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LMI-Based Output Feedback Control Design

in the Presence of Sporadic Measurements

Roberto Merco, Francesco Ferrante, Ricardo G. Sanfelice, and Pierluigi Pisu

Abstract— This paper considers the problem of stabilizing
a linear time-invariant system in the presence of plant mea-
surements that are available in an intermittent fashion. We
propose a dynamic output feedback controller equipped with
a holding device that is a linear time-invariant system whose
state is reset when a new measure is available. We provide an
LMI-based design procedure for the co-design of the dynamic
controller and holding device parameters. Our approach relies
on Lyapunov theory for hybrid systems and addresses the
stability analysis in a way that is reminiscent of an “input-
to-state stability small gain” philosophy. The effectiveness of
the proposed LMI-based design is showcased in a numerical
example.

I. INTRODUCTION

Over the past few decades, Networked Control Systems

(NCSs) has been a very active research area; see, e.g.,

[1]. A peculiarity of NCSs is the capability of sharing

information, such as plant measurements and control signals,

through a network. Due to the packet-based nature of the

network, information between the plant and the controller is

exchanged only at discrete transmission events. In particular,

due to digital devices and the limited bandwidth and unreli-

ability of the network, new data is generally available in an

aperiodically sampled fashion.

Aperiodic sampled-data systems have been studied in

several areas of control theory; see, e.g., [2] for a compre-

hensive survey. The main approaches developed to guarantee

stability of sampled-data control systems are the input-delay

approach, the lifting approach, and the impulsive system

approach. The input-delay approach models the NCS as a

continuous-time system subject to a time-varying input delay.

In the lifting approach, the sampled-data control problem is

converted into an equivalent finite-dimensional discrete-time
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control problem. The third approach consists in modeling

sampled-data systems as impulsive systems.

Another possible design approach consists of considering

the controller as a more general dynamical system inter-

connected to the plant, whose input is the sampled plant

measurement and output is the control action to send to the

plant. An LMI-based design of a discrete-time linear time-

invariant dynamic output feedback controller is proposed

in [3]. Donkers et al. [4], instead, propose an LMI-based

synthesis that results in a switched controller. Fridman et al.

[5] present a controller design method relying on a time-

delay approach.

In our previous work [6], we propose an observer-based

control scheme where both measurements and control input

are affected by intermittent behavior and zero-order hold

(ZOH) devices are employed. Such a holding device is

employed to convert impulsive signals, such as measure-

ments and control actions, to continuous-time signals. As

shown in [7] and references therein, many other holding

functions can be employed. The benefits of considering more

general holding functions are improved robustness as well

as enlarged maximal admissible transmission intervals. To

this end, in this paper, we consider general holding devices

included in NCSs as in Fig. 1 where only the sensing path of

the closed-loop system is subject to network communication,

and we propose a methodology for the co-design of output

feedback dynamic controller and holding device. Notice that

the control systems architecture considered in this paper,

known as one-channel feedback NCS [1], constitutes a rele-

vant case study since it can capture several configurations

of NCSs [1, Section III.A]. More precisely, we propose

a hybrid control scheme constituted by the cascade of a

“generalized” holding device and a dynamic controller. The

proposed general holding device, which is not a ZOH, is

a linear time-invariant system whose state is reset to the

plant measurement whenever a new transmission occurs. This

general holding device generates a continuous-time signal

that feeds a linear time-invariant dynamic controller. Our

approach leads to a computationally efficient co-design of

controller and holding device parameters via LMIs.

One of the main novelties of our methodology is that we

consider the closed-loop NCS as a feedback interconnection

of two dynamical systems: the “networked-free” closed-

loop continuous-time system and the network-induced error

impulsive system. Seeing the NCS closed-loop from this

perspective allows us to address stability analysis via an

approach that is reminiscent of an “input-to-state stability

small gain” philosophy. A similar approach is employed in



[8] for the analysis of the stability of NCS. As a difference

from [8], stability conditions obtained in this paper enable

controller design via the solution to matrix inequalities. In

particular, following the general approach in [9] and [10], we

formulate a control design algorithm based on the solutions

to LMIs coupled with a parameter line search. These results

are preliminary work towards a more comprehensive method-

ology capable of including, for example, H∞ performance.

The remainder of the paper is organized as follows.

