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On subadditive theorems for group actions and
homogenization

Omar Anza Hafsa, Jean-Philippe Mandallena *

Universite de Nimes, Laboratoire MIPA, Site des Carmes, Place Gabriel Péri,
50021 Nimes, France

ABSTRACT

We prove subadditive theorems a la Akcoglu-Krengel on mea-
sure spaces with acting groups. Applications to homogeniza-
tion of nonconvex integrals in Cheeger-Sobolev spaces are also
developed.

1. Introduction

Let (X, M, p) be a measure space, let G be a group acting right measurably! on X
such that g is G-invariant. Let B C M be a ring which is right stable by G and let

S:B— LYQ,F,P) (resp. S: B — R)

* Corresponding author.
F-mail addresses: omar.anza-hafsa@unimes. fr (O. Anza Hafsa), Jjean-philippe.mandallena@unimes.fr
{(J.-P. Mandallena).
! Bya group G acting right measurably on the measure space (X, M, 1), we mean that there is a binary
operation ® : X x G — X, (z,9) — ®(x, g) =: 2g, such that for each g € G, the map ®(-, g) is (M, M)-
measurable.



O. Anza Hafsa, J.-P. Mandallena v

be subadditive and G-covariant (resp. G-invariant), where (Q,F,P,{ry},ec) is a mea-
surable dynamical G-system, and let {/n}nen+ be a sequence of sets of B. In this paper
we are concerned with the problem of characterizing the following limit

lim S(Jn) () for P-a.a. we Q (resp. lim S(Jn)).

n—oo  p(J, n—oco ,u(,]n)

Such limit problems are of interest for the development of homogenization of integrals
of the calculus of variations in the setting of Cheeger-Sobolev spaces (see [2]). Other
motivations can be found in the study of percolation theory (see [23]).

Motivated by problems of statistical mechanics, additive theorems were first proved
in 1931 by von Neumann (see [33]) and Birkhoff (see [5]) in the context of measure
preserving Z-actions. Then, in 1972, Tempelman generalized these results to the mul-
tidimensional case in the context of measure ZN-actions (see [40]) and Nguyen and
Zessin [35]) but also to the setting of amenable semi-groups (see [41] and [27, Theo-
rem 4.4]). Later, in 1999, the theorems of von Neumann and Birkhoff were extended by
Lindenstrauss to the setting of amenable groups under weaker conditions than those of
Templeman (see [28,29] and also Calderon [7]).

Beside this, motivated by the study of percolation theory, subadditive theorems were
proved, in the context of measure preserving Z‘V-actions, first in 1968 by Kingman in
the unidimensional case (see [25,26]) and then in 1981 by Akeoglu and Krengel in the
multidimensional case (sce [3,27] and Derriennic [10], Smythe [39], Nguyen [34]). In 2014,
Dooley, Golodets and Zhang extended Kingman’s theorem to the setting of countable
discrete amenable groups (see [12] and [16]). In this paper, we extend Akcoglu-Krengel’s
theorem to the setting of measure spaces with acting groups.

Multidimensional subadditive theorems a la Akcoglu-Krengel were adapted first in
1986 by Dal Maso and Modica for dealing with homogenization of convex integral func-
tionals of the calculus of variations defined on Sobolev spaces (see [14,15]) and then in
1994 by Messaoudi and Michaille for studying nonconvex homogenization problems (see
[31,30]). In the same spirit, the object of this paper is to establish subadditive theorems
allowing to deal with nonconvex homogenization problems in Cheeger-Sobolev spaces.

The plan of the paper is as follows. In Sect. 2, we state our subadditive theorems: the
main new result is Theorem 2.14 whose proof uses Lindenstrauss’s crgodic theorem (see
[29]) and a maximal inequality established in [1 2]. To obtain such subadditive results we
need to introduce a notion of meshability with respect to the acting group: this is defined
in §2.1. Finally, to illustrate our results, applications to homogenization of nonconvex
integrals in Cheeger-Soboley spaces are developed in Sect. 3.

2. Subadditive theorems

Let (X, M, n) be a measure space, let G be a group acting right measurably on X
such that p is G-invariant, i.e.
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1(Ag) = p(A) forall g € G and all A € M,

with Ag := {ag : a € A}. Let B be a subclass of sets B € M such that u(B) < 0. For
cach A € M, we consider the class D(A) defined by

D(A) := {H CG:{Ag}yen is disjoint}.

In what follows, | - | denotes the counting measure on G and, for any H c G, Pi(H)
denotes the class of finite subsets of .

2.1. A subadditive lemma
We need the following notion of meshability.

Definition 2.1. The measure space (X, M,u) is said to be G-meshable if there is
{Uk}ren- C B with #(Uk) > 0 for all k € N*, such that for each & € N* there exists
Gy € D(Uy) with the property that for each ¢ € N* there exist Goi C G;’L € Pr(Gy)
such that:

U UgcU,C U Ug; (2.1)
9eG 95G

’N(Ugec’yik Ukg \ UgEG;k ng) ”(UHEGq,k\Gq,k ng)

lim = lim

g—co H(IU(}) q—00 'U(Uq)
| _ 1(Ug)
i (ot e BOR 2
(il{&' qk\ q’kl#(Uq) ! )

The quadruple ({Us}ren-, {Gi}ren-, {Gq—:k}(q,k)el\l*xN*: {G;r,k}(q,k)eN‘ «N+ ) is called a
G-mesh of (X, M, y). For abbreviation, we also say that (X, M, 1) is G-meshable with
respect to {Ug}ren-.

The interest of Definition 2.1 comes from the following subadditive lemma (see
Lemma 2.3) which is a key result for establishing subadditive ergodic theorems a la
Akcoglu-Krengel (see §2.2).

From now on, we assume that the measure space (X, M, i) is G-meshable with a
Al i ~ - 1+ 7
((3—1110.‘511 ({Uk}kEN*; {(Uk}keN*: {Gq,k}(q.k}EN*XN* ) {(Tq!k}(q,k)EN“xN*)' Let ._70 C M be
given by

Jo := { gﬁ Ukg : k € N*, H € D(Uy) and |H| < oc}
g
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and let 7 be the G-ring? generated by Jo. Let us recall the definition of a subadditive
and G-invariant set function.

Definition 2.2. Let B be a G-ring and let S : B — R be a set function.

(a) The set function & is said to be subadditive if
S(JUJ) <S(J) + S(J),

for all J,J’ € B such that AN B = ¢,
(b) The set function S is said to be G-invariant if

S(Jg) = S(J)
for all J € B and all geG.

