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ON FINITE FIELD ARITHMETIC IN CHARACTERISTIC 2

TONY EZOME AND MOHAMADOU SALL

ABSTRACT. We are interested in extending normal bases of F2n/F2 to bases of F2nd/F2 which
allow fast arithmetic in F2nd . This question has been recently studied by Thomson and Weir in
case d is equal to 2. We construct efficient extended bases in case d is equal to 3 and 4. We also
give conditions under which Thomson-Weir construction can be combined with ours.

.

1. INTRODUCTION

Representing elements of a finite field extension Fqm/Fq by using normal bases is adequate
when doing arithmetic in Fqm . The main computational advantage of these bases is that they
allow fast exponentiation by q, this corresponds simply to a cyclic shift of coordinates. When
computing arbitrary products in Fqm , Gao, von zur Gathen, Panario and Shoup [5] showed that
fast multiplication methods such as FFT can be adapted to normal bases of Fqm/Fq constructed
from Gauss periods over Fq. On the other hand, Couveignes and Lercier [3] constructed an FFT-
like multiplication algorithm with normal bases of Fqm/Fq obtained from elliptic curves over
Fq. But the existence of these efficient normal bases puts constraints on the sizes of m and q.
If there is no efficient normal bases of Fqm/Fq for some m and q, one may hope that m has a
proper divisor n such that Fqn/Fq admits an efficient normal basis N = (α, αq, . . . , αqn−1). Set
m = nd. Then any basis B = (βj)0≤j≤d−1 of Fqm/Fqn obviously induces a basis Θ = (αqi

βj)i,j
of Fqm/Fq. This is not a normal basis, since the q-Frobenius automorphism does not act on B.
We call such a basis as Θ an extension of N with degree d. In this paper, we construct bases
of Fqm/Fq by extending normal bases of Fqn/Fq and we show that arithmetic operations in Fqm

may be efficiently computed (at least in some cases) by using these extended bases. Let us recall
one of the basics of complexity theory in our context. Assume that Γ is a straight-line program
which computes the coordinates of the product x × y in an arbitrary basis B of Fqm/Fq from
the ones of x and y by using additions, subtractions, multiplications of a register by a constant,
and additions, subtractions, multiplications between two registers. Then the complexity of Γ is
the total number of such operations. The complexity of B is defined to be the minimal possible
complexity of a straight-line program computing the coordinates of x× y from the ones of x and
y. In addition, we introduce the following terminology.

Definition 1. Let N = (αqi)0≤i≤n−1 be a normal basis of Fqn/Fq (this means that N is a basis
of Fqn/Fq generated by the normal element α).
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1. The multiplication table of N is defined to be the matrix T = (ti,j)0≤i,j≤n−1 given by

(1) ααq
i =

n−1∑
j=0

ti,jα
qj

, i = 0, 1 . . . , n− 1.

2. The weight of N , denoted by w(N ), is defined to be the total number of non-zero entries ti,j .
3. The density of N , denoted by d(N ), is equal to n× w(N ).
4. For i, j, k, l ∈ {0, . . . , n − 1}, the products ti,jtk,l are called the cross-products of the multi-

plication table of N .
5. Let B = (bi)0≤i≤m−1 be an arbitrary basis of Fqm/Fq. For i, j ∈ {0, 1 . . . ,m− 1}, set

(2) bibj =
m−1∑
k=0

tki,jbk.

(i) The multiplication tables of B are defined to be the matrices (T0, T1, . . . , Tm−1), where

(3) Tk = (tki,j)0≤i,j≤m−1

is defined from equation (2).
(ii) The density of B, denoted by d(B), is defined to be the total number of non-zero entries

tki,j for i, j, k ∈ {0, . . . ,m− 1}.

Addition and substraction of two elements

X =
∑

0≤k≤m−1
xkbk and Y =

∑
0≤k≤m−1

ykbk in Fqm

expressed in an arbitrary basis B = (bk)0≤k≤m−1 of Fqm/Fq are performed componentwise and
easy to implement. But multiplication may be more difficult. Set Z = X × Y , and denote
by

∑
0≤k≤m−1 zkbk the decomposition of Z in B. The coefficients zk are obtained from the

multiplication tables (Tk)0≤k≤m−1 of B as follows:

(4) zk = XTk
tY.

So the number of operations required to implement multiplication in Fqm from the multiplication
tables of B depends on the density of B. This means that normal bases having low weight have
good complexity. On the other hand, there are quasi-linear time algorithms (for instance the one
described in [3]) which output the coordinates of X × Y in a normal basis N from the ones of
X and Y without using the multiplication table of N . But if the known normal bases of Fqm/Fq
have bad complexity, one may turn to extensions of normal bases of intermediate fields. This
means that we first look for suitable subfields K of Fqm containing Fq such that there exists an
efficient normal basisN of K/Fq, and then we extendN to a basis of Fqm/Fq. In [11] the authors
constructed extended bases in characteristic 2 by using Artin-Schreier theory. So they focused
on the case when the degree is equal to 2. In the present paper we construct extended bases
whose degree is equal to 3 and 4 by using Kummer theory and Artin-Schreier-Witt theory. We
also give conditions under which Thomson-Weir construction can be combined with ours. When
the original normal basisN has subquadratic weight and subquadratic complexity, we show that
all the resulting extended bases have subquadratic complexity.
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Plan. In Section 2 we present quadratic Artin-Schreier extended bases and degree 4 Artin-
Schreier-Witt extended bases. In Section 3 we describe degree 3 Kummer extended bases. Sec-
tion 4 is devoted to extended bases in the context of towers of field extensions obtained from
Artin-Schreier and Kummer theories.

Notation: Throughout this paper K denotes a field with characteristic p > 0, and K is an
algebraic closure of K.

2. EXTENDED BASES WHOSE DEGREE IS A POWER OF 2

In this section we recall general results concerning cyclic extensions of K whose degree is a
p-power, and we specify the case when K is a finite field with characteristic 2.

2.1. Artin-Schreier extended bases in characteristic 2. It is proved in [[6], Chapter VI, The-
orem 6.4] that any degree p cyclic extension of K is generated by a root of a polynomial of the
form

Xp −X − α,
where α ∈ K lies outside of the set {xp − x |x ∈ K}. Irreducible polynomials of this type are
useful both for constructing efficient normal bases and for extending them. For instance in [[4],
Theorem 1] the authors constructed a normal basis of K[X]/(Xp − X − α) over K with low
weight and quasi-linear complexity. On the other hand, degree p Artin-Schreier extended bases
defined below are constructed from irreducible polynomials of the form Xp −X − α.

