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Abstract: The main goal of this paper is to analytically find a steady-state in a large-scale urban
traffic network with known and constant demand and supply on its boundaries. Traffic dynamics
are given by a continuous two-dimensional macroscopic model, where state corresponds to the
vehicle density evolving in a 2D plane. Thereby, the flux magnitude is given by the space-
dependent fundamental diagram and the flux direction depends on the underlying network
topology. In order to find a steady-state, we use the coordinate transformation such that the 2D
equation can be rewritten as a parametrized set of 1D equations. This technique allows us to
obtain the curves along which the traffic flow evolves, which are essentially the integral curves
of the flux field constructed from the network geometry. The results are validated by comparing
the obtained steady-state with the one estimated by using a microsimulator.

Keywords: Urban systems, Partial differential equations, Steady states, Road traffic,
Differential geometric methods.

1. INTRODUCTION

The first macroscopic model describing the behaviour of
traffic as fluid was the Lighthill, Whitham and Richards
model, or simply LWR (Lighthill and Whitham (1955);
Richards (1956)). It describes the spatio-temporal evolu-
tion of traffic density on a single link (a road) by a scalar
conservation law. Its main assumption is the existence of
a relation between the vehicles’ density and their flow
(fundamental diagram). Despite the appearance of more
sophisticated models capturing more complex traffic phe-
nomena (Aw and Rascle (2000); Greenberg et al. (2003)),
the LWR model remains the most popular one due to
its simplicity. To enable comparison of different models
or to solve optimal boundary control tasks, it is essential
to investigate the steady-state solution, which will be the
main goal of this paper. For a 1D inhomogeneous case
(one road with bottlenecks) this was done in (Wu et al.
(2014)), using the conditions derived in (Zhang and Liu
(2003)) that ensure the unique physically relevant solution.
However, in case of 2D traffic modelling this problem
wasn’t considered so far.

In the sixties there were made first attempts to describe
traffic state on urban networks (Smeed (1966); Thomson
(1967); Herman and Prigogine (1979)). However, their
models failed to capure traffic’s behaviour in a rush hour.
Geroliminis and Daganzo (2008) observed a congested
urban network in Yokohama and experimentally estab-
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lished the existence of a macroscopic fundamental diagram
(MFD) relating average flow and average density on a
large urban area, which was generalized in (Daganzo and
Geroliminis (2008)). Due to this finding, reservoir models
describing temporal evolution of vehicles’ accumulation
in some urban zone can be used. However, MFD is well
defined only in areas consisting of links with a similar level
of congestion, although many real transportation networks
are heterogeneous. To overcome the problem, Hajiahmadi
et al. (2013); Leclercq et al. (2015) presented algorithms
of partitioning an urban area into multiple homogeneous
zones each having its own well-defined MFD. However,
even these accumulation models with partition capture
poorly the spatial distribution of traffic flow, which makes
them limited for model-based control design.

Another way to model traffic in large-scale urban networks
is to use two-dimensional continuous models. In this paper
we will work with the 2D-LWR model presented in (Mol-
lier et al. (2018)). Instead of calculating the number of
cars in different zones using MFD, the 2D-LWR model
implements the space-dependence into the fundamental
diagram, whose parameters can be estimated from the
network topology. Thus, this model captures quite well
the changing traffic conditions such as in- and outflow.

The main contribution of this paper is a model-based
steady-state computation for a two-dimensional conserva-
tion law describing traffic on a large-scale urban area. This
has never been done before. The steady-state solution will
depend only on network topology and demand and supply
on its boundary. For this we will introduce some coordinate
transformation, as well as use the result from (Wu et al.
(2014)) to extract the density from the steady-state flow.



2. MODEL

The evolution of traffic in urban areas can be described
by a two-dimensional continuous model such as 2D LWR
(Mollier et al. (2018)), where the state corresponds to the
traffic density ρ(x, y, t). Its dynamics are based on the
conservation of the number of cars in a 2D plane:

∂ρ(x, y, t)

∂t
+∇ ·Φ(x, y, ρ(x, y, t)) = 0, ∀t ∈ R+

ρ(0, x, y) = ρ0(x, y), ∀(x, y) ∈ D
(1)

where D is a compact domain corresponding to the urban
area we consider, and

Φ = φ(x, y, ρ)dθ(x, y), (2)

is a flow vector function, where φ is the flow’s magnitude
determined by a space dependent fundamental diagram
(FD):