Lemma 2.3. Let § : 7 - R be a subadditive and G-invariant set function with the
Jollowing boundedness condition: there exists ¢ > 0 such that

IS(A)] < cu(4) (2.3)
forall A e J. Then

lim S([Uq = S(Uk)

¢ .
4= 1(U,) ~ keN- u(Uy)

N

(2.4)

Proof of Lemma 2.3. First of all, it is clear that %J—:—)) > infjepn- f((g::)) for all ¢ € N*,

and so

Ch

lim (U > inf ‘S(Uk)_
g—00 !u'([Uq) kelN= JU(U;L)

On the other hand, fix any k € N* and any ¢ € N* and set:

i = U Uyg;
S E

+
Jg,k = U+ Urg.
.(IGGqu

By the left inclusion in (2.1) we have Jox € Ugand so U, = S, U (U, \ !](;k_). Hence

S(U,) <S8 (J{;A.) +S (I.Uq & J(;,t;_)

2 We say that 7 is a G-ring if 7 is a ring which is right stable by G, i.e. Jg € 7 for all J e J and all
g €@G,
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because S is subadditive, and consequently

s(u) _ $ () 1 (ue) | (U )
iU = () HO) T a0

Using again the subadditivity of § and its G-invariance (resp. the G-invariance of p) we
have

5 () 16 lS(U)

(Icsp 7 ( ) IGQ k!,u Uk)

Moreover, U, C ] , by the right inclusion in (2.1), which implies that U, \ S €

qk\ ]kan(lso

S (Uq \ J(;k) < cp (J:k \ Jq:k)

with ¢ > 0 given by (2.3). It follows that

L S(UyH (Jar)  en (d\ Jok)
WUy = 10y w0, T a0y

S(Uy) (Je\ i)
2 (Uk') J”UUq)

because p (f_k) < u(Uy) since J_ . C U,. Letting ¢ — oo and using (2.2), and then
passing to the infimum on &, we obtam

_ S (U,
lim S([Uq) < inf (U)
n—oo p(U,) = reN+ p(Uy)’

(2.6)

and (2.4) follows by combining (2.5) with (2.6). H
2.2. Subadditive theorems d la Akcoglu-Krengel
From now on, let {J, },,en+ C Jo. Then, for each n € N*, one has

Jn= U Ug, g with H, € D(U,,).

geH,
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2.2.1. The deterministic case
We begin with the following definition.

Definition 2.4. We say that {.J, },,en+ is a G-regular sequence if ¢, — oo and if for each
(n, k) € N* x N* there exist Gnx € N*, g, 1 € G and Fy x € Pe(Gy) such that:

G B € F (2.7)

Uguink = U Ugr; (2.8)
reG} L H,

T |Fn,k[

n%mﬁﬁigaTzl. (2.9)

The following result generalizes Lemma 2.3.

Theorem 2.5. Let § : J — R be a subadditive and G-invariant set function satisfying
(2.3). If {Jn}nen- is a G-regular sequence, then
S(Jn) _ . . S(Uy)

= S 2.10
noe () kene u(Uy) s

Proof of Theorem 2.5. The proof is divided into four steps.

Step 1: using meshability. Using (2.1) we see that for each (n, k) € N* x N*, one has

U Ugr= U ( U ng) N i) i ( U EU&-Q) h = U Ugr.
i N k

reG; Hy heH h€Hn \ geG] | reG) L Hy,
(2-11)

Moreover, since F, x € Pi(Gy) and G & G’;:“k, by (2.7) we have G ,H, C

+ l ] . : : s b .
Go pHyn € Pr(Gy), and so {Ukr}?__eG;“an and {Uk?},.EG;—”_kH" are disjoints. As pu
is G-invariant, it follows that

1L (UrCG+ s Uk’f' \ UI‘GGQ_ LHn UA])

€Cqn & T i — »ij“man \ G;“A_H”‘ p(Uy)
“\n
| H | GI”,‘:\G;H,“ f1(Ug)

B |Hn|ﬂ(an)
" _ | #(Uy)

= |G, \G7 . ;
i A k] (T, )

As g, — 00, by using (2.2) we deduce that
T (U,.€G+ g, Ukr N G- H, [U;,-;r)
lim an.k San — 0. (2.12)

n—+o0 n“(‘]?l)
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Step 2: establishing lower bound and upper bound. Fix any n € N* and any k € N*

and set;:
']n,k = Uﬁ Ugr;
TeRH‘k‘
J’J’T.’C = U Uk?’,
' +
gGRn‘k

Tape P— . — +
where R, = quan and Rn,kj 1= an,an-

Substep 2-1: lower bound. By the right inclusion in (2.11) we have J, ¢ J*

., and so
Jok = InU(J;5 \ Jn). Hence

S(tx) <SU)+8 2 MEAN

and consequently

S (k) _ sy | S (Fa\ )
1 (J,Tk) ~ () : pldn)

As J . C Jy by the left inclusion in (2.11), we see that J;k Vo C© J:k, \ J, . and so

S (J?'tk \ t]n) S Cli (‘]:_,k \ JT;A")

with ¢ > 0 given by (2.3). It follows that

o (J?tk) = S (Jn) G (']?tk‘ \ ]n—,ki)
It (];k) — o) " 1 (Jn)

Letting n — oo and using (2.12) we obtain

s (7,
[, = lim u z fing S(']n)

n—00 It (]:k) T oo /I(Jﬂ.)

= L. (2:18)

Substep 2-2: upper bound. By the left inclusion in (2.11) we have J, . C J, and so
I =J U (Ju\ J, ;) Hence

S(J) <8 (J,;’,‘:) +8 (Ja\ Jik)

and consequently
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S (J?:k_) 7 (Jn"k.) S (Jn \‘]n_,k)

S(Jn)
It (J;k) 1(Jn) " BT )

p(Jn)

<

As J, C J:’k by the right inclusion in (2.11), we see that J, \ Jog € J:’k \ J, k. and so

S (Jn \ Jnfk) < cp (J:,k \ J.,Z,k)

with ¢ > 0 given by (2.3). It follows that

S(a) _ S (]‘k) i (o) e (5 i)
HCh) = (o) )T )

() ot )
: Iz (J;,k-) ' #eln)

because p (J;k) < p(Jyn) since J-, C J,. Letting n — oo and using (2.12) we obtain

2

[:= lim
n—oo ,U(Jn) pae e (']7:-‘6)

S w)
(Ju) < lim —M =z I (2.14)

Step 3: we prove that | = [. It is sufficient to prove that for each € > 0, one has

~

—I<e. (2.15)

m

Fixe > 0. From (2.13) and (2.14) we see that 1 —] < I) — 1. So, to prove (2.15) it suffices
to show that there exists & € N* such that

Let Si @ Pe(Gr) — R be defined by
BB = (L Uer) - BIS(U) (2.17)
k = /l(IUk) - kT W] k) - :

As § is subadditive, we can assert that Sk 1s negative, i.e.,

1
Sk(E) = (U Upr) - [EIS(UL)| <0 2.18
(8) = gy |99, 0er) - kBl ()] < (2.18)
for all E' € P¢(Gy,). Moreover, it is casily seen that Sy is decreasing, i.c., for all £ I e
Pr(Gw). if E C F then S(E) > Si(F). Consider g i € N, G € G and F 4 € Py(Gy)
given by Definition 2.4. From (2.8) it follows that
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S (R:A) > S (Fop) = . {S( U [Um') — |Fn,,kJS(Uk)]

ll(Uk) rGFn,k
1
= —— |&§| Uz Gnk) — | Fax| S(Ur}]| .
H(Uk) [ ( 1Y J%) | Jvl ( k)]
Hence, since —+— > —+— and S and p are G-invariant, we get
‘Rn,kl “‘n‘kl

> = . — | Fo ke
[REA] 2 Ty ) L) = [l S(O)

S(Uénkf_fn A) |Fn,k| S([Uk)
= TParlu(Ue) ~ |RE | w(0)

qn, kqn ) JRIJL‘J S([Uk)
k) |R::A| #(Uk)

S(U
1(Ug
(Ug
(Ug

x9n,
_ S ) |[Fo k] S(U)
~ w(Ug.,)  [RE ] m(UR)
o SUD [Pl S0
~ qeN+ pu(Uy) |RT1 k| #(Uy)

Letting n — oo and taking (2.9) into account, we deduce that

i Sk (RY,)

n—oo { ”-kl

in S(Uq) = S(Ur)
8 qel\?* p(U,)  p(Ug)” (2.19)

