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REDUCTION TYPES OF GENUS-3 CURVES IN A SPECIAL
STRATUM OF THEIR MODULI SPACE

IRENE BOUW, NIRVANA COPPOLA, PINAR KILIÇER, SABRINA KUNZWEILER,
ELISA LORENZO GARCÍA, AND ANNA SOMOZA

Abstract. We study a 3-dimensional stratumM3,V of the moduli spaceM3 of curves
of genus 3 parameterizing curves Y that admit a certain action of V ' C2 × C2. We
determine the possible types of the stable reduction of these curves to characteristic
different from 2. We define invariants forM3,V and characterize the occurrence of each
of the reduction types in terms of them. We also calculate the j-invariant (resp. the
Igusa invariants) of the irreducible components of positive genus of the stable reduction
Y in terms of the invariants.

1. Introduction

Let (K, ν) be a discrete valuation field, O its ring of integers, and k its residue field. Let
Y be a smooth projective and absolutely irreducible curve over K of genus g(Y ) ≥ 1. A
theorem of Deligne–Mumford [DM69] states that after replacing K by a finite extension
there exists a semistable model Y over Spec(O) (see Definition 2.4). If g(Y ) ≥ 2 there
exists a unique minimal semistable model, which we call the stable model. Its special fiber
Y is called the stable reduction of Y . For fixed genus g ≥ 2 there are only finitely many
possibilities for the reduction type, i.e., the graph of irreducible components of Y together
with the genus of the normalization of each irreducible component. If Y is smooth we
say that Y has potentially good reduction.

In the case that g(Y ) = 1 a minimal semistable model does not need to be unique,
but the reduction type does not depend on the choice of a minimal semistable model. It
is determined by the j-invariant j(Y ) of Y . Namely, the special fiber Y of any minimal
semistable model of Y is smooth if and only if the valuation ν(j(Y )) is non-negative
and Y is a projective line that intersects itself in one point (multiplicative reduction)
otherwise. (See for example [Sil09, Chapter VII, Prop. 5.5]).

In [Liu93, Théorème 1] Liu has generalized this results to curves of genus 2. He
determines the reduction types in terms of the Igusa invariants. Moreover, Liu gives an
expression for the j-invariant of the irreducible components of positive genus in terms
of the Igusa invariants in the case that Y is not smooth. (If Y is singular, then the
irreducible components of positive genus are necessarily elliptic curves.)

Smooth projective curves of genus 3 are either hyperelliptic or plane quartics, where
the latter form a dense open subset of the moduli space M3 of curves of genus 3. The
Dixmier–Ohno invariants for smooth quartics have similar properties as the Igusa invari-
ants for curves of genus 2 and the j-invariant for elliptic curves. The Dixmier–Ohno
invariants do not extend to the locus of smooth hyperelliptic curves, and one should con-
sider the locus in M3 of smooth hyperelliptic curves as a part of the boundary of the
locus of smooth quartics in the Deligne–Mumford compactification M3. There exists a
different set of invariants, called the Shioda invariants, for smooth hyperelliptic curves of
genus 3.
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It is natural to ask whether one can characterize the reduction types of smooth plane
quartics in terms of the Dixmier–Ohno invariants. The first result in this direction is
proved in [LLLR19]. The authors of loc. cit. characterize in terms of the Dixmier–
Ohno invariants when the stable reduction Y of a smooth plane quartic is a smooth
hyperelliptic curve. The authors of [LLLR19] also compute the Shioda invariants of the
smooth hyperelliptic curve Y .

An alternative direction to generalize the result of Liu is to consider families of su-
perelliptic curves, which are cyclic covers f : Y → P1

K of the projective line. In the case
that either char(k) - deg(f) or char(k) = deg(f) = p there exist algorithms to compute
the stable reduction Y (see for example [BW17] for the general case or [DDMM19] for
hyperelliptic curves). However, this approach does not yield a natural interpretation in
terms of the Dixmier–Ohno invariants. An interesting special case is the case of Picard
curves, which are both plane quartics and superelliptic curves. In this case the possi-
ble reduction types can be found in [BBW17] and [BKSW]. The case of Picard curves
with potentially good reduction in terms of the Dixmier–Ohno invariants is described in
[LLLR19, Section 4.2].

The motivating question for the current paper is whether it is possible to characterize
the reduction type of a smooth plane quartic in terms of the Dixmier–Ohno invariants
also in the case that the stable reduction Y is not smooth. Due to the many different
reduction types we restrict to a specific 3-dimensional stratum in M3. In this paper we
determine all possible reduction types for this stratum and prove a result analogous to
Liu’s result for curves of genus 2.

We now describe our results in more detail. In the rest of the introduction we assume
that both K and k have characteristic different from 2. We consider the stratumM3,V ⊂
M3 consisting of smooth curves Y/K of genus 3 such that AutK(Y ) contains a subgroup
V ' C2 × C2 with g(Y/V ) = 0 and such that all degree-2 subcovers of Y → X := Y/V
have genus 1.

The study of these curves goes back to Ciani in 1899 ([Cia99]). They are sometimes
called Ciani surfaces in his honor. More recent references are [LR08] and [HLP00]. In
[HLP00] the authors find curves from this family with many rational points and small
conductor (see also Example 3.10).

A dense open set of M3,V parametrizes smooth plane quartics with an action of the
Klein 4-group V . Over a sufficiently large field, these curves may be described by an
explicit quartic equation in standard form (see Lemma 2.2), and one can express the
Dixmier–Ohno invariants in terms of the coefficients of this equation. In Section 3.1 we
replace the full set of Dixmier–Ohno invariants by a smaller set I3, I

′
3, I
′′
3 , I6 of invariants,

which are easier to handle in our set-up. They may be expressed in terms of the Dixmier–
Ohno invariants (see [BCK+20]). Our main results are formulated in terms of these
invariants in Section 3.2.

All curves Y parametrized by M3,V admit a V -Galois cover f : Y → P1. This allows
us to calculate the possible reduction types by extending the method of [BW17] to our
situation. The key ideas of this method in our set-up are explained in Sections 2.2—2.4.

Combining these two approaches, we show in Theorem 2.11 that there are exactly 13
reduction types for curves parametrized by M3,V . The different types are illustrated
in Appendix A. Proposition 3.6 characterizes potentially good quartic reduction. The
analogous result in the case of potentially good hyperelliptic reduction can be found
in Proposition 5.5. In Theorems 3.7 and 3.8 we give explicit conditions in terms of
the invariants I3, I

′
3, I
′′
3 , I6 characterizing the different reduction types. Moreover, we
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determine the Igusa invariants (respectively the j-invariant) of the irreducible components
of positive genus in the case that Y is singular (see the proofs in Section 4). In Section 5
we discuss the case where the curve Y is hyperelliptic. We prove the analogous result
in Theorem 5.6, which is phrased in terms of a modified set of invariants described in
Section 5.1.

Acknowlegments. This project began at the Women in Numbers Europe 3 workshop in
Rennes, August 2019. We are grateful to the organizers for bringing us together and
providing us with an excellent working environment to get this project underway. We
thank Christophe Ritzenthaler for his ideas for the proofs of Propositions 3.4, 3.6, 5.2
and 5.5.

1.1. Notation.

Symbol Meaning and place of definition
K a complete discrete valuation field of characteristic 0
ν a valuation of K
K an algebraic closure of K
O the ring of integers of K with uniformizer π
k the residue field of O of characteristic 6= 2
V Klein 4-group C2 × C2

Y a smooth curve of genus 3 defined over K
X a conic defined over K

∆(C) the discriminant of a plane curve C
Y a model of Y
X a model of X
Y the special fiber of Y
X the special fiber of X
g the genus of a smooth projective curve

Mg the moduli space of smooth projective curves of genus g
Mg the Deligne–Mumford compactification of Mg

M3,V the stratum of genus 3 curves in Mg such that AutK(Y ) contains a
subgroup isomorphic to V with g(Y/V ) = 0 and such that all degree-2
subcovers have genus 1 (§ 2.1)

M3,V the closure of M3,V in M3 (§ 2.1)

Mhyp
3,V the hyperelliptic stratum in M3,V (§ 2.1)

Mquar
3,V the plane quartic locus in M3,V (§ 2.1)

2. Stable reduction and admissible covers

2.1. The set-up. Let K be an algebraically closed field of characteristic 2 6= p ≥ 0. We
denote byMg the moduli space of smooth projective curves of genus g defined over K. In
this paper we consider the locus M3,V of curves of genus 3 such that AutK(Y ) contains
a subgroup isomorphic to the Klein 4-group V ' C2 × C2 such that X := Y/V has
genus 0 and each of the intermediate covers of degree 2 has genus 1. Since we assume
char(K) 6= 2, the cover f : Y → X is tamely ramified. The following lemma states some
elementary facts on such covers.

Lemma 2.1. Let Y/K be a smooth projective curve of genus 3, and f : Y → X ' P1
K

a Galois cover with Galois group isomorphic to V such that all intermediate covers of
degree 2 have genus 1.
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(1) Every element of order 2 in V generates the inertia group of exactly 2 branch
points of f .

(2) If Y is hyperelliptic, then AutK(Y ) contains a subgroup A ' (C2)
3. The hyper-

elliptic involution ι acts on X by interchanging the two branch points of f with
the same inertia generator. The cover Y → Y/A of degree 8 is branched at 5
points. Two of these have inertia generator ι, the other three one of the elements
of order 2 contained in a unique subgroup V ⊂ A.

(3) The stratum M3,V is irreducible and of dimension 3. The hyperelliptic curves

form an irreducible substratum Mhyp
3,V of dimension 2.

Proof. Statement (1) follows from the Riemann–Hurwitz formula applied to f and each
of its subcovers of degree 2. Statement (2) follows similarly by considering the cover
Y → Y/A and its subcovers. Statement (3) is well-known, see e.g. [LRRS14]. It also may
be deduced from (1) and (2). �

We denote by Mquar
3,V = M3,V \ Mhyp

3,V for the locus of smooth plane quartics with

V ⊂ AutK(Y ). We write M3 for the Deligne–Mumford compactification of M3 and
M3,V for the closure of M3,V in M3. A K-point of the boundary of M3,V consists of
a stable curve Y of genus 3 on which V acts faithfully with a quotient of genus zero.
The goal of this paper is to study the “types” of stable curves occurring in the boundary
of M3,V . Rather than working out necessary and sufficient conditions for a V -action on
a stable curve Y of genus 3 to correspond to a point of this boundary, we determine
instead the compactification H3,V of the Hurwitz space parametrizing V -Galois covers
Y → X ' P1

K
as in Lemma 2.1. We refer to [RW06] for precise definitions and properties

of Hurwitz spaces. There are different variants, but for our purposes it is not necessary
to specify which one we use.

Lemma 2.1.(3) implies that to determine the types of stable curves occurring in the
boundary ofM3,V it suffices to consider the possible degenerations of the non-hyperelliptic
curves of genus 3, i.e., smooth plane quartics.

The non-hyperelliptic curves of genus 3 with non-trivial automorphism group (over C)
have been classified by Vermeulen [Ver83] (see also [Hen76]). In [LRRS14] it is shown
that this classification also holds in positive characteristic with a few exceptional cases in
small characteristic. The following result is a special case of this classification. Actually,
one may additionally assume that the parameters A,B,C are equal to 1.

Lemma 2.2. Let Y/K be a smooth plane quartic such that there exists a subgroup V ⊆
AutK(Y ).

(1) Then Y may be defined by an equation

(2.1) Y : F := Ax4 +By4 + Cz4 + ay2z2 + bx2z2 + cx2y2 = 0

and the elements of V act as (x : y : z) 7→ (±x : ±y : z).
(2) The ramification points of f : Y → Y/V =: X are the points with xyz = 0.

Proof. Statement (1) follows from the classification of non-hyperelliptic curves of genus 3
with non-trivial automorphism group ([LRRS14]). Note that for a plane quartic Y the
existence of a subgroup of AutK(Y ) isomorphic to V already implies that g(Y/V ) = 0 and
that the degree-2 subcovers have genus 1. Statement (2) follows by direct verification. �

In the rest of the paper, if Y is a smooth plane quartic, then we denote the elements
of V as

σa((x : y : z)) = (−x : y : z), σb((x : y : z)) = (x : −y : z), σc((x : y : z)) = (x : y : −z).
4



We find that X := Y/V admits an equation of the form

(2.2) X : Au2 +Bv2 + Cw2 + avw + buw + cuv = 0,

where u = x2, v = y2, and w = z2 and the map f : Y → X is given by (x : y : z) 7→ (u :
v : w).

For i ∈ {a, b, c} we define Ei = Y/〈σi〉. Then Ei is an elliptic curve for all i, see
Lemma 2.2. We obtain the following diagram.

Y

Y/〈σa〉 = Ea Y/〈σb〉 = Eb Y/〈σc〉 = Ec

Y/V = X.

Set

(2.3) pa(T ) = T 2− 2aT + 4BC, pb(T ) = T 2− 2bT + 4AC, pc(T ) = T 2− 2cT + 4AB.

For i ∈ {a, b, c} we let 4∆i be the discriminant of pi, i.e.,

(2.4) ∆a = a2 − 4BC, ∆b = b2 − 4AC, ∆c = c2 − 4AB.