φ(x, y, ρ) = v(x, y, ρ)ρ = vmax(x, y)Ψ

(
ρ

ρmax(x, y)

)
ρ,

(3)
where Ψ(ρ/ρmax) is the velocity function depending on
density, e.g., for Greenshields FD Ψ(ρ/ρmax) = 1 −
ρ/ρmax (Greenshields et al. (1935)). The flow magnitude
φ(x, y, ρ) : [0, ρmax(x, y)] → R+ is a Lipschitz continuous
and concave function with a space-dependent maximum
φmax(x, y) (capacity) achieved at ρc(x, y) (critical den-
sity). In Section 4.2 we will explain how to determine these
parameters from network’s topology. We also distinguish
two density regimes: Ωf := [0, ρc] indicates the free-flow
regime, and Ωc := (ρc, ρmax] stays for the congested regime.
In the free-flow regime vehicles move freely with positive
kinematic wave speed, while in the congested regime vehi-
cles move slowly with negative kinematic wave speed.

Further, in (2) dθ(x, y) = (cos(θ(x, y)), sin(θ(x, y))) is a
direction vector determined by network’s topology. We will
call it the flux field, since it corresponds to the vector field
along which the flow (3) evolves. Thus, the flow vector
function (2) can be rewritten as:

Φ =φ(x, y, ρ)

(
cos(θ(x, y))
sin(θ(x, y))

)
. (4)

3. PROBLEM STATEMENT

Define Γ as the boundary of domain D. Then, we define its
subset Γin ⊂ Γ as a set of boundary points (x, y) for which
n(x, y) ·dθ(x, y) > 0, where n(x, y) is a unit normal vector
to the boundary, oriented inside the domain. In a similar
way, we also define Γout ⊂ Γ such that ∀(x, y) ∈ Γout :
n(x, y) · dθ(x, y) < 0.

Assume that we know inflow demand Din(x, y) ∀(x, y) ∈
Γin and outflow supply Sout(x, y) ∀(x, y) ∈ Γout, where
inflow demand and outflow supply are used to denote the
number of cars per hour that want to enter and are able
to exit the domain, respectively. We want to develop a
technique that yields the steady-state of (1) analytically.
This is formalized as follows:

Problem 1. Given some constant Din(x, y) ∀(x, y) ∈ Γin
and constant Sout(x, y) ∀(x, y) ∈ Γout, find a time-
invariant density distribution ρ∗(x, y) such that

∇ ·Φ(x, y, ρ∗(x, y)) = 0. (5)

4. PRELIMINARIES

In this part we will motivate the use of 2D-LWR for steady-
state estimation. For this purpose we will run a scenario
on a Manhattan grid with slightly disordered positions
of nodes for 2D-LWR (1) and for a reservoir model that
is related to the existence of a Macroscopic Fundamental
Diagram (MFD). A key advantage of MFD is that it does
not require high computational effort.

4.1 Macroscopic Fundamental Diagram

MFD describes the evolution of accumulation of vehicles
in a zone as described in (Aboudolas and Geroliminis
(2013)). Consider a heterogeneous network partitioned in
N reservoirs. Let ni(t) be the accumulation of vehicles
in reservoir i at time t. The main assumption of the
accumulation model is the existence of φi(ni(t)), which
relates the number of cars in a reservoir i with outflow
φi,out. Let us also define Nin,i as a set of neighbouring
reservoirs, whose cars can directly reach reservoir i, and
Nout,i as a set of neighbouring reservoirs which can be
directly reached by the cars from reservoir i (see Fig. 1).
Then, the number of cars in i can be described as:

dni(t)

dt
= φin,i(t)− φout,i(t), with

φin,i(t) =
∑

j∈Nin,i

rji min (Dj , Si) and

φout,i(t) =
∑

j∈Nout,i

rij min (Di, Sj) ,

(6)

where rji is the number of the roads from a neighbouring
reservoir j to reservoir i; Dj and Si are the demand and
the supply function in j and i, respectively, defined as

Di(ni(t)) =

{
φi(ni(t)) if ni < nc,i
φmax,i, if ni ≥ nc,i

Si(ni(t)) =

{
φmax,i if ni ≤ nc,i
φi(ni(t)), if ni > nc,i

(7)

MFD for each reservoir was computed using the GPS data

Figure 1. Schematic illustration of a network with N =
4 zones. The variables are defined with respect to
reservoir i, which has its own MFD (fitted data, in
red) φi(ni) with the maximum flow φmax,i attained
at the critical number of cars nc,i. The change in
vehicle’s accumulation ni(t) is determined by flows
from Nin,i = {j} and by flows into Nout,i = {k}.