By Lemma 2.3 we can assert that there exists k. € N* such that for each k > k., one
has

S(Uk) o S(Uq)

i 2.20
u(Ur)  aee u(Uy) e
Combining (2.19) with (2.20) we conclude that
Sy (RY)
lim — > —¢ (2.21)

n—roo |R1‘l,k|

for all k& > k.. On the other hand, by using (2.17) with £ = R, and (2.18) with
E=R,, we get:

S (J;er,k) ~S(Ug) Sk (R” “)
ﬁ’('];tk) p(Ug) |Rn k

(2.22)
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S (Tus)  squy
n(7oe) (U s (2.23)

Letting n — oo in (2.22) and (2.23) and taking (2.21) into account, we deduce that:

S(UA)
> —gforall &> k. 2.24
(MA) a fatl ( )
7 S(Uk)
T < o 2.2
Iy — 2(Ur) 0 for all k € N*, (2.25)

and (2.16) follows with j = j.. We set [ :={ =1 and ~ := lnfqu* (U SYa

Step 4: we prove that [ = 5. Combining (2.14) with (2.25) we see that | < ‘Sgg") for

all £ € N*, and so | < v by letting & — oo and using Lemma 2.3. On the other hand,

combining (2.13) with (2 24) we see that [ > —¢ + ‘%g")) for all k£ > k.. Letting k — o0

and using Lemma 2.3 we deduce that | > —¢ + v for all ¢ > 0, and so ! > v by letting
e~+0. W

2.2.2. The stochastic case
In what follows, for each h € G and each F, F c G, we adopt the following notation:

EAF = (E\F)J(F\ B);

EF = {gf (g, f) € E x F};
E~- P = {rifels, fle By Bk
hi = {hg:geE}.

°

We begin with the definition of amenability. (For more details about the theory of
amenability, we refer to [17,36,37,41,1,16] and the references therein, see also 127, §6.4].)

Definition 2.6. Let / C G be a subgroup. We say that H is amenable if for each E €
Pi(H) and each & > 0 there exists F' € Pp(H) such that |[FAEF| < 6|F).

The property of Fglner-Tempelman stated in the definition below is needed to use both
Lindenstrauss’s ergodic theorem (see Theorem 2.16) which is valid for general amenable
groups and a maximal inequality (see Lemma 2.17) which is valid for countable discrete
amenable groups. (These two results will be used in the proof of Theorem 2.14.)

Definition 2.7. Let A be an amenable subgroup of G and let {Rn}nens C Pe(H). We
say that {Ry,},en- is of Folner-Tempelman type with respect to H if it satisfies the
following two conditions:
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(a) Folner’s condition: for every g € H, one has

(b) Tempelman’s condition: there exists M > 0, which called the Templeman constant
associated with {R,},cn-, such that for every n € N*, one has

O Ry Rn| < M|Ry|.

=

From now on, the mesh ({Uy }ren-, {Gr b ren-, {Gq kg, k)eN* xN= {Gq k(g k)eN* x N+ )
is assumed to satisfy the followi g two additional conditions:

(G is a countable discrete amenable subgroup of G for all k € N*; (2.26)
U Gg=G. 227
keN+ g ( )

Definition 2.8. When (2.26) and (2.27) are satisfied, we say that (X, M, u) is strongly
G-meshable.

We also need to strengthen Definition 2.4 as follows.

Definition 2.9. We say that tla b oens 188 strongly G-regular sequence if it is G- regular
sequence with the additional assumption that for all & € N* {G wHn}nene and
{C o tn Jnen+ are of Folner-Tempelman type with respect to (yk

Let (€2, F,P) be a probability space and let {ry : O — Q}yec be satisfying the
following three properties:

* 7, is F-measurable for all g € G;
® 4075 =Tgoyand 7,1 =7, forall g, f € G;
o P(14(A4)) = P(4) for all A E Fand all g € G.

Definition 2.10. Such a {r,},cc is said to be a group of P-preserving transformation
on (2, F,P) and the quadruplet (2, F, P, A7g}gec) is called a measurable dynamical
G-system.

Remark 2.11. If (2, 7, P, {7,},cc) is a measurable dynamical G-system, then for each
subgroup H of G, (0, F, P, {7 }ren) is a measurable dynamical H-system.

Let Z:={A € F:P(r,(A)AA) =0 for all g € G} be the g-algebra of invariant sets
with respect to (€, F, P, {7} ,ec). (For each subgroup H of G G, we denote the o-algebra
of invariant sets with respect to (&, F, P s Totocrr) by Te)
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Definition 2.12. When P(A) € {0,1} for all A € Z, the measurable dynamical G-system
(QF P, {7,}4ec) is said to be ergodic.

In what follows, we assume that (2, F,P,{7,},ec) is a measurable dynamical G-
system. Let us recall the definition of a subadditive process.

Definition 2.13. Let B be a G-ring. We say that S : B — LY(Q, F,P) is a subadditive
process if § is subadditive in the sense of Definition 2.2(a) and G-covariant, i.e.

S(Jg) = S(J) o,

for all J € B and all g € G. If in addition (2, F,IP, {7,}4ec) is ergodic, then S is called
an ergodic subadditive process.

The following result is an extension of Akcoglu-Krengel’s subadditive theorem to the

setting of measure spaces with acting groups.

Theorem 2.14. Let S : J — L'Y(Q, F,P) be a subadditive process satisfying (2.3). If
{Jn}nen- is a strongly G-regular sequence, then
EZ ;
lim S(Jn)("‘-") — inf [S(Uk)](

w)
P-a.a. w e,
By Ty P

where EL[S(Uy)] denotes the conditional expectation of S(Uy) over T with respect to P.
If in addition (2, F, P, {7,}4eq) is ergodic, then

S E[S(Uy
lim M = il M for P-a.a. w € £,
LA E AT R
where E[S(Uyg)] denotes the expectation of S(Uy) with respect to IP.

Proof of Theorem 2.14. The proof is divided into four steps.

Step 1: establishing lower bound and upper bound. I'ix any £ € N* and any n € N*

and set:
.]n!,\, = U WUy,
reRn,k
+ ,
']n,k = U+ [Ukl,
].GRrL.k
O B o I z =+ . ) o e S 3 o ) 1 3 2P
where Iif”’k = Gq“‘an and Rn]kJ = rq,i,kH”-' Arguing as in Step 1 of the proof of

Theorem 2.5 we see that (2.11) and (2.12) hold, and using the same approximation
argument as in Step 2 of the proof of Theorem 2.5, for ecach w € €2, we get:
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+
sl = i S(Jn,k) (w) a1 ( _
L(w):= lim ————— < lim ———— = [(w); (2.28)
n—oo 1L (JrJLr,k) n—oo ,U(Jn)

S{J ) (w
= T D) $ () ) = Tl (2.29)

l(w) := lim Taldn) b, (J* )

n,k

Remark 2.15. Arguing as in Step 2-1 of the proof of Theorem 2.5, we see that we also

have

5 (The) @)
(55

< l{w) (2.30)
for all w € 2. (This will be used in Step 3.)
Step 2: we prove that = I. It is sufficient to prove that for each o > 0, one has

P ({w € Q:l(w) - l(w) > n}) —, (2.31)
Fix a > 0. From (2.28) and (2.29) we see that for each £ € N*, one has

{w € l(w) - l(w) > a} C {w € Q:lp(w) —I(w) > a} =: Wi a- (2.32)

So, to prove (2.31) it suffices to show that for each € > 0 there exists k € N* such that

P(Wja) < —e, (2.33)

where M}, > 0 is the Tempelman constant associated with { Ri pineNe. Fix e > 0.