Section II introduces the control problem and presents the

modeling of the NCS. Stability conditions and controller

design are presented in Section III. Section IV shows the

effectiveness of the approach in a numerical example. Due

to space limitations, proofs of the results will be published

elsewhere.

A. Notation

The set N>0 is the set of strictly positive integers, N =
N>0 ∪ {0}, R is the set of real numbers, R≥0 is the set of

nonnegative real numbers, C is the set of complex numbers.

Given z ∈ C, Re(z) denotes the real part of z. The Euclidean

space of dimension n is represented by R
n, Rn×m is the

set of n × m real matrices. Give any A ∈ R
n×m, A⊤

denotes the transpose of A, A−⊤ = (A⊤)−1 (when A is

nonsingular), He(A) = A + A⊤, and spec(A) denotes the

spectrum of A. The identity matrix is denoted by I. The

symbol Sn+ represents the set of n × n symmetric positive

definite matrices. For a symmetric matrix A, A ≻ 0 and

A � 0 (A ≺ 0 and A � 0) means that A (−A) is,

respectively, positive definite and positive semidefinite, and

λmin(A) and λmax(A) denote, respectively, the smallest and

the largest eigenvalue. In partitioned symmetric matrices, the

symbol • represents a symmetric block. For a vector x ∈ R
n,

|x| denotes the Euclidean norm. Given two vectors x and y,

we use the equivalent notation (x, y) = [x⊤, y⊤]⊤. Given a

vector x ∈ R
n and a nonempty set A, the distance of x to

A is defined as |x|A = infy∈A|x − y|. For any function

z : R → R
n, we denote z(t+) := lims→t+z(s) when it

exists.

II. PROBLEM STATEMENT AND SOLUTION OUTLINE

A. System Description

We consider a plant P described by continuous-time linear

time-invariant dynamics of the form

P : ẋp = Apxp +Bpu, y = Cpxp (1)

where x ∈ R
np represents the state of the plant, u ∈ R

nu

the control input, and y ∈ R
ny is the output of the plant.

Matrices Ap, Bp, and Cp are given and of appropriate

dimensions. We study a setup, depicted in Fig. 1, in which u

is a continuous-time signal, whereas y is measurable only at

some time instances tk, k ∈ N>0, not known in advance. In

particular, we assume that the sequence {tk}
∞
k=1 is strictly

increasing and unbounded, and that there exist two positive

real scalars T1 ≤ T2 such that

0 ≤ t1 ≤ T2, T1 ≤ tk+1 − tk ≤ T2 ∀k ∈ N>0 (2)

The lower bound on T1 in condition (2) introduces a strictly

positive minimum time in between consecutive measure-

ments. As such, this avoids the existence of Zeno behaviors,

which are unwanted in practice. Moreover, T2 defines the

Maximum Allowable Transfer Interval (MATI).

Given the plant P and the measurement setup above, the

problem we solve in this paper is the design of an output

feedback dynamic controller such that the closed-loop NCS

has an appropriately defined set exponentially stable with the

largest achievable value of T2. This set necessarily enforces

the state xp of P to be zero.

B. Proposed Controller

Since the presence of the network results into an inter-

mittent stream of plant measurements, we propose a con-

trol scheme, depicted in Fig. 1, constituted by a dynamic

controller K and a holding device J . In particular, in the

proposed control system, the plant P is stabilized by a

dynamic controller K that relies on the continuous-time

signal ŷ generated by the holding device J .

K P
tk

u y y(tk)
J

ŷ

xc

Fig. 1: Schematic representation of the NCS considered

in this paper. Solid lines represent continuous-time signals,

whereas the dashed line depicts sporadic measurements.

The continuous-time dynamic controller K we design is

given by:

K

®

ẋc = Acxc +Bcŷ

u = Ccxc +Dcŷ
(3)

where xc ∈ R
nxc is the controller state and ŷ ∈ R

ny is the

state of holding device J . By making use of the last received

measurement of the plant output and of the controller state

(whose value is available at all time), the holding device

J generates an intersample signal that is use to feed the

controller K. In particular, J is described by the following

dynamics for all k ∈ N0:

J

ß

˙̂y(t) = Hŷ(t) + Exc(t) + CpBpu(t) ∀t 6= tk
ŷ(t+) = y(t) ∀t = tk

(4)

The operating principle of the holding device J is as follows.