Definition 2. Let p be a prime number and q a power of p. Let N = (αqi)0≤i≤n−1 be a normal
basis of Fqn/Fq. Denote by Fq an algebraic closure of Fq containing Fqn . A degree p Artin-Schreier
extension ofN (also Artin-Schreier extended basis) is a basisA of Fqnp/Fq for which there exists
β in Fq outside of Fqn such that βp − β = α and A = (αqi

βj)i,j .
It is shown that any normal basis N = (α, α2, . . . , α2n−1) of F2n/F2 admits an Artin-Schreier

extension. Indeed, assume that the polynomial f(X) = X2 +X +α is reducible over F2n . Then
the additive form of Hilbert’s Theorem 90 ensures that TrF2n/F2(α) = 0. But this is impossible
since α is a normal element of F2n/F2. Hence any β in F22n satisfying

β2 + β = α

defines a quadratic Artin-Schreier extension A = N ∪ βN of N . The following statement
describes squaring in F22n , it also gives the complexity and density of A.

Proposition 1. Let N = (α, α2, . . . , α2n−1) be a normal basis of F2n/F2 and β an element in
F22n such that A = N ∪ βN is a degree 2 Artin-Schreier extension of N .
1. Squaring in F22n is given by

(C + βD)2 = (C> + E) + βD>,

where C> and D> stand for right-cyclic shifts of the coordinate vectors of C and D, and

E = tD> × T
is a vector-matrix multiplication between the transpose of D> and the multiplication table of
N .
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2. The complexity of A consists in at most:
(a) 3 multiplications and 4 additions between elements lying in F2n;
(b) 1 vector-matrix multiplication between a vector of F2n/F2 and the multiplication table of
N .

3. If N has subquadratic complexity and subquadratic weight, then A has also subquadratic
complexity.

4. Let w(N ) be the weight ofN . For (i, δ) ∈ {0, . . . , n− 1} × {0, 1}, set ai+δn = α2i
βδ so that

A = (ak)0≤k≤2n−1.
(a) For 0 ≤ k ≤ n− 1, the number of non-zero entries in the k-th multiplication table of A,

is equal to

w(N ) +
∑

0≤i,j≤n−1
ϕ(

n−1∑
r=0

tj−i,r−itr,k),

where subscripts are taken modulo n, (ti,j)0≤i,j≤n−1 is the multiplication table ofN , and
ϕ is the unique ring homomorphism from F2 into Z.

(b) The k-th multiplication table of A, for n ≤ k ≤ 2n− 1, has 3w(N ) non-zero entries.
The density of A is given by

d(A) = 4d(N ) +
∑

0≤k≤n−1

∑
0≤i,j≤n−1

ϕ(
∑

0≤r≤n−1
tj−i,r−itr,k).

Proof. 1. This is [[11], Proposition 3.7]. Let C = ∑n−1
i=0 ciα

2i and D = ∑n−1
i=0 diα

2i be the linear
combinations of C and D with respect to N . We have

(C + βD)2 = ∑n−1
i=0 ci−1α

2i + β2∑n−1
i=0 di−1α

2i

= ∑n−1
i=0 ci−1α

2i + (β + α)∑n−1
i=0 di−1α

2i

=
(∑n−1

i=0 ci−1α
2i +∑n−1

i=0 di−1αα
2i
)

+ β
∑n−1
i=0 di−1α

2i
.

So

(C + βD)2 =
( n−1∑
i=0

ci−1α
2i +

n−1∑
i=0

di−1

n−1∑
k=0

ti,kα
2k
)

+ β
n−1∑
i=0

di−1α
2i

,

where subscripts are taken modulo n and (ti,k)i,k stands for the multiplication table of N .
The term

∑n−1
i=0 di−1

∑n−1
k=0 ti,kα

2k corresponds to a vector-matrix multiplication between the
transpose of the right-cyclic shift of the coordinate vector of D and the multiplication table of
N . Assume that N has subquadratic weight in n. This means that its multiplication table is
a sparse matrix with o(n2) non-zero entries. So the computation of the above vector-matrix
multiplication needs o(n2) operations in F2. Since a cyclic shift of coordinates of a vector in
F2n over F2 runs in time O(n), we conclude that squaring in F22n has subquadratic running
time.

2. Let C = C0 +βC1 and D = D0 +βD1 be two elements of F22n expressed inA. A Karatsuba-
like multiplication algorithm gives

(5)
C ×D = β2C1D1 + β

(
(C1 + C0)(D1 +D0) + C1D1 + C0D0

)
+ C0D0

= (β2 + β)C1D1 + β
(
(C1 + C0)(D1 +D0) + C0D0

)
+ C0D0.
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Since β2 + β = α, we have

(6) C ×D = C0D0 + αC1D1 + β
(

(C1 + C0)(D1 +D0) + C0D0

)
.

So the product C ×D consists in 3 multiplications and 4 additions between elements in F2n ,
and a vector-matrix multiplication which corresponds to the term αC1D1 in equation (6).

3. We described the computation of the vector-matrix multiplication αC1D1 in the first item of
the present proof. Thus if N has subquadratic weight and subquadratic complexity, then a
multiplication in F2n needs o(n2) operations in F2, as well as a vector-matrix multiplication.
Since sum of two vectors in F2n over F2 can be computed in time O(n), we conclude that the
product C ×D needs o(n2) operations in F2.

4. For (i, δ) ∈ {0, . . . , n− 1} × {0, 1}, we set ai+δn = α2i
βδ so that A = (ak)0≤k≤2n−1. Hence,

the multiplication tables Tk of A are given by the block matrix
(α2i

α2j )0≤i,j≤n−1 (βα2i
α2j )0≤i,j≤n−1

(βα2i
α2j )0≤i,j≤n−1 ((α + β)α2i

α2j )0≤i,j≤n−1


(a) For 0 ≤ k ≤ n−1, the components of the matrix Tk come from the blocks (α2i

α2j )0≤i,j≤n−1
and ((α+β)α2i

α2j )0≤i,j≤n−1. On the other hand, the multiplication table T = (tr,s)0≤r,s≤n−1
of N is given by

αα2r =
n−1∑
s=0

tr,sα
2s

, 0 ≤ r ≤ n− 1.

Since

α2i

α2j =
n−1∑
r=0

tri,jα
2r

,

it follows that tri,j = tj−i,r−i. So

(7) αα2i

α2j = α
n−1∑
r=0

tj−i,r−iα
2r =

n−1∑
r=0

tj−i,r−i
n−1∑
k=0

tr,kα
2k

,

where subscripts are taken modulo n. The number of non-zero entries in the matrix Tk
coming from αα2i

α2j is given by the coefficient of α2k in the linear combination (7).
This number is equal to

ϕ(
n−1∑
r=0

tj−i,r−itr,k),

where ϕ is the unique ring homomorphism from F2 into Z. Hence the total number of
non-zero entries in Tk is equal to

w(N ) +
∑

0≤i,j≤n−1
ϕ(

n−1∑
r=0

tj−i,l−itr,k).
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(b) For n ≤ k ≤ 2n−1, the components of Tk come from the blocks (βα2i
α2j )0≤i,j≤n−1 and

((β + α)α2i
α2j )0≤i,j≤n−1. So the number of non-zero entries in Tk is equal to 3w(N ).

