable
with a finite number of digits (some of its coordinates are real numbers). In the next subsection, we will
explain how one can sample efficiently from a distribution statistically close to Dperfect

ς,M , when the parameter
ς is large enough. We note however that even if Dperfect

ς,M is not efficiently samplable, its output is a fractional
ideal of bounded algebraic norm, which can be efficiently represented.

4.2 Sampling from the average case distribution

In this section, we explain how one can efficiently sample from a distribution Dsample
ς,M that is statistically close

to the distribution Dperfect
ς,M . Let us start by describing a tool distribution Dround

s . In order to use our random
walk theorem, we need to be able to sample elements x ∈ KR such that Log(x) follows a continuous Gaussian
distribution of parameter s in H = Log(K∗R). This distribution however cannot be sampled efficiently on a
computer, as it is a continuous distribution. The objective of our distribution Dround

s is to compute a rounded
version of this distribution, where the output x lies in Ψ(K) ⊂ KR. This is formalized in the lemma below.
The proof is rather technical and has been postponed to Appendix C.1.

Lemma 4.3. For any ε1, ε2 > 0, there exists a deterministic function9 Eε1 : H → Ψ(K) such that for any
y ∈ H it holds that

‖Eε1(y) · (e−yσ )σ − 1‖∞ ≤ ε1.

Furthermore, for any s > 0, one can sample in time polynomial in n, maxi log ‖bi‖, s, log(1/ε1) and log(1/ε2)
from a distribution Dround

ε1,ε2,s that is ε2 close in statistical distance to Eε1(GH,s) (recall that (b1, · · · , bn) is a
known basis of L(OK)).

We can now describe the distribution Dsample
ς,M,a , which we will use as a samplable replacement of Dperfect

ς,M .
Observe that the distribution Dsample

ς,M,a is parameterized by parameters ς,M > 0 (the same as for Dperfect
ς,M ),

but also by a fractional ideal a ⊂ K. We will show that whatever the choice of a is, the distribution
Dsample
ς,M,a is statistically close to Dperfect

ς,M . Looking forward, the distribution Dsample
ς,M,a will be the one obtained

by randomizing the ideal a in the worst-case to average-case reduction.
Let a ⊂ K be any fractional ideal and ς,M > 0 be some parameters. Recall that ĜL,ς,c refers to

Klein’s Gaussian sampling algorithm on lattice L with parameter ς and center c (see Proposition 2.14). The
distribution Dsample

ς,M,a is obtained by running the following algorithm (Algorithm 2).

Theorem 4.4. Let a ⊂ K be any fractional ideal and ς ≥ 2n+1
√
n ·∆1/(2n) ·λn(L(OK)). Assume we know a

basis (b1, · · · , bn) of L(OK) and an LLL reduced basis of L(a), then there exists an algorithm sampling from
the distribution Dsample

ς,M,a in time polynomial in size(N (a)), log∆, maxi log ‖bi‖, logM and log ς.
Furthermore, the statistical distance between the distributions Dsample

ς,M,a and Dperfect
ς,M is at most 2−cn for

some absolute constant c > 0.

The proof of this theorem is available in appendix C.2.
9 The function Eε1 plays the role of the exponential function, rounded to a near element of K.
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Algorithm 2 Distribution Dsample
ς,M,a

1: Let s = 1/(logn)2 and N , B be the smallest integers satisfying the conditions of Corollary 3.5 (if K is a prime-
power cyclotomic field) or Corollary 3.4 (in the generic case).

2: Sample p1, · · · , pN uniformly among all prime ideals of norm ≤ B.
3: Sample (xσ)σ ← Dround

ε1,ε2,s for ε1 = 2−n/M and ε2 = 2−n.
4: Define L ∈ IdLatK to be L = (xσ)σ · L(

∏N
i=1 pi · a).

5: Sample c = (cσ)σ uniformly in {(xσ)σ : |xσ| = M , ∀σ}.
6: Let ς ′ = N (

∏N
i=1 pi · a)1/n · ς and c′ = N (

∏N
i=1 pi · a)1/n · c.

7: Sample v ← ĜL,ς′,c′ .
8: Output the fractional ideal L(b) = v−1 · L ⊂ Ψ(K).

Algorithm 3 Algorithm A′

Require: A fractional ideal L(a) (given by a basis).
Ensure: A vector v ∈ L(a).
1: Sample L(b)← Dsample

ς,M,a using Algorithm 2 and remember the elements x = (xσ)σ and v used in the algorithm.
2: Run A(L(b)) to obtain w.
3: return w′ = w · v · x−1.

4.3 The reduction

We can now prove our worst-case to average-case reduction, where the average-case distribution we consider
is Dperfect

ς,M (for some well chosen parameters ς and M).

Theorem 4.5. Let ς ≥ 2n+1
√
n · ∆1/(2n) · λn(L(OK)) and M ≥ 2

√
nς. Assume we have a (randomized)

algorithm A and real numbers γ ≥ 1 and p > 0 such that A solves γ-Hermite-SVP with probability at least
p when given as input L(a) ← Dperfect

ς,M (where the probability is taken over the choice of a and over the
randomness of A). Let T be an upper bound on the run time of A on any input.

Then there exists a randomized algorithm A′ solving γ′-Hermite-SVP in any fractional ideal L(a) with
probability at least p−n−ω(1) (where the probability is taken over the randomness of A′), for an approximation
factor

γ′ = O(BN/n) · γ ≤


Õ
(
n1/2

)
· γ for prime power cyclotomic fields

(assuming h+
K ≤ (logn)n)

Õ
(
n1−nC/n ·∆1/(2n)

)
· γ for arbitrary number fields.

The run time of A′ is bounded by T+poly(log∆,maxi log ‖bi‖, sizeN (a), log ς, logM) (recall that (b1, · · · , bn)
is a known basis of L(OK)).

Remark 4.6. Observe that from Theorem 4.4, one can sample in time polynomial in log∆, maxi log ‖bi‖,
log s and logM from a distribution Dsample

ς,M,OK whose statistical distance to Dperfect
ς,M is at most 2−Ω(n).

