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Abstract: Since many years ago, multilateration has been used in precision engineering 

notably in machine tool and coordinate measuring machine calibration. This technique 

needs, first, the use of laser trackers or tracking interferometers, and second, the use of 

nonlinear optimization algorithms to determine point coordinates. Research works have 

shown the influence of the experimental configuration on measure precision in 

multilateration. However, the impact of floating-point precision in computations on large-

scale multilateration precision has not been addressed. In this work, the effects of 

numerical errors (rounding and cancellation effects) due to floating-point precision 

(number of digits) were studied. In order to evaluate these effects in large-scale 

multilateration, a multilateration measurement system was simulated. This protocol is 

illustrated with a case study where large distances (≤20 m) between pairs of target points 

were simulated. The results show that the use of multi-precision libraries is recommended 

to control the propagation of uncertainties during the multilateration computation. 

 

Keywords: Multilateration, Tracking Interferometer, Uncertainty, Floating-Point, 

Numerical stability

1. Introduction 

In the last 40 years, large-scale measurement or dimensional metrology has been an 

active research field in the world. Several keynote papers have been published 

highlighting the scientific advances in this research field [1-3]. These works have been 

supported by the increase of large mechanical systems (aircraft wings, wind turbine, rotor 

blades, mechanical structures such as nuclear reactors…). In order to produce and control 

the constitutive parts of these mechanical systems, large machine tools and coordinate 

measuring machines are required. In turn, these mechanisms also need to be calibrated 



and compensated [4]. In consequence, a new measuring technique appeared: 

multilateration. In the context of digital enterprise, measurement systems using this 

technique are being used increasingly in precision engineering. Maropoulos et al. [5] 

defined this research field as a priority in the context of measurement-assisted assembly.  

The multilateration technique is based on the computation of the coordinates of a given 

point using either four measurement devices simultaneously or a single device 

sequentially. This computation is feasible if the position coordinates of the measurement 

devices and the distances to the target point are known. The coordinates of the target point 

are calculated as the intersection of four spheres. Each sphere is centered at the 

measurement devices position and its radius is defined by the measured distance. The 

intersection of the first two spheres generates a circle. Two points can be derived by 

intersecting this circle and the third sphere. The last sphere allows to obtain the 

coordinates of the target point.  

Two types of instruments are chiefly used in the multilateration technique. The first type 

is the laser tracker, which measures simultaneously a distance by interferometry or 

absolute distance-meter and two angles by encoders. The second type is the Tracking 

Interferometer (TI, such as laser tracer) which measures by interferometry the distance 

between its standard sphere and the Spherically Mounted Retroreflector (SMR) without 

taking into account the laser dead zone.  

The multilateration technique has been used in numerous research areas such as 

electrical and electronic engineering, telecommunications and aerospace engineering… 

Around 200 research papers related to this topic can be found in the Web of Science 

database. In the field of machine compensation and calibration, the multilateration 

principle was introduced by Schwenke et al. [6] in order to calibrate a machine structure 

using a TI. Muralikrishnan et al. [7] wrote a survey of the literature about the use of TIs 

in large-scale dimensional metrology. That paper is focused on error modeling, 

measurement uncertainty, performance evaluation and standardization. Norrdine [8] 

proposed an algebraic approach to solve nonlinear problems in multilateration.  

Norrdine derives the spatial coordinates of the unknown points as a function of the 

distances to other known points using a system of quadratic equations. In the case of 

sequential multilateration using a TI, the “other known points” (positions of the laser 

tracer) and the laser dead zone are in fact not known. However, it helps to explain the 

quadratic equations of a global multilateration problem. Gao et al. [9] summarized the 

multi-axis coordinate measurement methods such as triangulation and multilateration. To 

determine the TI position coordinates, Chen et al. [10] proposed a calibration procedure 

based on additional measurements comparatively to the classic multilateration procedure. 

Camboulives et al. [11] presented a calibration procedure of a 3D working space based 

on multilateration using only one TI. The reference datum system used in this procedure 

was built from the successive locations of a single TI independently of the machine 

reference frame. 

A considerable amount of research has been done on the multilateration using laser 

trackers. The impact of variations in system configuration (laser tracker positions) on the 

volumetric measurement error was studied by Zhang et al. [12]. In their article, the authors 

propose an optimization of the system configuration and a self-calibration planning to 

reduce the propagation of volumetric measurement errors. This reduction was obtained 



by increasing the number of laser tracker stations. In the same way, a new procedure to 

calibrate an articulated arm coordinate measuring was presented in that paper. Wang et 

al. [13] used a genetic algorithm to optimize the laser tracker positions of multilateration 

measurements. Santolaria et al. [14] proposed a self-calibration algorithm of four laser 

trackers. The same research team presented a work about the different techniques and 

factors that affect the measurement accuracy of laser trackers used in machine tool 

volumetric verification [15] and proposed different calibration strategies based on 

network measurements [16]. Recent papers propose the calibration of coordinate 

measuring machines [17] and machine-tools [18-20] using this measurement principle.  