One computes

∆(X) =− 4ABC + Aa2 +Bb2 + Cc2 − abc,
∆(Y ) =− 2−20ABC∆2

a∆
2
b∆

2
c∆(X)4,

Here ∆(X) and ∆(Y ) are the discriminants of X and Y as hypersurfaces (see for example
[Dem12]), respectively.

Remark 2.3. The Jacobian of Y is isogenous to Ea×Eb×Ec. In [HLP00, Prop. 15] the
isomorphism class of the Jacobian over an explicit finite extension of K is determined.
The authors of that paper use this to find an example of a curve in this family with small
conductor ([HLP00, Example 16]).

Let α be a root of pa, β a root of pb, and γ a root of pc. Then the branch points of the
cover f : Y → X are

(2.5)

σa : Pa = (0 : α : −2B), P ′a = (0 : −2C : α),

σb : Pb = (−2C : 0 : β), P ′b = (β : 0 : −2A),

σc : Pc = (γ : −2A : 0), P ′c = (−2B : γ : 0).

The group element σi is the inertia generator of the points Pi and P ′i for i ∈ {a, b, c}.

2.2. Stable reduction of covers. In this section (K, ν) is a complete discrete valuation
field. We assume that the characteristic of K is 0 to avoid some subtleties in small
characteristic. However, we can extend the results to the case of characteristic p 6= 2. We
denote by O the ring of integers of K, by π a uniformizing element, and by k its residue
field. We assume that k is algebraically closed and of characteristic 6= 2. We allow K to
be replaced by a finite extension. We assume the valuation to be normalized by ν(p) = 1,
where p > 0 is the residue characteristic of ν. In the case of equal characteristic 0, one
adapts this choice of normalization suitably.
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Let Y be a smooth projective absolutely irreducible curve over K. A model of Y is a
flat proper normal O-scheme Y such that Y ⊗O K ' Y . If the model is clear from the
context, we call its special fiber the reduction of Y and denote it by Y .

Definition 2.4. (1) A curve Y over K has good reduction if there exists a model of Y
over O such that Y is smooth.

(2) A curve Y over K has potentially good reduction if it has good reduction after
replacing K by a finite extension.

(3) A curve Y over K has geometric bad reduction if it does not have potentially good
reduction.

(4) A curve Y over K has semistable reduction if there exists a model Y of Y whose
special fiber Y is semistable, i.e., is reduced and has at most ordinary double
points as singularities.

The Stable Reduction Theorem of Deligne–Mumford [DM69] states that every curve Y
of genus g(Y ) ≥ 2 admits a semistable model after replacing K by a finite extension, if
necessary. Moreover, there exists a unique minimal semistable model Yst, which is called
the stable model of Y . Its special fiber Y is characterized by the property that each
irreducible component of genus 0 intersects the rest of Y in at least three points. Every
semistable model Y admits a surjective map Y → Yst, which contracts the “superfluous”
irreducible components of genus 0 of the special fiber and is an isomorphism on the generic
fiber.

After replacing K by a finite extension, we may assume that the branch points of f
are K-rational. Let D ⊂ X be the branch locus of f . We consider it as marking on X.
A semistable O-model (X ,D) of the marked curve (X,D) is a semistable model X of X
over O, together with a relative divisor D → Spec(O) with D = D ⊗O K. Here D is the
union of disjoint sections s1, . . . , sr : Spec(O)→ X sm into the smooth locus of X .

The following result is a version of the Stable Reduction Theorem for covers. It follows
immediately from [BW17, Prop. 3.2]. Note that the conditions of the following result are
satisfied in our situation.

Proposition 2.5. Let f : Y → X ' P1
K be a G-Galois cover over K such that the branch

points of f are K-rational, the number of branch points is greater than or equal to 3, and
the residue characteristic of K does not divide the order of G.

(1) There exists a unique minimal semistable model (X ,D) of the marked curve (X,D).
(2) The special fiber X of X is a tree of projective lines. Every irreducible component

X i of X contains at least three points which are either singular points of X or
belong to the support of D.

We call the model (X ,D) from Proposition 2.5 the stably marked model of (X,D). The
normalization Y of X in the function field K(Y ) of Y is a model of Y . After replacing K
by a further finite extension, we may assume that the special fiber Y of Y is reduced.

Proposition 2.6. (1) The model Y of Y is semistable.
(2) The map f extends to a finite flat map f : Y → X over O.
(3) The special fiber f : Y → X of f : Y → X is an admissible cover (Def. 2.7).
(4) Every admissible G-Galois cover f : Y → X over k occurs via this construction.

Proof. Statements (1) and (2) follow from [BW17, Theorem 3.4]. Statements (3) and (4)
are proved in [Wew99]. Here we use that the residue characteristic of K does not divide
the cardinality of the Galois group. �
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The special fiber f : Y → X of the map f : Y → X from Proposition 2.6.(2) is called
the stable reduction of f .

Definition 2.7. An admissible cover is a G-Galois cover f : Y → X between projective
semistable irreducible curves over an algebraically closed field such that:

(1) The singular points of Y map to the singular points of X.
(2) For every singular point τ ∈ Y the inertia group of τ acts on the two branches of

Y via characters that are inverse to each other.

We refer to [RW06, Section 5] or [Wew99] for more details on admissible covers and
their deformation. In our situation all elements of the Galois group V have order 1 or 2,
and condition (2) of Definition 2.7 reduces to the condition that the inertia group of the
restriction of f to each of the branches of Y at the singular point τ is the same subgroup
of V .

2.3. Combinatorial description of the stable reduction. The boundary of the Hur-
witz space H3,V parametrizes admissible V -Galois covers (Definition 2.7). The natural
map

H3,V →M3,V , [Y → X] 7→ Y st,

is finite and surjective. Here Y st is the stable curve of genus 3 obtained by contracting
all irreducible components of genus 0 that intersect the rest of Y in at most two points.
To find all possibilities for the stable curves in the boundary ofM3,V it therefore suffices
to find all possibilities for the corresponding admissible covers by Proposition 2.6.(4). In
this section we give a combinatorial description for the admissible V -Galois covers arising
as the reduction of the Galois covers described in Lemma 2.1. For simplicity, we call these
covers simply admissible V -Galois covers.

Definition 2.8. A decorated graph over k is a datum (X,D), where

(1) X is a semistable curve of genus 0 over k, i.e., a tree of projective lines,
(2) D ⊂ X

sm
is a set of smooth k-rational points of cardinality 6,

(3) every irreducible component of X contains at least three points that are either
in D or singular points of X,

(4) the points of D are labelled by one of {1, 2, 3}, where each label occurs exactly
twice.

Definition 2.8 may easily be adapted to a more general set-up. In this paper the notion
always refers to our particular set-up.

The following lemma follows from the fact thatX is a tree, together with the description
of the fundamental group of an affine curve of genus 0.

Lemma 2.9. Let (X,D) be a decorated graph. Then there is a unique way to label the
singular points of X by one of {0, 1, 2, 3} such that the product of the inertia generators
σi ∈ V of the marked and singular points on each irreducible component of X is the trivial
element of V .

Let f : Y → X be an admissible V -Galois cover. Write D ⊂ X
sm

for the branch points
of f contained in the smooth locus X

sm
of X. Proposition 2.5 and Lemma 2.1 imply

that every choice of a numbering of the elements of order 2 of V gives rise to a decorated
graph. In fact one checks that the labeling of a singular point τ of X given by Lemma 2.9
is 0 if and only if f is unbranched above τ . If the label of τ is non-zero, it corresponds
to the inertia generator of τ otherwise. This follows from the fact that the restriction of
f to an irreducible component of Y above X t is a tamely ramified cover of X t ' P1

k.
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The following lemma is straightforward. A similar statement in the case of cyclic covers
can be found in [BW17, Section 4].

Lemma 2.10. Let (X,D) be a decorated graph. Choose a numbering {σ1, σ2, σ3} of the
elements of order 2 of V . There exists a unique admissible V -Galois cover f : Y → X
such that the inertia generator of x ∈ D is given by its label and f is unbranched outside

D ∪Xsing
. The decorated graphs are listed in Appendix A.

In the following theorem we determine the different possibilities for the stable reduction
of Y in our situation. By type of a stable curve we mean the intersection graph of its
irreducible components together with the genus of each of the irreducible components.

Theorem 2.11. Let Y/K be a smooth projective curve of genus 3 such that there exists
a subgroup V ⊆ AutK(Y ) with g(Y/V ) = 0 and such that all subcovers of Y → Y/V
of degree 2 have genus 1. Then there are 13 different possibilities for the type of stable
reduction of Y .

Proof. Let X = Y/V and D be the branch locus of f : Y → X, considered as a divisor
on X. After replacing K by a finite extension, we may assume that the divisor D splits
over K. It follows by Proposition 2.5 that (X,D) admits a stable model (X ,D). Its
special fiber (X,D) gives rise to a decorated graph (Definition 2.8).

Since D has cardinality 6 and (X,D) must fulfill Condition (iii) from Definition 2.8,
the curve X cannot have more than 4 components. There are the following possibilities
for X:

(I) X is irreducible.
(II) X is a chain of two projective lines. Either there are three marked points on each

component or there are four marked points on one component and two marked
points on the other.

(III) X is a chain of three projective lines. Either there are exactly two marked points
on each component or there is only one marked point on the middle component
and two, respectively three, marked points on the remaining components.

(IV) X is a chain of four projective lines and there is one marked point on each of the
two components in the middle and two marked points on the other two compo-
nents.

(IV∗) X consists of four projective lines such that the first component intersects all other
components and there are no further singularities. There is no marked point on
the first component and two marked points on each of the remaining components.

Next, we assign a label in {0, 1, 2, 3} to the points in D and the set S of singularities
of X. Let σ1, σ2, σ3 denote the non-trivial elements of V . Lemma 2.10 states that the
label on the singularities is uniquely determined by that of the marked points. Moreover,
none of the marked points is assigned the label 0.

Up to the choice of the numbering of the elements of order 2 in V , there are 20 possi-
bilities for the decorated graph. These are depicted in Figures (I)–(IV*) in Appendix A.
The numbering of the cases in the rest of the proof refers to the numbers of the cases
there.

To finish the proof it remains to describe the admissible cover Y → X and the image
of Y inM3,V for each of the possibilities for the decorated graph (X,D). Recall from the
beginning of Section 2.3 that the image inM3,V of the semistable curve Y is obtained by
contracting all its irreducible components of genus 0 which intersect the rest of Y in at
most two points. We discuss one of the cases. The other cases are similar. The different
types are depicted in Figure A.2 in Appendix A.
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Let (X,D) be a decorated graph of type III.5, Figure 2.1.

2

1

1

2

3

3

Figure 2.1. X of Type III.5.

We number the irreducible components of X as X1, X2, X3 (from left to right). Let
f : Y → X be the (unique) admissible V -Galois cover from Lemma 2.10. By Lemma 2.9
the label of the intersection point of X1 and X2 is 2; the label of the intersection point
of X2 and X3 is 0.

The restriction of f to X1 contains branch points with two different inertia generators.
Therefore there is a unique irreducible component Y 1 of Y above X1. The Riemann–
Hurwitz formula implies that Y 1 has genus 1. All branch points of the restriction of
f to X2 (respectively X3) have the same label. Therefore there are two irreducible
components of Y above X2 and two above X3. The Riemann–Hurwitz formula implies
that all four components have genus zero. Since f is unbranched at the intersection point
of X2 and X3, these four components intersect in four points as depicted in Figure 2.2.

Figure 2.2. Y corresponding to Type III.5.

We conclude that there are exactly two irreducible components of Y of genus zero that
intersect the rest of Y in at most two points, namely the two components above X3.
Contracting these yields the image of Y in M3,V as depicted in Figure 2.3. �

Figure 2.3. Special fiber of the stable model.

Remark 2.12. We note that none of the singular reduction types occurring in Theo-
rem 2.11 is of compact type. Phrased differently, all the singular curves in Appendix A
have loops. This is not surprising, as the inertia group of a singular point of Y is cyclic
since the residue characteristic is different from 2. One may deduce from the fact that Y
is connected, that we always have loops.
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2.4. Computing the stable reduction. In this section we outline the method we use
to compute the decorated graph associated with a curve Y/K endowed with an action
of V such that all degree-2 subcovers have genus 1. We assume that K is sufficiently
large such that all branch points of f : Y → X := Y/V are K-rational. Recall that
we may assume that Y is given by Equation (2.1). As in the proof of Theorem 2.11, it
suffices to determine the decorated graph associated with the special fiber (X,D) of the
stably marked model (X ,D) of (X,D), where D is the branch locus of the natural map
f : Y → X marked by the inertia generators.

To compute (X,D) we follow the strategy from [BW17, Section 4.2]. Loc. cit. treats
the superelliptic case, i.e., the case of cyclic covers of the projective line. With our
preparations, the adaptation to the current set-up is straightforward.

The key idea used in [BW17, Section 4.2] is to describe the irreducible components

of X in terms of coordinates ξ : X
∼→ P1

K . Every coordinate ξ defines a model P1
O of X,

and hence by reduction, a projective line Xξ over k ([BW17, Prop. 4.2.(1)]). Let T be the
set of triples of pairwise distinct points of D. Every t = (P,Q,R) ∈ T defines a unique
coordinate ξt with

ξt(P ) = 0, ξt(Q) = 1, ξt(R) =∞.

