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Abstract

The recent definition of fractional Brownian motions on surfaces has raised the statistical issue
of estimating the Hurst index characterizing these models. To deal with this open issue, we propose
a method which is a based on a spectral representation of surfaces built upon their Laplace-Beltrami
operator. This method includes a first step where the surface supporting the motion is recovered
using a mean curvature flow, and a second one where the Hurst index is estimated by linear
regression on the motion spectrum. The method is evaluated on synthetic surfaces. The interest
of the method is further illustrated on some fetal cortical surfaces extracted from MRI as a means
to quantify the brain complexity during the gestational age.

keywords fractional Brownian motions on surfaces, Laplace-Beltrami operator, Hurst index esti-
mation, fetal cortical surface.

1 Introduction

The introduction of the fractional Brownian motion (fBm) by Mandelbrot and Van Ness [25, 27] has
inspired a great deal of research towards the modeling of phenomena of an irregular nature. Initially
defined in R, this random process has been extended to Rd to give birth to a wide variety of random
fields accounting for complex spatial phenomena (see, for instance, [12, 36, 5, 29, 44] or [15] for an
exhaustive survey). Besides, there is still an active research to find appropriate definitions of fBm on
non-Euclidean spaces such as surfaces [22, 23, 43, 17, 18]. In this paper, we focus on this kind of fBm
following the definition approach proposed in [17, 18].

On the interval [0, 1], the fBm can be defined by a Fourier expansion

B = C

+∞∑
l=1

ξlλ
−( 1

4
+H

2 )
l φl,

where C is a positive constant, H ∈ (0, 1) the so-called Hurst index, (ξl)l a series of independent,
centered, standard and normally distributed random variables, (φl)l an orthogonal basis of L2(I;R)
composed of eigenfunctions of the Dirichlet-Laplacian operator ∆, and λl the eigenvalue of ∆ associated
to the eigenfunction φl. In [17, 18], authors proposed a construction of a fBm R on an arbitrary
compact connected surface S of R3 without boundaries using an analogous expansion

R = C

∞∑
l=1

ξlλ
−( 3

4
+H

2
)

l (φl − φl(o)), (1)

where o is a fixed point on S, and (λl, φl) are couples of eigenvalue and eigenfunction of the Laplace-
Beltrami (LB) operator defined on S (see [8] and Section 2 for a definition). As for the original fBm,
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Figure 1: Top row: examples of an fBm defined on a sphere. Bottom row: Corresponding fBs.

the obtained fBm is self-similar with stationary increments, and has realizations whose regularity is
almost surely Hölder of order H. Given a fBm R on S, a so-called fractional Brownian surface (fBs)

Sob = S +RN (2)

could be further defined by deforming S in the direction of its outer unit normals N [18]. Some
simulations of fBm defined on the sphere and their associated fBs are shown on Figure 1 for different
values of H.

There is a huge statistical literature about the estimation of the Hurst index of the original fBm
(see [7, 14, 15] for review) and its extensions in Rd (see, for instance, [4, 37, 44]), ranging from spectral
methods to filtering methods such as quadratic variations or wavelet transforms. By contrast, to the
best of our knowledge, there is not any method available for the estimation of the Hurst index of a
fBm defined on a surface. Hence, the main contribution of the paper is the construction of a first
method that enables to estimate the Hurst index H of a surface Sob from one of its realizations.

One of the spectral methods commonly used for the original fBm B relies upon the so-called
periodogram [7] defined as

PN (λ) =
1

2πN

∣∣∣∣∣
N∑
t=1

B(t)eitλ

∣∣∣∣∣
2

for frequencies λ = 2kπ
N with k = 0, · · · , N − 1. This periodogram can be seen an estimator of the

spectral density of the increments of the motion B. Due to the behavior of this density, it can be
shown that, when λ is close to 0,

log (E(PN (λ))) = C + (1− 2H) log(|λ|) + ε(λ),

2



for some constant C, and random Gaussian variables ε(λ). As a result, the Hurst index H can be
estimated by a linear regression of the log-periodogram on the log-frequency. In this paper, this
estimation method is extended to the case when the fBm is defined on a surface. This extension is not
straigthforward: in the Euclidean case, the support of the motion is set in the definition and known.
By contrast, in the surface case, the reference surface S indexing the motion is unobserved. Hence,
this reference surface has to be estimated prior to any estimation procedure. The method we propose
is based on a spectral representation of the surface built upon its LB operator. It includes an initial
recovery of the reference surface followed by a regression procedure on the motion spectrum.