In short, most of the research works about multilateration precision are centered around 

the influence of the experimental configuration (the positions of the measurement device 

and of the target points as well as the uncertainties of the temperature, pressure and 

humidity sensors) on measure precision [21-22]. However, the effects of the number of 

digits used during computations in large-scale multilateration precision have not been 

addressed [23].  

 

In response to this shortcoming, the aim of this paper is to bring to the fore the impact 

of the number of digits used in computation on large-scale sequential multilateration 

using a TI. In order to do this, two numerical experiments simulating multilateration-

based measurements using a TI were performed. These experiments were conducted 

using the multilateration model and the measurement configuration described in Section 

2. The first experiment, which is detailed in Section 3, aimed to determine the impact of 

numerical errors in the course of the nonlinear least-squares algorithm used in 

multilateration. This was evaluated by solving the floating-point calculations of the 

optimization problem using different numbers of digits (10 to 20). The obtained results 

were compared with the nominal solution of the problem. The second experiment, 

detailed in Section 4, was aimed to evaluate the combined effects of the measuring 

uncertainties together with numerical errors.  

 2. Multilateration model  

 

The multilateration problem requires the implementation of a system of nonlinear 

equations and an optimization algorithm (in blue color in Figure 1). The implementation 

used in this work is presented Section 2.1. In order to find a numerical solution for a given 

problem (in orange color in Figure 1), setup values for the computed quantities (in green 

color in Figure 1) are required. The process to define the setup values in this work is 

presented in Section 2.2. These values and the measured quantities are encoded by the 

computer using the floating-point standard (in green color in Figure 1). The numbers of 

digits used in this work to encode these numerical quantities are presented in Section 2.3. 

In Section 2.4, the studied configuration is detailed. 

  



 

Figure 1: Relationship between computing process stability, number of digits and numerical 

results in multilateration. 

 

 

2.1 Multilateration model implementation 

 

In multilateration, the number of equations is linked both to the number of TI stations 

(POS) and the number of target points (PTS). The unknowns are the dead zones of the 

lasers, the coordinates of the positions of the TIs and the coordinates of the target points. 

The minimal number of equations is obtained when the target point coordinates are 

expressed in a reference frame built from the position of three TIs. In this configuration, 

the number of unknows is equal to 4 POS+3 PTS-6 and the number of equations is POS 

PTS. This configuration gives a minimal number of equations (35 equations) for 7 target 

points and 5 TI positions. In this case the number of degrees of freedom (dof) is zero. In 

metrology or precision engineering, the number of target points is chosen to increase the 

number of dof, which implies a decrease of the uncertainty of the computed quantities. In 

this situation, a nonlinear optimization is performed to compute the unknowns.  

In this work, this nonlinear optimization problem was implemented and solved using 

NonlinearFit Maple software’s function. This function is based on a nonlinear least-

squares algorithm. 

 



2.2 Setup values for the nonlinear least-squares algorithm 

 

In order to run the nonlinear least-squares algorithm used in multilateration, setup values 

(or starting points) are required. These values (nominal point coordinates, TI coordinates 

and laser dead zones) were randomly chosen for each simulation following the algorithm 

proposed in Figure 2.  

 

 

Figure 2. Algorithm to randomize setup values introduced in the numerical method 

 

The randomized values were obtained from a random sampling (using the pseudo-random 

number generator RND() function). This sampling was uniformly distributed in an 

uncertanty sphere of radius UI. 

 

 

2.3 Number of digits  

 

The nonlinear least-squares algorithm used to derive the target point coordinates in 

multilateration uses numerical calculations based on floating-point operations (see Figure 

1). As mentioned in [23], when an algebraic expression on metrology or precision 

problems is well conditioned, one can always find a stable computational process to 

evaluate it. In contrast, it is difficult to find a stable procedure to evaluate it when it is 

poorly conditioned. In the case of large-scale applications for multilateration-based 

measures, increasing the number of target points allows to improve the stability of the 

computing process. However, the nonlinearity of the equations and the great difference 

in the order of magnitude between the measured distances (tens of m) and the reached 

accuracy (some μm) can generate cancellation effects during the computation.  