Two coordinates ξ1 and ξ2 are equivalent if ξ1 ◦ ξ−12 : P1
K
∼→ P1

K extends to an isomor-
phism over O. This equivalence relation defines an equivalence relation on T denoted
by ∼. [BW17, Prop. 4.2.(3)] states that there is a bijection between T/∼ and the set of
irreducible components of X. We write ξt (respectively X t) for the coordinate (respec-
tively the irreducible component of X) corresponding to t ∈ T . In [BW17, Remark 4.3] it
is explained how to reconstruct the intersection points between the different irreducible
components from the values ξt(P ), where t ∈ T/∼ and P ∈ D runs over the branch
points.

Example 2.13. Let Y/K be a plane quartic curve defined by (2.1), and assume that
ν(∆(X)) = 0, ν(A), ν(B) > 0, ν(C) = 0, ν(a) > 0, and ν(b) = ν(c) = 0. We determine
the possible stable reductions for this case. This is a special case of case (f.vi) of Theo-
rem 3.7: the result there is formulated more symmetrically in terms of the invariants we
introduce in Section 3.1.

We let X0 be the model of a conic X defined by Equation (2.2) and use the notation
of (2.5) for the branch points of f : Y → X. Write β (respectively γ) for the root of pb
(respectively pc) of valuation zero, with pb, pc defined as in (2.3). With this convention
the branch points Pa, P

′
a and P ′c reduce to the point (0 : 1 : 0), the branch points P ′b

and Pc reduce to the point (1 : 0 : 0), and Pb reduces to (1 : 0 : −b) on the special fiber X0

of X0. In particular, X0 is not stably marked. The previous discussion implies that X0 is
one of the irreducible components of the special fiber X of the stably marked model.

Inspection of the cases in Appendix A implies that the decorated graph (X,D) is of
type IV.2, IV.3 or III.6. In order to determine the reduction type of X, it suffices to
distinguish between these three cases. We can do this by considering the coordinate
ξ = ξt of X corresponding to t = (P ′a, Pa, P

′
b). This coordinate is given by

ξ =
βu+ αv + 2Cw

2(α− a) · v
.

Here u, v, w are the coordinates of X as in (2.2).
Using the assumptions on the valuations of the parameters A,B,C, a, b, c one computes

that ξ(P ′b) = ξ(Pc) = ∞. Hence the type of X only depends on ξ(P ′c). One may check
10



that ξ(Pb) = ∞ as well, by finding a different expression for ξ. However, this is not
needed to distinguish between the possibilities for X.

Namely, Pa, P
′
a, and P ′c specialize to pairwise distinct points of the component Xξ

different from the intersection point of Xξ with the rest of X if and only if ξ(P ′c) 6∈
{0, 1,∞}. Otherwise, we need an additional coordinate ξ′ to separate P ′c from the point
Q ∈ {Pa, P ′a, Pb} with ξ(P ′c) ≡ ξ(Q) (mod π). However, to decide what decorated graph
occurs it suffices to know for which point Q this holds. It is not necessary to calculate
the coordinate ξ′ explicitly. The possible configurations of the components X0 and Xξ

are depicted in Figure 2.4.

Pa, P ′c

P ′a

P b

P
′
b
, P
c

ξ(P ′
c) = 1 mod π

Pa

P ′a

P b

P
′
b
, P
cP ′c

ξ(P ′
c) =∞ mod π

P ′c

Pa

P ′a

P b

P
′
b
, P
c

ξ(P ′
c) 6= 0, 1,∞ mod π

Figure 2.4. Possible configurations of Xξ and X0.

It is no restriction to assume that α is the root of pa with smallest valuation. It follows
that ν(α) ≤ ν(a) and 2ν(α) ≤ ν(BC). Using that β ≡ 2b (mod π) and γ ≡ 2c (mod π)
are units in O, we find

ξ(P ′c) =
−2Bβ + αγ

2(α− a)γ
≡ α(2ab− bα− 2cC)

4cC(a− α)
(mod π).

By our assumptions, we have that ν(α − a) ≥ ν(α) and 2ab − bα − 2c is a unit. Hence

we get ξ(P ′c) 6= 0. There remain three cases:

ξ(P ′c) =


ξ(Pa) = 1 iff ν(BC) > 2ν(a), (type IV.3),

ξ(Pb) =∞ iff ν(∆a) > ν(BC) = 2ν(a), (type IV.2),

6= 0, 1,∞ otherwise, (type III.6).

One may check that the last case occurs if and only if ν(∆a) = ν(BC) < 2ν(a).
As in the proof of Theorem 2.11 one finds that the reduction type of Y is Winky Cat

if X is of type III.6, Cat if X is of type IV.3, and Garden if X is of type IV.2.
If X is of type III.6, then the curve Y has one component Y 1 of positive genus. The

curve Y 1 is an elliptic curve and the restriction of f to Y 1 factors as Y 1 → Xξ′ → Xξ,
where Xξ′ := Y 1/〈σc〉 is a projective line. Lemma 2.9 yields a description of the inertia
generators. We explain how to compute the j-invariant of Y 1.

The map Xξ′ → Xξ has degree 2 and is exactly branched at ξ(P ′a) = 0 and ξ(Pa) = 1.
Normalizing the unique point of Xξ′ above P ′a (respectively Pa) to 0 (respectively 1) and
one of the points above the intersection point of Xξ with the rest of X to ∞, we obtain

Xξ′ → Xξ, ξ′ 7→ ξ =
(ξ′)2

2ξ′ − 1
.

11



The degree-2 map Y 1 → Xξ′ is branched at the inverse image of ξ(P ′c) =: λ and ξ =∞,
i.e., at ξ′ =∞, 1/2 and the roots of t2−2λt+λ. Using the assumptions on the parameters
we find that λ = α/2(α− a). Taking the cross ratio of these 4 points, we find that

j(Y 1) ≡
26(a2 + 12BC)3

∆2
a · 4BC

(mod π).

Remark 2.14. (a) In Proposition 3.1 we formulate certain minimality conditions of
the parameters A,B,C, a, b, c. Assuming these conditions, Equation (2.2) defines
a model of X, which we denote by X0. In the situation of Example 2.13 this model
is semistable. However, this is not true in general. It may happen that the special
fiber X0 of X0 is not reduced. In Proposition 4.9.(ii) this case is characterized.
The method to compute the stable model of X still works, but one need to pass
to a further extension of K to find a model of X whose special fiber is reduced.
More details can be found in the proof of Lemma 4.12.

(b) In Example 2.13 we sketched a systematic method for computing the invariants
of the components of positive genus of the stable reduction of a curve Y . This
method has the advantage that it always works. Once one knows the type of the
stable reduction of a curve Y , it is sometimes faster to explicitly write down a
model Y of Y , that is not necessarily semistable, to calculate the invariants of the
components of positive genus of the stable reduction of a curve Y .

Namely, let Y be a model, that is not necessarily semistable, of Y and assume
that the normalization of its reduced special fiber contains an irreducible compo-
nent Z of positive genus. Then the uniqueness of the stable model implies that Z

is also an irreducible component of the normalization of the stable reduction Y
stab

of Y . Therefore an equation for Z may be used to compute the invariants for the
corresponding irreducible component of the stable reduction. This method is used,
for example, in the proof of Lemma 4.2. We refer to this proof for more details.

3. Smooth plane quartic case

Let Y/K be a smooth projective plane quartic over a complete discrete valuation field
of characteristic 0 and residue charactertistic 2 6= p ≥ 0, such that AutK(Y ) contains
a subgroup V ' C2 × C2. Recall that, by Lemma 2.2, Y admits an equation of the
form (2.1):

Y : Ax4 +By4 + Cz4 + ay2z2 + bz2x2 + cx2y2 = 0

for some A,B,C, a, b, c ∈ K, possibly after replacing K by a finite extension.
In Section 3.2 we identify the reduction type of a given curve Y/K, where all possible

types are listed in Appendix A. Before stating the results we discuss the problem that
an equation of the form (2.1), and hence the coefficients A,B,C, a, b, c, for Y/K are
only unique up to K-isomorphisms. Proposition 3.1 states a normalization condition for
the valuation of the coefficients of (2.1). This allows us in Proposition 3.2 to exhibit
a set of invariants I3, I

′
3, I
′′
3 , I6 for the special locus Mquar

3,V . Proposition 3.1 allows us
to assume that I3, I

′
3, I
′′
3 , I6 have non-negative valuation and at least one has valuation

zero. The classification of the reduction types of Y in terms of the invariants is stated in
Theorems 3.7 and 3.8.

3.1. Invariants. Let Y/K be given as in the form (2.1); such equation can be normalized,
as given by the following result:

12



Proposition 3.1. After a suitable change of variables in (2.1) we can always assume that
the valuation of at least one of the elements in each set {A,B, c}, {A, b, C}, {a,B,C},
{A, b, c}, {a,B, c}, {a, b, C} is zero while all the others are non-negative.

Proof. Let π(r), π(s), π(t) ∈ O be elements with valuation r, s, and t respectively. Observe
that the change of variables

(x, y, z) 7→ (π(r)x, π(s)y, π(t)z)

changes the valuation of the coefficients as follows

ν(A) 7→ ν(A) + 4r, ν(B) 7→ ν(B) + 4s, ν(C) 7→ ν(C) + 4t,

ν(a) 7→ ν(a) + 2s+ 2t, ν(b) 7→ ν(b) + 2r + 2t, ν(c) 7→ ν(c) + 2r + 2s.

Let U be one of the sets listed in the statement, and assume that all the valuations
of the parameters in U are positive. We will see how to obtain an isomorphic model
for Y that is normalized with respect to all the sets for which the original model was
normalized, and also with respect to U .

By symmetry it is enough to consider the cases where U is {A, b, c} or {A,B, c}.
• For the first case consider the change

(x, y, z) 7→ (x/π1, y, z)

with π1 ∈ O an element of valuation ν(π1) = min(ν(A)/4, ν(b)/2, ν(c)/2). With
this change, the valuation of at least one among A, b, c becomes zero, and the
valuations of a,B, and C remain the same.
• Assume now that the model is normalized with respect to every set of the form
{L,m, n}, and assume that it is not with respect to {A,B, c}. It follows that
ν(a) = ν(b) = 0, since otherwise we could normalize further with respect to either
{a,B, c} or {A, b, c}. Consider now the change

(x, y, z) 7→ (x/π2, y/π2, π2z)

with π2 ∈ O an element of valuation ν(π2) = min(ν(A)/4, ν(B)/4, ν(c)/2). With
this change, the valuation of at least one among A,B, c becomes zero, the valua-
tions of a and b remain the same, and the valuation of C increases by 4ν(π2). The
increase of the valuation of C does not affect the normalization with respect to
any other set, since any set containing C also contains a or b, which have valuation
zero, as explained above. �

Dixmier–Ohno invariants, see [Dix87, Ohn07], classify isomorphism classes of plane
quartics. Moreover, in [LRS18] a reconstruction method is presented to compute the equa-
tion of a curve corresponding to a given tuple of Dixmier–Ohno invariants. In [LRS16,
Function IsInstrataD4] the expressions for Dixmier–Ohno invariants for quartics in the
locus Mquar

3 are given. However, it is more convenient to work with a smaller set of
invariants, specifically for the locus Mquar

3,V instead of the general Dixmier–Ohno invari-
ants; indeed explicit computation with these is unnecessarily complicated. We therefore
consider the four invariants as in the following statement.

Proposition 3.2. The elements

I3 = ABC, I ′3 = A∆a +B∆b + C∆c,

I ′′3 = −4ABC + Aa2 +Bb2 + Cc2 − abc, I6 = ∆a∆b∆c

are invariants for the locus Mquar
3,V .
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Proof. By Lemma 2.2.(1), any isomorphism between plane quartics in M3,V has to pre-
serve the automorphism group

V '

〈−1 0 0
0 −1 0
0 0 1

 ,

−1 0 0
0 1 0
0 0 −1

〉.
Since plane quartics are given by their canonical models, isomorphisms between them are
linear. Commuting with the previous group implies that isomorphisms of plane quartics
in Mquar

3,V are given by products of permutation matrices and diagonal matrices. Hence
the elements from the statement of the lemma considered as element of K[A,B,C, a, b, c]
are invariants for the locus Mquar

3,V . �

Remark 3.3. Notice that I ′′3 = ∆(X).

Proposition 3.4. The invariants I3, I
′
3, I
′′
3 and I6 are generators for the invariants alge-

bra of the locus Mquar
3,V .

Proof. While in characteristic 0 a direct computation of the Dixmier-Ohno invariants in
terms of these invariants (see [BCK+20, InvariantsGenerateDO] for the details) gives
the result, in positive odd characteristic we have to use another strategy.