Remark 4.7. Recall from Lemma 2.8 that λn(L(OK)) ≤
√
n∆. Hence, if one chooses ς and M minimal (still

satisfying the conditions of Theorem 4.5) and if we are given an LLL reduced basis of L(OK) (which can
always be computed from any other basis), then the run time of Algorithm A′ in Theorem 4.5 is of the form
T + poly (log∆, size(N (a))).

Proof. We construct an algorithm A′ using A as described in Algorithm 3.
Let us first prove the bound on the run-time of A. Since ς ≥ 2n+1

√
n · ∆1/(2n) · λn(L(OK)), we can

apply Theorem 4.4 and we know that one can sample from Dsample
ς,M,a in time polynomial in size(N (a)), log∆,

maxi log ‖bi‖, logM and log ς. The second step of the algorithm is bounded by T by assumption and this
concludes the proof on the run time of the algorithm.
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Let us now prove that the algorithm is correct. First of all, we note that by choice of ς and by Theorem 4.4,
then SD(Dsample

ς,M,a ,D
perfect
ς,M ) ≤ 2−Ω(n), which shows that with probability at least p−2−Ω(n), Algorithm 3 above

computes w ∈ L(b) such that ‖v‖ ≤ γ ·Vol(L(b))1/n.
Let us assume in the following that this is the case, and show that w′ ∈ L(a) and that ‖w′‖ ≤ γ′ ·

Vol(L(a))1/n. Recall from Algorithm 2 that L(b) = x · v−1 · L(
∏N
i=1 pi · a), where the ideals pi are integral

and have algebraic norm bounded by B. Since w ∈ L(b), then w′ = v · x−1 · w ∈ L(
∏N
i=1 pi · a). Moreover,

as the ideals pi are integral, then
∏N
i=1 pi · a ⊂ a and we conclude that w′ ∈ L(a).

Let us now bound the size of ‖w′‖. We know that

‖w′‖ = ‖w · v · x−1‖ ≤ ‖v‖∞ · ‖x−1‖∞ · ‖w‖
≤ γ · ‖v‖∞ · ‖x−1‖∞ ·Vol(L(b))1/n.

By definition of L(b), it also holds that

Vol(L(b)) ≤ ‖x · v−1‖n∞ ·
N∏
i=1

N (pi) ·Vol(L(b)).

Hence we obtain that ‖w′‖ ≤ γ′ ·Vol(L(b)) for an approximation factor

γ′ = γ · ‖v‖∞ · ‖v−1‖∞ · ‖x‖∞ · ‖x−1‖∞ ·BN/n.

Recall that v is sampled from a distribution which is statistically close to DL,ς′,c′ for some ideal lattice L
with ς ′ = N (

∏N
i=1 pi ·a)1/n · ς and c′ = (c′σ)σ such that |c′σ| = N (

∏N
i=1 pi ·a)1/n ·M for all σ. Recall also that

we have seen in the proof of Theorem 4.4 that ς ′ ≥
√
n log(n) · λn(L(OK)) ·Vol(L)1/n. Using Lemma 2.8 as

well as Lemmas 3.3 and 4.4 of [31] (instantiated at ε = 1/2), this implies that ‖v− c′‖ ≤
√
n · ς ′, except with

probability at most 2−Ω(n). Let us assume that this is indeed the case, then, for any coordinate vσ of v it
holds that

|vσ − c′σ| ≤ N

(
N∏
i=1

pi · a

)1/n

·
√
n · ς,

from which we conclude that

|vσ| ∈ N

(
N∏
i=1

pi · a

)1/n

· [M −
√
n · ς,M +

√
n · ς].

This gives us the following upper bound on the product ‖v‖∞ · ‖v−1‖∞:

‖v‖∞ · ‖v−1‖∞ ≤
N (
∏N
i=1 pi · a)1/n · (M +

√
n · ς)

N (
∏N
i=1 pi · a)1/n · (M −

√
n · ς)

=
1 +
√
n · ς/M

1−
√
n · ς/M

≤ 3,

by choice of M ≥ 2
√
n · ς.

To compute a bound on ‖x‖∞ · ‖x−1‖∞, recall that x is sampled from a distribution that is statistically
close to Eε1(GH,s), for ε1 and s as in Algorithm 2. Let y = (yσ)σ be sampled from GH,s. Recall that by
Lemma 4.3, it holds that ‖Eε1(y)/ey − 1‖∞ ≤ ε1 ≤ 1/2. In particular, for a fixed coordinate σ we have that

eyσ/2 ≤ |Eε1(y)σ| ≤ 2eyσ ,

which implies

‖Eε1(y)‖∞ ·
∥∥∥∥ 1

Eε1(y)

∥∥∥∥
∞
≤ 4e2‖y‖∞ .
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Since y is chosen from an n-dimensional continuous Gaussian distribution of parameter s, we know that
‖y‖∞ ≤ (log n)2 ·s except with probability at most 2−Ω((logn)2) = n−ω(1). Using the fact that s · (log n)2 ≤ 1,
we conclude that, except with probability at most n−ω(1), it holds that

‖x‖∞ · ‖x−1‖∞ ≤ 4e(logn)2·s ≤ 11.

We finally obtain that
γ′ = 33 ·BN/n · γ.

Plugging in the values of B and N from Corollary 3.5 in the prime power cyclotomic case or the ones from
Corollary 3.4 in the generic case concludes the proof. ut
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A Number-theoretic computations

Lemma A.1. Let LogO∗K ⊆ H ⊆ logKR be the logarithmic unit lattice. Then the covolume of this lattice
in H equals

√
n · 2−nC/2 ·R.