�

2.2. Background on Witt vectors. Witt described in [12] cyclic field extensions whose degree
is a power of the characteristic of the base field. Theorem 1 below is one of the main results of
[12]. Let A be a commutative ring with unit element, and S a (possibly infinite) subset of the
natural numbers N. The structure of commutative ring with unit on the cartesian product AS is
easily verified, addition and multiplication are performed componentwise. There may be other
ring structures on AS , for instance the one from the theory of Witt vectors (see [9] or [10]). We
let p be a prime number and φ the unique ring-homomorphism from the integers into A. For any
n in Z, we write again n instead of φ(n). We start with the assumption that p is invertible in
A. Then the set of Witt vectors with components in A denoted by W (A) is the set of sequences
x = (xk)k∈N of elements of A which admit sequences of ghost components (x(k))k∈N defined by

(8) x(k) := xp
k

0 + pxp
k−1

1 + . . .+ pkxk,

On the other hand, it is easily seen that

(9) x0 = x(0), x1 = 1
p

(
x(1) − xp0

)
and xk = 1

pk

(
x(k) −

∑
0≤d≤k−1

pdxp
k−d

d

)
for any k ≥ 1.

So components of a Witt vector are recursively computed from its ghost components and vice
versa. We deduce that the map

ϕ : W (A) // AN

x = (xk)k∈N � // (x(k))k∈N

is a bijection. From the structure of product ring on AN, we obtain a structure of commutative
ring with unit on W (A) whose composition laws are given by

x + y = ϕ−1((x(k))k + (y(k))k) and x× y = ϕ−1((x(k))k × (y(k))k).
Actually the components of the sum and product of two Witt vectors x and y may be com-
puted from polynomial equations involving the components of x and y, for a more detailed
exposition of this fact see [12], [9] or [10]. It is shown that there exists a unique sequence
S0, S1, . . . , Sn, . . . of polynomials in Z[X0, X1, . . . , Xn, . . . ;Y0, Y1, . . . , Yn, . . . , ] (resp. a unique
sequence P0, P1, . . . , Pn, . . .) so that for x and y in W (A) we have

(10) (x + y)k = Sk(x,y) and (x× y)k = Pk(x,y).
In both cases, the first two polynomials S0 and S1( resp. P0 and P1) can be easily computed:

(11) S0(x,y) = x0 + y0, S1(x,y) = x1 + y1 + 1
p

∑p−1
k=1

(
p
k

)
xk0y

p−k
0 ,

P0(x,y) = x0y0, P1(x,y) = x1y
p
0 + y1x

p
0 + px1y1.
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In case A is an arbitrary commutative ring with unit (even if p is not invertible), it is shown that
W (A) is also a commutative ring with unit, the laws being defined from the polynomials Sk
and Pk in equation (10) (see [[9], Chapter II, §6] or [[10], Section 1.1]). Since the polynomials
Sk and Pk only involve variables Xk and Yk whose index are ≤ k, we deduce that for any
positive integer r the set Wr(A) of truncated Witt vectors (x0, x1, . . . , xr−1) with length r and
components in A form a commutative ring with unit. In case A is a field with characteristic p,
the group-homomorphism

℘ : A −→ A
x 7→ xp − x.

induces a group-homomorphism from Wr(A) into itself that we call ℘ also. The following theo-
rem generalizes Artin-Schreier Theorem.

Theorem 1. Let K be a field with characteristic p > 0, and r ≥ 1 an integer.
1. Let x = (x0, x1, . . . , xr−1) be a truncated Witt vector with components in K.

(a) The equation

(12) ℘(ξ) = x

either has no root in Wr(K), or it has a root in Wr(K). In the later case, all its pr roots
lie in Wr(K).

(b) If equation (12) has no root in Wr(K), then K(℘−1(x)) is a cyclic extension of K with
degree dividing pr. The degree [K(℘−1(x)) : K] is equal to pr if and only if x0 /∈ ℘(K).

2. If L/K is a cyclic extension with degree pr, then there exists x in Wr(K) such that L =
K(℘−1(x)) and x0 /∈ ℘(K).

Proof. See [12], [[6], Page 331] or [[10], Section 2.1.1]. �

2.3. Artin-Schreier-Witt extended bases in characteristic 2. We first introduce the following
terminology.

Definition 3. Let p be a prime number and q a power of p. Let N = (αqi)0≤i≤n−1 be a normal
basis of Fqn/Fq. Denote by Fq an algebraic closure of Fq containing Fqn . Let (β1, . . . , βr) ∈
Wr(Fq) be a truncated Witt vector outside of Wr(Fqn) such that

(βp1 , . . . , βpr )− (β1, . . . , βr) = (α, x1 . . . , xr−1)

where x1, . . . , xr−1 are arbitrary elements in Fqn . SetW1 = N ∪ β1N ∪ . . . ∪ βp−1
1 N and

Wi =Wi−1 ∪ βiWi−1 ∪ . . . ∪ βp−1
i Wi−1, for any i ∈ {2, . . . , r}

so that Wi is a basis of Fqnpi/Fqn . Such a basis Wi is called a degree pi Artin-Schreier-Witt
extension of N (also Artin-Schreier-Witt extended basis).

In this section, we focus on the case when the lenght of the truncated Witt vectors and the
characteristic of the base field are equal to 2. Given two truncated Witt vectors x = (x0, x1) and
y = (y0, y1) in W2(F2n), we know from equation (11) that

(13) x + y = (x0 + y0, x1 + y1 + x0y0).



8 TONY EZOME AND MOHAMADOU SALL

Theorem 1 tells us that constructing degree 4 Artin-Schreier-Witt extensions is related to solving
equations of the form ℘(ξ) = x in W2(F2n). Let N = (α, α2, . . . , α2n−1) be a normal basis of
F2n/F2. Assume that (β0, β1) is a truncated Witt vector in W2(F2n) such that

(14) (β2
0 , β

2
1) + (β0, β1) = (α, α).

Set (s0, s1) = (β2
0 , β

2
1) + (β0, β1). From equation (13), we obtain

s0 = β2
0 + β0 and s1 = β2

1 + β1 + β3
0 .

By setting (s′0, s′1) = (s0, s1) + (α, α), we find

s′0 = β2
0 + β0 + α and s′1 = β2

1 + β1 + β3
0 + α + αβ2

0 + αβ0.

Hence equation (14) yields

β2
0 = β0 + α and β2

1 = β1 + β0(1 + α) + α2.

Squaring in F24n and the complexity of a degree 4 Artin-Schreier-Witt extension of N are
described in the following statement.

Proposition 2. Let p be a prime number and q a p-power. Let N = (α, αp, . . . , αpn−1) be a
normal basis of Fpn/Fp.

1. N admits an Artin-Schreier-Witt extension with degree q.
2. Assume p = 2 and q = 4. Denote by F2n an algebraic closure of F2 containing F2n . Let

(β0, β1) be a truncated Witt vector in W2(F2) outside of W2(F2n) and such that

(14) (β2
0 , β

2
1) + (β0, β1) = (α, α).