In general, for any characteristic different from 2, we can proceed as follows: first, we
normalize to obtain A = B = C = 1 so the group G acting in K[a, b, c] is finite. Indeed,

G =

〈0 0 1
1 0 0
0 1 0

 ,

0 1 0
1 0 0
0 0 1

 ,

i 0 0
0 i 0
0 0 −1

〉.
Then, we compute the invariants K[a, b, c]G with Magma [BCP97], and we obtain gen-

erators: 1, a2 + b2 + c2, abc, a2b2 + a2c2 + b2c2. After de-normalizing we get the weight
3, 3, 3, 6 invariants ABC, Aa2 +Bb2 +Cc2, abc, ABa2b2 +BCb2c2 +CAc2a2. Notice that
in order to do the computations in Magma we needed to fix the field, we fixed the fields F3

and Q because the order of G is a product of a power of 2 and a power of 3. Finally, the
result extends to any characteristic different from 2 because of Molien’s Formula ([DK02,
Theorem 3.2.2]). �

The invariants I3, I
′
3, I
′′
3 , I6 are homogeneous of weight 3, 3, 3, 6, respectively. Moreover,

considered as functions on the weighted projective space P3
3,3,3,6, they are algebraically

independent. To state the classification theorems for the reduction types of plane quartics
it is also convenient to define

I = AB∆a∆b + AC∆a∆c +BC∆b∆c.

The invariant I is in the algebra generated by I3, I
′
3, I
′′
3 , I6. Concretely, we have

(3.1) 4I + I6 − I ′23 + 16I3I
′′
3 + 2I ′3I

′′
3 − I ′′23 = 0.

We now restate Proposition 3.1 in terms of these invariants:

Corollary 3.5. After a change of variables as in Proposition 3.1 we can always work with
an integer model as in (2.1) such that all the valuations of I3, I

′
3, I
′′
3 and I6 are non-zero

and at least one is equal to zero.

Proof. Suppose that all four invariants have positive valuations. Then we have ν(I3) =
ν(ABC) > 0, and without loss of generality we can assume that ν(A) is positive. Then,
since ν(I ′3), ν(I ′′3 ) and ν(I6) are positive, we obtain ν(Bb2 +Cc2), ν(abc), ν(BCb2c2) > 0,
respectively. So we are in one of the following scenarios:
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• ν(B), ν(C), ν(abc) > 0, or
• ν(B), ν(c) > 0 or, symmetrically, ν(C), ν(b) > 0, or
• ν(b), ν(c) > 0,

but all contradict the normalization conditions in Proposition 3.1. Hence the corollary
follows. �

3.2. Main results. In this section we characterize the possible reduction types of a plane
quartic curve Y in terms of the valuations of the four invariants I3, I

′
3, I
′′
3 , I6. We assume

that Y is given by an equation of the form Ax4 +By4 +Cz4 + ay2z2 + bx2z2 + cx2y2 = 0,
normalized as in Proposition 3.1; in particular by Corollary 3.5 all the invariants have
non-negative valuation, and at least one of them has valuation zero. Additionally, we use
the invariant I determined by (3.1).

In terms of the invariants, we have

∆(Y ) = −2−20I3I
′′4
3 I

2
6 .

Proposition 3.6. Let Y be a plane quartic defined by

Ax4 +By4 + Cz4 + ay2z2 + bx2z2 + cx2y2 = 0

normalized as in Proposition 3.1. Let ∆(Y ) be the discriminant of Y . The plane quartic
Y has potentially good reduction if and only if ν(∆(Y )) = 0. Equivalently, if and only if
ν(I3) = ν(I ′′3 ) = ν(I6) = 0.

Proof. If ν(∆(Y )) = 0, then the curve has good reduction, hence it has potentially good
reduction. If Y has potentially good reduction then over a finite extension of the base field,
it admits a plane quartic integral model with good reduction, and because of Corollary
3.5 in [LLLR19], this model can be taken in the form

Ax4 +By4 + Cz4 + ay2z2 + bx2z2 + cx2y2 = 0

with A,B,C, a, b, c ∈ O, ν(∆(Y )) = 0. In particular, with ν(I3), ν(I ′3), ν(I ′′3 ), ν(I6) ≥ 0
and hence with ν(I3) = ν(I ′′3 ) = ν(I6) = 0. �

In what follows we assume that Y has geometric bad reduction. The result is divided
into two statements, depending on whether ν(I ′′3 ) is zero (Theorem 3.7) or positive (The-
orem 3.8). Recall from Remark 3.3 that I ′′3 is the discriminant of the conic X defined by
(2.2). Hence the two cases correspond to the reduction of this conic being non-degenerate
or degenerate (see also Remark 2.14.(b)).

Theorem 3.7 is proved in Section 4.1 and Theorem 3.8 in Section 4.2. In these section we
also give the Igusa invariants (respectively the j-invariant) of the irreducible components
of the stable reduction of Y with positive genus in each of the cases.

Theorem 3.7. Let Y be a plane quartic curve defined by

Ax4 +By4 + Cz4 + ay2z2 + bx2z2 + cx2y2 = 0

normalized as in Proposition 3.1. Let ∆(Y ) be the discriminant of the quartic Y , and let
∆(X) be the discriminant of the conic X, which we assume to have valuation 0, that is,
ν(I ′′3 ) = 0.

Then if the valuation of ∆(Y ) is positive, Y has geometric bad reduction and one of
the cases in Table 3.1 occurs.

Theorem 3.8. Let Y be a plane quartic curve defined by

Ax4 +By4 + Cz4 + ay2z2 + bx2z2 + cx2y2 = 0
15



ν(I3) ν(I ′3) ν(I ′′3 ) ν(I6) ν(I) Other conditions Decorated graphs Stable curve Lemma

(a) = 0 = 0 > 0 = 0 II.3 Loop

4.2(b) = 0 = 0 = 0 > 0 > 0 III.1 DNA

(c) = 0 > 0 = 0 > 0 > 0 IV*.1 Braid

(d) > 0 = 0 = 0 = 0 = 0 II.4 Lop 4.4

(e) > 0 = 0 = 0 > 0 = 0 III.2 Looop 4.5

(f.i)

> 0 = 0 = 0 > 0 > 0

2ν(I) > ν(I3) + ν(I6) > 2ν(I3)
or ν(I3) < ν(I) < ν(I6)

IV.1 Grl Pwr

4.6

(f.ii)
2ν(I) > ν(I3) + ν(I6) > 2ν(I6)

or ν(I3) > ν(I) > ν(I6)
IV.3 Cat

(f.iii)
2ν(I) > ν(I3) + ν(I6) = 2ν(I3)

or ν(I3) = ν(I) = ν(I6)
II.1 Candy

(f.iv) ν(I) < ν(I3), ν(I) < ν(I6) IV.2 Garden

(f.v) ν(I) = ν(I3) < ν(I6) III.5 Tree

(f.vi) ν(I) = ν(I6) < ν(I3) III.6 Winky Cat

(g) > 0 = 0 = 0 = 0 > 0 III.3 Loop 4.7

(h) > 0 > 0 = 0 = 0 > 0 IV*.3 Looop 4.8

Table 3.1. Cases of Theorem 3.7.

normalized as in Proposition 3.1. Let ∆(Y ) be the discriminant of the quartic Y , and let
∆(X) be the discriminant of the conic X, which we assume to have positive valuation,
that is, ν(I ′′3 ) > 0.

Then the valuation of ∆(Y ) is positive, Y has geometric bad reduction and one of the
cases in Table 3.2 occurs.

ν(I3) ν(I ′3) ν(I ′′3 ) ν(I6) ν(I) Other conditions Decorated graphs Stable curve Lemma

(a) = 0 > 0 = 0 II.2 DNA 4.10

(b.i)

ν(I3 + I ′3) = 0 > 0 > 0 = 0

0 < ν(I ′′3 ) < ν(I6) IV*.2 DNA

4.11(b.ii) ν(I ′′3 ) > ν(I6) > 0 IV.5 Braid

(b.iii) ν(I ′′3 ) = ν(I6) > 0 III.4 Candy

(c.i)

= 0 > 0 > 0 > 0 > 0

ν(I26 ) = ν(I3I
′′3
3 ),

ν(I ′43 ) ≥ ν(I3I
′′
3 )

I Good (hyp)

4.12

(c.ii)
ν(I26 ) > ν(I3I

′′3
3 ),

ν(I ′43 ) ≥ ν(I3I
′′
3 ), and

ν(I ′43 − 4I3I
′′
3 ) = ν(I3I

′′
3 )

II.3 Loop (hyp)

(c.iii)
ν(I26 ) > ν(I3I

′′3
3 ),

ν(I ′43 ) = ν(I3I
′′
3 ), and

ν(I ′43 − 4I3I
′′
3 ) > ν(I3I

′′
3 )

III.1 DNA (hyp)

(c.iv)
ν(I26 ) < ν(I3I

′′3
3 ) and

ν(I ′43 ) ≥ ν(I3I6)
II.2 DNA (hyp)

(c.v) 12ν(I ′3) < 3ν(I3I
′′
3 ) < 2ν(I3I6) IV*.2 DNA (hyp)

(c.vi) 12ν(I ′3) < 2ν(I3I6) < 3ν(I3I
′′
3 ) IV.5 Braid (hyp)

(c.vii) 12ν(I ′3) < 2ν(I3I6) = 3ν(I3I
′′
3 ) III.4 Candy (hyp)

(d) > 0 > 0 = 0 = 0 III.7 Cave 4.13

(e) > 0 = 0 > 0 > 0 IV.4 Braid 4.14

Table 3.2. Cases of Theorem 3.8.

In the following section we give a detailed proof of the two theorems, using the strategy
explained in Section 2.4. In particular, for each case, we determine the special fiber (X,D)
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of the stably marked model of (X,D), thus we obtain one of the twenty decorated graphs
depicted in Appendix A and, as in the proof of Theorem 2.11, we deduce the corresponding
stable curve, which is the special fiber of the stable model of Y (Section 2.2).

Remark 3.9. The stable curve of type Candy corresponds to the decorated graphs II.1
(see Theorem 3.7.(f.iii)) and III.4 (see Theorem 3.8.(b.iii) and Theorem 3.8.(c.vii)). Here,
this can really be considered as two different reduction types, since the j-invariants of
the elliptic curves Y 1 and Y 2 of the stable curve behave differently.

In the first case, it is shown in Lemma 4.6 that j(Y 1) and j(Y 2) depend on the value
of the invariants and are in general not the same in k.

In the second case, Y 1 and Y 2 are isomorphic and we have that j(Y 1) = j(Y 2) = 1728.
This is proved in Lemma 4.11 and Corollary 5.7.

The difference between the two cases may be explained by considering the action of V
on the stable reduction Y of Y . We refer to the proofs of the results for more details.

Example 3.10. As an example we treat the curve

Y : 2x4 + 2y4 + 15z4 − 11y2z2 − 11x2z2 + 3x2y2 = 0.

Its automorphism group AutC(Y ) is isomorphic to D4. Additionally to the action of V ,
there is an automorphism (x : y : z) 7→ (y : −x, z) of order 4. All its automorphisms are
defined over Q. We have that

∆(X) = I ′′3 = 24, ∆(Y ) = 22 · 3 · 5 · 72.

This curve has been studied by Howe–Leprévost–Poonen ([HLP00, Cor. 16]). They
show that the conductor of this curve is N = 2940 = ∆(Y ), which is the smallest value
for a curve of genus 3 that we know of. The curve is also found by Sutherland ([Sut18])
in his database of non-hyperelliptic genus-3 curves over Q with small discriminant. In
fact, it is the curve with smallest discriminant in this database.

When we apply the results of this section to this curve for the primes p = 3, 5, 7, we
find that the reduction type of Y is Lop for p = 3, 5 (case (d) of Theorem 3.7) and Loop
for p = 7 (case (a) of Theorem 3.7).

4. Proofs of main results

4.1. Main result with non-degenerate conic. In this section we prove Theorem 3.7,
i.e., the case that the reduction of the conic X is non-degenerate. In particular in this
section we assume that I ′′3 = ∆(X) has valuation zero. The equation (2.2) defines a
smooth model X0 of X over O. Its special fiber, which we denote by X0, is an irreducible
component of the special fiber X of X , where (X ,D) is the stably marked model of
(X,D) from Proposition 2.5.(1). Recall that D denotes the branch divisor of f : Y → X.
Moreover, the special fiber (X,D) of the stably marked model of (X,D) is a decorated
graph defined in Definition 2.8. In the proof of Theorem 2.11 we have seen that there
are 20 possibilities for the decorated graph, which determine the 13 possibilities for the
stable reduction of Y . The possibilities for the decorated graph and the stable reduction
of Y are listed in Appendix A. The strategy of the proofs is explained in Example 2.13.

We assume that D splits over K and use the notation Pa, P
′
a, Pb, P

′
b, Pc, P

′
c as in (2.5)

for the 6 branch points of f . The following lemma is useful in determining the cases for
the decorated graph.

Lemma 4.1. If ν(∆a) is positive, then the points Pa, P
′
a specialize to the same point

in X0.
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If ν(A) is positive, then one point among Pb, P
′
b and one point among Pc, P

′
c specialize

to the same point in X0.

Proof. If ν(∆a) is positive, then the two roots of pa(T ) = T 2− 2aT + 4BC are congruent
modulo π, thus Pa, P

′
a specialize to the same point in X0.