Substep 2-1: constructing a decreasing negative subadditive process. Let Ay : P(Gy) —
LY(Q, F,P) be defined by

A(E) =) 8 (U)o,

rek

and let Sy : Pr(Gy) — L(Q, F,P) be defined by

N B l " € £
Sk(E) == (U {S(PLEJHUL?) —Ak(E-)] : (2.34)
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As & is subadditive and G-covariant (and so Gg-covariant) and Ay is additive and Gy-

covariant, we can assert that S is a subadditive process® on P¢(Gy) which is negative,
i.e.
1
Se(E)w) = —— |S( U Usr) Ae(B)w)| <0 2.35
(B = i (5,4, 0r) @) - A < (2.35)

for all £ € P¢(Gy) and all w € Q. Moreover, it is easily seen that S is decreasing, i.e.
for all E, F € P¢(Gy), it E C F then Sg(E) > Si(F). Consider g, x € N*, g, € G and
Fok € Pi(Gyg) given by Definition 2.4. From (2.8) it follows that

Sk(Rnk)>Sk(Et,k): ! {3( U Uu) A ( nk)}

,H(Uk) L= P
= ” (Il[Jk) [S([U(}n,k.an.,k) Ak( n k)]

By using the G-covariance of § we see that

jsk (Ri__k) (w)dP(w) > 1 /S(an,kg—n!k)(w)dlp(w) = / Ag (Foz) (w)dP (w)

p (Up) .
Q L2 Q
1
= 0D O/S(IU@ ) (W)dP(w) — | F x| E[S (Ug)]
QEBW%m_kﬁwwm
o (Ug) B (Uy)

Consequently, since —— I and g is G-invariant, we get

> 1
|Rn k[ - |I-(n‘k

IS (RL)) | E[S(Us)] [P EES(UL)
‘R:Ln,k’ - "“(U‘?n.k) |Rn k 'u([UA’)

- E[S(U)]  |Far| E[S(U)]
T qeN- u(U,) [Rnk p(Ug)

Letting n — oo and taking (2.9) into account, we deduce that

lim —[SR (Rn k)]

o E[SU)]  E[S(U)]
n— oo ‘Rn &

- 2.36
"~ geN* .U(Uq) .“(]Uk) ( )

% The sel function Sy : Pr(Gg) — LI(Q,.F,JP’] is said to be a subadditive process on P(Gy) il S is
subadditive, i.e. Sg(EUF) < Sk(E)+ Sp(F) for all E, IF € Py(Gy) such that ENF = @, and Gi-covariant,
ie. Sp(Er) = S(E)or, for all B € Pr(Gy) and all r € Gy



O. Anza Hafsa, J.-P. Mandallena /o

As § is subadditive and G-covariant, we see that the set function E[S(-)] is subadditive
and G-invariant. From Lemma 2.3 it follows that there exists k- € N* such that for each
k > k., one has

E[S(UY] . E[S(U)
u(00) e (U,

Combining (2.36) with (2.37) we conclude that

(2.37)

l‘ E [S 4 (R:,k)]
m —=

Jim IR:AJ — (2.38)

for all k& > k..
Substep 2-2: using Lindenstrauss’s ergodic theorem. We need the following pointwise

additive ergodic theorem? due to Lindenstrauss (see [29, Theorem 1.2] and also (12,
Theorem 2.1]).

Theorem 2.16. Let © € Ll(ﬂ,f,JP’) and let {R,},ene C Pe(Gr). If {Ry}nene is of
Folner-Tempelman type with respect to Gy, then

li1 .
m
n—roo [Rn ,

Z (7 (w)) = Ecx [O](w) for P-a.a w € Q,
ER,

where Ig, is the o-algebra of invariant sets with respect to (Q,f,P,{T,-},\EGk) and
Efex [©] denotes the conditional expectation over Lg, with respect to P.

As {R, . }nen- and {RY Y.en- are of Folner-Tempelman type with respect to Gy,
applying Theorem 2.16 with © = S(Uy) we deduce that there exists () € F with ]P(ﬁ) =
1 such that

lim i (R;A) () ~ T A (R’t’“) (w)

n—oo R_ n—co ~R+A»
LK

= E%¢ [S(Uk)](w) for all w € . (2.39)
n,k

On the other hand, by using (2.34) with E = R:,k and (2.35) with F = R, we get:

SlJIT Y (w A LHE SR, S:(RF,
i) 1 A ) SeBl)w) S ) o )
J”(Jn.k) ‘“(Uk‘) [Rn.,k an,k geENT qu,k,

SUar)@) 1 Au(R,,) (@)

— <0
1) 1(Uy) 1R -

* Lindenstrauss’s ergodic theorem is established under the weaker condition that {2, bher: isa tempered
Folner sequence (see [29, Definition L.1] and [12, §2] for more details). The tempered Folner condition implies
the Folner-Tempelman condition, but the converse is not true (see [29,12]).
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for all w € Q. Letting n — oo we deduce that:

E76x [S(Uk)) () Si (R4) (@) . 5
U (w) — > inf ———"——forallke N* and allw € Q; (2.41
U (w) (Us) > inf 'R;k or a ad all w ; (2.41)
- Ir[._‘.“ U . =
l(w) — = k}iékﬁ)](d) <O0forall ke N* and all w € ;. (2.42)

In what follows, without loss of generality, we assume that ) = €.

Substep 2-3: using a maximal inequality. We need the following lemma (sce [12, Lemma
3.5] and also [3, Theorem 4.2]).

Lemma 2.17. Let K : Pe(Gy) — LY(Q,F,P) be a negative subadditive process and let
{Rn}nen+ C Pe(Gy). Fiz o> 0 and consider VX € F given by

K R, )(c
VE = {w e {1 inf —(i{)—) o —a}.

neN* | --n|
If {Rn}nen- is of Folner-Tempelman type with respect to Gy then

P(Vy) <—— TRl
(I& ) = e} ”11_1};0 |RnJ 7

where M > 0 is the Templeman constant associated with {G,,},en-.

As Sk : Pe(Gy) — LY(Q, F,P) defined by (2.34) is a negative subadditive process, we
can apply Theorem 2.17 with L = Sy.. Hence, since {R:,k}neN* is of Folner-Tempelman
type with respect to Gy, one has

I, — E[Su(R},
P ([,(:gk) & 7?‘[_1, B [ 'l‘f(+ n,k)]
: o n—oo ‘Rn,k|

where My > 0 is the Templeman constant associated with {R:_k}nEN*- Consequently,
taking (2.38) into account, we obtain

My

8}

P (VSF) < —¢ for all k > k.. (2.43)

Substep 2-4: end of Step 2. Irom (2.41) and (2.42) it follows that

: o Sk(R )
Wb B TR

Hence Wy o, C Vf’f, where Wy , is defined in (2.32). From (2.43) we conclude that (2:33)

is satisfied with k& = k..
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; s we set 1 o T — 7 and m o s iy i B RS0 .
In what follows we set [ := ] — {and v := kg%\}f* Y& with v = T for all

ke N*.
Step 3: we prove that I = ~. First of all, from (2.29) and (2.42) we see that Hw) < ye(w)
for P-a.a. w e Q and all k € N*, and so

l(w) < ~y(w) for P-a.a. w € Q. (2.44)

On the other hand, letting n — o in (2.40) and using (2.39) we get

ST, ___ Sp(RT,
lim M — Yk (w) > lim —k(—ik)—(ﬁ) for P-a.a. w e
neee (Jn,k') Tree [Rn,kl

and so, taking (2.30) into account, one has

_ S (RY.,
H{w) =y, > lim M

o for P-a.a. w € Q.
n—oo l

It follows that

/ lim wd]}b(u}).

n—+oc ‘R:”

][l(w) — ] dP(w) >

Q

But, by using Fatou’s lemma and (2.38) we see that for any k > k., one has

. BelBY
Jim. k(;R,;Ef,?l(d)dP(w) S —g, (2.45)

)
and consequently

/!(w)dﬂ”(w) > /“‘/k (w)dP (w) — e
Q

Q

> /“{(w)d]l}(w) —&.