The arrival of new measurements instantaneously updates

ŷ to y. In between updates, ŷ evolves according to the

continuous-time dynamics in (4) and its value is continuously

used by controller K. Matrices Ac, Bc, Cc, Dc, H , and E

are controller parameters that need to be designed. Notice

that the traditional ZOH device constitutes a particular case

of the holding device introduced in (4). Indeed, the model

in (4) represents a class of generalized holding devices.



C. Hybrid Modeling

The closed-loop system in Fig. 1 can be modeled as an

impulsive system with jumps in ŷ. In particular, for all k ∈
N0 one obtains

ẋp(t) = fp(xp(t), xc(t), ŷ(t))

ẋc(t) = fc(xc(t), ŷ(t))

˙̂y(t) = fy(xc(t), ŷ(t))





∀t 6= tk

xp(t
+) = xp(t)

xc(t
+) = xc(t)

ŷ(t+) = Cpxp(t)





∀t = tk

(5)

where fp(xp, xc, ŷ) := Apxp+BpCcxc+BpDcŷ, fc(xc, ŷ) :=
Acxc +Bcŷ, and fy(xc, ŷ) := (H + CpBpDc)ŷ + (E +
CpBpCc)xc. To devise a design algorithm for K and J , we

model the impulsive system in (5) within the hybrid system

framework in [11]. To this end, we augment the state of

the closed-loop system with the auxiliary variable τ ∈ R≥0,

which is a timer that keeps track of the duration of intervals

in between transmissions of new measurement data. As in

[10], to enforce (2), we make τ decrease as ordinary time

t increases and, whenever τ = 0, reset it to any point in

[T1, T2]. The whole closed-loop system composed by the

states xp, xc, ŷ, and τ can be represented by the following

hybrid system:
ß

ξ̇ = fξ(ξ) ξ ∈ C
ξ+ ∈ Gξ(ξ) ξ ∈ D

(6)

where ξ := (xp, xc, ŷ, τ) ∈ R
nξ , with nξ := nxp

+ nxc
+

ny + 1, is the state of the hybrid system,

fξ(ξ) :=(fp(xp, xc, ŷ), fc(xc, ŷ), fy(xc, ŷ),−1) ∀ξ ∈ C

Gξ(ξ) :=(xp, xc, Cpxp, [T1, T2]) ∀ξ ∈ D

and where the flow set C and the jump set D are defined as

follows

C := R
np+nc+ny × [0, T2], D := R

np+nc+ny × {0}

The set-valued jump map allows to capture all possible trans-

mission intervals of length within T1 and T2. Specifically,

the hybrid model in (6) is able to characterize any sequence

satisfying (2). Notice the definition of the jump map ensures

that at each discrete event the output of the plant is stored

into the variable ŷ.

At this stage, to simplify the analysis, we introduce the

change of coordinates

η := y − ŷ (7)

which leads, by straightforward calculations, to the following

closed-loop hybrid system in the new coordinates:

Hcl

ß

ẋ = f(x) x ∈ C
x+ ∈ G(x) x ∈ D

(8)

where x := (xcl, η, τ) ∈ X := R
np+nc+ny+1 is the state,

and xcl := (xp, xc). The flow map is given by

f(x) := (Axcl + Bη, Jxcl +Hη,−1) ∀x ∈ C (9)

where

A :=

ï

Ap+BpDcCp BpCc

BcCp Ac

ò

, B :=−

ï

BpDc

Bc

ò

J :=
[
CpAp−HCp −E

]

derive from (1), (3), (4), and (7). The jump map is defined

for all x ∈ D as G(x) := (xcl, 0, [T1, T2]). Observe that,

as shown in Fig.2, Hcl can be interpreted as the feedback

interconnection of two dynamical systems, Σxcl
and Ση. In

particular, Σxcl
is a continuous-time system described by:

Σxcl
: ẋcl = Axcl + Bη (10)

whereas Ση is a hybrid dynamical system given as follows:

Ση





ï

η̇

τ̇

ò

=

ï

Hη + Jxcl

−1

ò

η ∈ R
ny , xcl ∈ R

np+nc ,

τ ∈ [0, T2]
ï

η+

τ+

ò

∈

ï

0
[T1, T2]

ò

η ∈ R
ny , τ = 0

(11)

Σxcl

xcl

η, τ

Ση

xcl

η

Fig. 2: Representation of Hcl as the interconnection of the

dynamical systems Σxcl
and Ση.