2 Estimation method

In this section, we present our method for the estimation of the Hurst index of a fBs Sob (see Equation
2). The method has two main steps, a first one where the reference surface S and the Brownian
motion R are both estimated from the observed surface Sob, and a second one where the Hurst index
is estimated using a Fourier representation of R on S. The whole method is summarized in Algorithm
(1) and visualised on Figure 2. Each algorithm step is described into details in the next subsections.

Algorithm 1 Estimation of the Hurst index H.

Require: A realization of the fBs Sob (denoted the same).
1: Smooth Sob to get an estimate S̃ of the reference surface S.
2: Compute an estimate R̃ of the fBm R on S.
3: Compute the Fourier coefficients of R̃ on S̃.
4: Estimate H̃ of the Hurst index H of the Brownian surface Sob by linear regression.
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Figure 2: A schematic representation of Algorithm 1. The input to the algorithm is an observed fBs
(Sob) and output is an estimate of the Hurst index H of the fBm.

2.1 The LB operator and its discretization

The estimation method, as well as the surface model, relies upon the LB operator of a surface. In this
part, we set up the framework in which this method is designed.
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For a compact Riemannian manifold S in R3, one can define a space of square integrable functions
defined on S

L2(S) = {u : S → R,
∫
S
u2 <∞},

and equip it with the inner product 〈·, ·〉 defined for all u, v ∈ L2(S) by 〈u, v〉 =
∫
S uv ds.

The LB operator ∆ on S is an extension of the definition of the Dirichlet-Laplacian operator on
the non-Euclidian space S. It is defined as a combination of the gradient and divergence operators
on S, namely ∆ = div ◦ grad. The spectrum of this operator {(λk, φk) ∈ R+ × L2(S), k = 1, 2, . . .} is
defined as the set of solutions of the differential eigenvalue problem [8]

∆φk = −λkφk. (3)

It is at the basis of the definition of the fBm on S in Model 1. Using a Green Formula, the spectral
problem above can be restated in a weak form

〈∇φk,∇φi〉 = −λk〈φk, φi〉, ∀φi ∈ L2(S). (4)

In practice, we deal with discrete meshes rather than compact surfaces. Hence, for an implemen-
tation purpose, we discretize the eigenvalue problem stated above using a finite element method [32].
Let G = {V, E} be a mesh composed of a set V = {P1, · · · , PN} of N vertices on S and a set E of edges
between these vertices. On {1, · · · , N}, we define a space of square integrable functions

l2(V) = {u : {1, · · · , N} → R,
N∑
n=1

u2(n) <∞},

where u(n) represents the value of a function u at vertex Pn. The space l2(V) can be equipped with
the inner product defined, for all u, v ∈ l2(V), by 〈u, v〉 =

∑N
n=1 u(n)v(n).

We define a linear function ψj on the mesh vertices such that, for every vertex Pn, ψj(n) = δjn,
where δjn is the Kronecker symbol. In this way, the function φk can be interpolated by a linear

combination
∑N

j=1 ηkjψj of ψj defined with coefficients ηkj = φk(Pj). Substituting this interpolant in
the weak form (4), we get

N∑
j=1

ηkj〈∇ψj ,∇ψi〉 = −λk
N∑
j=1

ηkj〈ψj , ψi〉, (5)

In a matrix form, this is equivalent to the following algebraic generalized eigenvalue equation

Aηk = λkBηk, (6)

where ηk = [ηk1, · · · , ηkN ]T , and A and B are N ×N sparse matrices with the following elements:

A(i, j) =


cotαij+cotβij

2 if (i, j) ∈ E,
−
∑

n∈N (i)A(i, n) if i = j,

0 o.w.

(7)

and

B(i, j) =


|t1|+|t2|

2 if (i, j) ∈ E,∑
n∈N (i) |tn|

6 if i = j,
0 o.w.

(8)

where αij and βij are the angles opposite to the edge PiPj in two triangles t1 and t2 sharing this edge,
|tn| indicates the area of the triangle tn and N (i) denotes the index set of all vertices of the 1-ring
neighbourhood of Pi.