Q
Letting £ — 0 we deduce that
[ )~ ) apw) > 0 (2.46)
Q

and the result follows by combining (2.44) with (2.46).

y 18 weset AL v Tnl 2T cath e e BB . i
In what follows, we set 7 := k‘l’:‘l%\{;* Yi with vy = T for all k € N*.
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Step 4: we prove that [ = ~7Z. Since ;. is Ig,-measurable for all k € N *, Y = infren~ Vi
Is Ngen-Zg, -measurable. But Niken-Zg, = T because Uken+Gr = G, hence v is Z-
measurable and so [ is Z-measurable by Step 3. It follows that

EX[] = 1. (2.47)
As T C Ig, for all k € N* we also have

EZ[ve] = ~F for all k € N*. (2.48)

Arguing as in Step 3, for cach k ¢ N*, we have | < 4, hence EZ[l] < EZ[vx] and so
[ <~% by using (2.47) and (2.48). Consequently

1 <L (2.49)

Fix any 4 € Z. Arguing again as in Step 3 we see that for any k > k., one has

/z‘(w)le’(w) > ]ﬂ,’k(w)d]?(w) 5
A A
But [, ve(w)dP(w) = J4 EF[v](w)dP (w) by definition of the conditional expectation,

hence [, yi(w)dP(w) = 4 7E (W)dP(w) by (2.48), and so

[1wipe) > [ @pw) -

A A
> /"fI(W)dP(UJ) — .
A
Letting £ — 0 we get
/I(w)a’]?(w) > /*yz(w)dﬂj’(w) for all A € 7. (2.50)
A A

Combining (2.49) with (2.50) we deduce that

/ H{w)dP(w) = /"fI(W)d]P(OU‘) for all 4 € 7,

A A

which implies that | = EZ[v%] by unicity of the conditional expectation. But +T is
Z-measurable because YL is Z-measurable for all k € N*, hence EZ[yZ] = 4% and conse-
quently / =~7. W
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2.3. Extension to more general sequences of sets

Let B C M be a G-ring such that B > 7, and let {Jn}nen- C B.

Definition 2.18. Assume that (X, M, ;1) is G-meshable (resp. strongly G-meshable). We
say that {J, },en- is asymptotically G-regular (resp. asymptotically strongly G-regular)
if there exist two G-regular (vesp. strongly G-regular) sequences {J;; }nen-, {J bnen= C
Jo such that:

Jn CJp CJF for all n e N*;

+ —

= 0.
n—>00 )U(Jn)

Theorems 2.5 and 2.14 can be extended to the class of sequences of sets characterized
by Definition 2.18.

Theorem 2.19. Assume that (X, M, ) is G-meshable (resp. strongly G-meshable) and
consider § : B — R a subadditive and G-invariant set Junction (resp. & : B —
LYQ, F,P) a subadditive process) satisfying (2.3). If {J,}nen: is asymptotically G-
reqular (resp. asymptotically strongly G -regular) then the conclusion of Theorem 2.5
(resp. Theorem 2.14) holds.

Proof of Theorem 2.19. It suffices to prove that

T N _
lim Jn ) < lim S(Jn) < fim b(']n) < = 8 (Jn ) ,
n—roo H -Jn ) n—o0 #(Jn) 11— 00 ,[L(.]n) n—co gy (Jn_)

(2.51)

and to apply Theorem 2.5 (resp. Theorem 2.14). The inequalities in (2.51) follow by the
same approximation argument as in Step 2 of the proof of Theorem 2.5. M

3. Toward homogenization in Cheeger-Sobolev spaces
3.1. Cheeger-Sobolev spaces

Let (M,d, 1) be a separable and complete metric measure space. In what follows, for
each € M and each p > 0, the open ball centered at z with radius p is denoted by
By(x), and for each open set O ¢ M, O(0) denotes the class of open subsets of O,

Here and subsequently, we assume that 1t is doubling on M, i.e. there exists a constant
Cq > 1 such that

1 (Bp(2) < Capt (By (@) (3.)

for pra.a. & € M and all p > 0, and M supports a weak (1, p)-Poincaré¢ inequality with
p > 1, ie. there exist C'p > 0 and ¢ > 1 such that for p-a.e. v € M and every p > 0,
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11
f u —][ udp| dp < pCp (][ vpd,u) (3.2)
B(z) B, () Bop(z)

for every u € L7 (0), every p-weak upper gradient® v € LE(O) for u and every O € O(M)
such that Bap(l) C O. We further assume that (M,d, ;1) satisfies the annular decay

property, i.e. there exist d > 0 and C'4 > 1 such that

§
1
Bor )\ Bo(w) < O (1 2) (Bt (3.3
for all z € M, all > 0 and all o €]1, x|.

Remark 3.1. From [6, Corollary 2.2] and [9, Lemma 3.3] (see also [8, Proposition 6.12]
and [22, Proposition 11.5.3 pp. 328]), under (3.1) and (3.2), if morcover (M,d) is a
length space, L.e. the distance between any two points equals infimum of lengths of
curves connecting the points, then (3.3) holds.

Remark 3.2. If (3.3) holds then ,u( r(@)\ Br(x)) = 0 for all 2 € M and all r > 0,
Le. the boundary of balls is of zero measure. Indeed, given x € M and r > 0, we have
1 > u(Br(2))/1(Br(x)) = w(Br(x))/i(Bor(z)) > 1 — Ca(l — 1) for all o €]1,00].
Hence, by letting o — 1, we obtain u(B,(x))/u(B,(x)) = 1, i.e. u(B.(z)) = p (T(/{))

Let O € O(M) be bounded. Denote the algebra of Lipschitz functions from O to R
by Lip(O). (Note that, by Hopf-Rinow’s theorem (see [4, Proposition 3.7, pp. 35]), the
closure of O is compact, and so every Lipschitz function from O to R is bounded.) Let
Lip(O; R™) := [Lip(O)]™ and let V,, : Lip(O; R™) — L (O; M) be given by

Dy
Ntk = : with u = (w1, ,um),

D,u.um

where D,, : Lip(0O) — Lff(();]RN) is the differential of Cheeger (see [8, Theorem 4.38]
and [24, Definition 2.1.1 and Theorem 2.3.1] for more details). The p-Checger-Sobolev
space H};P((); R™) is defined as the completion of Lip(O; R™) with respect to the norm

[ull g1 ommy =l Lz ommy + 1V 0ull Lz 0m)-

5 A Borel function v : QO — [0, =¢] is said to be an upper gradient for u : @ — R if [u(e(1)) — u(c(0))] <
f v(e(s))ds for all continuous rectifiable curves ¢ : [0, 1] — O. A function v € L7 (0) is said to be a p-weak
upper gradient for u € L7 (0O) if there exist {u, },=m- C LI(O) and {vn }oere- C L},(O) such that for each
n €N v, is an upper ;,1'1(11( nt for w,, u, — u in Lr (0O) md v, — v in L’r (O). 101 more details we refer
to [21,8].
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As ”V,u“”Lﬂ(O;M) % ”u””;‘i,p(o;Rm} for all u € Lip(O; R™), the linear map V,, from
Lip(O; R™) to LE(O; M) has a unique extension to HyP(O;R™) which will still be
denoted by V,, and will be called the p-gradient. For more details on the various possible
extensions of the classical theory of the Sobolev spaces to the setting of metric measure
spaces, we refer to [20, §10-14] (see also [8,38,18,19]).