Proof. In the literature, often one uses the embedding Log′O∗K ⊆ H ′ ⊆ RnR+nC , where (Log′(η))σ equals
log |σ(η)| or 2 log |σ(η)|, depending on whether σ is real or complex. The space H ′ = {x ∈ RnR+nC |

∑
j xj =

0} is the equivalent hyperplane. It is evident that the linear map

A : R`+1 → LogKR, eν 7→
{

eσν when ν is real
1
2 (eσν + eσν ) when ν is complex

maps Log′O∗K ⊆ H ′ to LogO∗K ⊆ H.
Let U be a basis of Log′O∗K , and denote U by the same basis, but the last row removed; the determinant

of U is called the regulator R of the number field K. Define B : R` → R`+1, ej 7→ ej − enR+nC . By the
fact that for any element in Log′O∗K holds that the sum of the entries equals zero, we have BU = U . As
A maps Log′O∗K to LogO∗K , we obtain that ABU is a basis of LogO∗K . The covolume of this basis equals√

det(BTATAB) det(U) =
√

det(BTATAB)R =
√
n2−nC/2R.

The last equality is proven by the computation of det(BTATAB) below. Note thatATA = diag(1, . . . , 1, 1/2, . . . , 1/2),
where the 1 is repeated nR times and the 1/2 is repeated nC times. Therefore, BTATAB = J + 1

21 · 1
T ,

where
J = diag(1, . . . , 1︸ ︷︷ ︸

nR

, 1/2, . . . , 1/2︸ ︷︷ ︸
nC−1

).

and 1 is the all-one vector of dimension `. Using the Weinstein-Aronszajn identity, we obtain

det(BTATAB) = det(J + 1/2 · 1 · 1T ) = det(J)(1 + 1/2 · 1TJ−11)

= 2−nC+1(1 +
1

2
(nR + 2nC − 2)) = 2−nC · n

ut

Lemma A.2. Let H ⊆ Log(KR) be the hyper plane orthogonal to the all-one vector, and let ρ(n)
s be the

Gaussian function. Then ∫
x∈H

s−`ρ(n)
s (x)dx = 1

Proof. Use the matrices A and B from the previous lemma to apply integration by substitution, observing
that H = ABR`. ∫

x∈ABR`
s−`ρ(n)

s (x)dx =
√

det(BTATAB)

∫
x∈R`

s−`ρ(n)
s (ABx)dx

=
√

det(DTD)

∫
x∈R`

s−`e−πx
TDTDx/s2dx =

∫
x∈R`

s−`e−πx
T x/s2dx = 1

Where DTD = BTATABT is the `-dimensional Cholesky decomposition, and the last equality follows then
again by integration by substitution.

Lemma A.3. Assume the Extended Riemann Hypothesis, and let πK(y) the number of prime ideals in a
number field K with norm bounded by y. Let furthermore x > max((12 log∆+ 8n+ 28)4, 3 · 1011). Then

πK(x) ≥ x

2 · log x
.
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Proof. By simplifying an explicit result of Grenié and Molteni [20, Cor. 1.4], we obtain∣∣∣∣πK(x)− πK(3)−
∫ x

3

du

log u

∣∣∣∣ ≤ √x[6 log∆+ 4n log x+ 14].

Therefore, we have πK(x) ≥
∫ x

3
du

log u −
√
x[6 log∆+4n log x+14] ≥ x

log x

(
1− log(x)2(6 log∆+4n+14)√

x

)
≥ x

2 log x ,

where the first inequality follows from omitting πK(3) and the second inequality from
∫ x

3
du
lnu ≥

x
ln x and

from the assumption that x > 24 · (6 log∆ + 4n + 14)4 and x > 3 · 1011. Note that with such x, we have
ln(x)2/

√
x < x−1/4, so that ln(x)2(6 log∆+4n+14)√

x
< 1/2. ut

B Proofs from Section 3

B.1 Proof of Corollary 3.4

Proof. We instantiate Theorem 3.3 with ε = 2−n, k = log(∆)/(2(log n)2) and s > 1/`. We assume throughout
the proof that ` > 1. By the fact that η1(Λ∗K) ≤

√
`

λ1(ΛK) [31, Lemma 3.2] and a general upper bound
1/λ1(ΛK) ≤ 1000

√
`+ 1 log(`)3 by Kessler [24], we obtain

1/s′ = max(
1√
2s
, η1(Λ∗K)) ≤ max(

1√
2s
,
√
`/λ1(ΛK)) ≤ 2000` log(`)3.

The quantities log(log(1/ε)) and log(1/s′) occurring in B of Theorem 3.3 can (as they are in O(log n))
therefore be put in the polylogarithmic factors. We obtain B = Õ(n2k log(∆)2) = Õ(∆1/ logn), using the
instantiation k = log(∆)/(2(log n)2).

Putting llog(x) = max(log(log x), 1), and noting that log(`)−1 ≤ 2 log(n)−1 for ` > 1, we have

` log(1/s′) ≤ `[log(`) + 3 llog(`) + log(2000)] ≤ ` log `

(
1 +

22 · llog(n)

log n

)
,

log(Vol(Pic0
K)) ≤ n

2 [log ∆1/n +2 log(log(∆1/n)) + 2] and log(1/ε) ≤ n ≤ 2`. Combining these, we obtain the
sufficient lower bound

N ≥ n− nC
2k

[
1 +

30 llog n

log n

]
+

n

2k log n

[
1

2
log ∆1/n + log log ∆1/n

]
.

This bound is obtained by simplifying the bound below by applying 1 ≤ llog(x) and ` ≤ n− nC.

`

2k
[1 +

22 llog n

log n︸ ︷︷ ︸
`/2·log(1/s′)

+
4 + 2/`

log n︸ ︷︷ ︸
log(1/ε)+1

] +
n

2k log(n)
[
1

2
log ∆1/n + log(log(∆1/n))) + 1︸ ︷︷ ︸

log(Pic0K)/2

]

Instantiating k = log(∆)/(2(log n)2) yields the result. ut

B.2 Proof of Corollary 3.5

Proof. The proof consists of three parts. In the first part we prove stronger version of Theorem 3.3, specifi-
cially tailored to prime-power cyclotomic fields. In this stronger version, the part in N that depends on 1/s̃
can be made negligible, with the caveat that h+

K (the class number of the maximum real subfield of K) pops
up as an extra factor in the error analysis. In the second part we prove bounds on log(1/s′), log(∆) and
log(ε). In the third and last part of the proof we combine these bounds to obtain a sufficient lower bound
for N . Throughout the proof we assume that n ≥ 10.
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Part 1. The group of units of a cyclotomic fields contains a subgroup of cyclotomic units, which are units
that have a specific compact shape [45, Ch. 8]. One can take the Logarithmic map of these cyclotomic units,
obtaining the logarithmic cyclotomic unit lattice C ⊆ ΛK , for which holds [ΛK : C] = h+

K [45, Thm. 8.2].
For our purposes it is useful to look at the dual lattice C∗ ⊇ Λ∗K , because we have the following sequence of
bounds, due to [31, Lemma 3.3] and [9, Thm. 3.1] respectively.

