
HAL Id: hal-02513295
https://hal.science/hal-02513295v1

Submitted on 18 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Localized Random Shapelets
Maël Guilleme, Simon Malinowski, Romain Tavenard, Xavier Renard

To cite this version:
Maël Guilleme, Simon Malinowski, Romain Tavenard, Xavier Renard. Localized Random Shapelets.
International Workshop on Advanced Analysis and Learning on Temporal Data, 2019, Wurzburg,
Germany. pp.85-97, �10.1007/978-3-030-39098-3_7�. �hal-02513295�

https://hal.science/hal-02513295v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Localized Random Shapelets
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Abstract. Shapelet models have attracted a lot of attention from re-
searchers in the time series community, due in particular to its good
classification performance. However, such models only inform about the
presence / absence of local temporal patterns. Structural information
about the localization of these patterns is ignored. In addition, end-
to-end learning shapelet models tend to generate meaningless shapelets,
leading to poorly interpretable models. In this paper, we aim at designing
an interpretable shapelet model that takes into account the localization
of the shapelets in the time series. Time series are transformed into fea-
ture vectors composed of both a distance and a localization information.
Then, we design a hierarchical feature selection process using regular-
ization. This process can be tuned to select, for each shapelet, either
only its distance information or both distance and localization informa-
tion. It is hence possible for every selected shapelet to analyze whether
only the presence or the presence and the localization contributed to the
decision process improving interpretability of the decision. Experiments
show that this feature selection process has competitive performance
compared to state-of-the-art shapelet-based classifiers, while providing
better interpretability.

Keywords: time series · machine learning · shapelets

1 Introduction

Time series classification has recently gained an increasing attention from re-
searchers, due in particular to its possible application in various domains such
as economics, agriculture, and health for instance. There are two main fami-
lies of methods for that task: some deal with raw time series and use or design
dedicated (dis-)similarity measures, while others rely on feature extraction to
embed time series in metric spaces in which standard machine learning tools can
be considered. The work presented in this paper is part of this latter category.
Feature-based methods include works relying on hand-crafted features [3,12] as
well as learning-based approaches, among which the shapelet model plays an
important role. Shapelets have first been introduced in [19]. They correspond
to subsequences that are able to discriminate classes. The concept of shapelet
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Fig. 1: Comparison between shapelets extracted by the Learning Time-Series
Shapelets (LS) algorithm and our Localized Random Shapelets (LRS) approach.
This Figure has been generated using tslearn implementation of LS [14].

transform has then been proposed in [7]. It consists in transforming time se-
ries into a vector whose components represent the similarity between the time
series and shapelets that have been selected beforehand (or learned, as in [5]).
After this transformation, time series are embedded in a Euclidean space where
classifiers like Multi-Layer Perceptron or Support Vector Machines can be used.
Techniques based on the shapelet transform are amongst the most accurate ones
for time series classification (an interesting survey and comparison of time se-
ries classification methods can be found in [1]). However, they have three main
drawbacks. First, the step of generating (or learning) shapelets that lead to ac-
curate classification is computationally demanding (especially when dealing with
large time series datasets). Some works have been proposed in order to fasten
this step, by relying on time series approximation [8] or by drawing random
shapelets [18,10]. Second, no information about the localization of the shapelets
in the time series is available after the transformation. Classical shapelet trans-
form only makes use of the similarity between a shapelet and a time series.
Information about when the shapelet occurs in the time series might be of im-
portance to discriminate classes. This can be related to previous works that have
shown that localization of extracted features in time series improve classifica-
tion accuracy [15]. To better understand why, let us consider, for example, a
sign language sentence recognition task. In this use case, being able to recognize
salient patterns (gesture atoms) is key, but localizing them in the sentence is
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also important in order to understand the meaning of the sentence. Third, most
shapelet-based models suffer from a lack of interpretability in the sense that (i)
it is difficult to understand the impact of each shapelet on the final classification
decision and/or (ii) extracted shapelets might not always be related to original
time series. Figure 1 compares shapelets learned by the Learning Shapelet (LS)
algorithm [5] on the EarthQuakes dataset and those extracted (at random) by
our algorithm. Time series are rescaled to lie in the [0, 1] range before learning
the shapelets. However, we can see that LS-extracted shapelets have very little
in common with the time series and do not even fit in the [0, 1] range. In other
words, shapelets cannot be seen as realistic time series patterns. For methods
based on the shapelet transform [7], shapelets are extracted from original time
series. But they then feed an ensemble of classifiers, which makes it difficult to
understand relationship between shapelets and class belongings.