Denote byW = (N ∪ β0N ) ∪ β1(N ∪ β0N ) the corresponding degree 4 Artin-Schreier-Witt
extension of N .
(a) If γ = A+ β0B + β1(C + β0D) is an element of F24n expressed inW , then

γ2 =
A> + αB> + α2C>

+ (α3 + α2 + α)D> + β0
(
B> + (1 + α)C> +D>

) + β1

C> + αD> + β0D>

,
whereA>, B>, C> andD> stand for right-cyclic shifts of the coordinate vectors ofA,B,C
and D.

(b) The complexity ofW consists in at most:
• 9 multiplications and 33 additions between elements lying in F2n;
• 9 vector-matrix multiplications between a vector of F2n and the multiplication table

of N .
3. If N has subquadratic complexity and subquadratic weight, then W has also subquadratic

complexity.
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Proof. 1. One shows that α lies outside of {xp − x |x ∈ Fpn} by using Hilbert’s Theorem
90 as in the beginning of Section 2.1. Let r ≥ 1 be an integer such that q = pr. Let
x = (α, x1, x2, . . . , xr−1) be a truncated Witt vector with components in Fpn . By Theorem 1,
we conclude that Fpn(℘−1(x)) is a degree q cyclic extension of Fpn .

2. (a) We have(
A+ β0B + β1(C + β0D)

)2
= A> + β2

0B> + β2
1(C> + β2

0D>),

where A>, B>, C> and D> stand for right-cyclic shifts of the coordinate vectors of A, B,
C and D. We saw that equation (14) implies

β2
0 = β0 + α and β2

1 = β1 + β0(1 + α) + α2.

So

β2
1(C> + β2

0D>) =
[
α2C> + (α3 + α2 + α)D> + β0

(
(1 + α)C> +D>

)]
+ β1

[
C> + αD> + β0D>

]
.

Hence (
A+ β0B + β1(C + β0D)

)2
=

A> + αB> + α2C>

+ (α3 + α2 + α)D> + β0
(
B> + (1 + α)C> +D>

) + β1

C> + αD> + β0D>

.
From the study made in the proof of Proposition 1, we dedude that the terms P (α)X
(for P (α) a non-constant polynomial in F2[α] with degree ≤ 3 and X a vector in F2n)
correspond to sums of vectors of the form αiX with 1 ≤ i ≤ 3. Each such vector αiX
corresponds to i vector-matrix multiplications between vectors in F2n and the multiplica-
tion table of N .

(b) From a Karatsuba-like multiplication method, the product of two elements

X1 = (A1 + β0B1) + β1(C1 + β0D1) and X2 = (A2 + β0B2) + β1(C2 + β0D2) in F24n

is given by

X1 ×X2 = β2
1(C1 + β0D1)(C2 + β0D2)

+β1

[
(A1 + β0B1 + C1 + β0D1)(A2 + β0B2 + C2 + β0D2)

+(A1 + β0B1)(A2 + β0B2) + (C1 + β0D1)(C2 + β0D2)
]

+(A1 + β0B1)(A2 + β0B2),
that is

X1 ×X2 = β2
1

β2
0D1D2 + β0

(
(C1 +D1)(C2 +D2) + C1C2 +D1D2

)
+ C1C2


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+ β1

β2
0(B1 +D1)(B2 +D2) + β0

(
(A1 +B1 + C1 +D1)(A2 +B2 + C2 +D2)

+ (A1 + C1)(A2 + C2) + (B1 +D1)(B2 +D2)
)

+ (A1 + C1)(A2 + C2)

+ β2
0B1B2 + β0

(
(A1 +B1)(A2 +B2) + A1A2 +B1B2)

)
+ A1A2 + β2

0D1D2

+ β0

(
(C1 +D1)(C2 +D2) + C1C2 +D1D2

)
+ C1C2

+ β2
0B1B2

+ β0

(
(A1 +B1)(A2 +B2) + A1A2 +B1B2

)
+ A1A2.

Since β2
0 = β0 + α and β2

1 = β1 + β0(α + 1) + α2, we have

X1 ×X2 =
A1A2 + αB1B2 + α2C1C2

+ (α3 + α2 + α)D1D2 + (α2 + α)
(
(C1 +D1)(C2 +D2) + C1C2 +D1D2

)
+ β0

(
A1A2 + (α + 1)C1C2 +D1D2 + (A1 +B1)(A2 +B2)

+ (α2 + α + 1)
(

(C1 +D1)(C2 +D2) + C1C2 +D1D2

)
+ β1

A1A2 + αB1B2 + C1C2 + αD1D2 + (A1 + C1)(A2 + C2)

+ α(B1 +D1)(B2 +D2) + β0

(
A1A2 + C1C2 + (A1 +B1)(A2 +B2) + (A1 + C1)(A2 + C2)

+ (C1 +D1)(C2 +D2) + (A1 +B1 + C1 +D1)(A2 +B2 + C2 +D2)
).

For 1 ≤ i ≤ 3 and X a vector in F2n , αiX corresponds to i vector-matrix multiplications
between vectors in F2n and the multiplication table ofN . So the computation of X1×X2
consists in:
• 9 multiplications and 33 additions between elements lying in F2n;
• 9 vector-matrix multiplications between a vector of F2n and the multiplication table

of N .
3. The same argument as in the proof of Proposition 1 shows that a normal basis with sub-

quadratic weight and subquadratic complexity yields Artin-Schreier-Witt extended bases with
subquadratic complexity.

�

The density of the degree 4 Artin-Schreier-Witt extended basis

W = (N ∪ β0N ) ∪ β1(N ∪ β0N )
described in Proposition 2 is given by Lemma 1 below. For (i, δ, λ) ∈ {0, . . . , n− 1}× {0, 1}×
{0, 1}, we set wi+δn+λn = α2i

βδ0β
λ
1 so thatW = (w`)0≤`≤4n−1.
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Lemma 1. With the above notation, let w(N ) be the weight of the normal basis N .

1. For 0 ≤ ` ≤ n − 1, the number of non-zero entries in the `-th multiplication table ofW , is
equal to

w(N ) +∑
0≤i,j≤n−1 ϕ(∑n−1

r=0 tj−i,r−itr,`)

+ ∑
0≤i,j≤n−1 ϕ

∑n−1
r=0

∑n−1
s=0 tj−i,r−itr,sts,`


+ 2∑0≤i,j≤n−1 ϕ

∑n−1
r=0

∑n−1
s=0 tj−i,r−itr,sts,` +∑n−1

r=0 tj−i,r−itr,`

,
+ ∑

0≤i,j≤n−1 ϕ

∑n−1
r=0

∑n−1
s=0

∑n−1
k=0 tj−i,r−itr,sts,ktk,`

+ ∑n−1
r=0

∑n−1
s=0 tj−i,r−itr,sts,` +∑n−1

s=0 tj−i,r−itr,`

,

where subscripts are taken modulo n, (ti,j)0≤i,j≤n−1 is the multiplication table ofN , and ϕ is
the unique ring homomorphism from F2 into Z.