η1(C∗) ≤ log(4`)λ`(C
∗) ≤ O(log(`)5/2 · `−1/2)

Therefore, whenever 1/(
√

2s) ≥ O(log(`)5/2 · `−1/2), we have

det(ΛK)ρ 1√
2s

(Λ∗K) ≤ h+
K det(C)ρ 1√

2s
(C∗) ≤

2h+
K

(
√

2s)`
.

This means that we can apply Theorem 3.3 on cyclotomic fields with s′ = min(
√

2s,O(
√
`/ log5/2(`))) and

N ≥ `/2·log(1/s′)+ 1
2 log(Vol(Pic0K))+log(1/ε)+log(h+

K)+1

k logn .
Part 2. Note that we assumed that s = 1/ log(n)2. By Part 1 of this proof and the fact that ` = n/2 for

cyclotomic fields, this directly implies that `
2 log(1/s′) ≤ n

2 log log(n). Per definition, log(1/ε) = log(2)n and
per assumption log(h+

K) ≤ n log log(n). By Lemma 2.3 and the fact that log∆ ≤ n log(2n) for cyclotomic
fields, we directly obtain (assuming n ≥ 10)

log(Vol(Pic0
K))/2 ≤ n

2
[log(2n)/2 + log log(2n) + 1] ≤ n

2
[log(n)/2 + 3 log log(n)] (11)

Part 3. Combining all the bounds of Part 2 of this proof we deduce that the bound B = Õ(n2+2k) and the
lower bound N ≥ n

2k

[
1
2 + 8 log(log(n))

logn

]
suffice. The last bound is obtained by the following simplification

n

2k log(n)
[log(log(n))︸ ︷︷ ︸
` log(1/s′)/2

+ log(n)/2 + 3 log log(n)︸ ︷︷ ︸
log(Vol(Pic0K))

+ log(log(n))︸ ︷︷ ︸
log h+

K

+ log(2)︸ ︷︷ ︸
log(1/ε)

+1]

≤ n

2k
[1/2 +

8 log log n

log n
] for n ≥ 10.

Putting k = log(n) yields the claim. ut

B.3 Proof of Proposition 3.8

Notation B.1 We denote byM : IK → N the von Mangoldt function for number fields K. The valueM(a)
equals log(N (p)) whenever a is a power of a prime ideal p and zero otherwise. We also define the function
P : IK → N, for which P (a) = log(N (a)) whenever N (a) is prime and zero otherwise.

In order to apply analytic number-theoretic results, we need to eliminate the non-split primes of the number
field from the character sums arising in the eigenvalues of the Hecke operator. This happens in the following
lemma, whose proof follows exactly the outline as in [46, Cor. 2.3.5].

Lemma B.2. For any character χ : IK → C, we have∑
N (a)≤B

χ(a)M(a)−
∑

N (a)≤B

χ(a)P (a) = O(n
√
B) (12)

Proof. Any nonzero entry χ(a)[M(a)−P (a)] arise from an ideal a that is a power of a prime ideal and that
does not have prime norm. As there are at most n = [K : Q] prime ideals above each prime number, we see
that the left side of Equation (12) must be bounded by

n
∑
p`≤B
`≥2

ln(p) ≤ n
∑
p≤
√
B

2≤`≤ lnB
ln p

ln(p) ≤ n ln `
lnB

ln `
= nπ(B1/2) lnx = O(nB1/2),
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where π is the prime counting function and where the last bound is obtained by the prime number theorem
(see Theorem 2.1). ut

Proof (of Proposition 3.8). Assuming the Extended Riemann Hypothesis, we have the following classical

analytic result10 [21, Thm 5.15] for any non-trivial charakter χ ∈ P̂ic0
K .∑

N(a)<B

M(a)χ(a) = O(B1/2 log(B) log(Bn∆ · q∞(χ))),

where q∞(χ) is the infinite part of the analytic conductor of χ, and whereM is the von Mangoldt function
for the number field K.

According to Lemma B.2, the sums
∑
N (a)≤B χ(a)P (a) and

∑
N (a)≤B χ(a)M(a) differ at most O(nB1/2),

and therefore

A(B) :=
∑

2≤n≤B

an =
∑

N (a)≤B

χ(a)P (a) = O(B1/2 log(B) log(Bn∆ · q∞(χ)))

where an =
∑
N (a)=n χ(a)P (n) and where P (n) = log n whenever n is prime and zero otherwise. Using the

Abel partial summation formula, we deduce∑
N (p)≤B

χ(p) =
∑
n≤B

an
1

log n
=
A(B)

logB
+

∫ B

2

A(t)
dt

t log2(t)

= O(B1/2 log(Bn∆ · q∞(χ))) +O

(∫ B

2

log(tn∆ · q∞(χ))

log(t)t1/2
dt

)
= O(B1/2 log(Bn∆ · q∞(χ)))

where the last equality uses
∫ B

2
log(tnA)
log(t)t1/2

dt ≤ log(BnA)/ log(2)
∫ B

2
t−1/2dt = O(log(ABn)·

√
B). As χ◦[d0(·)] :

IK → C is a Hecke character on ideals, and |P| = Θ(B/ log(B)) (see Theorem 2.1), we have

λχ =
1

|P|
∑
p∈P

χ(d0(p)) =
1

|P|
O(B1/2 log(Bn∆ · q∞(χ)))

= O(B−1/2 log(B) log(Bn∆ · q∞(χ)))

which finishes the proof. ut

C Proofs from Section 4

This Appendix contains the missing proofs of Section 4.