Similarly, if ν(A) is positive, one root of pb(T ) = T 2 − 2bT + 4AC and one root of
pc(T ) = T 2 − 2cT + 4AB have positive valuation, thus one point among Pb, P

′
b and one

point among Pc, P
′
c specialize to (1 : 0 : 0) in X0. �

Lemma 4.2 (Theorem 3.7, cases (a)–(c)). Let Y be as in Theorem 3.7, in particular
ν(I ′′3 ) = 0. Assume that ν(I3) = 0 and ν(I6) > 0. Then one of the following occurs:

(a) If ν(I) = 0, then the decorated graph has type II.3 and the reduction type of the
curve is Loop, with j-invariant j = 16(16I3I

′′
3 + I)3/(I3I

′′
3 I

2);
(b) if ν(I ′3) = 0 and ν(I) > 0, then the decorated graph has type III.1 and the reduction

type of the curve is DNA; and
(c) if ν(I ′3) > 0 and ν(I) > 0, then the decorated graph has type IV*.1 and the

reduction type of the curve is Braid.

Proof. From the conditions on the invariants, it follows that the valuations ν(A), ν(B),
ν(C) are zero, and in case (a) (respectively (b), (c)) we get that exactly one (respectively
two, three) of the valuations ν(∆a), ν(∆b), ν(∆c) is positive.

Lemma 4.1 implies that Pi and P ′i specialize to the same point of X0 if and only if
the valuation of ∆i is positive for i ∈ {a, b, c}. Moreover, since we have ν(ABC) = 0,
Lemma 4.1 implies that no two points from different pairs specialize to the same point
of X0. Since the 6 branch points specialize to at least 3 pairwise distinct points of X0 it
follows that X0 is an irreducible component of the special fiber X of the stably marked
model of (X,D). From this it follows that we are in one of the cases II.3, III.1 or IV*.1.
We obtain that X is of type II.3 (respectively III.1 or IV*.1) if exactly one (respectively
two or three) of the valuations ν(∆a), ν(∆b), ν(∆c) are positive. As in the proof of
Theorem 2.11 it follows that the stable reduction Y of Y is Loop (respectively DNA or
Braid).

To compute the j-invariant in case (a) assume that ∆a is the discriminant with positive

valuation. Chosing square roots
√
B and

√
C with ν(a− 2

√
BC) > 0 in an extension of

K we obtain an equation

X0 : Au2 + (bw + cv)u+G2(v, w) = 0,

where G2(v, w) ≡ (
√
Bv +

√
Cw)2 (mod π). Here we use that ν(∆a) is positive.

Write Y0 for the normalization of X0 in the function field of Y . Its special fiber Y 0 is
birationally given by

Y 0 : Ax4 + (bz2 + cy2)x2 +G2(y
2, z2)2 = 0.

There exists a change of coordinates S ∈ GL3(K) such that the equation for Y0 with
respect to the new variables (x1 = x, y1, z2) still has integral coefficients and G2(y, z) ≡
y1z1 (mod π). Here we use the assumption ν(ABC) = 0. Hence Y 0 may birationally be
given by

Y 0 : Ax41 +G3(y1, z1)x
2
1 + y1z1 ≡ 0 (mod π)

for some polynomial G3(y1, z1) = a0z
2
1 +a1z1y1+a2y

2
1 ∈ O[y1, z1]. We set z1 = 1, multiply

the equation by (1+a2x
2), and define y2 = ((1+a2x

2
1)y1+a1x

2
1/2)/x1. A short calculation

shows that Y 0 is birationally given by

Y 0 : y22 ≡ −(1 + a2x
2)(a0 + Ax2) + a21/4x

2 (mod π).
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This is an elliptic curve with j-invariant

(4.1) j ≡ 16(16I3I
′′
3 + I)3

I3I ′′3 I
2

(mod π).

This expression is also valid if ν(∆b) (resp. ν(∆c)) is positive instead of ν(∆a).
We have already seen that the stable reduction Y of Y is Loop. It follows that the

normalization of Y is the normalization of Y 0. The statement on the j-invariant in the
lemma follows. �

Remark 4.3. Notice that while checking the validity of equation 4.1 is straightforward,
the computation of the right hand side from the left hand side is not.

Lemma 4.4 (Theorem 3.7, case (d)). Let Y be as in Theorem 3.7, in particular ν(I ′′3 ) = 0.
Assume ν(I3) > 0, ν(I ′3) = 0, ν(I6) = 0 and ν(I) = 0. Then the decorated graph has type
II.4 and the reduction type of the curve is Lop, and the Igusa invariants of the genus-2
curve are

J2 =I ′3I
′′
3 − I ′′23 + 2I6 + 24I,

J4 =I ′′23 I6 + 64I ′3I
′′
3 I − 64I ′′23 I + 128I6I + 768I2,

J6 =I ′′23 I6I − 32I ′3I
′′
3 I

2 + 32I ′′23 I
2 − 64I6I

2 − 256I3,

J8 =I ′′43 I
2
6 + 256I ′3I

′′3
3 I6I − 256I ′′43 I6I + 512I ′′23 I

2
6I + 4608I ′′23 I6I

2

− 32768I ′3I
′′
3 I

3 + 32768I ′′23 I
3 − 65536I6I

3 − 196608I4,

J10 =I ′′43 I
2
6I.

Proof. From the conditions on the invariants, it follows that exactly one valuation among
ν(A), ν(B), ν(C) is positive and that all the valuations ν(∆a), ν(∆b), ν(∆c) are zero. As-
sume ν(A) > 0. Then, by Lemma 4.1, a point with inertia generator σb and a point with
inertia generator σc both specialize to (1 : 0 : 0), hence the decorated graph has type II.4
and the reduction of the curve is Lop.

We determine an equation for the normalization of the stable reduction Y of Y . Since
we are in case Lop this is a curve of genus 2. Arguing as in the proof of Lemma 4.2, we
find that Y is birationally given by

Y : x2 ≡ −By
4 + ay2z2 + Cz4

cy2 + bz2
.

Hence t2 = (x(cy2 + bz2))2 = −(cy2 + bz2)(By4 + ay2z2 + Cz4) is the genus-2 curve we
are looking for. One can check that the Igusa invariants of this curve are the ones given
in the statement of the lemma. �

Lemma 4.5 (Theorem 3.7, case (e)). Let Y be as in Theorem 3.7, in particular ν(I ′′3 ) = 0.
Assume ν(I3) > 0, ν(I ′3) = 0, ν(I6) > 0 and ν(I) = 0. Then the decorated graph has type
III.2 and the reduction type of the curve is Looop.

Proof. From the conditions on the invariants, it follows that exactly one valuation among
ν(A), ν(B), ν(C) and exactly one among ν(∆a), ν(∆b), ν(∆c) are positive while only one
among ν(A∆a), ν(B∆b), ν(C∆c) is also positive.

Assume ν(A∆a) > 0. Then, by Lemma 4.1, the points Pa and P ′a both specialize to
(0 : 1 : −1), and a point with inertia generator σb and a point with inertia generator σc
both specialize to (1 : 0 : 0), hence the decorated graph has type III.2 and the reduction
of the curve is Looop. �
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Lemma 4.6 (Theorem 3.7, case (f)). Let Y be as in Theorem 3.7, in particular ν(I ′′3 ) = 0.
Assume ν(I3) > 0, ν(I ′3) = 0, ν(I6) > 0 and ν(I) > 0. Then one of the following occurs:

(i) If 2ν(I) > ν(I3) + ν(I6) > 2ν(I3) or ν(I3) < ν(I) < ν(I6), then the decorated
graph has type IV.1 and the reduction type of the curve is Grl Pwr.

(ii) If 2ν(I) > ν(I3) + ν(I6) > 2ν(I6) or ν(I3) > ν(I) > ν(I6), then the decorated
graph has type IV.3 and the reduction type of the curve is Cat.

(iii) If 2ν(I) > ν(I3)+ν(I6) = 2ν(I3) or ν(I3) = ν(I) = ν(I6), then the decorated graph
has type II.1 and the reduction type of the curve is Candy, and the j-invariants
of the two genus-1 components of the special fiber are the roots of the polynomial

I26I3I
′
3t

2−24
(
I26I + 3 · 24I3I

′
3I

2
6 + 3 · 28I3I

′
3I6I − 213I23I

′2
3 I6 + 212I3I

′
3I

2
)
t

+ 28
(
I6 + 24I + 28I3I

′
3

)3
(iv) If ν(I) < ν(I3) and ν(I) < ν(I6), then the decorated graph has type IV.2 and the

reduction type of the curve is Garden.
(v) If ν(I) = ν(I3) < ν(I6), then the decorated graph has type III.5, the reduction type

of the curve is Tree, and the j-invariant of the genus-1 component of the special
fiber is j = 24(I + 24I3I

′
3)

3/(I2I3I
′
3).

(vi) If ν(I) = ν(I6) < ν(I3), then the decorated graph has type III.6, the reduction type
of the curve is Winky Cat, and the j-invariant of the genus-1 component of the
special fiber is j = 24(I6 + 24I)3/(I26I).

Proof. The conditions on the invariants imply that we may assume

ν(C∆c) = 0, ν(A) > 0, and ν(B∆b) > 0

after permuting the variables, if necessary. In order to determine the stable reduction of
Y in the different subcases, we use two different coordinates for X. The coordinates

ξ1 =
βu+ αv + 2Cw

2(α− a)v
ξ2 =

βu+ αv + 2Cw

2(β − b)u
,

correspond to t1 = (P ′a, Pa, P
′
b) and t2 = (Pb, P

′
b, Pa) in the notation of Section 2.4. The

coordinates ξ1 and ξ2 define models X1 and X2 of X, which may or may not be isomorphic
over O. We write X1 and X2 for the special fibers of the corresponding models. We use
the same notation for further coordinates we introduce in the course of the proof. The
coordinate ξ1 is the same we considered in Example 2.13, which corresponds to case (vi)
of the current lemma.

In this proof, we choose α to be a root of pa(T ) = T 2 − 2aT + 4BC of minimal
valuation. Similarly, we choose β and γ to be a root of pb(T ) = T 2 − 2bT + 4AC and
pc(T ) = T 2 − 2cT + 4AB of minimal valuation.

(i) If 2ν(I) > ν(I3) +ν(I6) > 2ν(I3) or ν(I3) < ν(I) < ν(I6), then ν(∆a) > ν(B) and
ν(∆b) > ν(A). Moreover, ν(A∆a) = ν(B∆b).

It is no restriction to assume that ν(B) ≤ ν(A). It follows that 2ν(β) = ν(A) ≥
ν(B) = 2ν(α) = 2ν(a) and 2ν(α− a) = ν(∆a).

We define a new coordinate

ξ3 =
βπ̃3u+ απ3v + 2Cπ3w

2(α− a)v
,

where π3 and π̃3 are chosen such that ν(−βBπ̃3 + αγπ3) = ν(α − a). (This is
obviously possible.) One computes that the points Pa and P ′a both specialize to
ξ3 = 0 on X3, the points Pb, P

′
b, and Pc specialize to ξ3 = ∞ on X3, and ξ3(P

′
c)

specializes to a point with ξ3 6= 0,∞ on X3.
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Similarly, we find a coordinate ξ4 such that the points Pa, P
′
a, and P ′c specialize

to ξ4 = 0 on X4, the points Pb and P ′b specialize to ξ4 = ∞ on X4, and ξ3(Pc)
specializes to a point with ξ4 6= 0,∞ on X4. We conclude that the decorated
graph is of type IV.1, and the irreducible components of X are X1, X3, X4, X2

from left to right. The reduction type of the curve is Grl Pwr.
(ii) If 2ν(I) > ν(I3) +ν(I6) > 2ν(I6) or ν(I3) > ν(I) > ν(I6), then ν(∆a) < ν(B) and

ν(∆b) < ν(A). We may assume that ν(∆b) ≤ ν(∆a).
One calculates that the points Pa and P ′c both specialize to the point ξ1 = 1,

the points Pb, P
′
b, and Pc specialize to the point ξ1 = ∞, and P ′a specializes to

ξ1 = 0 on X1. Similarly, one computes that the points Pa, P
′
a, P

′
c specialize to the

point ξ2 =∞, the points P ′b and Pc to the point ξ2 = 1, and Pb to ξ2 = 0 on X2.
We conclude that the decorated graph has type IV.3: the irreducible components
X1 and X2 are the two middle components. The reduction type of the curve is
Cat.

(iii) If 2ν(I) ≥ ν(I3) + ν(I6) = 2ν(I3), then ν(∆a) = ν(B) and ν(∆b) = ν(A). It is no
restriction to assume that ν(B) ≤ ν(A).

One computes that Pb, P
′
b, and Pc all specialize to the point ξ1 = ∞ on X1.

Moreover, the point P ′c specializes to a point with ξ1 6= 0, 1,∞ on X1. In par-
ticular, the points Pa, P

′
a, P

′
c and P ′b specialize to pairwise distinct points of X1.

Similarly, one checks that the points Pb, P
′
b, Pc, and Pa specialize to pairwise dis-

tinct points on X2. Hence X has type II.1 and the reduction type of the curve is
Candy.