3.2. I'-convergence

Let p > 1 and let (0, F, P) be a probability space. For each n € N*, we consider a
ariational stochastic integral £, : HP(O;R™) x O(0) x £ = [0, 0] defined by

E,(u, A, w) := /Ln(:!:, V,u(x),w)du(z), (3.4)
A
where L,, : O x M x Q) — [0, 00] is a Borel measurable stochastic integrand® depending
on n € N*, not necessarily convex with respect to £ € M, where M denotes the space of
real m x N matrices, and having p-growth, i.e. there exist @, 4 > 0, which do not depend
on n, such that

ol < Ln(w,€,w) < B(1 + [¢]P) (3.5)

forall 2 € O, all ¢ € M and P-aa. w € Q. Tt is of interest to deal with the problem
of computing the almost sure I-convergence with respect to the strong convergence of
LE(O;R™) (see Definitions 3.3 and 3.4) of {En}nen+ 88 1 — 00 toward s variational
stochastic integral £ : HpP(0;R™) x O(0) x Q = [0, ] of the type

Eoolu, A,w) = /Lc,C (2, Vu(z), w)du(x) (3.6)

A

with Lo : O x M x Q — [0, o0] not depending on n. When L is independent of
the variable z, the procedure of passing from (3.4) to (3.6) is referred as stochastic
homogenization. If furthermore L is independent of the variable w then F is said to
be deterministic. When {L,I}RQN* is deterministic, i.e. L, is independent of the variable
w for all n € N*, the procedure of passing from (3.4) to (3.6) is referred as deterministic
homogenization. Deterministic and stochastic homogenization were studied by many
authors in the Euclidean case, i.e. when (M, d, n) = (BN, ]2 = |, Ln) where £y is the
Lebesgue measure on RY | see for instance [11] and the references therein.

Let us recall the definition of I-convergence and almost sure I -convergence. For more
details on the theory of [-convergence we refer to (13].

% By a Borel measurable stochastic integrand L : O x M x Q — [0, c0] we mean that I, is (B(M) @
B(M) & F, B(R))-measurable, where B(M), B(M) and B(R) denote the Borel o-algebra on M, M and R

respectively.,
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Definition 3.3. For each n € N*, let F,, : HUP(O;R™) x O(0) — [0, oo] and let E, :
HpP(O;R™) x O(0) — [0, 00]. We say that {En}nen- T-converges with respect to the
strong convergence of Lf (O;R™), or simply ['(LP)-converges, to E,, as n — oo if

D(LE)- lim E,(u, A) > B (u, A) > I'(LE) 111_1};3 En(u, A)

n—o00 !

for all w € H,?(O;R™) and all A € O(0), with:

Lp
D(LE)- lim E,(u, A) := inf{ lim B, (un, A) :u, =3 u} :

n—oo n—00

n

- o Lr
L(LE)- lim E,(u, A) := inf{ im B, (un, A) : u, =5 u} :
n—roo —00
Then we write

I(LE)- glolo En(u, A) = Ex(u, A).

I (

Almost sure I'-convergence is defined from Definition 3.3 as follows.

Definition 3.4. For each n € N*, let E,, : HYP(O;R™) x O(0) x 2 — [0, 0¢] and let
Es : Hi?(O;R™) x O(0) x Q2 — [0, oo]. We say that {E,},cn- almost sure [-converges
with respect to the strong convergence of Lﬁ(O;Rm), or simply almost sure I“(Lﬁ)—
converges, to Ey, as n — oo if for P-a.e. w € Q, one has

L(LF)- lli_l}lgo En(u, A,w) = Eoo(u, 4,w)

H

(]

for all w € H*(O;R™) and all A € O(0).

For each n € N* and each p > 0, let HiLy : O x M x Q — [0, 0¢] be given by

M Lin(2,€, w) = inf {Jlﬁ ( )Ln(y,&—l- Vow(y),w)du(y) :w e Hi;g(BP(:IL’);Rm)}
where the space H!%;S(Bp(x); R™) is the closure of

Lipg(By(x); R™) := {u € Lip(O;R™) tu=00n O\ Bp(:.':)}

with respect to the Hﬁ*”—norm. When {L,},,cn- is deterministic, in [2, Theorem 2.2 and
Remark 4.2] we proved the following result.

Theorem 3.5. If (3.5) holds then for every u € Hglt“”(('); R™), the set function

[(LE)- lim E,(u,-) : O(0) - [0, ]

n—2o0
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can be uniquely extended to q finite positive Radon measure on O which is absolutely
continuous with respect to i, and:

I(LE)- lim E,(u,A) > [ Tim lim Hf L,(x, Vu(z))du(x):
H n—oo P40 e N
A

TPy T _ ; T — P : : K
I(Lﬂ) Jim Ey(u, A) /,})1_% nl—linoo ?{“Ln(i,V,,,u(:c))d,t.c(:L)
A

Jor all A € O(0).
By the same method we can establish the following stochastic version of Theorem 3.5.

Theorem 3.6. If (3.5) holds then for every u € HI{""’(O;R”’“) and P-a.e. w € Q, the set
function

I(L)- lim B, (u,-,w) : O(0) - [0, 0]
n—oo
can be uniquely extended to a finite positive Radon measure on O which is absolutely
continuous with respect to /1, and:

F(Lﬁ)- lim E,(u,A,w) > /H;(I) lim #H/ L, (z, Vu(z),w)du(z):;
n—co °o—r Nn—00
A

Py_ 1 | == im lim P D T
C(LE)- T o A, o) = [ lig T M0 Lo, (), o))
A

Jor all A € O(0).
3.3. Homogenization

Homogenization of integrals of the calculus of variations in non-cuclidean settings has
been studied for the first time in the recent paper (2] (see also [32]). Although extending
results available for Soholev spaces to Cheeger-Sobolev spaces is of interest (especially
from the point of view of hyperelasticity where the support of the measure (i can be
interpreted as a mechanical structure together with its singularities like for example
thin dimensions, corners, junctions, ete.) this subject is still at the beginning and its
development needs further investigations.

In this paragraph, we develop an abstract framework to deal with homogenization of
integrals of type (3.4) by using subadditive theorems established in Sect. 2. We restrict
our attention to the stochastic case (see Theorem 3.12). The deterministic case can be
treated by the same method.
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Let I'be a finite set and let {M;};o; B(M ) where B(M) the Borel subsets of (M, d).
From now on, we assume that:

M = _U] M; with p(M; N M;) =0 for all i, 5 € I such that ; s g (3.7)
O(M; \ N;) € O(M) for all i € I, (3.8)

where N; 1= U;;M; N M;. Setting O; := (M;\N;)NO for all i € I, from (3.7) and (3.8)
we have:

#(O; N O;) =0 for all 7, j € T such that 5 2 g (3.9)
#(O\ U 0;) =0 (3.10)
O; € O(0) for all i € I. (3.11)

Remark 3.7. From (3.7) we have 1(M; OV M;) =0 for all 4, j € T such that i # 7, and so
p(M;) = 1(M; \ N;) and (O;) = W(M; N O) for all i e 1.