C.1 Proof of Lemma 4.3

Algorithm 4 below describes the function Eε1 and provide an efficient way of computing it. This algorithm
defines three integers N1, N2 and N3, that represent the number of bits of precision used at different steps of
the algorithm. They are chosen so that the function Eε1 satisfies the desired requirement ‖Eε1(y) · (e−yσ )σ−
1‖∞ ≤ ε1 for all y ∈ H.
10 Any character on the Arakelov class group can be seen as a Hecke character, by projecting the idèle class group to

the Arakelov class group. Since characters on the Arakelov class group are necessarily defined on any ideal class,
the conductor equals one. The analytic conductor q(χ) is then equal to ∆ · N (fχ) · q∞(χ) = ∆ · q∞(χ), where ∆ is
the discriminant of the number field K and q∞(χ) is the infinite part of the analytic conductor; see, for example,
[21, p. 129 & Eq. (5.7)]
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Algorithm 4 The function Eε1
Require: An element y = (yσ)σ ∈ H and a basis (b1, · · · , bn) of Ψ(OK) in KR.
Ensure: An element x ∈ Ψ(K).
1: Define N2 = 2 + (‖(yσ)σ‖∞ + log(1/ε1))/ log(2), N1 = N2 + ‖(yσ)σ‖∞/ log(2) + 1 and N3 = N2 ·

log(
∑
i ‖bi‖∞)/ log(2)

2: Compute ỹ = ( b2
N1yσc
2N1

)σ (rounding of y with N1 bits of absolute precision)
3: Compute x1 ∈ KR to be (eỹσ )σ where every exponential function is computed with 2N2 bits of absolute precision

4: Write 2N3x1 as
∑
i zibi with zi ∈ R and compute x2 =

∑
ibziebi ∈ OK

(This is Babai round-off algorithm in Ψ(OK) using the basis (bi)i with target 2N3x1)
5: Compute x = 2−N3 · x2
6: return x

The last two steps of the algorithm simply consists in rounding the element x1 ∈ KR to a close element
in Ψ(K). We observe first that the algorithm indeed output an element in Ψ(K), because x2 ∈ Ψ(OK).
Also, one can see that if y has rational coefficients (so that is can be finitely represented), then Algorithm 4
computes Eε1(y) in time polynomial in n, ‖y‖∞, size(y), log(1/ε1) and maxi log ‖bi‖. The fact that Eε1 can
be efficiently computed when the input has bounded size will be used in the description of the distribution
Dround
ε1,ε2,s.
Let us now fix an arbitrary input y = (yσ)σ ∈ H and compute an upper bound on‖Eε1(y) ·(e−yσ )σ−1‖∞.

For a given embedding σ, we have that |yσ − ỹσ| ≤ 2−N1 . Going to Step 2, we have that

|x1,σ − eyσ | ≤ |x1,σ − eỹσ |+ |eỹσ − eyσ |
≤ 2−N2 + eyσ · |eỹσ−yσ − 1|
≤ 2−N2 + eyσ · 2 · |ỹσ − yσ|
≤ 2−N2 + eyσ · 21−N1 ,

where we used the fact that for any x ∈ [−1, 1], it holds that |ex− 1| ≤ 2 · |x|. Using the fact that N1 = N2 +
‖(yσ)σ‖∞/ log(2)+1, we then have |x1,σ−eyσ | ≤ 2−N2+1 for all coordinates. Going to Step 3 and 4, we have,
after Babai’s rounding, ‖x−x1‖∞ ≤ 2−N3 ·

∑
i ‖bi‖∞. Using the equation N3 = N2 · log(

∑
i ‖bi‖∞)/ log(2) we

see that the upper bound is equal to 2−N2 . Combining it with our previous bound ‖x1− (eyσ )σ‖∞ ≤ 2−N2+1,
we obtain that

‖x− (eyσ )σ‖∞ ≤ 2−N2+2.

This implies that for any coordinate σ, we have∣∣∣ xσ
eyσ
− 1
∣∣∣ ≤ 2−N2+2

eyσ
.

Plugging in the definition of N2, we finally obtain the desired bound.
Let us now describe the distribution Dround

ε1,ε2,s. Recall that we want this distribution to be close to the
distribution Eε1(GH,s). The only thing that prevents us from sampling an element y ∈ H using the dis-
tribution GH,s and then computing Eε1(y) is the fact that the distribution GH,s is continuous, and so one
cannot efficiently sample from this distribution (also, the element y would have real coefficients that cannot
be finitely represented). In order to circumvent this difficulty, we simply sample ŷ from a distribution sta-
tistically close to a rounded Gaussial distribution over H. We will choose a rounded Gaussian distribution
with N̂1 > N1 bits of absolute precision so that the rounding to N1 bit in the second step of Eε1 provides
a distribution statistically close to the one we would have obtained if we had started with a continuous
Gaussian distribution.

Let t > 0 be such that, if y is sampled from a continuous n-dimensional Gaussian distribution of parameter
s, it holds that ‖y‖∞ ≤ t ·s except with probability at most ε2/2. We know that there exists such a t bounded
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by poly(n, log(1/ε2)) (and it can be efficiently computed). Let N̂1 = 3+(2t ·s+log(1/ε1))/ log(2) (this choice
corresponds to the definition of the integer N1 in Algorithm 4, except that ‖y‖∞ has been replaced by t · s).

For a distribution D and an integer N , let us write bDcN the distribution obtained by sampling y ← D
and rounding every coordinate of y with N bits of absolute precision. Let D̂ be a distribution that is ε2/2
statistically close to bGH,scN̂1

. We know that there exist such distributions D̂ that can be sampled in time
polynomial in log(1/ε2), n, N̂1 and s. The distribution Dround

s is obtained as follows

Algorithm 5 The distribution Dround
ε1,ε2,s

1: Sample ŷ ← D̂ until ‖ŷ‖∞ ≤ t · s
2: return Eε1(ŷ)

Let us prove that the distribution Dround
ε1,ε2,s is ε2 close to Eε1(GH,s). To do so, let us introduce the two dis-

tributions D̂tail-cut and bGH,scN̂1,tail-cut, which corresponds to the distributions D̂ and bGH,scN̂1
conditioned

on the output having infinity norm at most t · s. Recall that SD(D̂, bGH,scN̂1
) ≤ ε2/2. Then, by performing

rejection sampling on the two distributions and rounding the output with N1 bits of precision, we also have
that SD(bD̂tail-cutcN1

, bbGH,scN̂1,tail-cutcN1
) ≤ ε2/2.