2. For n ≤ ` ≤ 2n − 1, the number of non-zero entries in the `-th multiplication table ofW , is
equal to

4w(N ) +∑
0≤i,j≤n−1 ϕ

∑n−1
r=0 tj−i,r−itr,` + tj−i,`−i


+ 2∑0≤i,j≤n−1 ϕ

∑n−1
r=0

∑n−1
s=0 tj−i,r−itr,sts,` +∑n−1

r=0 tj−i,r−itr,` + tj−i,`−i

.

3. For 2n ≤ ` ≤ 3n− 1, the number of non-zero entries in the `-th multiplication table ofW , is
equal to

3w(N ) + 3
∑

0≤i,j≤n−1

n−1∑
r=0

ϕ(tj−i,r−itr,`).

4. The `-th multiplication table ofW , for 3n ≤ ` ≤ 4n− 1, has 9w(N ) non-zeros entries.

Proof. The entries of the multiplication tables T` ofW are given by the block matrix
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

(α2i
α2j )0≤i,j≤n−1 (β0α

2i
α2j )0≤i,j≤n−1 (β1α

2i
α2j )0≤i,j≤n−1 (β0β1α

2i
α2j )0≤i,j≤n−1

(β0α
2i
α2j )0≤i,j≤n−1 (β2

0α
2i
α2j )0≤i,j≤n−1 (β0β1α

2i
α2j )0≤i,j≤n−1 (β2

0β1α
2i
α2j )0≤i,j≤n−1

(β1α
2i
α2j )0≤i,j≤n−1 (β0β1α

2i
α2j )0≤i,j≤n−1 (β2

1α
2i
α2j )0≤i,j≤n−1 (β0β

2
1α

2i
α2j )0≤i,j≤n−1

(β0β1α
2i
α2j )0≤i,j≤n−1 (β2

0β1α
2i
α2j )0≤i,j≤n−1 (β0β

2
1α

2i
α2j )0≤i,j≤n−1 (β2

0β
2
1α

2i
α2j )0≤i,j≤n−1



Recall that equation (14) yields β2
0 = β0 + α and β2

1 = β1 + β0(α + 1) + α2. Hence:

1. For 0 ≤ ` ≤ n − 1, the components of the matrix T` come from 1 block (α2i
α2j )0≤i,j≤n−1,

1 block (β2
0α

2i
α2j )0≤i,j≤n−1, 1 block (β2

1α
2i
α2j )0≤i,j≤n−1, 2 blocks (β0β

2
1α

2i
α2j )0≤i,j≤n−1

and 1 block (β2
0β

2
1α

2i
α2j )0≤i,j≤n−1. These correspond to 1 block (α2i

α2j )0≤i,j≤n−1, 1 block
(αα2i

α2j )0≤i,j≤n−1, 1 block (α2α2i
α2j )0≤i,j≤n−1, 2 blocks ((α2 + α)α2i

α2j )0≤i,j≤n−1 and 1
block ((α3 +α2 +α)α2i

α2j )0≤i,j≤n−1. From the study made in the proof of Proposition 1 (see
equation (7)), we know that

α2i

α2j =
n−1∑
`=0

tj−i,`−iα
2`

,

where subscripts are taken modulo n and (ti,j)0≤i,j≤n−1 is the multiplication table of N . So

αα2i

α2j =
n−1∑
`=0

 n−1∑
r=0

tj−i,r−itr,`

α2`

, α2α2i

α2j =
n−1∑
`=0

 n−1∑
s=0

n−1∑
r=0

tj−i,r−itr,sts,`

α2`

,

and

α3α2i

α2j =
n−1∑
`=0

n−1∑
k=0

n−1∑
s=0

n−1∑
r=0

tj−i,r−itr,sts,ktk,`α
2`

.
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We conclude that the number of non-zero entries in T` is equal to

w(N ) +∑
0≤i,j≤n−1 ϕ(∑n−1

r=0 tj−i,r−itr,`)

+ ∑
0≤i,j≤n−1 ϕ

∑n−1
r=0

∑n−1
s=0 tj−i,r−itr,sts,`


+ 2∑0≤i,j≤n−1 ϕ

∑n−1
r=0

∑n−1
s=0 tj−i,r−itr,sts,` +∑n−1

r=0 tj−i,r−itr,`

,
+ ∑

0≤i,j≤n−1 ϕ

∑n−1
r=0

∑n−1
s=0

∑n−1
k=0 tj−i,r−itr,sts,ktk,`

+ ∑n−1
r=0

∑n−1
s=0 tj−i,r−itr,sts,` +∑n−1

s=0 tj−i,r−itr,`

,
where ϕ is the unique ring homomorphism from F2 into Z.

2. For n ≤ ` ≤ 2n−1, the components of the matrix T` come from 2 blocks (β0α
2i
α2j )0≤i,j≤n−1,

1 block (β2
0α

2i
α2j )0≤i,j≤n−1, 1 block (β2

1α
2i
α2j )0≤i,j≤n−1, 2 blocks (β0β

2
1α

2i
α2j )0≤i,j≤n−1 and

1 block (β2
0β

2
1α

2i
α2j )0≤i,j≤n−1. These correspond to 4 blocks (β0α

2i
α2j )0≤i,j≤n−1, 1 block

((α+ 1)β0α
2i
α2j )0≤i,j≤n−1 and 2 blocks ((α2 + α+ 1)β0α

2i
α2j )0≤i,j≤n−1. So the number of

non-zero entries in T` is equal to

4w(N ) +∑
0≤i,j≤n−1 ϕ

∑n−1
r=0 tj−i,r−itr,` + tj−i,`−i


+ 2∑0≤i,j≤n−1 ϕ

∑n−1
r=0

∑n−1
s=0 tj−i,r−itr,sts,` +∑n−1

r=0 tj−i,r−itr,` + tj−i,`−i

.
3. For 2n ≤ ` ≤ 3n−1, the components of the matrix T` come from 2 blocks (β1α

2i
α2j )0≤i,j≤n−1,

2 blocks (β2
0β1α

2i
α2j )0≤i,j≤n−1, 1 block (β2

1α
2i
α2j )0≤i,j≤n−1, and 1 block (β2

0β
2
1α

2i
α2j )0≤i,j≤n−1.

These correspond to 3 blocks (β1α
2i
α2j )0≤i,j≤n−1, 3 blocks (β1αα

2i
α2j )0≤i,j≤n−1. So the

number of non-zero entries in T` is equal to

3w(N ) + 3
∑

0≤i,j≤n−1
ϕ(

n−1∑
r=0

tj−i,r−itr,`).