(velocities) from microsimulator at each t:

φi(ni(t)) =

 1

ni

ni(t)∑
m=1

vim

 ni∑
i

li

 =
1∑
i

li

ni(t)∑
m=1

vim,

where
∑
i

li corresponds to the length of all roads in

reservoir i, m is the index used to denote the vehicle in
reservoir i, and vim is the velocity of vehicle m in reservoir
i. Having data in form (ni, φi), we fit a cubic polynomial
as in (Aboudolas and Geroliminis (2013)) and extract
the maximal flow φmax,i. The maximal density ρmax is
calculated as one vehicle divided by the minimal distance
between two consecutive vehicles (dmin = 6m).

Aboudolas and Geroliminis (2013) present a method
to make a network partition based on the traffic state.
However, to make a fair comparison, we will perform a
partition into sixteen equal parts, since the goal of this
work is to develop a topology-based method of steady-
state reconstruction.

The steady-state in reservoir model is reached when
dni(t)/dt = 0 ∀i ∈ {1...N}. This means that by (6) we
obtain for each reservoir i:

φ∗in,i(t) = φ∗out,i(t), (8)

where the asterisk is used to denote the steady-state.

We will compare steady-states obtained by both models
(1) and (6) with the one obtained by microsimulator Aim-
sun, which simulates the dynamics of vehicles’ positions in
an urban area. To enable comparison, we will reconstruct
the density from vehicles’ positions using the Kernel Den-
sity Method as described in (Mollier et al. (2018)).

Finally, we define the following metric Q of proximity of
the model to the ”ground truth”:

Q =

√√√√√ xmax∫
0

ymax∫
0

(ρi(x, y)− ρsim(x, y))
2
dxdy, (9)

where xmax and ymax are the maximal values of the do-
main, ρi is the density corresponding to the model we com-
pare, i.e., the one from 2D-LWR (1), from MFD (piecewise
constant function reconstructed from vehicles’ accumula-
tion etc.), and ρsim is the density from microsimulator
Aimsun. Thus, Q yields the L2 difference of densities.

4.2 Network Description

We consider a 10× 10 or 1km square Manhattan grid (see
Fig. 5, where the nodes are indicated in grey). Positions
of nodes (intersections) are slightly disordered with white
noise of standard deviation 10m. We assume that all
roads are single-lane and are globally oriented towards the
North-East direction. The network contains a topological
bottleneck in the middle, e.g., a river with some bridges.
The speed limits on most of the roads are set to 30 km/h,
and there are also two roads with 50 km/h.

Since we work with a continuous model (1), we need to
reconstruct the flux field dθ(x, y), the maximal velocity
vmax(x, y), and the maximal density ρmax(x, y) ∀(x, y) ∈
D. We do it by the Inverse Distance Weighting as in
(Mollier et al. (2018)) additionally assuming that the

flux field depends on the speed limit. Introduce β as
a parameter measuring the sensitivity of the flux field
dθ(x, y) to the mutual location of roads in a network. For
the density reconstruction we chose β = 20, which means
that we want the flux to follow only the global trend of
direction of all roads, see Section 2.2 (Mollier et al. (2019))
for a detailed explanation of parameter β.

4.3 Scenario Description

In order to obtain a steady-state, we run a dynamic sce-
nario on microsimulator Aimsun for the network described
above for 2 hours of simulator time. Thereby, we see that
the density shape does not change much after a certain
time interval indicating that the steady-state was reached.

The domain contains 15 in-coming roads on the boundary
(8 on the left and 7 on the bottom boundary, respectively).
Thereby, at each time step we provide very big demand in
the South-West region of the area (Din = 1200 veh/h on
all 8 in-coming roads, i.e., 4 on the bottom and 4 on the
left boundaries) and a lower demand in the rest of the area
(Din = 300 veh/h on the rest 7 in-coming roads, i.e., 3 on
the bottom and 4 on the left boundaries). Thus, congestion
is created in almost the whole Western part of the network.