Now, using the fact that N1 ≥ N̂1 for an element output by the distribution bGH,scN̂1,tail-cut, one can see
that the distribution bbGH,scN̂1,tail-cutcN1

is the same as bGH,s,tail-cutcN1
. By definition of t, we know that

SD(GH,s,tail-cut,GH,s) ≤ ε2/2, which implies in particular that SD(bGH,s,tail-cutcN1 , bGH,scN1) ≤ ε2/2.
Combining everything together, we finally obtain that

SD(bGH,scN1
, bD̂tail-cutcN1

) ≤ ε2.

The first distribution corresponds to the distribution of ỹ when computing Eε1(y) for y ← GH,s, whereas the
second one corresponds to the distribution of ỹ when computing Eε1(ŷ) for ŷ ← D̂tail-cut. Since the rest of
the computation of Eε1 only depends on ỹ, we conclude that the statistical distance between Eε1(GH,s) and
Eε1(D̂tail-cut) is no more that ε2. We conclude by observing that the second distribution is exactly Dround

ε1,ε2,s.
To conclude the proof, it remains to prove that Dround

ε1,ε2,s can be efficiently sampled. The first step of
Algorithm 5 can be performed in expected time polynomial in log(1/ε2), n, N̂1 and s. Recall that if ŷ has
rational coefficient (which is the case here), then Eε1(ŷ) can be computed in time polynomial in n, ‖ŷ‖∞,
size(ŷ), log(1/ε1) and maxi log ‖bi‖. Plugging in the value of N̂1 and the upper bound on ‖ŷ‖∞, we obtained
the desired result.

C.2 Proof of Theorem 4.4

Run time. We show that Algorithm 2 used above to describe the distribution Dsample
ς,M,a also provides an

efficient way of sampling it. At Step 2, we use Lemma 2.2 to sample the primes pi in time polynomial in N
and logB. With our choice of N and B, this is polynomial in log∆. In Step 3, we use the distribution Dround

ε1,ε2,s

previously defined, which we have seen can be sampled in time polynomial in n, log(M) and maxi log ‖bi‖
(where we used the fact that log(1/ε1) and log(1/ε2) are polynomial in n, log(M) and that s ≤ 1). In Step 4,
computing a basis of the ideal lattice L can be done in time polynomial in N , logB, size(N (a)) and size(x).
We know that the size of x is bounded by the time needed to compute it (in Step 3). By definition of N
and B, we conclude stat Step 4 is polynomial in log∆ and log(a) and maxi log ‖bi‖. In Step 5, sampling c
can be done in time polynomial in n. Finally, Klein’s algorithm can be run in time polynomial (in the size
of the basis and in log ς), and computing a basis of v−1 · L is also polynomial in all the previous quantities.
We conclude that Algorithm 2 runs in time polynomial in log∆, maxi log ‖bi‖, size(N (a)) and log ς (using
the fact that n = O(log∆)).
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Statistical distance. Let us now fix an ideal a and a parameter ς ≥ 2n+1
√
n · ∆1/(2n) · λn(L(OK)) and

prove that the distributions Dsample
ς,M,a and Dperfect

ς,M are statistically close. We do so by introducing intermediate
distributions D1 up to D6. Let us call D7 := Dsample

ς,M,a and D0 = Dperfect
ς,M . We show that for i ∈ {0, · · · , 6},

the statistical distance between Di and Di+1 is at most 2−Ω(n), which will conclude the proof by triangle
inequality.

Distribution D1. Algorithm 6 below defines a distribution D1 (depending on the ideal a). Let us show that

Algorithm 6 Distribution D1

1: Let s = 1/(logn)2 and N , B be the smallest integers satisfying the conditions of Corollary 3.5 or 3.4.
2: Sample [a]←WPic0

K
(B,N, ς)

3: Define [a′] = [a] + [d0(a)]
4: return Extractς,M ([a′])

SD(D0, D1) ≤ 2−n. Recall that D0 = Extractς,M (U(Pic0
K)). Hence, it is sufficient to show that the statistical

distance between the distribution of [a′] in Algorithm 6 and the uniform distribution over Pic0
K is bounded

by 2−n. This is true by Corollary 3.4 or Corollary 3.5 (thanks to our choices of B and N) and using the fact
that U(Pic0

K) + [d0(a)] = U(Pic0
K).

Distribution D2. Algorithm 7 below defines a distribution D2. This distribution is the same as D1. Indeed,

Algorithm 7 Distribution D2

1: Let s = 1/(logn)2 and N , B be the smallest integers satisfying the conditions of Corollary 3.5 or 3.4.
2: Sample a←WDiv0

K
(B,N, ς)

3: Define a′ = a + d0(a)
4: Define L = L(a′)
5: return Extractς,M (L)

recall that for any a ∈ ÷0
k, we have P (L(a)) = [a] (where P is defined in Lemma 2.7). Hence, by definition

of WDiv0
K
,WPic0K

, it holds that P (L) in Algorithm 7 has the same distribution as [a′] in Algorithm 6. Using
the fact that Extractς,M (P (L)) = Extractς,M (L) (as distributions), we conclude that D1 = D2.

Distribution D3. Algorithm 8 below defines a distribution D3. Distribution D3 is exactly the same as

Algorithm 8 Distribution D3

1: Let s = 1/(logn)2 and N , B be the smallest integers satisfying the conditions of Corollary 3.5 or 3.4.
2: Sample p1, · · · , pN uniformly among all prime ideals of norm ≤ B.
3: Sample (yσ)σ ← GH,s
4: Define L ∈ IdLat0K to be L = (eyσ/N (

∏N
i=1 pi · a)1/n)σ · L

(∏N
i=1 pi · a

)
.