4. For 3n ≤ ` ≤ 4n−1, the components of the matrix T` come from 4 blocks (β0β1α
2i
α2j )0≤i,j≤n−1,

2 blocks (β2
0β1α

2i
α2j )0≤i,j≤n−1, 2 blocks (β0β

2
1α

2i
α2j )0≤i,j≤n−1 and 1 block (β2

0β
2
1α

2i
α2j )0≤i,j≤n−1.

This means that we have 9 blocks (β0β1α
2i
α2j )0≤i,j≤n−1. So the number of non-zero entries

in T` is equal to 9w(N ).
�

3. KUMMER EXTENDED BASES WITH DEGREE PRIME TO 2

Cyclic extensions of K with degree prime to p are described by Kummer theory. Indeed, let
n ≥ 2 be a prime to p integer such that K contains a primitive n-root of unity. It is proved [[6],
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Chapter VI, Theorem 6.2] that every degree n cyclic extension L of K is generated by a radical.
This means that there exists a non-zero element a in K whose class in K∗/K∗n has order n and
such that L is isomorphic to K[X]/(Xn − a). However, irreducible polynomials of the form
Xn − a may also be used for extending normal bases.

Definition 4. Let p be a prime number and q a power of p. Let N = (αqi)0≤i≤n−1 be a normal
basis of Fqn/Fq. Denote by Fq an algebraic closure of Fq containing Fqn . Assume that Fqn pos-
sesses a primitive d-th root of unity. A degree d Kummer extension (also Kummer extended basis)
of N is a basis K of Fqnd/Fq for which there exists β ∈ Fq outside of Fqn such that βd − α = 0
and K = (αqi

βj)i,j .

In this section, we are interested in degree 3 Kummer extensions of normal bases of F2n/F2.

3.1. Complexity of degree 3 Kummer extended bases in characteristic 2. In general, a nor-
mal basis {α, αq, . . . , αqn−1} of Fqn/Fq is said to be primitive if α generates the multiplicative
group F∗qn . So any primitive normal basis of Fqn/Fq admits a degree d Kummer extension, pro-
vided that d divides qn − 1. Lenstra and Schoof [7] showed that for any prime power q and
positive integer n, there is a primitive normal basis of Fqn over Fq. The following proposition
describes degree 3 Kummer extensions of primitive normal bases of F2n/F2.

Proposition 3. Let n be a positive integer such that 3 divides 2n − 1. Assume that N =
(α2i)1≤i≤n−1 is a primitive normal basis F2n/F2. Then:
1. There exists β in F23n such that K = N ∪ βN ∪ β2N is a degree 3 Kummer extension of N .
2. If γ = C + βD + β2E is an element of F23n expressed in K, then squaring is given by

γ2 = C> + βG+ β2D>,

where C> and D> stand for right-cyclic shifts of the coordinate vectors of C and D; and

G = tE> × T

is a vector-matrix multiplication between the transpose of the right-cyclic shift of the coordi-
nate vector of E and the multiplication table of N .

3. The complexity of K consists in at most:
(a) 6 multiplications and 15 additions between elements of F2n ,
(b) 2 vector-matrix multiplications between vectors in F2n and the multiplication table ofN .

4. IfN has subquadratic complexity and subquadratic weight in n, thenK has also subquadratic
complexity in n.

Proof. 1. Since α generates F∗2n , the polynomial x3−α is irreducible over F2n . The result follows
from [[6], Chapter VI, Theorem 6.2].

2. Let C = ∑n−1
i=0 ciα

2i , D = ∑n−1
i=0 diα

2i and E = ∑n−1
i=0 eiα

2i be the linear combinations of
C,D and E with respect to N . We have

(C + βD + β2E)2 = ∑n−1
i=0 ci−1α

2i + β2∑n−1
i=0 di−1α

2i + β4∑n−1
i=0 ei−1α

2i

= ∑n−1
i=0 ci−1α

2i + β
∑n−1
i=0 ei−1

∑n−1
k=0 tikα

2k + β2∑n−1
i=0 di−1α

2i
.
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where subscripts are taken modulo n and (tik)i,k stands for the multiplication table of N . So

(C + βD + β2E)2 = C> + β(tE> × T ) + β2D>,

where C>, D> and E> stand for right-cyclic shifts of the coordinate vectors of C,D,E, and
tE> × T

is a vector-matrix multiplication between the transpose of E> and the multiplication table of
N .

3. Let C = C0 + βC1 + β2C2 and D = D0 + βD1 + β2D2 be two elements of F23n expressed
in K. A Karatsuba-like multiplication algorithm gives

C ×D = β4C2D2 + β2
(
(C2 + βC1 + C0)(D2 + βD1 +D0) + C2D2 + (βC1 + C0)(βD1 +D0)

)
+(βC1 + C0)(βD1 +D0).

So

C ×D = β4C2D2 + β2
(
β
(
(C0 + C1 + C2)(D0 +D1 +D2) + (C0 + C2)(D0 +D2)

+(C0 + C1)(D0 +D1) + C0D0
)

+ C2D2 + (C0 + C2)(D0 +D2) + C0D0

)
+β2C1D1 + β

(
(C0 + C1)(D0 +D1) + C1D1 + C0D0

)
+ C0D0.

Since β3 = α, we have

(15)

C ×D = C0D0 + α
(
C0D0 + (C0 + C1)(D0 +D1) + (C0 + C2)(D0 +D2)

+(C0 + C1 + C2)(D0 +D1 +D2)
)

+β
(
C0D0 + C1D1 + αC2D2 + (C0 + C1)(D0 +D1)

)
+β2

(
C0D0 + C1D1 + C2D2 + (C0 + C2)(D0 +D2)

)
So the product C ×D consists in:
(a) 6 products and 15 additions between elements lying in the field F2n ;
(b) 2 vector-matrix multiplications between vectors in Fn

2 and the multiplication table of N . These
correpond to the computation of the terms αC2D2 and

α
(
C0D0 + (C0 + C1)(D0 +D1) + (C0 + C2)(D0 +D2) + (C0 + C1 + C2)(D0 +D1 +D2)

)
.

4. The same argument as in the proof of Proposition 1 shows that a normal basis with subquadratic weight
and subquadratic complexity in n yields Kummer extended bases with subquadratic complexity in n.

�

3.2. Density. We just described squaring and multiplication in F23n with respect to a Kummer
extension K = N ∪ βN ∪ β2N of a primitive normal basis

N = {α, α2, . . . , α2n−1}
of F2n/F2. In this section we are interested in multiplication tables of K. These are 3n × 3n
matrices with entries in F2. For (i, δ) ∈ {0, . . . , n− 1} × {0, 1, 2}, we set κi+δn = α2i

βδ so that
K = (κ`)0≤`≤3n−1.
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Lemma 2. With the above notation, let w(N ) be the weight of the normal basis N .
1. For 0 ≤ ` ≤ n − 1, the number of non-zero entries in the `-th multiplication table of K, is

equal to

w(N ) + 2
∑

0≤i,j≤n−1
ϕ(

n−1∑
r=0

tj−i,`−itr,`),

where subscripts are taken modulo n, (ti,j)0≤i,j≤n−1 is the multiplication table ofN , and ϕ is
the unique ring homomorphism from F2 into Z.