The stable reduction Y of Y consists of two genus-1 curves intersecting in two
points. To calculate their j-invariants we proceed as in Example 2.13. Let Y i be
the irreducible component of Y above X i for i = 1, 2. The coordinate ξ1 of X1 is
identical to the coordinate from Example 2.13, hence we find the same expression

j(Y 1) ≡
26(a2 + 12BC)3

∆2
a · 4BC

(mod π).

A similar calculation yields

j(Y 2) ≡
26(b2 + 12AC)3

∆2
b · 4AC

(mod π).

One checks that the j-invariants j(Y 1) and j(Y 2) are the roots of the polynomial
given in the statement.

(iv) Assume ν(I) < ν(I3) and ν(I) < ν(I6). It is no restriction to assume that
ν(∆b) < ν(A). It follows that ν(B) < ν(∆a).

One computes that Pa, P
′
a, and P ′c specialize to the point ξ2 =∞ and P ′b and Pc

specialize to the point ξ2 = 1 on X2. By definition of ξ2 the point Pb specializes
to ξ2 = 0.

Define

ξ3 =
γ(1− 2B)u+ 4B2v + 2αBw

−2Bv
.

Then the points Pa and P ′a specialize to ξ3 = 0, the points Pb, P
′
b, and Pc specialize

to ξ3 = ∞, and P ′c specializes to ξ3 = 1 on X3. We conclude that the decorated
graph has type IV.2. The components are X1, X3, X2, and a fourth one that we
did not give a name. The reduction type of the curve is Garden.

(v) Assume ν(I) = ν(I3) < ν(I6). It is no restriction to assume that ν(∆b) = ν(A).
It follows that ν(B) < ν(∆a).
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Case 1: We first consider the case that ν(A) ≤ ν(B).
Lemma 4.1 implies that Pa, P

′
a, and P ′c specialize to the same point (0 : 1 : 0)

of X0. The points Pb and P ′b specialize to the same point of X0, as well, and that
Pa, Pc, and Pb specialize to pairside distinct points of X0. As in the previous cases,
we may check that ξ1(P

′
c) 6≡ 0, 1,∞ (mod π). We conclude that the decorated

graph has type III.5. The coordinates are X1, X0, and X2 from left to right.
The reduction type of Y is Tree. The genus-1 component Y 1 of the stable

reduction is the normalization of the component corresponding to coordinate ξ1.
Again, we are in the situation of Example 2.13 and get

j(Y 1) ≡
26(a2 + 12BC)3

∆2
a · 4BC

(mod π).

In terms of invariants this can be expressed as

j(Y 1) ≡ 24(I + 24I3I
′
3)

3/(I2I3I
′
3).

Case 2: If we are not in case 1 than ν(A) > ν(B). In this case Pb, P
′
b, and

Pc (resp. Pa, P
′
a) specialize to the same point of X0, and Pa, Pb, P

′
c specialize to

pairwise distinct points on X0. Moreover, ξ2(P ′c) 6≡ 0, 1,∞.
As in the previous case, the decorated graph has type III.5 and the reduction

type of Y is tree. The component of genus 1 is the unique irreducible component
Y 2 above the component X2 corresponding to the coordinate ξ2. We get

j(Y 2) ≡
26(b2 + 12AC)3

∆2
b · 4AC

(mod π).

In terms of invariants we get the same expression as in the above case,

j(Y 2) ≡ 24(I + 24I3I
′
3)

3/(I2I3I
′
3).

(vi) Assume that ν(I) = ν(I6) < ν(I3). It is no restriction to assume that ν(∆b) <
ν(A) and ν(B) = ν(∆a).

One computes that the points Pa, P
′
a, P

′
b, and P ′c specialize to pairwise distinct

points on X1. Moreover, the points Pb, P
′
b and Pc specialize to the same point of

X1.
The points Pa, P

′
a, and P ′c specialize to the same point ξ1 = ∞, the points P ′b

and Pc specialize to the point ξ2 = 1, and Pb specializes to the point ξ2 = 0 on
X2. This shows that X has type III.6: the irreducible components are X1, X2,
and a further component from left to right. The reduction type of the curve Y is
Winky Cat.

As in Example 2.13 one computes that the j-invariant of the irreducible com-
ponent Y 1 above X1 is

j(Y 1) ≡
26(a2 + 12BC)3

∆2
a · 4BC

(mod π).

In terms of invariants, this is

j(Y 1) ≡ 24(I6 + 24I)3/(I26I). �

Lemma 4.7 (Theorem 3.7, case (g)). Let Y be as in Theorem 3.7, in particular ν(I ′′3 ) = 0.
Assume that ν(I3) > 0, ν(I ′3) = 0, ν(I6) = 0 and ν(I) > 0. Then the decorated graph has
type III.3 and the reduction type of the curve is Loop. The j-invariant of the genus-1
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component is

j = 16
(I ′′23 − 16I ′3I

′′
3 + 16I ′23 )3

I ′3I
′′4
3 (I ′3 − I ′′3 )

.

Proof. From the conditions on the invariants, it follows that ν(∆a) = ν(∆b) = ν(∆c) = 0
and exactly two among ν(A), ν(B), ν(C) are positive. Now Lemma 4.1 implies that
branch points with the same inertia generator do not specialize to the same point on X0.
Without loss of generality, we may assume that A and B have positive valuation and
that ν(C) = 0. We conclude that the points Pa, P

′
a, Pb, P

′
b specialize to pairwise distinct

points of X0.
Up to possibly interchanging Pc and P ′c, it follows from Lemma 4.1 that Pc specializes

to the same point as one of {Pb, P ′b} on X0. The same argument using that ν(B) > 0
implies that P ′c specializes to the same point as one of {Pa, P ′a} on X0.

Hence the decorated graph has type III.3: the irreducible component X0 is the middle
component of X. The reduction type of the curve is Loop.

Let Y 0 be the irreducible component above X0 of the stable reduction Y of Y . To com-
pute j(Y 0) we argue as in the proof of Lemma 4.2. After applying a suitable coordinate
change in GL3(K) on Y , we find a birational equation for Y 0:

Y 0 : (cx2 + az2)y2 + bx2z2 + Cz4 = 0.

Setting x = 1 we recognize Y 0 as elliptic curve and find

j(Y 0) =
16(a2b2 + 14abcC + c2C2)3

abcC(ab− cC)4
≡ 16(I ′′23 − 16I ′3I

′′
3 + 16I ′23 )3

I ′3I
′′4
3 (I ′3 − I ′′3 )

(mod π).

�

Lemma 4.8 (Theorem 3.7, case (h)). Let Y be as in Theorem 3.7, in particular ν(I ′′3 ) = 0.
Assume ν(I3) > 0, ν(I ′3) > 0, ν(I) > 0, and ν(I6) = 0. Then the decorated graph has type
IV*.3 and the reduction type of the curve is Looop.

Proof. From the conditions on the invariants, it follows that ν(∆a) = ν(∆b) = ν(∆c) = 0
and ν(A), ν(B), ν(C) are positive. Lemma 4.1 implies that branch points with the same
inertia generator do not specialize to the same point on X0. Moreover, for every pair i 6=
j ∈ {a, b, c} one of the branch points with inertia generator σi and one of the branch
points with inertia generator σj specialize to the same point of X0. We conclude that
the decorated graph has type IV*.3. �

4.2. Main result with degenerate conic. As in Section 4.1 we write X0 for the model
of X defined by (2.2) and X0 for its special fiber. Since we assume that the left-hand
side of the equation (2.2) for X is normalized as in Proposition 3.1 X0 is indeed a model,
and X0 is a conic over the residue field k of K. In this section we prove Theorem 3.8,
which treats the case that X0 is degenerate. Recall that this implies that I ′′3 = ∆(X)
has positive valuation. The classification of degenerate conics in characteristic different
from 2 implies therefore that X0 is either reducible or non-reduced. In the first case, X0

consist of two irreducible components. In the second case the underlying reduced scheme

X
red

0 is irreducible.

Proposition 4.9. Assume that ν(I ′′3 ) is positive.

(i) The curve X0 is reducible and the points Pa, P
′
a specialize to different irreducible

components of X0 if and only if ν(∆a) is zero.
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(ii) The curve X0 is non-reduced and X
red

0 is irreducible if and only if ν(∆a), ν(∆b)
and ν(∆c) are all positive.

(iii) Assume that X0 is reduced and ν(C) = 0. Let α (respectively β) be a root of
pa(T ) = T 2 − 2aT + 4BC (respectively pb(T ) = T 2 − 2bT + 4AC). Then the two
points P ′a = (0 : −2C : α) and Pb = (−2C : 0 : β) specialize to the same irreducible
component of X0 if and only if the valuation of α(2b − β) + (2a − α)β − 4Cc is
positive.

Proof. (i) If ν(∆a) is positive, then the two roots of T 2 − 2aT + 4BC are congruent
modulo π, thus Pa, P

′
a specialize to the same point on X0.

Assume that ν(∆a) = 0 and that Pa, P
′
a specialize to the same irreducible

component of X0. This also includes the case that X
red

0 is reduced. We denote

the irreducible component of X
red

0 to which Pa, P
′
a specialize by X1. It follows

from (2.2) that u = 0 is an equation for X1. But u is a factor of the left-hand side
of (2.2) (mod π) if and only if the valuations of B,C, and a are positive, which
contradicts the assumption ν(∆a) = 0. Statement (i) follows.

(ii) Assume that X0 is non-reduced. Then X
red

0 is irreducible and the left-hand side
of (2.2) modulo π is a square. We conclude that we may choose square roots of
A,B,C (mod π) such that

2
√
AB ≡ c, 2

√
AC ≡ b, 2

√
BC ≡ a.

This implies that that valuations of ∆a, ∆b and ∆c are positive. The converse is
similar. Statement (ii) follows.

(iii) Assume that X0 is reduced and ν(C) = 0. We write X1 and X2 for the irreducible
components of X0.

Note that if P ′a and Pb specialize to the same irreducible component X1 of X0,
then X1 is defined by

X1 : βu+ αv + 2Cw = 0.

We write α′ = 2a − α (resp. β′ = 2b − β) for the second root of pa (resp. pb).
Statement (i) implies that the points Pa = (0 : α : −2B) = (0 : −2C : α′) and
P ′b = (β : 0 : −2A) = (−2C : 0 : β′) specialize to X2, which may be given by

X2 : β′u+ α′v + 2Cw = 0.

Computing the product of the equations for X1 and X2 we obtain

(βu+ αv + 2Cw)(β′u+ α′v + 2Cw) =

4CAu2 + 4BCv2 + 4C2w2 + 4Cavw + 4Cbuw + (αβ′ + α′β)uv.

The right-hand side of this equation is congruent to the left-hand side of (2.2) if
and only if

ν(α(2b− β) + (2a− α)β − 4Cc) > 0. �

Lemma 4.10 (Theorem 3.8, case (a)). Let Y be as in Theorem 3.8, in particular we
have ν(I ′′3 ) > 0. Assume that ν(I3) = ν(I6) = 0. Then the decorated graph has type II.2
and the reduction of the curve is DNA.

Proof. From the conditions on the invariants, it follows that the valuations ofA,B,C, a, b, c
are zero. Then, by Lemma 4.1, all 6 branch points specialize to pairwise distinct points
of X0. Proposition 4.9 implies that X0 reducible, and the branch points with the same
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inertia generator specialize to different irreducible components of X0. Therefore the
decorated graph has type II.2 thus the reduction of the curve is DNA. �

Lemma 4.11 (Theorem 3.8, case (b)). Let Y be as in Theorem 3.8, in particular ν(I ′′3 ) >
0. Assume that ν(I3 + I ′3) = 0, ν(I6) > 0 and ν(I) = 0. Then one of the following occurs:

(i) if ν(I6) > ν(I ′′3 ), the decorated graph has type IV*.2 and the reduction of the curve
is DNA;

(ii) if ν(I6) < ν(I ′′3 ), the decorated graph has type IV.5 and the reduction of the curve
is Braid; and

(iii) otherwise, the decorated graph has type III.4, the reduction type of the curve is
Candy, and the j-invariants of the genus-1 components of the special fiber are
j1 = j2 = 1728.

Proof. It follows from the conditions ν(I6) > 0 and ν(I) = 0 that exactly one among
ν(∆a), ν(∆b), ν(∆c) is positive. Without loss of generality we may assume that ν(∆a) > 0.
Then ν(I) = 0 also implies ν(BC) = 0. It follows from Proposition 4.9 that X0 is reduced,
has two irreducible components and the points Pa, P

′
a both specialize to the intersection

of these two components.
Now, fix β and γ to be roots of pb(T ) = T 2−2bT + 4AC and pc(T ) = T 2−2cT + 4AB,

respectively, that have valuation 0.
Claim: We may choose β and γ so that they satisfy additionally that ν((2b − β)γ +

β(2c− γ)− 4Aa) > 0. Moreover, there exists coordinates ξ1 and ξ2 such that Pa and P ′a
specialize to the intersection point τ of the corresponding irreducible components X1 and
X2 and P ′b and Pc (resp. Pb and P ′c) specialize to pairwise distinct points of X1 (resp. X2)
different from τ .