It is worth mentioning that considering Hcl as the inter-

connection of Σxcl
and Ση allows us to address stability

analysis of the closed-loop system by employing an approach

that is reminiscent of an “input-to-state stability small gain”

philosophy. A conceptually similar approach can be found

in [8].

D. Problem Statement

In this paper, we rely on the notion of global exponential

stability (GES) of closed sets for a generic hybrid system H
with state in R

n; see [12] for further details.

Definition 1 (Global exponential stability [12]). Let A ⊂ R
n

be closed. The set A is globally exponentially stable (GES)

for the hybrid system H if there exist strictly positive real

numbers λ and k such that for any initial condition every

maximal solution φ to H is complete and satisfies:

|φ(t, j)|A ≤ ke−λ(t+j)|φ(0, 0)|A ∀(t, j) ∈ domφ

To design the holding device J and the controller K, our

approach aims at achieving that the following compact set1

A := {0} × {0} × [0, T2] (12)

1Notice that, by definition of the system Hcl and of the set A, for all
x ∈ C, one has |x|A = |(xcl, η)|.



is GES for the hybrid system Hcl. In particular, the problem

we solve is as follows:

Problem 1. Given the plant P in (1), design

∆K :=

ï

Ac Bc

Cc Dc

ò

, ∆J =
[
H E

]
(13)

such that the set A is GES for the hybrid system Hcl in (8)

with the largest achievable value of T2.

Observe that by definition, GES of A implies GES of the

origin of the plant and controller systems.

III. MAIN RESULTS

A. Lyapunov-based Stability Analysis

Sufficient conditions to show exponential stability of the

set A can already be derived by using results in [13]. How-

ever, those results would lead to matrix inequalities having

the controller’s and holding device’s parameters appearing

in a nonlinear fashion. Therefore, those conditions are, in

general, not computationally tractable to provide a viable

solution to Problem 1. With the purpose of obtaining more

tractable conditions, in this paper, we consider the closed-

loop hybrid system Hcl as the interconnection depicted in

Fig. 2. Moreover, we exploit such a structural characteristic

of Hcl to introduce conditions on the individual systems Σxcl

and Ση, and their interconnection such that the set A is GES

for Hcl. In particular, consider the following property:

Property 1. There exist continuously differentiable functions

W1 : R
np+nc → R and W2 : R

ny+1 → R, positive definite

functions ρ1 : R
np+nc → R and ω1 : R

ny → R, functions

ρ2 : R
ny → R and ω2 : R

nc+np → R, and positive scalars

cw1
, cw2

, cw1
, cw2

, kw1
, and kw2

such that2

cw1
|xcl|

2 ≤ W1(xcl) ≤ cw1
|xcl|

2, ∀xcl ∈ R
np+nc (14)

cw2
|η|2 ≤ W2(η, τ) ≤ cw2

|η|2, ∀(η, τ) ∈ R
ny×[0, T2]

(15)

〈∇W1(xcl),Axcl + Bv1〉 ≤ −ρ1(xcl) + ρ2(v1),

∀(xcl, v1) ∈ R
np+nc+ny

(16)

〈∇W2(η, τ), (Hη+Jv2,−1)〉 ≤ −ω1(η) + ω2(v2),

∀(η, τ, v2) ∈ R
ny × [0, T2]×R

np+nc

(17)

− ρ1(xcl) + ω2(xcl) ≤ −kw1
|xcl|

2, ∀xcl ∈ R
np+nc

(18)

− ω1(η) + ρ2(η) ≤ −kw2
|η|2, ∀η ∈ R

ny (19)

△

Remark 1. It is worth mentioning that conditions in Prop-

erty 1 resemble Lyapunov-like dissipation inequalities. In

particular, conditions (16) and (17) resemble to input-output

dissipation inequalities for, respectively, Σxcl
and Ση. Rela-

tions (18) and (19) are reminiscent of small gain conditions

on Σxcl
and Ση, respectively.

2There is a typo in equation (16) in the conference proceeding, i.e., −1
is missing in the inner product.

Theorem 1. Let Property 1 hold. Then, the set A in (12) is

GES for the hybrid closed-loop system Hcl in (8).