In this paper, we propose a novel shapelet model that tackles these draw-
backs. First, in order to reduce the computing cost of selecting the most discrim-
inant shapelets, our model selects shapelets randomly from training data. Hence,
extracted shapelets are, by definition, closely related to the time series. Moreover,
this random shapelet framework allows us to easily take the shapelet localiza-
tion information into account. Second, we propose a dedicated feature selection
method called Semi-Sparse Group Lasso (SSGL) capable of either ignoring a
shapelet, keeping only its distance information or using both the distance and
localization information. Third, we show that obtained shapelets are meaning-
ful and the resulting model can be easily analyzed to get insights about which
are the important features (for the classification task) in the dataset and for
each of these features, what kind of information (presence only or presence and
localization) contributed to the decision. Overall, we show that we are able to
reach competitive performance w.r.t. Learning Shapelets [5] (even outperform-
ing this baseline when larger datasets are considered) with a more interpretable
model. The rest of this paper is organized as follows. Our Localized Random
Shapelet model is detailed in Section 2 and its interpretability is discussed in
Section 3. Section 4 evaluates the benefit of the proposed model on time series
classification.

2 Localized Random Shapelet Model

2.1 Background on shapelets and shapelet transform

A shapelet S = s1, . . . , sl is a temporal sequence (that can be extracted from
existing time series or not). Given a time series T = t1, . . . , tL, the distance
between s and T is defined as :

d(T, S) = min
1≤j≤L−l+1

√√√√ l∑
i=1

(si − ti+j−1)2. (1)

In other words, euclidean distances between s and every subsequence of T (of
length l) are computed and only the best match (minimum distance) is kept.
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Given a set S = {S1, . . . , SK} of K shapelets, the shapelet transform of T is
defined as the vector v1, . . . , vK such that vk = d(T, Sk) for all k. The original
way to select a set of shapelets for a classification task is to evaluate the dis-
criminatory power of a shapelet candidate by using for instance the information
gain [19,7], and to keep the ones with the higher gain. A strategy based on learn-
ing the shapelets that minimize an objective function was proposed in [5]. Other
works consider the use of random shapelets and then rely on classical feature
selection algorithms together with the classification step. In [10], it has been
shown that with this idea, a few thousands subsequences are enough to reach
state-of-the-art classification performance on a standard benchmark [2].

2.2 Localized Random Shapelet model

In this framework, no information about the localization of the shapelets in the
time series is used, while it has been shown that this kind of information helps
improving classification performance [15]. In this section, we explain how we can
integrate such information in the shapelet transform framework and derive a
feature selection algorithm that keeps localization information only when needed.

In our Localized Random Shapelet (LRS) model, each shapelet S is drawn
uniformly at random from the set of all training time series snippets. Each
shapelet leads to two features for each time series T . The first feature is the
same as in the classical shapelet transform, i.e. the shapelet distance1 d(T, S)
between T and s as defined in Equation (1). The second feature corresponds to
the first time instant at which this distance is reached. It is computed as

l(T, S) = argmin
1≤j≤L−l+1

√√√√ l∑
i=1

(si − ti+j−1)2. (2)

Let T = T1, . . . , TN be a dataset of N time series. This set is transformed by
the localized random shapelet model into a feature matrix X, such that:

X =

 d(T1, S1) l(T1, S1) · · · d(T1, SK) l(T1, SK)
...

...
...

...
d(TN , S1) l(TN , S1) · · · d(TN , SK) l(TN , SK)

 . (3)

Once this feature matrix computed, we feed it to a standard multi-layer percep-
tron classifier as shown in Figure 2. This model takes as input a 2×K-dimensional
vector and outputs probabilities for the different classes at stake. The number
of hidden layers can be adapted to application needs. We denote the whole set
of parameters of this model by θ, and inside this set of parameters, we isolate
the parameters of the first layer in the model and denote them β.

1 Note that the term distance is an abuse of notation since d(T, S) is not a distance,
mathematically speaking.
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Fig. 2: Overview of our localized random shapelet model. Blue circles indicate
distance features while orange ones correspond to location features. For each
shapelet, a group is formed whose weights are denoted β(k) (where k is the
shapelet index). Note that the number of hidden layers may vary from one
application to the other.