Assume first that ν(A) = 0. Then all the roots of pb and pc have valuation 0. In this
case it follows from the proof of Proposition 4.9.(iii) that we may choose β and γ as in the
claim. That proof then also implies that P ′b and Pc (resp. Pb, P

′
c) specialize to the same

component of X0 . Moreover, Proposition 4.9.(i) implies that the points Pb, P
′
b, Pc, P

′
c

specialize to pairwise distinct points on X0. This proofs the claim in this case.
Next assume that ν(A) is positive. Then ν((2b− β)γ + β(2c− γ)− 4Aa) > 0 for any

choice of β and γ, but there are unique roots β of pb and γ of pc with ν(β) = ν(γ) = 0.
With this choice, we have that P ′b and Pc both specialize to the point (1 : 0 : 0) in the
smooth locus of X0 and in particular to the same irreducible component of X. Let ξ1 and
ξ2 be coordinates corresponding to t1 = (P ′b, Pc, Pa) and t2 = (Pb, P

′
c, Pa) as in Section

2.4. The corresponding components X1 and X2 satisfy the conditions in the claim.
Remains to compute a component separating Pa, P

′
a. Consider

ξ3 =
βu+ αv + 2Cw

2v(α− a)
.

This is the coordinate corresponding to t3 = (P ′a, Pa, P
′
b). One checks that ξ3(Pc) = ∞.

The decorated graph of X depends on the value of ξ3(Pb) = ξ3(P ′c). Using (2.2) and that
β is a root of pb we find the equivalent expression for the coordinate

ξ3 =
−2β(cu+Bv + aw) + α(2Au+ βw)

2(α− a)(2Au+ βw)
.

We obtain

ξ3(Pb) =
4cC − α(2b− β)− (2a− α)β

4(α− a)(β − b)
.
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Note that the discriminant factors as follows:

∆(X) = (4cC − α(2b− β)− (2a− α)β)(4cC − αβ − (2a− α)(2b− β)).

Let δ = ν(−4Cc+ α(2b− β) + (2a− α)β) and note

ν(−4Cc+ αβ + (2a− α)(2b− β)) = ν(4(α− a)(β − b)− 4Cc+ α(2b− β) + (2a− α)β)

≥ min(ν((α− a)(β − b)), δ),

where ν(α− a) = 1
2
ν(∆a). Then, we are in one of the following cases:

• If 2δ < ν(∆a), then one has ν(∆(X)) = 2δ < ν(∆a) and ξ3(Pb) =∞. In this case,
X is of type IV*.2. The component X3 is the left most vertical component.
• If 2δ > ν(∆a), then one has ν(∆(X)) = δ + 1/2ν(∆a) > ν(∆a), and ξ(Pb) = 0.

In this case, X is of type IV.5. The component X3 is the one in the middle that
intersects X1.
• If 2δ = ν(∆a) and ν(αβ + (2a− α)(2b− β)− 4Cc) > δ, then one has ν(∆(X)) >

ν(∆a), and ξ(Pb) = 1. In this case, X is again of type IV.5, but the component
X3 is the one in the middle that intersects X2.
• Lastly, if 2δ = ν(∆a) and ν(αβ + (2a − α)(2b − β) − 4Cc) = δ, then one has

ν(∆(X)) = ν(∆a), and ξ(Pb) 6= 0, 1,∞. In this case, X is of type III.4. The
component X3 is the central one.

This yields the case distinction from the statement of the lemma.
It remains to compute the j-invariant of the two components of the stable reduction

Y of Y in case (iii) of the lemma. In this case Y consists of two genus-1 curves Y 1 and
Y 2 intersecting in two points. These two curves are permuted by the action of σb and
σc. Hence Y 1 ' Y 2. The map f : Y → X extends to a finite and flat map f : Y → X3,
where X3 is the special fiber of the model of X defined by the coordinate ξ3. Moreover,
f is Galois with Galois group V .

The map f : Y → X factors as Y → Y /〈σi〉 → X for i ∈ {a, b, c}. We write

Y
◦

= Y 1 t Y 2 for the normalization of Y . The induced map f : Y
◦ → Y /〈σi〉 for

i = b, c just identified the two irreducible components. It follows that the elliptic curve
Ei = Y/〈σi〉 has good reduction for i = b, c and its reduction is Ei = Y /〈σi〉. This implies
that Eb and Ec are elliptic curves and they are both isomorphic to Y 1 ' Y 2. Therefore

j(Y 1) ≡ j(Y 2) ≡ j(Eb) ≡ j(Ec) (mod π).

To compute j(Y 1) it therefore to compute the reduction of j(Eb) (mod π).
We have Eb : Ax4+Bv2+Cz4+avz2+bz2x2+cx2v = 0. After a change of coordinates

in GL3(O), we can assume B = C = 1, a = 2 + a1π1 and c = b + b1π
2
1 for a suitable

element π1 ∈ O of positive valuation. A direct computation of the j-invariant yields
j(Eb) ≡ 1728 mod π. �

Lemma 4.12 (Theorem 3.8, case (c)). Let Y be as in Theorem 3.8 and assume that
ν(I3) = 0, ν(I ′3) > 0, ν(I6) > 0 and ν(I) > 0. Then Y has (maybe bad) hyperelliptic
reduction. More specifically,

(i) if ν(I26 ) = ν(I3I
′′3
3 ), ν(I ′43 ) ≥ ν(I3I

′′
3 ), then Y has good hyperelliptic reduction,

(ii) if ν(I26 ) > ν(I3I
′′3
3 ), ν(I ′43 ) ≥ ν(I3I

′′
3 ), and ν(I ′43 − 4I3I

′′
3 ) = ν(I3I

′′
3 ), then the

decorated graph has type II.3 and the reduction of the curve is Loop,
(iii) if ν(I26 ) > ν(I3I

′′3
3 ), ν(I ′43 ) = ν(I3I

′′
3 ), and ν(I ′43 − 4I3I

′′
3 ) > ν(I3I

′′
3 ), then the

decorated graph has type III.1 and the reduction of the curve is DNA,
(iv) if ν(I26 ) < ν(I3I

′′3
3 ), ν(I ′43 ) ≥ ν(I3I6), then the decorated graph has type II.2 and

the reduction of the curve is DNA,
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(v) if 12ν(I ′3) < 3ν(I3I
′′
3 ) < 2ν(I3I6), then the decorated graph has type IV*.2 and the

reduction of the curve is DNA,
(vi) if 12ν(I ′3) < 2ν(I3I6) < 3ν(I3I

′′
3 ), then the decorated graph has type IV.5 and the

reduction of the curve is Braid, and
(vii) if 12ν(I ′3) < 2ν(I3I6) = 3ν(I3I

′′
3 ), then the decorated graph has type III.4 and the

reduction of the curve is Candy.

Proof. It follows from the conditions on the invariants that ν(A), ν(B) and ν(C) are zero
and that ν(∆a), ν(∆b) and ν(∆c) are all positive.

Therefore, the special fiber X0 of the model of X defined by (2.2) non-reduced, see
Proposition 4.9. We claim that Y has (not necessarily good) hyperelliptic reduction.

Note that there exist a choice of square roots such that the equation of Y can be
written as

(
√
Ax2 +

√
By2 +

√
Cz2) + (a− 2

√
BC)y2z2 + (b− 2

√
AC)x2z2 + (c−

√
AB)x2y2 = 0,

in such a way that the coefficients of x2y2, y2z2 and z2x2 have all positive valuation. Let
π1 ∈ O be an element with valuation min{ν(a− 2

√
BC), ν(b− 2

√
AC), ν(c−

√
AB)}/2.

Assume that the minimum of these valuations is attained by a − 2
√
BC, then we can

rewrite the equation of Y as follows:

(4.2) Y :

{
π2
1t

2 = −((a− 2
√
BC)y2z2 + (b− 2

√
AC)x2z2 + (c−

√
ABx2y2)r)

π1t =
√
Ax2 +

√
By2 +

√
Cz2

.

After making a suitable change of coordinates in GL3(K) that sends the conic
√
Ax2 +√

By2 +
√
Cz2 = 0 to x21 − y1z1 = 0, and taking z1 = 1 and y1 = x21 in the reduction

of the first equation defining Y in 4.2, we get a hyperelliptic equation t2 = x81 + Mx61 +
Nx41 +Mx21 + 1 with coefficients:

M = −4
b
√
B − c

√
C√

A(a− 2
√
BC)

N = −2 + 8
b
√
B + c

√
C − 4

√
ABC√

A(a− 2
√
BC)

.

Its invariants, as defined in Proposition 5.2, are

(L1 : L2 : L3) = (2I ′3 : 16I3I
′′
3 : −4I6I3) ∈ P2

1,2,3.

Notice that this equality of projective points is not a coordinate-wise equality, but one
in a weighted projective space.

Let π2 ∈ O be an element of valuation min(ν(L1), ν(L2)/2, ν(L3)/3). Then we have

(L1 : L2 : L3) =

(
2I ′3
π2

:
16I3I

′′
3

π2
2

:
−4I6I3
π3
2

)
∈ P2

1,2,3.

This is still not a coordinate-wise equality, but a coordinate-wise valuation equality. It
follows that we may assume that min(ν(L1), ν(L2), ν(L3)) = 0. Rewriting the normalized
invariants in Theorem 5.6 in terms of I3, I

′
3, I
′′
3 , I6 and I yields the result. �

Lemma 4.13 (Theorem 3.8, case (d)). Let Y be as in Theorem 3.8, in particular ν(I ′′3 ) >
0. Assume that ν(I3) > 0, ν(I6) = 0 and ν(I) = 0, then the decorated graph has type III.7
and the reduction type of the curve is Cave.
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Proof. From the conditions on the invariants, it follows that ν(∆a) = ν(∆b) = ν(∆c) = 0
and exactly one of ν(A), ν(B), ν(C) is positive. We may assume that ν(A) > 0. Propo-
sition 4.9 implies that X0 is reducible and that branch points with the same inertia
generator specialize to different irreducible components of X0. Proposition 3.1 implies
that one of branch points Pb, P

′
b and one of the branch points Pc, P

′
c specialize to the same

irreducible component of X0. Moreover, that proposition implies that none of the branch
points specialize to the singular point of X0. Hence the decorated graph has type III.7
and the reduction type of the curve is Cave. �

Lemma 4.14 (Theorem 3.8, case (e)). Let Y be as in Theorem 3.8, in particular ν(I ′′3 ) >
0. Assume that ν(I3) > 0, ν(I ′3) = 0 and ν(I) > 0, then the decorated graph has type IV.4
and the reduction of the curve is Braid.

Proof. From the conditions on the invariants and (3.1), it follows that ν(∆a) = ν(∆b) =
ν(∆c) = 0 and exactly two among ν(A), ν(B), ν(C) are positive. It is no restriction to
assume that ν(C) = 0. Now Proposition 4.9 implies that X0 is reducible and that branch
points with the same inertia generator specialize to different irreducible components of
X0. Moreover, Proposition 4.9.(iii) implies that Pc specializes to the same point as one
of {Pb, P ′b} on X and P ′c specializes to the same point as one of {Pa, P ′a} up to renaming
Pc and P ′c. Hence the decorated graph has type IV.4. The two irreducible components of
X0 are the central onces. The reduction of the curve is Braid. �

5. Hyperelliptic case

In this section we give an analogous result to Theorems 3.7 and 3.8 for the hyperelliptic
case, i.e., for curves in Mhyp

3,V . Recall that (K, ν) is a complete discretely valued field of
characteristic 0 and residue characteristic 2 6= p ≥ 0. Recall that we replace K by a finite
extension, if necessary, without changing the notation.

Let Y/K be a genus-3 hyperelliptic curve such that AutK(Y ) contains a subgroup
V ' C2 × C2 such that for every non-trivial element σ ∈ V the quotient Y/〈σ〉 has
genus 1. Then we can write (see [Bou98, Section 4.3] or [LR12, Table 3]):

(5.1) Y : y2 = x8 +Mx6 +Nx4 +Mx2 + 1,

and we identify V with the group generated by

σ1(x, y) = (−x, y) and σ2(x, y) = (1/x, y/x4).

We set σ3 := σ1σ2.
In particular, the genus-3 hyperelliptic curve Y is the V -Galois cover of a conic, and

we obtain the following diagram.

Y

Y/〈σ1〉 = E1 Y/〈σ2〉 = E2 Y/〈σ3〉 = E3

Y/V = X

where

Y : y2 = x8 +Mx6 +Nx4 +Mx2 + 1,

X :w2 = v2 + (M − 4)v + (−2M +N + 2)
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with w = y
x2

and v = (x+ 1
x
)2. Moreover, we compute the discriminants

∆(Y ) =24(−2M +N + 2)2(2M +N + 2)2(M2 − 4N + 8)4,

∆(X) =M2 − 4N + 8.

The problem with the hyperelliptic model given in (5.1) is that it is singular at the
infinity point (0 : 1 : 0) and it is not easy to keep track of the ramification data.

Instead, we choose to work with the smooth model:

Y :

{
t2 = y4 +My3z +Ny2z2 +Myz3 + z4,

0 = x2 − yz
⊆ P3

1,1,1,2,

where now the automorphisms are given by

(5.2) σ1((x : y : z : t)) = (−x : y : z : t) and σ2((x : y : z : t)) = (x : z : y : t).