Foreachi € I, let (2, F;, ;) be a probability space and let I - M; x M x £; — [0, o0]
be a Borel measurable stochastic integrand having p-growth, i.e. there exist gyl = 10,
not depending on 4, such that

alglP < L'(x, & w;) < A(1 + |¢]7) (3.12)

for all 2 € M;, all € € M and Pj-a.a. w; € ;. Let B(M;) be the Borel subsets of (M, d).
As M; € B(M) we can assert that B(M;) € B(M) and so (M, B(M;), 1) is a measure
space. In what follows, we adopt the following notation:

o we denote by Bj the class of A e B(M;) such that ;(A4) < co and #(0A) = 0 with
dA=A\ A, where 4 (vesp. A) is the closure (resp. the interior) of A;

e we denote by Homeo(A;) the group of homeomorphism on M,;;

o we denote by Ba(M; \ N;) the class of open ball of M, \ N;.

Remark 3.8. As Ba(M; \ N;) O(M) by (3.8), from Remark 3.2 we see that 1w(dB) =0
for all B € Ba(M; \ N;), and so Ba(M; \ NV;) C B§.

To extend homogenization to non-cuclidean situations, it is necessary to make some
refinements” on our general metric measure setting. For this, we consider:

e (3; a subgroup of Homeo(M;);

* These refinements sel an abstract framework whose development would require further investigations.
However, considering that homogenization, and more generally I-convergence, in Cheeger-Soholev spaces
is at the beginning of its development, it secins of interest to present it,
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° {T;} 9€G, a group of P;-preserving transformation on (€4, Fi, ;) (see Definition 2.10);
o {Il}nen- C Homeo(M;);
o U; € Bj such that x(U;) > 0,

where U; can be interpreted as the “unit cell” with respect to M; and {h%},cn- as
“dilations” in M;, and we assume that:

(Hy) Li(g~ (), &, w;) = L¥(x, &, 7i(w;)) for all x € M;, all § €M, all g € G; and P;-a.a.
wi € (;

(HY) (M, B(M;), 1) is strongly G;-meshable with respect to {hi(Ui)}keN* (see Defini-
tions 2.1 and 2.8);

(H3) 1 is G-invariant, i.e. g°1 = p for all g € G; which means that (g7 (A4)) = p(A)
for all g € G; and all A e B(M;);

(H) for each n € N*, ((R5) ™Yo p = p(hi (U, ie. p(hi (A)) = p(hl (U)) p( A) for all
A e B(My);

(H}) for each ¢ € G; and each B e Ba(M; \ Ny), there exists a bijective map 77}
from Hﬁ:o(g_l(B); R™) to H;:g(B;R’“) such that V;(T;!B(w) =V,wog ! for all
w e Hﬁ:g(g‘l(B); R™) and V,(T} 5) "' (v) = V,wog for all v € Hf[jg(B; R™);

(Hy) for each n € N* and cach B ¢ Ba(M; \ N;), there exists a bijective map H
from Hi:g(hil(B);Rm) to Hﬁ:g(B;Rm) such that V, H] p(w) = V,woh! for all
w € H‘ll:f)’(hfb(B); R™)and V,,(H} ;)" (v) = Vuvo(hi) forallv € Hﬁ:g(B; R™);

Remark 3.9. As G, C Homeo(M;), from (H3) we see that Bi is a G;-ring, i.e. if A € B},
and if g € G; then g7 1(4) € 33,

Remark 3.10. From (H%) we sce that (i, (Uy)) > 0 and (h)ey = mhi—lw—ﬂ,u for all
ne N~

Remark 3.11. As 1(U; \ U;) = 0 we have w(0;) = #(U;) and, under (HY), for each
ne N* ju(hi(0,)) = 11(h;,(U;)) because hi e Homeo(M;) and (h)t; = mi—)),u.

Let Jj € B(M;) be given by
T = {ggngl(h:{;(u)) ke N*, HeD(h(U;)) and |H| < oc}
with
D(hi(U;)) = {H C Gy {gﬁl(lz.i_(U!;))}gEH is disjoint},

and let 7' be the G;-ring gencrated by J4. It is clear that Jo C Bi and so Bl o 1
because B is a G i-ring (sec Remark 3.9). We further suppose that:
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(Hy) for each B € Ba(M; \ N;), {h},(B)},en- is asymptotically strongly G-regular, i.e.
there exist two strongly Gi-regular sequences {J; buen+, {J;F buens C Ji such that:

Jy C hL(B) C JF for all n € N*;
p(Jy \ ) _g

(see Definitions 2.9 and 2.18).

Let (©2, F,IP) be the product of the probability spaces {(Q%, Fi, P bier, ie. 2 =
[Lic; %, F = ®ierFi and P = Q;¢P;, and let L: M x M x Q — [0, 00] be defined by

L(z, &, w) = Li(x, &,w;) if z € M;. (8.138)

For each n € N*, we define h,, : M — M by h,(z) = h},
Ly :0 xM x £ — [0,00] given by

() if @ € M; and we consider
Ln(z,§,w) = L(hn(2), &, w). (3.14)

The following homogenization theorem is a consequence of Theorems 2.19 and 3.6.

Theorem 3.12. If (H), (HY), (HY), (H3), (HY), (HY) and (H) hold for alli € I, then
for every u € HI_IJT’(O; R™) and P-a.e. w € Q, one has

I‘(Lﬁ)lﬂl_i},l;: E,(u,0,w) Z/ homt C pt(e);on ) duls)

zCIO

with Lt

hom -

: M x Q; — [0, 00] given by

hom (§:wi) := inf EF [iﬂf{][ L'(y,& + V,w(y), )dp(y) :
gLiisy e

i, (0:)
w e Hyp (n(0:);R™) H (),

where [Ef”“ denotes the conditional expectation over T; with respect to P;, with Z; be-
ing the o-algebra of invariant sets with respect to (Q;, Fi, IP;. {4 }geq,). If in addition
(8%, Fi, By, ) 478 }aeq,) is ergodic, then Liom s deterministic and is given by

Zh e = ot E{f{ ][ Bl + Vil il
}

keN* l;\,(U,)

w e H’ll 8 (/ : (lfJi-);]Rm) H
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where IE; denotes the expectation with respect to P;.