In this work, a multilateration measurement system was simulated and the obtained 

equations were solved using various numbers of digits to encode real numbers. The 

number of digits was controlled by means of the multi-precision function ‘Digits’ of the 

Maple software. The configuration of the studied multilateration measurement system is 

detailed hereafter.  

 

2.4 Studied configuration 

 

To test the effect of the number of digits on multilateration computations, the 

measurement system depicted in Figure 3 was simulated. 11 points Mi (with i=1:11) were 

disposed in a closed space of 22m x 4m x 3m. A maximal distance of 20 m between the 

target points M1 and M11 is brought about by this configuration to reproduce measures 

over aircraft wings. In order to estimate the respective distances between pairs of these 

11 points, five TI stations Pj (with j=1:5) were disposed as shown in the Figure 3. Length 

measurements were simulated in a sequential manner, which implies successively 

positioning the TI at each station Pj and the SMR at each target point Mi. The nominal 

coordinates of these stations and their nominal dead zones are specified in Table 1. The 

measurements were simulated assuming a constant temperature and an efficient quality 

control of humidity and pressure. This configuration gives a nonlinear system of 55 

equations and 47 unknowns, which gives a dof = 8. 

 

 

 



Figure 3. Sets of nominal positions of the target points Mi (with i=1 to 11) and geometrical 

configuration of TI. 

 

 

Nom. Pos. Xj (m) Yj  (m) Zj  (m) Dzj (mm) 

P1 0 0 0 20.458 

P2 -10.5 0 0 45.455 

P3 0 2.0 0 100.256 

P4 0 -2.0 2.0 52.230 

P5 10.5 0 2.0 12.230 

 

Table 1. Nominal positions and dead zones of TI Pj with j=1 to 5  

 

 

3. Effect of the number of digits  

 

3.1 Simulation protocol 1 

 

In order to study the impact of the number of digits on sequential large-scale 

multilateration, the simulation protocol 1 depicted in Figure 4 was applied to the 

measurement configuration previously presented (Section 2.4). The impact of numerical 

errors during the computation was evaluated by solving the floating-point operations 

using different numbers of digits ranging from 10 to 20. A set of the interferometric length 

values was simulated using the nominal coordinate values of Pj and Mi, and without 

taking into account the uncertainty of the input data. The setup distance values for the 

nonlinear least-squares algorithm were the same for all simulations. Each simulation was 

performed using a different number of digits, from 10 to 20. At each computation, the 

computed point coordinates Msi were derived from the optimization algorithm. From this 

data, the deviations in respect to the nominal coordinates were calculated. 

 



 

Figure 4. Simulation protocol to study the impact of floating-point precision in sequential 

large-scale multilateration where Pj is a nominal TI position j, Dzj is the dead-zone of Pj, 

Mi is the nominal coordinate set of target points, Lij is the nominal length value between 

Mi and Pj points, Lsij is the random interferometric length value, Msi is the computed 

coordinate set of target points. 

 

3.2 Results and discussion 

 

The mean value and the coverage intervals of the deviations of the computed point 

coordinates in respect to the nominal coordinates were calculated. The deviations reached 

values in the order of 10-6mm, 10-5mm and 10-1mm, for the X, Y and Z coordinates, 

respectively. These results may be due to the fact that the TI stations were well positioned 

in X and Y directions relatively to the target points. However, in Z direction the TI 

stations were localized only at one side of the target points, which was a physical 

constraint of the measurement configuration. Due to the large-scale distances measured 

along the X direction, the impact of the deviation of the Z coordinate over the measured 

distances is negligible (cosine error). The deviations of the measured distances reached 

values in the order of 10-6mm. 

Figure 5 presents the mean of the magnitude values of the deviation vectors of all points 

relatively to the number of digits. A reduction of the numerical error can be noticed when 

the number of digits increases. The smallest computation error is obtained at 20 digits. 

An unexpected behavior appears for 16 and 17 digits. One can imagine different causes 

for this phenomenon: the encoding process, the optimization algorithm, condition 

number…  

 



 

Figure 5. Mean of the magnitudes of the deviation vectors of all points vs number of digits. 

 

 

This kind of test can be useful in precision engineering in order to determine, before 

performing the real computations, the most appropriate number of digits required to 

improve the accuracy of the computed quantities. 

 

 

4. Effect of the number of digits considering measurement uncertainties  

 

In order to evaluate the effects of the number of digits during multilateration 

computations when considering uncertainties, a second simulation protocol was defined. 