Being symmetric and positive definite, the matrix B admits a Choleski decomposition B = B
1
2B

1
2 .

Thus, setting new coordinates ϕk = B
1
2 ηk, Problem 6 becomes

B−
1
2AB−

1
2ϕk = λkϕk. (9)
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Hence, it can be solved by finding pairs of eigenvalues and eigenvectors (λk, ϕk) of the matrix

B−
1
2AB−

1
2 . Further imposing that eigenvectors ηk are orthonormal with respect to the inner product

〈B·, ·〉, solutions ϕk = B
1
2 ηk are orthonormal with respect to the usual Euclidean inner product.

Besides, due to the Weyl’s theorem [45], the contribution of Mth term in Equation (1) is of order
O(M−(d/4+H/2)), which becomes negligible for large M ’s and fine triangulation. So, in practice, the
fractional Brownian random field of Equation (1) can be approximated on a discrete mesh by a field
denoted RM having

ρ = C
M∑
l=2

(λl)
−( d

4
+H

2
)(ϕl − ϕl(Po))ξl, (10)

as interpolation coefficients and a vertex Po as an origin.

2.2 Recovery of the reference surface

To get an estimate of the reference surface S, we first smooth the observed surface Sob by applying a
mean curvature flow [21]. Such a procedure relies upon the definition of a heat equation involving a
2D manifold Ωt which evolves with time t :

∂f

∂t
= ∆tf, on Ωt × (0, T ], (11)

f |t=0 = f0, on Ωt,

where f stands for some coordinate components of Ωt, and ∆t for the LB operator on the manifold
Ωt. Starting from the initial state Ω0, points of Ωt move in the direction of the inner normal to a
distance which is proportional to the mean curvature. These displacements tend to smooth Ωt as the
time t evolves. A schematic representation of this procedure is given in Figure 3. Let us quote that
it establishes a one-to-one correspondence between points of the initial surface Ω0 and those of the
successive smooth surfaces Ωt.

So as to be solved numerically, Equation (11) is discretized in time using a first order backward
finite difference scheme and in space using the discretization of the LB operator introduced in the
previous section. This leads to a discrete heat equation of the form

(B + dtA)fm+1 = Bfm, (12)

where fm denotes f at a time tm = m×dt, and A and B are matrices given by (7) and (8), respectively.
This approach is known to be numerically stable even for large time steps and convergent, at least for
convex surfaces [21].
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Figure 3: The mean curvature flow smoothing procedure applied to a surface. Geodesic paths of two
points P ob

i and P ob
j to their corresponding points on the final smoothed surface are shown in blue and

yellow colors, respectively.

The MCF is applied to the observed surface Sob by setting Ω0 = Sob. It is stopped at a time t∗

when Ωt∗ is entirely inside Sob. Pratically, this stopping condition is considered as fulfilled when all
angles between the vector P sm

n P ob
n and the normal vector to Ωt∗ at P sm

n are all acute.
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As the MCF tends to move the barycenter of the surface Ωs, the barycenter of Ωt is aligned to the
one of Sob at each time t. Moreover, so as to compensate for a surface shrunking, the final surface
Ωt∗ is dilated with an iterative procedure that avoids the creation of surface singularities such as
point crossing. At each iteration of this procedure, problematic mesh triangles with too acute angles
are identified and kept fixed while other triangles are slightly dilated. The holes left by problematic
triangles are then filled by a linear interpolation and faired by a mean curvature flow.

In this way, we obtain an estimate S̃ of the reference surface S. We could then estimate pairs
{(λ̃k, φ̃k)}Mk=2 of eigenvalues and eigenvectors of the LB operator on S by solving Equation (6) with
A and B derived from S̃.

The procedure is pursued by an approximation of the fBm RM . According to Model (2), the
value RM (P ) of the field RM at some vertex P of S depends on the distance between the vertex P
and its corresponding vertex P ob on Sob. At a vertex P̃n of the estimated reference surface S̃, it is
approximated by

R̃M (n) = w(n)− w, (13)

where w(n) = d(P ob
n , P̃n) is the Euclidean distance between P ob

n and P̃n vertices, and w = 1
N

∑N
n=1w(n)

is a mean distance. The resulting estimate of RM is zero-mean, which is consistent with its theoretical
definition.