2.3 Structured feature selection

As explained above, the proposed shapelet model relies on random shapelets
(taken from the original time series) in order to fasten the shapelet generation
step. When dealing with such shapelets, a feature selection strategy should be
applied before (or jointly with) the classification step, in order to simplify the
resulting representation, which tends to improve overall accuracy [9]. It can be
seen in Equation (3) that the extracted features are structured. Distance features
tell how well a shapelet matches a time series, while localization features inform
about the location of the match. Classical feature selection strategies are hence
not adapted to this kind of feature matrix. Indeed, it does not seem reasonable
to exclude a distance feature related to a shapelet while keeping the associated
localization feature. However, removing a localization feature and keeping the
associated distance feature might be meaningful in cases where the localization
of a shapelet does not impact the class belonging of the times series. In the
following, we design a feature selection strategy adapted to the kind of features
extracted from the localized random shapelet model. This strategy, based on
regularization, is described below.
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Regularization strategy In the following, we assume that we have a prediction
problem with a loss function L to be minimized. This loss function is computed
over a dataset X of N observations associated with a target vector y. A standard
approach to bias the learning process towards sparse solutions is to derive a
regularized loss function, as done for Lasso regression [16]:

LLasso(X,y,θ) = L(X,y,θ) + λ‖β‖1 (4)

Simon et al. [13] introduced Sparse-Group Lasso (SGL), a more structured
regularization scheme that could take feature group information into account.
The resulting regularized loss function for a K-group problem is:

LSGL(X,y,θ) = L(X,y,θ) + αλ‖β‖1 + (1− α)λ
K∑

k=1

√
pk‖β(k)‖2 (5)

where pk is the number of features in group k and β(k) is the sub-vector of β
made of features from group k. Here, the ‖β‖1 term enforces per-feature sparsity
while ‖β(k)‖2 pushes towards sparsity at the group level. The α parameter hence
acts as a trade-off between these two regularization terms.

We consider a slightly different setting in which, inside a group, only part of
the features can be dropped. In our case, each group corresponds to a shapelet.
For each shapelet, two features are available: one for the distance and one for
localization of the match. We aim at designing a strategy that can, for each
shapelet (or group), either:

– drop all information related to that shapelet (if the shapelet is useless for
prediction),

– keep only the distance information (if the location of the shapelet does not
help for prediction),

– keep both the distance and localization information.

In order to meet these constraints, we introduce the Semi-Sparse-Group-Lasso
(SSGL) framework, which consists in minimizing the following loss function:

LSSGL(X,y,θ) = L(X,y,θ) + αλ‖Mindθ‖1 + (1− α)λ

K∑
k=1

√
pk‖β(k)‖2 (6)

where Mind is an indicator diagonal matrix made of ones and zeros, the latter
corresponding to variables that should be kept as soon as the group is not zeroed-
out (i.e. variables that will not be considered for `1 regularization). In the case
of our localized shapelet model, Mind has a diagonal that alternates between
zeros for dimensions corresponding to distances and ones for those related to the
localization information.
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Fig. 3: Coefficients learned using different regularization schemes for a linear
regression problem. Ground-truth coefficients are reported in blue.

Optimization in practice In practice, minimization of such a regularized
loss function can be tackled by several means. First, building on [13], one can
derive a block-wise procedure that considers feature groups one at a time and
starts by deciding on whether it should be zeroed-out or not. In the case of an
ordinary least square regression setting, it gives the following sufficient condition
for zeroing-out group k (i.e. dropping all the information from the corresponding
shapelet): ∥∥∥∥MindS

(
X(k)>r−k

N
,αλ

)∥∥∥∥
2

≤ √pk(1− α)λ, (7)

where X(k) is the submatrix of X in which only variables from group k are kept,
r−k is the partial residual of y, substituting all group fits other than group k
and S(·, ·) is the coordinate-wise soft thresholding operator:

(S(z, αλ))j = sign(zj)(|zj | − αλ)+. (8)

If this condition is satisfied, all β(k) coefficients are set to zero and the process
goes on to the next group. Otherwise, optimization of the coefficients inside group
k should be performed, either using subgradient equations in a coordinate-wise
algorithm or by performing gradient descent steps inside group k.

In all the experiments presented in this paper, we rather use full gradient
descent on the regularized loss, in order not to face known limitations of block-
wise gradient descent algorithms such as slow convergence and low parallelism
capabilities. This strategy was already successfully applied in [11].

Toy example: structured linear regression Figure 3 presents a comparison
of the three regularization schemes described in this section. For this comparison,
we used the following model to draw samples:

y = X · β + ε, (9)
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Fig. 4: An example of each class of TwoPatterns dataset.

where X and ε are drawn from centered normal distributions of standard devi-
ation 1 and 0.01 respectively and β =

[
β
(1)
1 , β

(1)
2 , β

(2)
1 , β

(2)
2 , β

(3)
1 , β

(3)
2

]
has only

three non-zero components: β
(2)
1 , β

(3)
1 and β

(3)
2 (cf. Figure 3).