This protocol, summarized in Figure 6, is derived from the protocol 1, but measurement 

uncertainties were added. The determination of these uncertainties is detailed in Sections 

4.1 and 4.2. The deviations of the simulated distances between the points were evaluated 

using 10 and 20 digits. The choice for these numbers of digits was motivated by the results 

of the previous section.  

The deviations of the calculated distances were obtained as the difference between the 

distances (calculated from the coordinates of the simulated points Msi) and the nominal 

distances (calculated from the nominal coordinates of the target points Mi). These 

distance deviations were also computed with and without measurement uncertainties (in 

blue color in Figure 6). Uncertainties in distance measurements (SMR position, index of 

refraction (Edlen equation [24,25]) in green color in Figure 6) were set by means of a 

random sampling (in green color in Figure 6). All distance deviations were calculated at 

each loop of the simulation. 11 target points were measured in this study. The number of 

computed distances is 10 (M1Mi with i=2 to 11). Four experiments were defined as shown 

in Table 2.  

 



 

 

 

Figure 6. Simulation protocol to study the impact of the number of digits in sequential large-

scale multilateration. Pj is nominal TI position j, Dzj is the dead-zone of Pj, Mi is the 

nominal coordinate set of the i-th target point, Lij is the nominal length value between Mi 

and Pj points, Lsij is the random interferometric length value, Msi is the coordinate set of 

the simulated point i, URP is the SMR Position uncertainty, UEdlen is the interferometric 

length uncertainty and UI is the initial value used in nonlinear Least-squares (LSQ) 

algorithm. 

 

 

 
Digit nb Uncertainties 

Exp1 20 without 

Exp2 20 with 

Exp3 10 without 

Exp4 10 with 

Table 2. Experiments of the simulation protocol 2 

 

4.1. Interferometry measurement simulation 

 



Figure 7 depicts the algorithm employed to simulate the lengths measured by the TI for 

the 4 experiments. Sets of lengths including Edlen and SMR position uncertainties were 

simulated. A spherical random sampling was used to simulate the deviations of the SMR 

position URP from the nominal coordinates Mi. A uniform repartition was imposed for 

this sampling. The simulated length Lsij measured by the TI was derived from the 

simulated coordinates of the target points, the nominal coordinate of the TI Pj and the 

Edlen uncertainty UEdlen. The random sampling of the Edlen uncertainty was generated 

following a uniform distribution. The measured lengths were simulated five times from 

the same TI station. The mean length of these five measures was used in the 

multilateration.  

 

 

Figure 7. Algorithm to simulate lengths measured by TI 

 

 

4.2 Budget of measurement uncertainties 

 

The main contributors to uncertainty in sequential multilateration are: 

• the uncertainty of the SMR position (URP). This uncertainty is defined by the 

positioning uncertainty Δ1, optical aberrations and coaxiality errors Δ2, 

• the interferometric length uncertainty (UEdlen) generated by uncertainties of the 

atmospheric sensors (temperature Ut, humidity Uf and pressure Up). 

 



 

Figure 8. Estimation of the SMR positioning uncertainty  

 

4.2.1 SMR position uncertainty 

Experiments were done to determine the SMR position uncertainty URP (Figures 8 and 

9).  

The positioning variations between the external sphere of the SMR and its support were 

measured ten times in the radial and normal directions. These two sets of measures were 

carried out using a confocal optical sensor (left-hand side of Figure 8). The maximal value 

of the standard deviation of both sets of measures was selected. The positioning 

uncertainty Δ1 was calculated with a confidence level of 95%. This value Δ1 was 

estimated to ±8 μm.  

 

 

Figure 9. Optical aberration and coaxiality (center of the physical sphere and the optical center) 

uncertainty estimation 

 

Typically, during measurements with TI, the SMR is manually aligned with the laser 

beam and one edge of its optical corner cube is placed vertically to minimize the optical 

aberration. Experiments were carried out to determine the uncertainty Δ2 arising from the 

alignment between the optical corner cube and the laser beam α in Figure 9. The position 



variation of the SMR was measured using a laser tracker while varying the α value. The 

obtained results are shown on the right-hand side of Figure 9.  

In our simulation, a maximal misalignment of α= ±2.5° between the laser beam and the 

SMR was assumed. Using the relation between α and Δ2 presented in Figure 9, the 

assumed misalignment gives a position uncertainty Δ2= ±2.7 μm. The global uncertainty 

of the SMR position was computed as the root of the sum of the squares of both values 

(Δ1 and Δ2), and its value is URP =± 8.44 μm. 