2.3 Spectral estimation of the Hurst index

According to Model (10), Fourier coefficients of a discrete fBm on a surface mesh are given by

ρ̂k = 〈ρ, ϕk〉 = C

M∑
l=2

λ
−( d

4
+H

2
)

l (〈ϕl, ϕk〉 − ϕl(Po)〈1, ϕk〉)ξl, (14)

where (λl, ϕl)l are couples of eigenvalue and eigenvector of the LB operator of the surface mesh. Due
to the orthogonality of eigenfunctions, Fourier coefficients reduce to

ρ̂k = Cλ
−( d

4
+H

2
)

k ξk, (15)

for k = 2, · · · ,M . Consequently,

logE[ρ̂2k] = −(
d

2
+H) log(λk) + log(C2), k = 2, . . . ,M. (16)

This equation shows a linear relationship between logE[ρ̂2k] and log(λk).
This relationship suggests to estimate H and C from the slope and intercept of a least square

linear regression line computed on points {λk,E[ρ̂2k]} in log-log scale. For that, an estimate of the
expectation term E[ρ̂2k] would be required. If many realizations of R were available, such an estimate
could be obtained using some laws of large numbers. However, we only have one realization of the
fBm.

To deal with this constraint, we shall start with the log-spectrum of RM given by

log(ρ̂2k) = −(
d

2
+H) log(λk) + log(C2) + log(ξ2k), k = 2, . . . ,M, (17)

which follows from Equation (15). To apply a least square linear regression analysis, we propose a
binning strategy. Formally, let {El, l = 1, 2, ..., L} be a partition of spectral indices {2, 3, . . . ,M}, and
Nl be the size of the set El. Taking the averages in both sides of (17) on each bin El, leads to a linear
model of the form

yl = αxl + γ + εl, l = 1, · · · , L, (18)

where

xl =
1

Nl

∑
k∈El

log(λk), yl =
1

Nl

∑
k∈El

log(ρ̂2k), εl =
1

Nl

∑
k∈El

log(ξ2k), (19)
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α = −
(
d

2
+H

)
and γ = log(C2). (20)

Due to the Central Limit Theorem, the distribution of εl can be approximated for large Nl by a
normal distribution of mean µ0 = E[log(ξ21)] and variance Var[log(ξ21)]/Nl. Furthermore, since {ξ1}
has a standard normal distribution, {ξ21} has χ2 distribution, and

µ0 = log(2) + ψ(
1

2
), (21)

where ψ is the so-called ψ-function, which is the first derivative of the Gamma function [28]. Hence,
setting

β = γ + µ0, (22)

Equation (18) is asymptotically equivalent to

yl = αxl + β + ε̃l, l = 1, 2, . . . , L. (23)

where ε̃l are i.i.d of law N (0,
σ2
0
Nl

). Regression parameters α and β of this linear model can be estimated
by minimizing a weighted least square criterion:

J(α, β) =
L∑
l=1

Nl

σ20
(yl − αxl − β)2. (24)

This leads to the following estimates

α =

∑L
l=1

Nl
N−1xlyl − (

∑L
l=1

Nl
N−1xl)(

∑L
l=1

Nl
N−1yl)∑L

l=1
Nl
N−1x

2
l − (

∑L
l=1

Nl
N−1xl)

2 , (25)

β =

L∑
l=1

Nl

N − 1
yl − α

L∑
l=1

Nl

N − 1
xl. (26)

Now, according to (20), H and C can be obtained as

H = α+ d/2, C =
√

exp(β − µ0). (27)

In our estimation procedure, the regression (23) is defined and applied with the estimates λ̃k and ρ̃ of
the LB operator eigenvalues and fractional Brownian field coefficients, respectively.

3 Numerical study

We evaluated the proposed algorithm of Section 2 on synthetic data. Using the method developed in
[18], we simulated a set of 1000 fractional Brownian spheres with Hurst indices H uniformly sampled
from a uniform distribution in (0.05, 0.95). A triangulated unit sphere with N = 2562 vertices served
as a reference surface S. The first M = 1600 LB eigenpairs of S were computed using the linear FEM
of (2.1). Then, fBms R on S were generated via (10) with C = 1. Fractional Brownian spheres were
synthesized by displacing vertices of S in direction of their corresponding outer normal vectors by an
amount of R. Some examples of such surfaces were shown on (1).