5: return Extractς,M (L)

Distribution D2, except that we made explicit the definitions of WDiv0
K

(B,N, ς), d0(·) and L(·).
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Algorithm 9 Distribution D4

1: Let s = 1/(logn)2 and N , B be the smallest integers satisfying the conditions of Corollary 3.5 or 3.4.
2: Sample p1, · · · , pN uniformly among all prime ideals of norm ≤ B.
3: Sample y := (yσ)σ ← GH,s
4: Define L ∈ IdLat0K to be L = (Eε1(y)/N (

∏N
i=1 pi · a)1/n)σ · L

(∏N
i=1 pi · a

)
, where ε1 = 2−n/M .

5: return Extractς,M (L)

Distribution D4. Algorithm 9 below defines a distribution D4. The only difference between distributions D3

and D4 is in the definition of the lattice L. In distribution D3, the lattice L is obtained using (eyσ )σ, whereas
in distribution D4 we use Eε1((yσ)σ).

Let us fix some ideals p1, · · · , pN and an element y ∈ H. Let us define L3 = (eyσ/N (
∏N
i=1 pi · a)1/n)σ ·

L
(∏N

i=1 pi · a
)
as in D3 and L4 = (Eε1(y)/N (

∏N
i=1 pi · a)1/n)σ · L

(∏N
i=1 pi · a

)
as in L4. If we show that

SD(Extractς,M (L3),Extractς,M (L4)) ≤ 2−n, then this will hold for any choices of pi and y, and we will have
the desired result SD(D3, D4) ≤ 2−n.

By definition of L3 and L4, it holds that L4 = zL3 for z = Eε1(y)/(eyσ )σ. Besides, by Lemma 4.3 (and
by choice of ε1 = 2−n/M), we know that

‖z − 1‖∞ ≤ 2−n/M.

Let us now enfold the definition of Extractς,M . To simplify notations, we write C = {(xσ)σ ∈ KR : |xσ| =
M , ∀σ}

SD(Extractς,M (L3),Extractς,M (L4))

=
1

2
·
∑
a∈IK

|Pr(Extractς,M (L3) = L(a))− Pr(Extractς,M (L4) = L(a))|

=
1

2
·
∑
a∈IK

∣∣∣∣∣∣∣∣
∫
c∈C

∑
v∈L3:

L(a)=v−1·L3

Pr(GL3,ς,c = v)−
∑
v∈L4:

L(a)=v−1·L4

Pr(GL4,ς,c = v)
dc

Vol(C)

∣∣∣∣∣∣∣∣
Observe now that multiplication by z gives us a bijection between the sets {v ∈ L3 s.t. L(a) = v−1 · L3}

and {v ∈ L4 s.t. L(a) = v−1 · L4}. Hence, we obtain

SD(Extractς,M (L3),Extractς,M (L4))

=
1

2
·
∑
a∈IK

∣∣∣∣∣∣∣∣
∫
c∈C

∑
v∈L3:

L(a)=v−1·L3

(Pr(GL3,ς,c = v)− Pr(GL4,ς,c = zv))
dc

Vol(C)

∣∣∣∣∣∣∣∣
≤ 1

2
·
∑
a∈IK

∫
c∈C

∑
v∈L3:

L(a)=v−1·L3

|Pr(GL3,ς,c = v)− Pr(GL4,ς,c = zv)| dc

Vol(C)

≤ sup
c∈C

(
1

2
·
∑
v∈L3

|Pr(GL3,ς,c = v)− Pr(GL4,ς,c = zv)|

)
= sup

c∈C
SD(GL3,ς,c, z

−1 · GL4,ς,c).

Let us fix an arbitrary c ∈ C. In order to upper bound the statistical distance between the two distributions
GL3,ς,c and z−1 · GL4,ς,c, we will bound their Kullback-Leibler divergence. The Kullback-Leibler divergence
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of two discrete random variables X and Y over the same set S and such that P(Y = x) > 0 for all x ∈ S is
defined as

dKL(X‖Y ) =
∑
s∈S

P(X = s) · log

(
P(X = s)

P(Y = s)

)
.

It satisfies the following relation with the statistical distance

SD(X,Y ) ≤
√

1

2
dKL(X‖Y ). (13)

Going back to our random variables GL3,ς,c and z−1 · GL4,ς,c, we have

dKL(GL3,ς,c‖z−1 · GL4,σ,s) =
∑
v∈L3

Pr(GL3,ς,c = v) · log

(
ρς(v − c)
ρς(L3 − c)

· ρς(L4 − c)
ρς(zv − c)

)

= log

(
ρς(L4 − c)
ρς(L3 − c)

)
+
∑
v∈L3

Pr(GL3,ς,c = v) · π(‖zv − c‖2 − ‖v − c‖2)

ς2

Let us bound the two terms of the sum above. We will use Corollary 2.13 to bound the first term. In
order to do so, we need to have an upper bound on the volume of the lattices L3 and L4. The volume of L3

satisfies Vol(L3) =
√
∆ (since L3 = L(a′) for some a′ ∈ Div0

K). To compute the volume of L4, recall that
L4 = zL3 and hence

Vol(L4) =
∏
σ

|zσ| ·Vol(L3) ≤ (1 + 2−n)n ·
√
∆ ≤ 2 ·

√
∆.

We then conclude that the condition of the theorem implies ς ≥ n ·λn(L(OK)) ·max(Vol(L3)1/n,Vol(L4)1/n),
and so we can apply Corollary 2.13 to the lattices L3 and L4. Doing so, we obtain

log

(
ρς(L4 − c)
ρς(L3 − c)

)
≤ log

(
1 + 2−Ω(n)

1− 2−Ω(n)
· Vol(L3)

Vol(L4)

)
≤ log

(
1 + 2−Ω(n)

)
−
∑
σ

log |zσ|

≤ 2−Ω(n) + n · 2ε1 = 2−Ω(n).