Proof of Theorem 3.12. The proof is divided into two steps.
Step 1: using a subadditive result. Let i € [. We prove that for Pi-a.c. w; € Q;, every
r € O; and every p > 0, one has

Um Hi L, (2§ wi) = lim MO Ly (x, € w;) = Li,, (£ w;) for all £ € M. (3.15)

n— oo n—+oo

Let £ € M and let 8§ : By — L'Y(Q;, F;, P;) be defined by
SE(A)(w;) := inf /Li('y,f + Vyw(y), w)du(y) - w € Hj;g(fi;Rm) :
A
where by (3.12) we have 0 < S‘E(A)(wi) < c,u(fi) < cu(A) for all A € Bi and P;-a.a.
wi € £ with ¢ := 8(1 + |¢[P). In particular S; satisfies the boundedness condition in

(2.3). On the other hand, taking (3.13) and (3.14) into account, from (H%), we see that
for every B € Ba(M; \ N;), every n € N* and P;-a.e. wi € §1;, one has

5:’: (hfz(B)) (w;) = inf{ / Li(y, €+ Viow(y), w:)du(y) - w e H:t B(ht (B): ]Rm)}

n(B)

= illf{ /Lt(h:z(y),f + vlt’w(h;(y)):‘ﬂ“""i)d((hfl)g]):#(y) i

B
v € HyB()Rm |

= #(/J«L(Ua-))inf{/Ln(’y,£+ Viw(h, (y)),wi)dp(y) -

B
w e LG ByRm) |

But pe(h;, (U;))p(B) = ((hi)~V)iu(B) = 1(h;,(B)) by using again (H3), and so from (HE)

we obtain

Sf (f'sz(B)) (w) = p(h! (B))inf {][BLH(,U,& + Vyw(y), wi)du(y) : w € Hﬁlr 2B ]Ri’”)}
for all B € Ba(M; \ N;), all n € N* and Pi-a.a. w; € Q. Consequently, we have:

S; (hi(B ())) (w;) ‘

nli_l}l; Ho L) = nli_l}li (T ( ) (3.16)
— S (hi(Bo(x))) (wi)

lim Hyln(z,€,w;) = lim — 31T

oo Tubnlm ) = i T ) bk
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for all @ € Oy, all p > 0 and Pi-a.a. w; € {2;. Moreover, from (Hj), (H3) and (HY) it
casily seen that the set functlon S_f is GG;-covariant, and .5'5 Is also subadditive because,

for each A, B € B}, ,u(AUB \ (AUB)) = 0 since AUB\ (AUB) c 9AU OB and
1(0A) = p(dB) = 0. Thus, taking (H}) and (H}) into account, for every 2 € O; and every
p > 0, we can apply Theorem 2.19 with {Ughrens = {hk( i) Yeen+ and {J, }nene =

{hi(Bp(7)) }nen-, and, noticing that u(h} (U;)) = ;z(l;r)) = u(hi(T;)) for all k € N*
(see Remarks (3.10) and (3. 11)), we conclude that

o Sf (llil(BP(:E))) (w;) - IEI [Sf (hk([U ))J (wi)
neo ki (Bs(x))) kEN™ p(hi(U;))
= inf EZ [MJ w
keN+ ! w(hi (U;))
= Liom(&, wi),

for P;-a.a. w; € €, and (3.15) follows from (3.16) and (3.17).

Step 2: using a I'-convergence result. First of all, as every L satisfies (3.12) for P;-a.a.
wi € ; with o, 8 > 0 which do depend on 4, it is easy to see that every L, satisfies (3.5)
for P-a.a. w € Q. So, from Theorem 3.6 it follows that for every u ¢ Hﬁi’p(O;Rm) and
P-a.e. w € , one has:

(i) D(LE)- lim E,(u,-,w) is the restriction to O(0) of a finite Radon measure which is
n—00
absolutely continuous with respect to u;

(i) T(LP)- lim E,(u, A ,w) > /lnn hm ML (2, Vu(x), w)dp(z) for all A e O(0);

n—o0 p—0 45
A
(iii) T(L?)- lim En(u,0,w)= [ lim Tim Hy Ly (2, V,u(a),w)du(z).
oS p—=0n—oo
9]

Taking (3.9), (3.10) and (3.11) into account, from (iii) and (3.15) we see that

F(Lﬂ)_n@ B (u, O,w Z/hm lim Hy Lo (2, Vyu(x), w)dp(z)

—0n—oo
wlp,
= ZfLf.lmn(vﬁu(:r:),wi)d,u(:zj). (3.18)
i€l

On the other hand, from (ii) and (3.15) we sce that for each i € I, one has

[ hom (V (2 r),w;)du(x) = /hm lim H L (2, V,u(x), w)du(z)

=0 0
[@F O,
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0,

0,

Fig. 1. A plate with a wire.

el 0;
ot 0,
: O
O :
f R o,
. : 0, 0,
@

Fig. 2. Two plates connected by intersecting plates. Fig. 3. Two plates connected by wires.
<I(LE)- im E,(u,O;,w;). (3.19)
n—0o

Combining (3.18) with (3.19), by using (i) we conclude that

I(LY)- lim E,(u,0,w) < E D(LY)- lim E,(u, O;,w;)
00 ST n—oo
=I’(Lﬂ)— lim E,(u,O,w),
n—oco

and the proof is complete. W

The following example gives a simple non-euclidean situation where Theorem 3.12
applies (see Fig. 1). Homogenization of more complex singular structures can be also
treated (see Figs. 2 and 3).

Example 3.13. Let N > 1 and 1 < ¢ < N —1 be two integers, let M := M; U My with:

My :=RY x {Ogn-q};
My := {Opq } x RN 4,
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and let dy (resp. dy) be the cuclidean distance on M) (resp. Mys). Then d : M x M —
[0, 00[ defined by

dq(x,y) if z,y € M
d2(‘?-’17 U) if T,y € AIQ
dl({E, OR;\') =+ dg(OR:\' : y) ifre My and y € M,

d1(Op~,y) + da(2,0p~)  if 2 € My and y € M

d(z,y) ==

is a length distance on M, and s : B(M) — [0, <] given by
Ho= MY pp + ?‘[N_q!MQ

is a doubling measure, where H s, (resp. HN=9),,.) denotes the ¢-dimensional (resp.
N — g-dimensional) Hausdorff measure restricted to My (resp. Ms). The metric separable
complete metric measure space (M, d, 1) defined above supports a weak (1, p)-Poincaré
inequality with p > 1 and satisfies the annular decay property because (M,d) is a length
space (see Remark 3.1). Let (), F1,P1) and (9, 5, Py) be two probability spaces and
let (€2, 7,IP) be the product of the probability spaces (£, Fy, P1) and (£, 5, P5). Let
L:M x M x Q= [0,00] be defined by

L(z. €. W
L{z,é,w) = Q(fzé,wl) -lflléﬂfl

L(x, &, we) if 2 € My,
where, for ¢ € {1,2}, L' : M; x M x i — [0,00] satisfies (3.12) and the following
condition:

LY p z,§wi) = Lz, &, 78 (w;)) for all z € G;

with Gy 1= Z7 x {Og~n-4} and G, := {Opa} x ZN=9 where {7i}:cq, is a group of P;-
preserving on (2, 75, ;). Let {hl},cn- C Homeo(My) (vesp. {h?},en- C Homeo(M,))
be defined by hl(z) = na (resp. h2(z) = nzx). For each n € N* let L, : M xM x Q —
[0, 00] be given by

LYk (), €,w1) ifz e M,
Lplz, &, w) 1= P il e
(1’64 ) { Lz(hi(ﬂ,){ wg) ifze ﬂfg,

= L(nz, & w).

Let Uy := [0,1[9%{0g~—0} and U, := {Ora} x [0,1[¥=9 be the unit cells of M, and
My respectively, and let O := (] — R, R[¥x{0gn-q}) U ({Or«}x]0, R[N=7) where R > 0.
(Here Oy = ((] = R, 0[U]0, R[?) x {Og~-4}) and O, = ({Op«} x]0, R[N =9).) Then, all the
assumptions of Theorem 3.12 are satisfied, and so, for P-a.c. w € 2, one has



O. Anza Hafsa, J.-P. Mandallena /1

F(Lﬂ - RIEI;C En(u,0, w) = f Ltllom(v,uu(xr 0), wi )da
]_RrR[q

t [ Bon(Vu(0,2),w0)da

10,R[N—a
for all w € HLP(O; R™).
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