We assume to have a problem similar to the shapelet setting, i.e. we have

groups of two variables among which only β
(k)
2 is concerned by `1-norm regu-

larization (for group k). This structural information is used for SGL and SSGL
variants in the experiments, while Lasso is blind to such structure.

For this example, we use a simple model without any hidden layer. First,
SSGL outperforms both SGL and Lasso in terms of mean squared error (MSE),
showing the benefit of taking variable structure into account in the model. Sec-
ond, from a more qualitative perspective, the structure of the ground truth
coefficients is better preserved with SSGL (all three null coefficients have low

value estimators and β
(1)
2 is better estimated thanks to the intra-group specific

regularization scheme).

3 Model interpretability

In this section, we illustrate the interpretability of our method through a simple
use-case. We consider the TwoPatterns dataset from the UCR & UEA time
series classification repository. TwoPatterns is a synthetic dataset in which
each time series is made of two pattern occurrences surrounded by noise. There
are two different patterns (named A and B in the following) in the dataset and the
classification problem is hence made of four classes, corresponding to all possible
permutations of patterns A and B, as shown in Fig. 4. For this illustration, we
rely on a simple variant of our model in which we have no hidden layer and draw
K = 2, 000 shapelets to build our feature space. We show that, once trained, our
model can be easily analyzed by scrutinizing its weights.
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Fig. 5: Four most important shapelets (in red) extracted by our method from
the TwoPatterns dataset.

More precisely, in the following, we aim at answering the following questions:

– Which shapelets are the most important for classification?
– For each of these shapelets, is the localization information important for the

decision ?

Note that, in this simple setting where no hidden layer is used, this infor-
mation comes in a straight-forward manner by analyzing weights, but the same
analysis could be performed in the multi-layer case through gradient descent in
the shapelet transform space.

First, we can extract most important shapelets (in terms of classification
power) by ranking them with respect to the `2-norm of their associated weight
matrix β(k). Top-4 shapelets for dataset TwoPatterns are presented in Fig. 5.
They fully match expectations since they focus on discriminative parts of the
time series and cover both patterns A and B, as well as successions of these.

Then, for a shapelet that is considered discriminant, we can wonder whether
its localization and distance are both used by the model or not. To assess the
importance of the distance feature for a shapelet, we compute the `2-norm of
the coefficients of β(k) that are associated with its distance feature. We call this
value distance coefficient. Similarly, to assess the importance of the localization
feature for a shapelet, we compute the `2-norm of the coefficients of β(k) that are
associated with its localization feature. We call this value localization coefficient.

The first shapelet of Figure 5 has the 4th highest localization coefficient
amongst the 2,000 shapelets, together with the 14th highest distance coefficient.
This means that for this shapelet both the distance and the localization are im-
portant. It is coherent as this shapelet corresponds to a B pattern. The distance
feature enables to discriminate class 1 from the others, while the localization
features enables to discriminate class 2 and class 3. This is confirmed by the
histograms of Figure 6. The second shapelet of Figure 5 has the 2nd highest
distance coefficient amongst the 2,000 shapelets. However, its localization coef-
ficient is not as important as its distance coefficient (217th out of 2,000). This
means that for this shapelet the distance feature is important but not the lo-
calization. This is coherent as this shapelet corresponds to the end of a pattern
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Fig. 6: The distribution of the localization (left) and distance (right) for the
most important (first row) and second most important (second row) shapelet in
TwoPatterns dataset.

A followed by the beginning of a pattern B, which only occurs in class 3, hence
distance feature is enough to discriminate class 3 from the others, as confirmed
by Figure 6. Similar conclusions can be drawn for shapelets 3 and 4.

We have seen in this section that our model allows easy extraction of the
shapelets that have more contributed to discriminate classes. One can also easily
analyze whether the localization of these shapelets was used by the model. This
kind of information is very important as it brings a richer interpretability in the
decision process. Conversely, state-of-the-art shapelet-based algorithms tend to
suffer from lack of interpretability. Shapelet Transform is a weighted ensemble
of several standard classifiers, which makes it difficult to assess the importance
of shapelets in the decison process. In the Learning Shapelet (LS) framework,
obtained shapelets are not constrained to be similar to training time series (cf.
Figure 1), which limits the interpretability of such framework.

4 Experiments

In this section, we present experimental results to assess the performance of the
proposed Localized Random Shapelet (LRS) model and compare it to state-of-
the-art shapelet-based methods.