Sketch of the proof. For all x ∈ X , define V (x) :=
W1(xcl) +W2(η, τ) and let

χ1 := min{cw1
, cw2

}

χ2 := max{cw1
, cw2

}

Then, using (14) and (15) for all x ∈ C, one gets

χ1|x|
2
A ≤ V (x) ≤ χ2|x|

2
A (20)

Moreover, by using (15), for each g = (xcl, 0, w) ∈ G(x),
x = (xcl, η, τ) ∈ D one has

V (g)− V (x) = W2(0, w)−W2(η, 0) ≤ −cw2
|η|2 (21)

Now observe that, from (16) and (17), for all x ∈ C

〈∇V (x), f(x)〉 ≤ −kw1
|xcl|

2 − kw2
|η|2

which gives for all x ∈ C

〈∇V (x), f(x)〉 ≤ −min{kw1
, kw2

}︸ ︷︷ ︸
χ3

|x|2A (22)

Combining (20), (21), and (22) and using (2) enable to

conclude the proof.

With the purpose of deriving constructive design algo-

rithms for the controller and the holding device, we perform

a particular choice for the functions W1 and W2 in Prop-

erty 1. In particular, let P1 ∈ S
np+nc

+ , P2 ∈ S
ny

+ , and δ a

positive real number. Inspired by [10], we make the following

selection:

W1(xcl) := x⊤
clP1xcl, W2(η, τ) := eδτη⊤P2η (23)

The structure of the selected functions W1 and W2 allows

to provide sufficient conditions for exponential stability of

the set A in the form of matrix inequalities. To this end,

consider the following proposition:

Proposition 1. If there exist P1, S, R ∈ S
np+nc

+ , P2, Q, T ∈
S
ny

+ , a positive real number δ, and matrices Ac ∈ R
nc×nc ,

Bc ∈ R
nc×ny , Cc ∈ R

nu×nc , Dc ∈ R
nu×ny , H ∈ R

ny×ny ,

and E ∈ R
ny×nc , such that

Q− T ≺ 0 (24)

R − S ≺ 0 (25)

M1 :=

ï

He(P1A)+S P1B

• −Q

ò

� 0 (26)

M2(0) � 0, M2(T2) � 0 (27)

where

[0,T2]∋τ 7→M2(τ) :=

ï

(He(P2H)−δP2)e
δτ+T P2Je

δτ

• −R

ò

(28)

then Property 1 holds.



B. LMI-based Controller Design

In the previous section, sufficient conditions were provided

to guarantee exponential stability of A for Hcl. In particular,

through Proposition 1, these conditions turn into the feasi-

bility problem of matrix inequalities, which are not suitable

to be a tool for the solution of Problem 1 because they are

nonlinear in the variables P1, P2, Ac, Bc, Cc, Dc, H, E, δ.

Therefore, further manipulations are needed to derive a

computationally efficient design procedure for the controller.

While the nonlinearity in δ can be easily overcome through a

line search, other nonlinearities must be properly treated. To

this end, in the following, we provide sufficient conditions

to turn the solution to Problem 1 into the feasibility problem

of some LMIs.

Lemma 1. Let F ∈ Sn+. Then, for any α ∈ R the following

relation holds:

F−1 − 2αI+ α2F � 0 (29)

Theorem 2. Given the plant (1), and scalars δ > 0 and α,

suppose there exist P2, T,Q ∈ S
ny

+ , R,F ∈ S
2np

+ , X,Y ∈
S
np

+ , K ∈ R
np×np , L ∈ R

np×ny , M ∈ R
nu×np , N ∈

R
nu×ny , J ∈ R

ny×ny , Z ∈ R
ny×np , and a nonsingular

matrix V ∈ R
np×np , such that

Θ :=

ï

Y I

I X

ò

≻ 0 (30a)

Q− T ≺ 0 (30b)

R− 2αI + α2F ≺ 0 (30c)

M̂1 :=




He(Λ) Π Φ⊤

• −Q 0
• • −F


 � 0 (30d)

M̂2(0) � 0, M̂2(T2) � 0 (30e)

where

[0, T2]∋τ 7→M̂2(τ) :=

[
eδτΨ+ T eδτ

[
Υ −Z

]

• −R

]

(31)

Φ:=

ï

Y I

V ⊤ 0

ò

(32)

Λ:=

ï

ApY +BpM Ap+BpNCp

K XAp+LCp

ò

, Π:=−

ï

BpN

L

ò

(33)

Ψ:=He(J)−δP2, Υ:=P2CpAp−JCp

Then, the matrix I −XY is nonsingular. Let U ∈ R
np×np

be any nonsingular matrix such that

XY + UV ⊤ = I (34)

Then, the conditions in Proposition 1 are satisfied; hence,

Property 1 holds. Furthermore, selecting ∆K and ∆J as in

(35) (at the top of the page) solves Problem 1.