The turning ratios at each 2 × 2 intersection is 75% turn
and the rest 25% continue moving straightforward, while
at each 1× 2 intersection the turning ratios are 50%.

During the simulation we save the position of all cars at
each time step. Finally, from the vehicles’ positions we
reconstruct a two dimensional density using the Kernel
Density Method (see Section 3.3 of (Mollier et al. (2018))
for a detailed description). In short, the assumption is
that each vehicle contributes to the global density with
a Gaussian kernel centred in its position. We assume that
each vehicle contributes to the density for d0 = 50m, where
d0 is the standard deviation of the Gaussian. The same is
done at the boundary for the inflow demand (but in 1D).
We set the headway between two consecutive cars to 6m.

Finally, we implement the numerical method described in
Section 4.1 in (Mollier et al. (2018)) to model the scenario
for (1). MFD was solved numerically using Euler method.

4.4 MFD vs Microsimulator

In Fig. 2 we observe a steady-state reconstructed from
Aimsun (right panel) and from MFD (left panel). For MFD
we performed a partition in 16 areas and depicted the
number of cars obtained by (6) at each area. Before we
calculate the metric Q, it is reasonable to obtain the value
of density in each reservoir i ∈ {1...N} as:

ρmfd(x, y) =
n∗i
si
, where i : (x, y) ∈ Ri, (10)

where si is the square (in m2) of reservoir with index i,
and Ri is the domain taken by this reservoir.

Thus, using (10) and (9), we obtain Q = 0.58. We
see that MFD is able to capture the phenomenon of
congestion in zones where it arises. However, this model
is discrete in space and, by its nature, in does not allow
to develop model-based control approaches. As reservoirs’
areas enlarge, the performance of the model degrades.



Figure 2. Steady-states obtained by MFD (left) and the
one obtained from the microsimulator (right). Gray
arrows denote one-way directed roads of the urban
zone. Blue filled circles represent vehicles.

4.5 2D-LWR vs Microsimulator

Further, in Fig. 3 we observe a steady-state density recon-
structed from Aimsun (right) and 2D-LWR (left). Using
our metric (9), we obtain Q = 0.38, which is significantly
smaller than in the case with MFD. Thus, the steady-state
obtained by numerical simulation of (1) captures quite well
the spatial distribution of congestion. Thus, it is totally
reasonable to use this model for analytical steady-state
computation as stated in Problem 1.

Figure 3. Steady-states obtained by 2D-LWR (left) and
the one obtained from the microsimulator (right).

5. ANALYTICAL COMPUTATION OF THE
STEADY-STATE OF 2D MODEL

To find a steady-state ρ∗x,y, we propose to rewrite (1) from
2D into a parametrized set of 1D equations using coor-
dinate transformation. Then, it will be possible to easily
identify the actuation boundaries for the density control at
some point or domain. Model (1) can be simplified, since
the flux field dθ(x, y) does not depend on the state.

5.1 Coordinate Transformation

To obtain a set of 1D equations, we define new coordinates
(ξ, η) by rotating and rescaling the differentials dx and dy,
i.e.: (

dξ
dη

)
= C(θ(x, y)Rθ(x, y)

(
dx
dy

)
(11)

where Rθ(x, y) is the rotation matrix

Rθ(x, y) =

(
cos (θ(x, y)) sin (θ(x, y))
− sin (θ(x, y)) cos (θ(x, y))

)
, (12)

where θ is the flow angle as defined in (4), and C(x, y) is
the scaling matrix given by

C(x, y) =

(
α(x, y) 0

0 β(x, y)

)
(13)

where α(x, y) and β(x, y) are positive and bounded scal-
ing parameters used to make the metric normalized and
uniformly distributed in (ξ, η)-space. In particular, α and
β are related to the scaling between the lines of constant ξ
and between the lines of constant η, respectively. In (ξ, η)-
space the flow evolves only along lines of constant η, as it
will be shown in the next subsection. See Fig. 4 for more
intuition on how such differentials are related.