4.1 Experimental setup

The proposed LRS is compared to the following state-of-the-art baselines: Shapelet
Transform (ST) [7], the Learning Shapelet (LS) model [5] and the Fast Shapelet
(FS) one [8]. Experiments are based on the datasets from the UCR & UEA time
series classification repository [2], a classical benchmark in the time series classi-
fication field. It is composed of 85 datasets with diverse time series classification
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problems. A description of the datasets can be found in [1]. Classification per-
formance for baseline methods is retrieved from the website associated to this
dataset.

For each dataset, we draw K = 2, 000 shapelets uniformly at random from
the time series training set. For the length of the shapelets, we followed the
procedure described in [5]. All time series are represented by a feature vector
which size is twice the number of shapelets (cf. Eq. (3)). This feature vector
embeds information about shapelet distance and localization.

We use a 3-hidden-layer model with 256, 128 and 64 units in the hidden
layers and each internal layer is followed by a batch normalization layer as sug-
gested in [6]. We add some dropout in the second and third layer. We use ReLU
activations [4] for all internal layers and softmax activation for the final layer.
The regularization in LRS requires two more hyper-parameters: λ that controls
the regularization strength, and α that controls the trade-off between lasso and
group-lasso terms. We cross-validated the dropout from the set {0.0, 0.3, 0.5, 0.7},
λ from the set {10−1, 10−2, . . . 10−7} and α from the set {0.1, 0.3, 0.5, 0.7, 0.9}.
Models are learned using RMSProp optimizer [17] with a learning rate of 0.001.

4.2 Runtime and memory cost

Experiments are run on a Laptop with a Fedora 24 system, 16 GB DDR4 RAM
and dual core CPU (i7-6600U 2.6 GHz). Python code used for these experiments
is publicly available2. As an indication of the low computing and memory cost
of our method, it requires 66 seconds and 1.5 GB of memory to learn a model
(for a given set of hyper-parameters) on the Electric Devices dataset that is
the largest in the UCR & UEA archive.

4.3 Evaluation of the impact of the SSGL regularization

Figure 7 shows the error rates on 85 datasets for two different regularization
strategies: Lasso [16] and SSGL. It can be seen that the SSGL regularization
strategy (that allows selection for each shapelet of either distance feature, or
distance and localization features, or none of these) slightly improves classifica-
tion performance over Lasso (that makes the selection for each features indepen-
dently).

4.4 Performance comparison against baselines

Critical diagrams show the average ranks of the classifiers in order, and cliques,
represented by a solid bar. A clique represents a group of classifiers within which
there is no significant pairwise difference. Figure 8 presents critical diagrams of
the performance against the baselines when considering all datasets, and when
considering only datasets with more than 300 training instances.

2 https://github.com/rtavenar/localized_random_shapelets

https://github.com/rtavenar/localized_random_shapelets
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Error rate for LRS with lasso with localization

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
rr

or
ra

te
fo

r
L

R
S

w
it

h
ss

gl
w

it
h

lo
ca

liz
at

io
n

W / T / L=44/5/36

Fig. 7: Error rates comparison on 85 UCR datasets between LRS with ssgl reg-
ularization against LRS with lasso regularization.

1 2 3 4

CD

ST
LRS LS

FS

(a) Performance on all the datasets

1 2 3 4

CD

ST
LRS LS

FS

(b) Performance on large datasets

Fig. 8: Critical diagrams of the performance against the baselines.

Overall, in terms of classification performance, only Shapelet Transform out-
performs our approach. As already stated, ST is a weighted ensemble of sev-
eral standard classifiers, hence suffering from lack of interpretability about the
decision process. The performance of LRS is slightly better than LS (but not
significantly). When we only consider large datasets (the 42 datasets with more
than 300 training instances, which are better suited to the characteristics of our
method), performance of LRS is better than LS and FS and gets closer to that of
ST. This seems to indicate that taking the localization information into account
enables to improve classification performance provided that sufficient training
data is available to correctly fit the model.

5 Conclusion

In this paper, we have proposed a novel shapelet model that has low computing
cost, competitive performance and better interpretability compared to tradi-
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tional shapelet-based methods. This model uses shapelet localization in addi-
tion to the traditional shapelet transform representation in a random shapelet
framework. As such a framework needs many shapelets as input, we have de-
signed a dedicated hierarchical regularization framework (SSGL) to fit our appli-
cation needs. Experiments show that our model produces a ranking of realistic
shapelets, and is able to explain their importance both in terms of distance and
localization.This enables an easy and rich interpretability of the classification
process. Moreover our classification performance is competitive with state-of-
the-art shapelet-based classifiers.
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