2. For n ≤ ` ≤ 2n − 1, the number of non-zero entries in the `-th multiplication table of K, is
equal to

2w(N ) +
∑

0≤i,j≤n−1
ϕ(

n−1∑
r=0

tj−i,`−itr,`).

3. The `-th multiplication table of K, for 2n ≤ ` ≤ 3n− 1, has 3w(N ) non-zeros entries.
The density of K is given by

d(K) = 6d(N ) + 3
∑

0≤`≤n−1

∑
0≤i,j≤n−1

ϕ(
∑

0≤r≤n−1
tj−i,r−itr,`).

Proof. The multiplication tables T` of K are given by the block matrix

(α2i
α2j )0≤i,j≤n−1 (βα2i

α2j )0≤i,j≤n−1 (β2α2i
α2j )0≤i,j≤n−1

(βα2i
α2j )0≤i,j≤n−1 (β2α2i

α2j )0≤i,j≤n−1 (αα2i
α2j )0≤i,j≤n−1

(β2α2i
α2j )0≤i,j≤n−1 (αα2j

αj)0≤i,j≤n−1 (βαα2i
α2j )0≤i,j≤n−1


1. For 0 ≤ ` ≤ n − 1, the components of the matrix T` come from 1 block (α2i

α2j )0≤i,j≤n−1
and 2 blocks (αα2i

α2j )0≤i,j≤n−1. Using the same argument as in the proof of Proposition 1,
we conclude that the total number of non-zero entries in T` is equal to

w(N ) + 2
∑

0≤i,j≤n−1
ϕ(

n−1∑
r=0

tj−i,r−itr,`),

where subscripts are taken modulo n, (ti,j)0≤i,j≤n−1 is the multiplication table of N , and ϕ is
the unique ring homomorphism from F2 into Z.

2. For n ≤ ` ≤ 2n− 1, the components of the matrix T` come from 2 blocks (βαiαj)0≤i,j≤n−1
and 1 block (βααiαj)0≤i,j≤n−1. So the total number of non-zero entries in Tk is equal to

2w(N ) +
∑

0≤i,j≤n−1
ϕ(

n−1∑
r=0

tj−i,r−itr,`).
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TABLE 1. Sums of cross-products of the multiplication table of the best known
normal bases of F2n/F2, for even integers 2 ≤ n ≤ 14

n Modulus Normal elements
∑

0≤`≤n−1
∑

0≤i,j≤n−1 ϕ(∑0≤r≤n−1 tj−i,r−itr,`)
2 1 + x+ x2 x 5
4 1 + x+ x4 x3 25
6 1 + x+ x6 x3 + x4 + x5 101
8 1 + x+ x3 + x4 + x8 x6 + x7 233
10 1 + x3 + x10 x3 + x5 + x7 + x9 181

12 1 + x3 + x12 x2 + x3 + x4 + x5

+x6 + x7 + x8 + x9 265

14 1 + x5 + x14 x5 + x6 + x7 + x9

+x12 + x13 677

TABLE 2. Sums of cross-products of the multiplication table of the best known
normal bases of F2n/F2, for even integers 16 ≤ n ≤ 26

n Modulus Normal elements
∑

0≤`≤n−1
∑

0≤i,j≤n−1 ϕ(∑0≤r≤n−1 tj−i,r−itr,`)

16 1 + x3 + x16 + x16 x6 + x8 + x9 + x11 + x12

+x13 + x14 + x15 1921

18 1 + x3 + x18 x4 + x5 + x7 + x8 + x9

+x11 + x15 + x16 + x17 613

20 1 + x3 + x20 x3 + x8 + x11 + x15 + x16

+x17 + x18 + x19 1625

22 1 + x+ x22 x8 + x11 + x12

+x19 + x20 + x21 2005

24 1 + x+ x3 + x4 + x24 x5 + x6 + x10 + x16

+x17 + x18 + x19 + x23 3961

26 1 + x+ x3 + x4 + x26
x5 + x10 + x12 + x15 + x16

+x19 + x20 + x21 + x22

+x23 + x25
2501

3. For 2n ≤ ` ≤ 3n−1, the components of the matrix T` come from 3 blocks (β2αiαj)0≤i,j≤n−1.
So the total number of non-zero entries in T` is equal to 3w(N ).

�

We computed the sums
n−1∑
`=0

∑
0≤i,j≤n−1

ϕ(
n−1∑
r=0

tj−i,r−itr,`)

of cross-products of the multiplication table of the best known normal bases of F2n/F2 for even
integers 2 ≤ n ≤ 26. The results are provided by tables 1 and 2. These sums are useful when
computing densities of Kummer extended bases from formula given in Lemma 2. To design
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the tables we used [[8], Section 2.2] and the website accompanying it which is available at
https://people.math.carleton.ca/ daniel/hff/.

4. TOWERS OF EXTENSIONS

It is clear that extended bases obtained by iterating Artin-Schreier theory corresponds to ex-
tended bases constructed from Artin-Schreier-Witt theory. In this section, we study extended
bases in the context of towers of field extensions constructed from Kummer theory. We are also
interested in towers combining Artin-Schreier and Kummer theories. Indeed any primitive nor-
mal basis of F2n/F2 admits a Kummer extension of degree d, provided d divides 2n − 1. A
question is whether the Kummer extended basis itself admits a Kummer extension or an Artin-
Schreier extension.

Lemma 3. Let N = (α, α2, . . . , α2n−1) be a normal basis of F2n/F2.
1. There exists β in F22n such that A = N ∪ βN is an Artin-Schreier extension of N .

(a) The polynomial X2 +X + β is irreducible over F22n if and only if n is odd (if that is the
case one says that N admits a degree 4 Artin-Schreier-Witt extension, or a biquadratic
Artin-Schreier extension).

(b) Assume that 3 divides 22n − 1. Then the polynomial X3 + β is irreducible over F22n

if and only if the class of β generates F∗22n/F∗322n (if that is the case one says that the
Artin-Schreier extension A admits a degree 3 Kummer extension).

2. Assume that 3 divides 2n− 1 and that β is an element in F23n such that K = N ∪ βN ∪ β2N
is a degree 3 Kummer extension of N . Then:
(a) The polynomial X2 + X + β is always reducible over F23n (one says that the Kummer

extension K admits no Artin-Schreier extension).
(b) If N is a primitive normal basis, and if the 3-adic valuation satisfies

v3

(23n − 1
2n − 1

)
= 1,

then the polynomial X3 + β is irreducible over F23n (in that case one says thatN admits
a bicubic Kummer extension).