Remark 2. Theorem 2 requires matrix V to be nonsingular.

Although this constraint is hard to formulate in an LMI

setting, nonsingularity of V can be easily enforced, e.g., by

considering the following constraint V + VT ≻ 0.

Notice that when δ, α, and T2 are fixed, the conditions in

Theorem 2 become LMIs. As such, when one is interested

in enlarging T2, Theorem 2 can be employed to design the

controller gains to solve the following optimization problem:

maximize
δ,α,P2,T,Q,R,F,X,Y,K,L,M,N,J,Z,V

T2

subject to (30)
(36)

The above optimization problem can be efficiently solved via

semidefinite programming, with the only caveat of perform-

ing a line search on scalar parameters δ, α, and T2.

IV. NUMERICAL EXAMPLE

In this section, we showcase the proposed design approach

for a double integrator plant, i.e.

[
Ap Bp C⊤

p

]
=

ï

0 1
0 0

0
1

1
0

ò

Numerical solutions to LMIs are obtained through the

solver SDPT3 [14] and coded in Matlab via YALMIP [15].

Simulations of hybrid systems are performed in Matlab via

the Hybrid Equations (HyEQ) Toolbox [16].

With the objective of avoiding ill conditioned controller

parameters, we consider the following additional constraint:

−50Θ � He(Λ) � −Θ

where Λ is defined in (33). In particular, the above constraint

ensures that the spec(A), which characterizes the closed-loop

continuous-time dynamics, is contained in the set {s ∈ C :
−25 ≤ Re(s) ≤ −0.5}; see [9].

By pursing this approach, our design methodology leads

to: T2 = 0.6, δ = 3, α = 0.5263, and the following values

of the controller parameters:

∆K =




−51.8741 2.3076
−435.5136 4.8396

1.2822
10.5892

826.2669− 90.2077 −21.4983




∆J =
[
−0.4553 −0.0041 0.0008

]
(37)

To visualize the behavior of the closed-loop system with

the controller in (37), in Fig. 3 we report the evolution of

the plant state xp, the state of the holding device ŷ, the

control signal u, and the timer variable τ . In this simulation,

xp(0, 0) = (0.85, 0.52), xc(0, 0) = 0, ŷ(0, 0) = 0, T1 =
0.01, and transmission intervals are selected between T1 and

T2 accordingly to a sinusoidal law with frequency 10.5.

Fig. (4) depicts the evolution of the Lyapunov function

V used in the proof Theorem 1, along the same solution

considered here above. As expected, V is nonincreasing and

exponentially converges to zero.



∆K =

ï

U−1 −U−1XBp

0 I

ò ï

K −XApY L

M N

ò ï

V −⊤ 0
−CpY V −⊤

I

ò

, ∆J =
[
P−1
2 J P−1

2 Z
]

(35)
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Fig. 4: Evolution of the Lyapunov function used in the proof

of Theorem 1.
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Fig. 3: Response of the closed-loop system. From the top

to the bottom: plant state xp, state of the holding device ŷ

(blue) and plant output y (magenta), control signal u, and

timer variable τ .

V. CONCLUSION

In this paper, we investigated the problem of designing

output feedback controllers for linear time-invariant sys-

tems where measurements are available in an aperiodic

intermittent fashion. In particular, our design methodology

aims at obtaining a controller such that the closed-loop

NCS has a set globally exponentially stable with the largest

achievable interval without measurements. These results are

accomplished by relying on Lyapunov results for hybrid

dynamical systems. Moreover, by employing an approach

that is reminiscent of an “input-to-state stability small gain”

philosophy, we obtained sufficient conditions that are suit-

ably converted into LMIs. The effectiveness of the proposed

approach is showcased throughout a numerical example.
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