 

4.2.2 Interferometric length uncertainty 

 

The air refractive index has a great influence on the wavelength of the interferometer 

laser. Metrology Institutes have studied this phenomenon and propose a modified Edlen 

formulae [24,25] to calculate it. This equation is used to derive the length uncertainty per 

meter. This length uncertainty was named UEdlen and estimated to ±0.825 μm/m. The 

procedure applied to compute this value is summarized in Figure 10. For this 

computation, the considered contributors were the uncertainties of the environment 

sensors. These uncertainties were taken from the technical characteristics of 

commercially available sensors. For the temperature sensor, this value was ±0.2 °C, ±0.8 

%RH for the humidity sensor and ±150 Pa for the atmospheric pressure sensor. 

 

 

Figure 10. Estimation of length uncertainty (UEdlen) versus temperature (Ut), humidity (Uf) and 

pressure (Up) sensor uncertainties. Wavelength in a vacuum in this computation is 0.632991368 

µm.  

 

Table 3 summarizes the uncertainty contributors taken into account in the calculation of 

the length uncertainty. 

 

Uncertainty budget ±U Units 



SMR position (URP) 8.44 μm 

Interferometric length (UEDLEN) 
  

Temperature sensor (Ut) 0.169 °C 

Humidity sensor (Uf) 0.8 % 

Pressure sensor (Up) 150 Pa 

Computation setup value (UI) 1 mm 

 

Table 3 Uncertainty budget 

4.3 Results of the simulation 2 

The simulation protocol 2 presented in Figure 6 was executed 55 times for each 

experiment. The 10 distances between pairs of points were computed 55 times. The 

deviations between the nominal lengths and the estimated lengths were calculated. 

Coverage intervals for the 10 deviations were calculated for each of the 55 simulation 

runs. These coverage intervals indicate ± 2 standard deviations and represent a confidence 

level of 95%. Table 4 presents the largest value among the coverage intervals of the 10 

distances for each experiment.  

 

 

 

Digit nb Uncertainties 
Largest coverage 

interval (mm) 

Exp1 20 without 8.1 10-7 

Exp2 20 with 0.081 

Exp3 10 without 5 10-6 

Exp4 10 with 0.079 

 Table 4. Experiments and the largest coverage intervals for the distance calculation 

 

Figure 11 illustrates these results. In this figure, the obtained coverage intervals are 

represented as a function of the considered uncertainties and the number of digits. For 

each experiment, a circle represents the coverage intervals of the deviations between the 

values of nominal and estimated distances. The size of these circles is linked to the 

coverage interval value. 

 



 

 

Figure 11. Impact of the number of digits used in computation and measurement uncertainties 

on distance coverage interval (mm). 

 

From these results, it appears that the number of digits used during the computations 

impacts the coverage interval of the results. Without uncertainties, the results are more 

accurate when computed using 20 digits. The coverage interval between all distances was 

reduced by 84% when increasing the number of digits from 10 to 20. With uncertainties, 

the coverage interval obtained with 10 digits was smaller than the one calculated with 20 

digits. This suggests that the rounding effects due to numerical approximations 

(truncation) generate an underestimation of the coverage interval. Additionally, these 

results suggest that the estimation of large distances using sequential multilateration can 

be performed with a global coverage interval value of ±0.08mm in the worst case. 

However, when considering the mean value of the coverage intervals of the 10 distances, 

the global coverage interval is ±0.046mm. 

To complete the previous results, Figure 12 shows the obtained coverage intervals as a 

function of five distance values. The points located along the X direction were chosen to 

highlight the effect of distance on the obtained coverage intervals. This axis includes the 

largest distance (20 m) among all the points. These results are shown for both 10 and 20 

digits instances (blue and red data respectively in Figure 12).  

 



 

Figure 12. Deviation coverage interval of distances vs number of digits (10 and 20 digits). 

 

This figure shows the same behavior, as previously discussed, regarding the 

underestimation of the coverage interval when 10 and 20 digits are used. When 10 digits 

are used, this underestimation is of the order of 7% for short distances (4 m) and 12% for 

large distances (20 m). These results show that the coverage interval value increases when 

distance increases (around 30%).  

Conclusions 

Multilateration is a measurement method with numerous applications in metrology and 

precision engineering. In this paper, the effects of the number of digits on large scale and 

sequential multilateration were studied. The effects of numerical errors due to the 

floating-point precision were analyzed. For large distance measurements (20 meters) in a 

monitored environment (temperature, humidity, atmospheric pressure), the 

multilateration technique allowed to obtain a distance coverage interval around 

±0.046mm. Increasing the digit number decreases the numerical error of the computed 

quantities and allows better estimates of the coverage intervals. To conclude, the use of 

multi-precision libraries is recommended to control the uncertainty propagation during 

multilateration computation.  
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