For each surface, H was estimated according to (1); the mean curvature flow was applied with
dt = 0.1. The mean bias (mBias) and the root mean square error (rMSE) of the estimates H̃k of Hk

at the kth experiment were computed as

mBias =
1

N

1000∑
k=1

(H̃k −Hk) rMSE =

√√√√ 1

N

1000∑
k=1

(H̃k −Hk)2. (28)

Results are presented in (1) for different numbers n of bin elements. rMSE of H did not significantly
depend on n. Both, the mBias and the rMSE were quite low. The rMSE was about 0.06 corresponding
to a relative error of 6 %.

7



Table 1: Estimation of the Hurst index H on 1000 fractional Brownian spheres. The number n refers
to the number of bin element used in the regression procedure 23.

Statistics
Binned regression

n = 50 n = 40 n = 30 n = 20 n = 10

mBias of H̃ -0.011 -0.0089 -0.0069 -0.0041 -0.00039

rMSE of H̃ 0.065 0.065 0.065 0.064 0.064
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Figure 4: mBias and rMSE of the estimates of the Hurst index H as a function of H values.

The simulated surfaces were further classified into 9 groups depending on their H value: the ith
group contained surfaces with H ∈ [0.05 + 0.1 (i− 1), 0.05 + 0.1 i) for i = 1, 2, . . . , 9. For each group,
we computed the mBias and rMSE for n = 10. Results are shown in Figure 4. We observe that the
method tended to overestimate H in the lowest range (<= 0.35) and underestimate it in the highest
one (> 0.75). The maximal rMSE was below 0.1 (10 % error). The most accurate results were achieved
for surfaces with medium values of H in [0.45, 0.55).

4 Application to fetal data

The proposed method was applied to a dataset of fetal cortical surfaces. This dataset was acquired
at the Department of Neuroradiology at La Timone Hospital (Marseille, France) between January 1st
and December 31st, 2011, in a clinical context and has been used to study the evolution of cortical
complexity through gestational development [19]. It consisted of in vivo magnetic resonance images
of fetal brains acquired in utero using a 1.5 teslas MR machine, from which cortical surfaces were
extracted. Details of the acquisition and preprocessing steps, including image segmentation and 3D
reconstruction of surfaces, are explained in [26].

In this dataset, we selected 12 subjects free of diseases according to radiological criteria. The
gestational age of these subjects was between 21 and 34 weeks at the time of MRI acquisition (mean
age: 29.6± 3.5 weeks). Thus, we had 24 triangulated hemispheric surfaces.

(a) (b) (c)

+0.02

-0.008

0

Figure 5: The first steps of Algorithm 1 applied to a fetal brain hemisphere: (a) the observed surface
(in gray) and smooth surface (in green), (b) the estimated reference surface (in blue), (c) the estimated
fractional Brownian field on the reference surface.
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Figure 6: Linear regression on the spectrum of the cerebral hemisphere of Figure 5 (a) complete
regression, (b) partial regressions with the breakpoint l∗ = 20.

Considering each brain hemisphere as a realization of a fBs, we applied Algorithm 1 to estimate
its Hurst index. The first steps of this algorithm are illustrated on Figure 5a. As explained in Section
2, the estimation of the Hurst index consists of applying a linear regression procedure to the spectrum
of the fractional Brownian field on the surface. However, as illustrated on Figure 6a, we observed
that relationships between the logarithms of the spectrum energy yl and its corresponding scales (see
Equation (19)) was not linear on cortical surfaces. Moreover, when performed on this spectrum,
regression analysis could lead to negative Hurst index which were out of the expected range (0, 1).
This issue could be due to mesh artefacts or numerical inaccuracies of the approximation of large LB
eigenpairs. In fact, by using the linear FEM, the absolute error of approximation of LB eigenvalues
is bounded by the square of eigenvalues. Moreover, the error of approximation of LB eigenvectors is
bounded by corresponding eigenvalue [40]. Hence, as eigenvalues increase, their approximation error
may increase, leading to inaccurate spectrum features xl and yl.