For the explicit form of ξ and η, we must take an integral
along the path of (dξ, dη) defined in (11). Thereby, we must
provide the independence of the chosen integration path,
since the integral along any closed curve must be zero. By
the theorem of Schwarz this means that the order of taking
partial derivatives w.r.t. x and y should be irrelevant, i.e.:

∂

∂y

(
∂ξ(x, y)

∂x

)
=

∂

∂x

(
∂ξ(x, y)

∂y

)
, (14)

and
∂

∂y

(
∂η(x, y)

∂x

)
=

∂

∂x

(
∂η(x, y)

∂y

)
. (15)

Thus, by inserting (11) in (14) and (15), we obtain the
equations which must be satisfied for scaling parameters:

− sin θ
∂ (lnα)

∂x
+ cos θ

∂ (lnα)

∂y
= cos θ

∂θ

∂x
+ sin θ

∂θ

∂y
(16)

and

cos θ
∂ (lnβ)

∂x
+ sin θ

∂ (lnβ)

∂y
= sin θ

∂θ

∂x
− cos θ

∂θ

∂y
(17)

These functions depend only on the direction field dθ(x, y)
and thus can be precomputed from the network topology.

dx

dy

dξdη
β

α

ξmin

ξmax

η = const

θ(x, y)

Figure 4. Coordinate transformation for one single η.

5.2 Divergence in (ξ, η)-space

Due to (1), we need to calculate ∇ · Φ in (ξ, η)-space by
applying the divergence formula (Lamé (1859)):

∇ ·Φ =
1

hξhη

[
∂ (Φξhη)

∂ξ
+
∂ (Φηhξ)

∂η

]
, (18)

where hξ and hη are Lamé coefficients that correspond to
the length of the basis vectors in (ξ, η)-space defined as:

hξ =
(
∂x
∂ξ ,

∂y
∂ξ

)T
and hη =

(
∂x
∂η ,

∂y
∂η

)T
(19)

For the computation of (19), we invert Jacobian (11):(
dx
dy

)
=

( 1
α cos θ − 1

β sin θ
1
α sin θ 1

β cos θ

)(
dξ
dη

)
(20)



The combination of (20) and (19) yields:

hξ =
1

α

(
cos θ
sin θ

)
, hη =

1

β

(
− sin θ
cos θ

)
(21)

Now we can compute the length of hξ and hη:

hξ = |hξ| =
1

α
, hη = |hη| =

1

β
(22)

Using (22), we are able to normalize the basis vectors by
dividing (21) by their length (22):{

eξ = ex cos θ + ey sin θ,

eη = −ex sin θ + ey cos θ,
(23)

where ex and ey are the basis vectors of (x, y)-space.

Let us now rewrite vector Φ given by (4) in (ξ, η)-space.
Notice that in (x, y)-space this vector reads:

Φ = φ(x, y, ρ) cos(θ(x, y))ex + φ(x, y, ρ) sin(θ(x, y))ey.
(24)

Then by using (23) we obtain:

Φ(x, y, ρ) = φ(x, y, ρ)eξ (25)

Thus, the flow evolves along the ξ coordinates, which
are tangent to the flow motion, while in the orthogonal
direction η there is no motion.

Having Lamé coefficients (22) and the flow vector in (ξ, η)-
space (25), we finalize the computation (18) as:

∇ ·Φ = αβ

[
∂(φ/β)

∂ξ

]
. (26)

Thereby, η parametrizes the line along which the flow
evolves (as a ”road”), and set of lines of constant η
corresponds to integrated flux field dθ(x, y), see Fig. 5.

Figure 5. The flux field dθ(x, y) from (1) (in blue) and the
set of lines of constant η from (28) (in green).

5.3 Simplified model

Using (26), we finally rewrite (1) in (ξ, η) coordinates as

∂ρ(ξ, η)

∂t
+ α(ξ, η)β(ξ, η)

∂ (φ(ξ, η, ρ)/β(ξ, η))

∂ξ
= 0. (27)

The obtained system (27) is much more simple than the
original model (1). Essentially, it is a 1D model, since the
only direction in which the system evolves is ξ.

Using the definition of φ(ξ, η, ρ) in (3), we rewrite (27) as

∂

(
ρ

αβ

)
∂t

+

∂

(
vmaxα

ρ

αβ
Ψ

(
ρ

αβ
/
ρmax
αβ

))
∂ξ

= 0.