Proof. 1. This is [[11], Lemma 3.4].
(a) This assertion corresponds [[11], Lemma 5.1].
(b) The assertion follows from [[6], Chapter VI, Theorem 6.2] or [[2], A V.84].

2. (a) The characteristic polynomial of β over F2n is X3 − α ∈ F2n [X]. So TrF23n/F2n (β) = 0.
We have

TrF23n/F2(β) = TrF2n/F2(TrF23n/F2n (β)) = 0.
From [[6], Chapter VI, Theorem 6.3], there exists γ in F23n such that β = γ2 + γ. So
X2 +X + β is a reducible polynomial over F23n .

(b) We know that β3 = α. So β has order 3(2n − 1) in F∗23n because 3 divides 2n − 1 and α
generates F∗2n . Let δ be a generator of F∗23n . Then there exists an integer r ≥ 1 which is
prime to 23n − 1 such that

β = δ
r(23n−1)
3(2n−1) .

https://people.math.carleton.ca/~daniel/hff/
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Since v3

(
23n−1
2n−1

)
= 1 and r is prime to 3, we have

v3

(
r(23n − 1)
3(2n − 1)

)
= 0.

So β is not a cube in F23n . We conclude that F23n(β) is a degree 3 cyclic extension of
F23n by [[6], Chapter VI, Theorem 6.2] or [[2], A V.84].

�

5. CONCLUSION

This paper presents bases of F2nd/F2 constructed by extending normal bases of F2n/F2 from
Artin-Schreier theory and Kummer theory respectively. In case d is equal to 2, 3 and 4, we
explain how squaring in F2nd can be efficiently computed from the extended bases. We also
explain how a Karatsuba-like multiplication algorithm may be used to efficiently compute the
product of two elements in F2nd . Then we specify conditions under which Artin-Schreier and
Kummer theories may be combined in order to extend normal bases of F2n/F2.

From the study made in Sections 2 and 3, we can actually determine properties of Kummer
extensions of an Artin-Schreier extended basis. Indeed let N = (α, α2, . . . , α2n−1) be a normal
basis of F2n/F2 and

A = N ∪ βN
an Artin-Schreier extension ofN . Assume that 3 divides 22n− 1. Assume that β is not a cube in
F22n . Let γ be an element of F26n such that

KA = A ∪ γA ∪ γ2A

is a degree 3 Kummer extension of A (see Lemma 3 1.(b)). Multiplications in F26n with respect
to K is described from Propositions 1 and 3. On the one hand, squaring an element

X = (A+ βB) + γ(C + βD) + γ2(E + βF ) ∈ F26n

is given by

X2 = (A+ βB)2 + γ2(C + βD)2 + γ4(E + βF )2

=
(

(A> + tB> × T ) + βB>

)
+ γ

(
tF> × T + β(E> + F> + tF> × T )

)
+ γ2

(
(C> + tD> × T ) + βD>

)
,

where A>, B>, C>, D>, E>, F> stand for right-cyclic shifts of the coordinate vectors of A, B,
C, D, E, F , and

tX × T
is a vector-matrix multiplication between the transpose of X and the multiplication table of N .
On the other hand, the product of two distinct elements

X1 = (A1+βB1)+γ(C1+βD1)+γ2(E1+βF1) and X2 = (A2+βB2)+γ(C2+βD2)+γ2(E2+βF2)
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is given by

X1 ×X2 = (A1 + βB1)(A2 + βB2)

+ α

(
(A1 + βB1)(A2 + βB2) +

(
(A1 + βB1) + (C1 + βD1)

)(
(A2 + βB2) + (C2 + βD2)

)
+

(
(A1 + βB1) + (E1 + βF1)

)(
(A2 + βB2) + (E2 + βF2)

)
+

(
(A1 + βB1) + (C1 + βD1) + (E1 + βF1)

)(
(A2 + βB2) + (C2 + βD2) + (E2 + βF2)

))

+ +β
(

(A1 + βB1)(A2 + βB2) + (C1 + βD1)(C2 + βD2)α(E1 + βF1)(E2 + βF2)

+
(
(A1 + βB1) + (C1 + βD1)

)(
(A2 + βB2) + (C2 + βD2)

))

+ β2
(

(A1 + βB1)(A2 + βB2) + (C1 + βD1)(C2 + βD2)(E1 + βF1)(E2 + βF2)

+
(
(A1 + βB1) + (E1 + βF1)

)
+
(
(A2 + βB2) + (E2 + βF2)

))
.

Moreover, the density of KA is computed from the following block matrix



(α2i
α2j ) (βα2i

α2j ) (γα2i
α2j ) (γβα2i

α2j ) (γ2α2i
α2j ) (γ2βα2i

α2j )

(βα2i
α2j ) (β2α2i

α2j ) (γβα2i
α2j ) (γβ2α2i

α2j ) (γ2βα2i
α2j ) (γ2β2α2i

α2j )

(γα2i
α2j ) (γβα2i

α2j ) (γ2α2i
α2j ) (γ2βα2i

α2j ) (βα2i
α2j ) (β2α2i

α2j )

(γβα2i
α2j ) (γβ2α2i

α2j ) (γ2βα2i
α2j ) (γ2β2α2i

α2j ) (β2α2i
α2j ) (β3α2i

α2j )

(γ2α2i
α2j ) (γ2βα2i

α2j ) (βα2i
α2j ) (β2α2i

α2j ) (γβα2i
α2j ) (γβ2α2i

α2j )

(γ2βα2i
α2j ) (γ2β2α2i

α2j ) (β2α2i
α2j ) (β3αα2i

α2j ) (γβ2α2i
α2j ) (γβ3αα2i

α2j )



If the original normal basis N has quasi-linear complexity O(n log n| log log n|) and linear
weight O(n), then A has also quasi-linear complexity and its density is quadratic by Proposition
1. From argument analogous to the one used in the proof of Proposition 2, we deduce thatKA has
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quasi-linear complexity. Obviously, degree d Kummer extensions of an Artin-Schreier extension
of a normal basis N of F2n/F2 are useful when doing arithmetic in F22nd provided that d is not
too large. In order to fully take advantage of properties of the original normal basis, we are only
authorized to construct Kummer extended bases with low degrees.

We know (from equation (4)) that the complexity of a multiplication algorithm using multipli-
cation tables of a basis B depends on the density of B. So density is an important criterion when
selecting efficient extended bases. Since polynomials of the form X3 + α are sparser than the
ones of the form X2 +X +α, we guess that there are many cases for which extended bases con-
structed from Kummer theory have better densities than the ones from Artin-Schreier theory. We
used Magma [1] to construct Table 3 which confirm our guess by comparing the densities of the
best known Kummer extended bases to the densities of the best known Artin-Schreier extended
bases and the densities of the best known normal bases of F2m/F2 in case 6 ≤ m ≤ 78. We
observe that (when they exist) Kummer extended bases have better densities than both others,
except in cases m ∈ {18, 24} for which the densities of Kummer extended bases lie between the
densities of both others.
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