To fix this issue, a segmented linear regression was performed. In this method, xl’s was broken
into two segments. The breakpoint (the border of low and high xl’s) was manually set from the
data of the smallest surface in database (having 930 vertices) to l∗ = 20 at a point where the linear
trend of the first eigenvalues started to be invalided; see illustration on Figure 6b. Let us quote that
the approximated reference surfaces of all subjects in the database had similar shapes but different
sizes. So, their LB eigenvalues were similar up to a scaling factor [33]: larger surfaces had smaller
eigenvalues. So, the xl∗ value itself could not be used as the breakpoint since it was scaled across
subjects and could result in regression analysis in different spectral bands.

On Figure 7a, we show estimates H̃ of the Hurst index of left and right hemispheres as a function
of the gestional age. We observe that older subjects tend to have smaller values of H̃. As age increases
during the fetal age, folds appear on the brain surface, increasing the complexity of the cortical surface
([26]). So, the decrease of H̃ with age may reflect this increase of complexity.

In the literature, it was observed that larger fetal brains are more folded (e.g. [26]). This was also
verified by simulation on some mechanical models ([41, 42]). On Figure 7b, we plot the value of H̃ as
a function of the hemispheric volume. We observe that H̃ decreased as the volume increased. This
suggests again that the Hurst index could be a good indicator of surface complexity.

5 Discussion

The recent definition of fractional Brownian motions on surfaces [17, 18] has raised the issue of esti-
mating the Hurst index which characterizes these new models. In this paper, we proposed an original
estimation method which is based on a spectral representation of surfaces built upon their Laplace-
Beltrami operator. This method involves two main steps: a first one where a mean curvature flow
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Figure 7: (a) H̃ versus gestational age, and (b) H̃ versus hemispheric volume of fetal subjects.

is applied to recover the surface indexing the fBm, and a second one where a regression procedure
is applied to the fBm spectrum to identify the Hurst index. The method was tested on simulated
surfaces leading to a mean error of about 6%, which is a promising score for a first attempt to solve
the open issue.

The method can be seen as an extension of a spectral method currently used for classical fBm. By
extending other classical methods, it could also be possible to construct alternate estimation methods
for surface-indexed fBm. For instance, the classical filtering methods based on quadratic variations
[24] or wavelets [16] could be extended using some recent wavelet representations on graphs [1, 20].
To avoid the effect of numerical inaccuracies of the approximation of large LB eigenpairs, our method
was applied considering only the lowest eigenpairs. As a result, the method mainly captured some
information about the surface low-frequencies. Using alternate filtering methods, we could focus on
surface high-frequencies and complete these information.

The Hurst index is a feature which characterizes the global regularity of a fractional Brownian
object (random field or surface) assuming that it is homogeneous. Some heterogeneous random field
models (indexed on Rd) known as multifractional Brownian fields [5, 29, 9, 2, 3, 44] were defined to
account for local variations of the regularity of a field. Some methods were also constructed to estimate
the local regularity of these fields. However, it remains an open question to define mathematically
some heterogeneous fractional Brownian surfaces with a varying local regularity. Still, our estimation
method could be extended to deal with the estimation of the local regularity of heterogeneous surfaces
using a local spectrum analysis based on a windowed Fourier transform on surfaces [39, 30, 31].

Besides, the Hurst index is an isotropic features which characterizes the object independently
of any direction. The fBs, itself, is an isotropic model that has the same properties whatever the
orientation. For random fields, there has been a lot of research devoted to the definition of anisotropic
models, as well as the characterization and estimation of their directional properties [12, 6, 10, 13,
37, 35, 36, 34, 38, 11, 44]. Defining and analyzing anisotropic fBs is another path of research that is
opened by this work.
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Tricot, eds., Springer, 1999, pp. 17–32.

10



[3] A. Benassi, P. Bertrand, S. Cohen, and J. Istas, Identification of the Hurst index of a
step Fractional Brownian motion, Stat. Inference Stoch. Process., 3 (2000), pp. 101–111.

[4] A. Benassi, S. Cohen, and J. Istas, Identifying the multifractional function of a Gaussian
process, Statist. Probab. Lett., 39 (1998), pp. 337–345.

[5] A. Benassi, S. Jaffard, and D. Roux, Elliptic Gaussian random processes, Rev. Mathem.
Iberoamericana, 13 (1997), pp. 19–89.
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Gaussian process, Ann. Inst. Henri Poincaré, Prob. Stat., 33 (1997), pp. 407–436.
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