Defining the rescaled density ρ̄ = ρ/(αβ), maximal density
ρ̄max = ρmax/(αβ), flow φ̄ = φ/β and maximal velocity
v̄max = vmaxα, the latter equation can be rewritten as

∂ρ̄(ξ, η, t)

∂t
+
∂(v̄maxΨ(ρ̄/ρ̄max)ρ̄)

∂ξ
= 0, (28)

which is a parametrized 1D-LWR equation with space-
dependent FD, i.e., v̄max(ξ, η) and ρ̄max(ξ, η).

5.4 Steady-State Traffic Density

Steady-state solutions to (28) might be nonconstant func-
tions ρ̄∗(ξ, η) due to the space-dependence of fundamental
diagram. By the mass conservation law, a steady-state flow
in (28) must be constant along the field vector, i.e.:

φ̄(η)∗ := v̄max(ξ, η)Ψ(ρ̄∗/ρ̄max(ξ, η))ρ̄∗.

Assume given demand Din(η) and supply Sout(η). Note
that we also need to rescale them by dividing by β:

D̄in(η) = Din(η)/β(ξmin(η), η),

S̄out(η) = Sout(η)/β(ξmax(η), η).

Define also φ̄max(ξ, η) = φmax/β(ξ, η) as the maximal
possible flow at point (ξ, η) (capacity) with dependence on
network topology. In accordance with the analysis in (Wu
et al. (2014)), we can write the flow through the ”road” as

φ̄(η)∗ = min(D̄in(η),min
ξ
φ̄max(ξ, η), S̄out(η)), (29)

which is the minimum between the demand, the supply
and the minimum bandwidth of the system. Note that the
steady-state flow of (28) φ̄(η)∗ depends on β(ξ, η), which
indicates the level of compression of the roads.

For each point in the domain and each flow value (except
maximal flow), there exist two possible densities: either in
the free-flow or in the congested regime. Let us distinguish
three possible cases due to (29):

(1) φ̄(η)∗ = min
ξ
φ̄max(ξ, η). Denote as ξ∗ the point where

the minimum is achieved. If there are several such
points, take the leftmost one (the first one passed
by cars). Then the entire domain to the left of ξ∗

will be in the congested regime, while the domain
to the right will be in the free-flow regime. This
is the only solution satisfying the ”wave entropy”
condition as presented in (Wu et al. (2014); Zhang
and Liu (2003)). Thus, the strongest bottleneck
creates congestion.

(2) φ̄(η)∗ = D̄in(η): the cars can pass through the system
freely (the whole domain is in the free-flow regime).

(3) φ̄(η)∗ = S̄out(η): all the cars are blocked at the exit
(the whole domain is in the congested regime).

Finally, we need to retrieve the density by inverting the
fundamental diagram in the correct regime and rescale the
density back to the original coordinate system:

ρ̄(ξ, η) = [φ̄−1(ξ, η, ·)](φ̄(η)∗),

ρ(ξ, η) = ρ̄(ξ, η)α(ξ, η)β(ξ, η).

6. NUMERICAL EXAMPLE

Following all the steps described above, we analytically
obtain the steady-state solution of (1), see Fig. 6b).
This steady-state solution captures quite well the spatial



Figure 6. The steady-state density obtained by: a) numerical simulation of 2D-LWR, b) our technique, c) and the one
obtained by density reconstruction from the microsimulator.

distribution of congested and free-flow areas, what we can
see by comparing our solution with the density obtained
by reconstruction from the microsimulator data (Fig. 6c)).
In particular, in b) and c) the lines separating congested
and free-flow areas in the upper left part are very similar,
while in case of steady-state density obtained by numerical
simulation (Fig. 6a)) this line lies notably lower. Also by
(9) we obtain Q = 0.40 for b) , which is almost the same as
for a). Thus, we see that our methods yields quire accurate
results, which are obtained analytically without any need
to run long simulations as in case a).

7. CONCLUSION

In this paper we posed the problem of a model-based
steady-state estimation in a continuous 2D traffic system
for given inflow demand and outflow supply in a large-
scale urban area. We solved this problem analytically by
developing a technique that takes inflow demand, outflow
supply and maximal flows at each space point and yields
the steady-state density. Thereby, we developed a method
of coordinate transformation that significantly simplifies
the 2D model, making it look as a 1D model, which is
simple to work with. The obtained result is in a good
agreement with the data from the microsimulator, and it
captures better the shape of congested zone in comparison
to the result obtained numerically.
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