We get the following equation for the conic X := Y/V :

(5.3)
Y → X : w2 = v2 + (M − 4)uv + (−2M +N + 2)u2 ⊆ P2

(x : y : z : t) 7→ (u : v : w) = (x2 : (y + z)2 : t),

and the six branch points in X are

(5.4)

σ1 : P1 = (0 : 1 : 1), P ′1 = (0 : 1 : −1),

σ2 : P2 = (1 : 4 : λ), P ′2 = (1 : 4 : −λ),

σ3 : P3 = (1 : 0 : µ), P ′3 = (1 : 0 : −µ),

where λ is a root of T 2− (2M +N + 2) = 0 and µ is a root of T 2− (−2M +N + 2) = 0.
Note that the discriminant of this conic is still ∆(X) = M2 − 4N + 8.

Remark 5.1. If ν(∆(X)) > 0, then the conic always reduces to the product of two
different lines (M−4

2
u+ v − w)(M−4

2
u+ v + w).

5.1. Invariants. Shioda [Shi67] gives 9 invariants J2, J3, . . . , J10 for genus-3 hyperelliptic
curves, which we call the Shioda invariants. The Shioda invariants parametrize the 5-
dimensional locus of hyperelliptic curvesMhyp

3 inside the moduli space of genus-3 curves

M3. The stratum Mhyp
3,V is the intersection of M3,V with Mhyp

3 , and by Lemma 2.1.(3)
it is a 2-dimensional stratum.

In [LR12, Lemma 3.14], the authors give (sufficient and necessarily) conditions in terms

of the Shioda invariants for a curve to belong to the stratum Mhyp
3,V . Loc. cit. also gives

expressions to compute parameters M,N from the Shioda invariants, thus obtaining a
model

Y : y2 = x8 +Mx6 +Nx4 +Mx2 + 1.

However, using the Shioda invariants restricted to the stratum Mhyp
3,V is not practical

to characterize the stable reduction of Y , so we define invariants for the stratum Mhyp
3,V .

Proposition 5.2. The invariant ring of Mhyp
3,V is generated by the following invariants

of weight 1, 2 and 3 respectively:

L1 = N + 10, L2 = M2 − 4N + 8, L3 = (2M +N + 2)(2M −N − 2).

Proof. First we need to check that they are invariants. Secondly that they generate the
ring of invariants.

Isomorphisms between hyperelliptic curves y2 = f(x, z) are given by linear maps
(x, z) 7→ (a11x + a12z, a21x + a22z). Since the isomorphisms between curves in the fam-
ily y2 = x8 + Mx6 + Nx4 + Mx2 + 1 preserve the automorphism group generated by

29



(x, z) 7→ (−x, z) and (x, z) 7→ (z, x), every isomorphism can be written as a composition
of i : (x, z) 7→ (x,−z), r : (x, z) 7→ (x+ z, x− z) and automorphisms of the curve. Notice
that r2 = i2 = (ri)3 = Id, and that they generate a finite group G isomorphic to S3.

This implies that all the curves isomorphic to the one with parameters (M,N) are the
curves with parameters:

(5.5)

(M,N), (−M,N),

((8M − 4N + 56)/(2M +N + 2), (−20M + 6N + 140)/(2M +N + 2))

(−(8M − 4N + 56)/(2M +N + 2), (−20M + 6N + 140)/(2M +N + 2)),

((−8M − 4N + 56)/(−2M +N + 2), (20M + 6N + 140)/(−2M +N + 2)),

(−(−8M − 4N + 56)/(−2M +N + 2), (20M + 6N + 140)/(−2M +N + 2)).

We proceed as in the proof of Proposition 3.4. Magma [BCP97] produces the invariants
L1, L2 and L3 as generators of the algebra of invariants K[M,N ]G for the fields F3 and
Q. Again, Molien’s Formula [DK02, Theorem 3.2.2] extends the result to any field of
characteristic different from 2. �

Remark 5.3. The following equalities hold: ∆(X) = L2 and ∆(Y ) = 24L4
2L

2
3.

Remark 5.4. If the curve Y ∈ Mhyp
3,V has a model as in (5.1) given by the parameters

(M,N), then there is always a pair in (5.5) such that the valuation of both terms is non-
negative so again the valuation of the invariants Li can be assumed to be non-negative. In
this situation, the valuation of the three invariants Li cannot be simultaneously positive.
In that caseN ≡ −10 mod π because of ν(L1) > 0, M2 ≡ 16 mod π because of ν(L3) > 0,
but then L2 ≡ 64 mod π and ν(L2) cannot be positive.

Proposition 5.5. Let y2 = x8 +Mx6 +Nx4 +Mx2 + 1 be a hyperelliptic curve in Mhyp
3,V

with invariants L1, L2, L3 defined as in Proposition 5.2. It has potentially good reduction
if and only if ν(L2

1/L2) ≥ 0 and ν(L3
2/L

2
3) = 0.

Proof. By Remark 5.4, we can assume M,N,Li ∈ O and at least one of the Li having
valuation zero. If ν(L2

1/L2) ≥ 0 and ν(L3
2/L

2
3) = 0 hold then we have ν(L1) ≥ ν(L2)/2 =

ν(L3)/3 ≥ 0. This gives us ν(L2) = ν(L3) = 0 and ν(∆(Y )) = ν(24L4
2L

2
3) = 0. Hence the

curve has good reduction.
Conversely, assume the curve has potentially good reduction, then there exists a hyper-

elliptic curve model of Y having good reduction. Because of Corollary 3.5 in [LLLR19]
this model can be taken of the form y2 = x8 +Mx6 +Nx4 +Mx2 +1 with M,N ∈ O and
ν(∆(Y )) = 0. Now, because of Remark 5.4 we can also assume ν(L1), ν(L2), ν(L3) ≥ 0.
So ν(L2

1/L2) ≥ 0 and ν(L3
2/L

2
3) = 0. �

5.2. The main theorem and its proof. We characterize the possible reduction types
of a genus-3 hyperelliptic curve Y inMhyp

3,V in terms of the invariants L1, L2 and L3 defined
in Proposition 5.2. Because of Proposition 5.5, and once the invariants are normalized
as in Remark 5.4, Y has potentially good reduction if and only if ν(∆(Y )) = 0. The
theorem below describes the different types of bad reduction when ν(∆(Y )) > 0.

Theorem 5.6. Let Y be a hyperelliptic genus-3 curve defined by Y : t2 = y4 + My3z +
Ny2z2 +Myz3 + z4, x2 = yz ⊆ P3

1,1,1,2. Let X be the conic Y/〈σ1, σ2〉 with σ1, σ2 given as
in (5.2). Then if the valuation of ∆(Y ) is positive, Y has geometric bad reduction and
one of the cases in Table 5.1 occurs.
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ν(L1) ν(L2) ν(L3) Other conditions Decorated graphs Stable curve

(a) = 0 > 0 ν(L2
1 − 4L2) = 0 II.3 Loop

(b) = 0 = 0 > 0 ν(L2
1 − 4L2) > 0 III.1 DNA

(c) > 0 = 0 II.2 DNA

(d.i)

> 0 > 0

ν(L2) < ν(L3) IV*.2 DNA

(d.ii) ν(L2) > ν(L3) IV.5 Braid

(d.iii) ν(L2) = ν(L3) II.4 Candy

Table 5.1. Cases of Theorem 5.6.

Proof. Recall ∆(Y ) = 24L2
3∆(X)4 and ∆(X) = L2, and assume ν(∆(Y )) > 0.

If the valuation ν(L2) is zero, then ν(L3) > 0 holds, i.e., at least one of the valuations
ν(2M + N + 2), ν(−2M + N + 2) is positive; and the conic X has good reduction. If
exactly one of them is positive, that is, ν(N+2) = 0, then the special fiber X of the stably
marked model of X is of type II.3. Otherwise, if both ν(2M+N+2) and ν(−2M+N+2)
are positive, and hence ν(N+2) > 0 and ν(L1) = 0, then the special fiber X of the stably
marked model of X is of type III.1. Statements (a) and (b) then follow from noticing
that if ν(L1) > 0, then we write

23L3 − 22L2L1 + L3
1 = −(N + 2)(L3 − 25L1),

hence ν(N + 2) > 0 if and only if ν(L2
1 − 4L2) > 0.

Suppose now ν(L2) > 0. Then by Remark 5.1, the conic X is a product of two lines.
If ν(L3) = 0, that is, we are in case (c), then the branch points P1 and P ′1 specialize to
different lines by Proposition 4.9.(i), and the same holds for P2, P

′
2 and P3, P

′
3. So we

obtain that X is of type II.2.
Finally we assume ν(L2) > 0, ν(L3) > 0. We write

(5.6) L2 = (M + 4− 2λ)(M + 4 + 2λ) = (M − 4− 2µ)(M − 4 + 2µ),

where λ is a root of T 2−(2M+N+2) with ν(λ) > 0 and µ is a root of T 2−(−2M+N+2)
with ν(µ) = 0.

Notice that we get ν(M+4) > 0 and ν(M−4) = 0 by (5.6). Then the conic X reduces
to a product of two lines and the branch points P2 and P ′2 specialize to (1 : 4 : 0), the
intersection of the lines.

Consider the coordinate

ξ =
−(4 + λ)u+ v + w

(4− λ)u− v + w
,

whhere u, v, w are the coordinates of X as in (5.3), and which satisfies ξ(P1) = ∞,
ξ(P ′1) = 0, ξ(P ′2) = 1 and ξ(P2) = (M + 4− 2λ)(M + 4 + 2λ)−1. Depending on the value

of ξ(P2) we get different possibilities for the decorated graph. We have:

ξ(P2) =


∞ iff ν(M + 4 + 2λ) > ν(M + 4− 2λ), (type IV.5),

0 iff ν(M + 4 + 2λ) < ν(M + 4− 2λ), (type IV.5),

1 iff ν(M + 4 + 2λ) = ν(M + 4− 2λ) = ν(M + 4) < ν(λ), (type IV*.2),

6= 0,∞, 1 iff ν(M + 4 + 2λ) = ν(M + 4− 2λ) = ν(λ) ≤ ν(M + 4), (type III.4).

The different cases there can be rewritten as:
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(1) Case IV*.2 if and only if 2ν(M2 − 16) ≥ ν(L2) and 2ν(M2 − 16) < ν(L3),
(2) Case IV.5 if and only if 2ν(M2 − 16) < ν(L2), and
(3) Case III.4 if and only if 2ν(M2 − 16) ≥ max{ν(L2), ν(L3)};

and one can check that these conditions are equivalent to the ones in the statement. �

Corollary 5.7. (i) The j-invariant of the genus-1 component of the special fiber in
Theorem 5.6.(a) is j = 24(12L2 + L2

1)
3/((4L2 − L2

1)
2L2).

(ii) The j-invariants of the two genus-1 components of the special fiber in Theo-
rem 5.6.(d.iii) are equal to 1728.

Proof. (i) In order to compute the j-invariant of the elliptic curve component E of Y
in case (a), we assume first that ν(−2M + N + 2) > 0. Then modulo π the
equation of Y reduces to

y2 = (x2 + 1)2(x4 + (M − 2)x2 + 1),

so the elliptic curve we are looking for is ( y
x2+1

)2 = (x4 + (M − 2)x2 + 1) with

j =
24(12L2 + L2

1)
3

(4L2 − L2
1)

2L2

mod π.

(ii) In order to compute the j-invariants of the two elliptic curves in case (d.iii) we
proceed as in Lemma 4.11.(iii). to get that the two elliptic curves are isomorphic
between them and isomorphic to the intermediate elliptic curves E1 = Y/〈σ1〉
and E2 = Y/〈σ2〉 or E3 = Y/〈σ3〉 depending on ±2M + N + 2 having positive
valuation. The elliptic curve E1 is given by the equation:

y2 = x4 +Mx3 +Nx2 +Mx+ 1,

and we have that M = ±4 +mπr and N = 6 + nπ2r, hence with j-invariant:

j ≡ 1728 mod π.

�
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Appendix A. Admissible covers

Stable curve Decorated graph Stable curve Decorated graph

Good I Winky Cat III.6

Candy II.1 Cave III.7

DNA II.2 Grl Pwr IV.1

Loop II.3 Garden IV.2

Lop II.4 Cat IV.3

DNA III.1 Braid IV.4

Looop III.2 Braid IV.5

Loop III.3 Braid IV*.1

Candy III.4 DNA IV*.2

Tree III.5 Looop IV*.3

Table A.1. Correspondence between the decorated graphs in Figures (I)–
(IV*) and the stable curves in Figure A.2.

Figure I. Stably marked curve with 6 marked points and one component.
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Figure II. Stably marked curves with 6 marked points and two components.
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Figure III. Stably marked curves with 6 marked points and three components.
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Figure IV. Stably marked curves with 6 marked points and four compo-
nents, all containing at least one marked point.
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Figure IV*. Stably marked curves with 6 marked points and four com-
ponents, one of which doesn’t contain any marked point.
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Lop Loop Looop

DNA Candy Cave Winky cat

Tree Grl pwr Garden

Braid Cat

Figure A.2. Admissible covers. The genus-2 components correspond to
the thick dashed lines, and the genus-1 components correspond to the thick
solid lines. The remaining components have genus 0.
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