Let us now consider the second term
∑
v∈L3

Pr(GL3,ς,c = v) · π(‖zv−c‖2−‖v−c‖2)
ς2 . For any v ∈ L3, is holds

that ∣∣ ‖zv − c‖2 − ‖v − c‖2 ∣∣
= (‖zv − c‖+ ‖v − c‖) · | ‖zv − c‖ − ‖v − c‖ |
≤ (‖zv − zc‖+ ‖zc− c‖+ ‖v − c‖) · ‖zv − v‖ using both triangle inequalities
≤ ((‖z‖∞ + 1) · ‖v − c‖+ ‖z − 1‖∞ · ‖c‖) · ‖z − 1‖∞ · ‖v‖
≤ (3 · ‖v − c‖+ ε1‖c‖) · ε1 · (‖v − c‖+ ‖c‖)
≤ ε1 · (3 · ‖v − c‖2 + 4 · ‖v − c‖ · ‖c‖+ ε1‖c‖2)

≤ ε1 · (3 · ‖v − c‖2 + 4
√
n ·M · ‖v − c‖+ ε1 · n ·M2)

≤ 2−Ω(n) · (‖v − c‖2 + ‖v − c‖) by choice of ε1

≤ 2−Ω(n) · (‖v − c‖2 + 1)
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Going back to the sum, we obtain∑
v∈L3

Pr(GL3,ς,c = v) · π(‖zv − c‖2 − ‖v − c‖2)

ς2

≤ 2−Ω(n)

ς2
·

(∑
v∈L3

Pr(GL3,ς,c = v) · ‖v − c‖2 +
∑
v∈L3

Pr(GL3,ς,c = v)

)

=
2−Ω(n)

ς2
·
(
Ev←GL3,ς,c

(‖v − c‖2) + 1
)

Using the fact that ς ≥
√
n log(n) · λn(L(OK)) · ∆1/(2n) and Lemma 2.8, we see that s ≥

√
log n · λn(L).

Combining Lemmas 3.3 and 4.3 of [31] (instantiated at ε = 1/2), we finally obtain

Ev←GL3,ς,c
(‖v − c‖2) ≤ 2nς2.

Combining it with the previous bound, we finally obtain∑
v∈L3

Pr(GL3,ς,c = v) · π(‖zv − c‖2 − ‖v − c‖2)

ς2
≤ 2−Ω(n),

which conclude the bound on the Kullback–Leibler divergence of GL3,ς,c and z−1 · GL4,ς,c. We finally obtain
a bound on the statistical distance SD(GL3,ς,c, z

−1 · GL4,ς,c) ≤ 2−Ω(n) using Equation (13), which we have
seen implies SD(D3, D4) ≤ 2−Ω(n).

Distribution D5. Algorithm 10 below defines a distribution D5. The only difference between distributions

Algorithm 10 Distribution D5

1: Let s = 1/(logn)2 and N , B be the smallest integers satisfying the conditions of Corollary 3.5 or 3.4.
2: Sample p1, · · · , pN uniformly among all prime ideals of norm ≤ B.
3: Sample x := (xσ)σ ← Dround

ε1,ε2,s for ε1 = 2−n/M and ε2 = 2−n.
4: Define L ∈ IdLat0K to be L = (x/N (

∏N
i=1 pi · a)1/n)σ · L(

∏N
i=1 pi · a).

5: return Extractς,M (L)

D4 and D5 is that x is sampled as Dround
ε1,ε2,s in D5 whereas it is sampled as Eε1(GH,s) in D4. We have proved

in Lemma 4.3 that the statistical distance between Dround
ε1,ε2,s and Eε1(GH,s) is bounded by ε2 = 2−n. Hence

we conclude that SD(D4, D5) ≤ 2−n.

Distribution D6. Algorithm 11 below defines a distribution D6. This distribution is the same as distribution

Algorithm 11 Distribution D6

1: Let s = 1/(logn)2 and N , B be the smallest integers satisfying the conditions of Corollary 3.5 or 3.4.
2: Sample p1, · · · , pN uniformly among all prime ideals of norm ≤ B.
3: Sample x := (xσ)σ ← Dround

ε1,ε2,s for ε1 = 2−n/M and ε2 = 2−n.
4: Define L ∈ IdLatK to be L = (x)σ · L(

∏N
i=1 pi · a).

5: Let ς ′ = N (
∏N
i=1 pi · a)1/n · ς and M ′ = N (

∏N
i=1 pi · a)1/n ·M .

6: return Extractς′,M′(L)

D5 except that the lattice L has been scaled by N (
∏N
i=1 pi ·a)1/n (so that L ⊂ Ψ(K)). The standard deviation

and the center of the Gaussian distribution used in the Extract procedure have also been multiplied by
N (
∏N
i=1 pi · a)1/n. Hence, the distribution is unchanged, i.e., we have D6 = D5.
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Distribution D7. We now have our last distribution D7 = Dsample
ς,M,a . The only difference between distributions

D6 and D7 is that the perfect Gaussian distribution in Extract used in D6 is replaced by Klein’s algorithm
in D7. Recall from Proposition 2.14 that these two distributions have statistical distance at most 2−n if the
standard deviation ς ′ satisfies ς ′ ≥

√
n ·maxi ‖ci‖ for some known basis (c1, · · · , cn) of L.

In order to use Klein’s algorithm in D7, we will use an LLL reduced basis of L, which can be computed
in polynomial time. Such a basis (c1, · · · , cn) satisfies

max
i
‖ci‖ ≤ 2nλn(L) ≤ 2n

√
n · λn(L(OK)) · (2 · N (

N∏
i=1

pi · a) ·
√
∆)1/n.

We conclude that Proposition 2.14 holds as long as ς ≥ 2n+1
√
n · ∆1/(2n) · λn(L(OK)). By choice of ς, we

then have SD(D6, D7) ≤ 2−n.

Conclusion. We have shown that SD(Di, Di+1) ≤ 2−Ω(n) for all i ∈ {0, · · · , 6}, with D0 = Dperfect
ς,M and

D7 = Dsample
ς,M,a . We conclude by triangle inequality that SD(Dperfect

ς,M ,Dsample
ς,M,a ) ≤ 2−Ω(n) for any fractional

ideal a. It can be checked that all the constant appearing in the Ω(n) during the proof are absolute.
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