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Abstract—This paper proposes a robust control strategy for
a High Voltage Direct Current (HVDC), in order to improve
the dynamic behavior performance under a wide range of
operating conditions, parameters uncertainties, input and state
constraints. It proposes first to model the HVDC and investi-
gates the robust control based on Model Recovery Anti-windup
(MRAW) to improve regional performance and stability of
HVDC systems with saturating actuators. More precisely, in this
paper sufficient conditions based on Linear Matrix Inequalities
(LMIs) are derived for robust stabilization, in the sense of
Lyapunov method. First, a robust controller is designed to show
a desirable nominal performance by ignoring states and control
inputs constraints. Next, an additional compensator is designed
to mitigate the adverse effects due to state and the control
constraints. The proposed strategy validations are performed
using a MATLAB/Simulink software.

I. INTRODUCTION

In the transmitting power over long distances, High Volt-
age Direct Current (HVDC) transmission systems are used
because there are several advantages for the Voltage Source
Converter (VSC) based HVDC transmission (VSC-HVDC)
compared to the conventional, thyristor based HVDC. One
of the advantages of VSC-HVDC is that it can supply in-
ductive or capacitive reactive power to the connected AC
system in addition to supplying real power interchange with
the DC link. Moreover, VSC- HVDC has high speed and
high voltage switches [1]-[4]. Its known that, VSC- HVDC
dynamics are effect by changing its operating conditions, so
the controller design problem to provide required performance
over an expected range of operating conditions is arises. In
addition, controller design for state and actuator constrained
VSC-HVDC systems is a challenging problem. It becomes
more complex if the multivariable HVDC system is subject
to parameter uncertainties, which is quite common in many
physical systems. The parameter uncertainties may come with
the change of environment (temperature change, pressure
change, load change, etc.), changes of AC grid parameters
due to disturbances like short-circuits [5], [6], ageing of
components, measurement error, etc.. Parameter uncertainties
make the values of the parameters deviate from the nominal
values and may degrade the system performance or even cause
instability of the system.
Several authors have presented mathematical models and con-
trol strategies for VSC-HVDC transmission that include small
signal stability [7], decoupling control in converter stations

using feedback linearization [8], LMI based robust control
[9]-[16], and adaptive control [17]-[19]. Most of these papers
have not considered the parameter uncertainties and/or the hard
constraints.
The main contributions of this paper are twofold: The primary
objective is to investigate and propose a reliable model of
VSC-HVDC systems. The second main contribution corre-
sponds to the proposition of a robust control based on Model
Recovery Anti-windup (MRAW), in order to improve the
dynamic behavior performance under wide range of oper-
ating conditions, parameters uncertainties, input and state
constraints and minimize the tracking reference error. The
sufficient conditions are formulated in the format of LMIs.
The effectiveness of the robust controllers is demonstrated
using the simulation studies with the aid of the MATLAB
software package. The rest of the paper is organized as
follows. In section II, a state space of the HVDC dynamics is
presented. In section III, the control problem representation is
formulated. The proposed controller structure is developed in
section IV. Simulation results are presented that illustrates the
effectiveness of the proposed strategies in section V. Finally,
the conclusions and future prospects are presented in section
VI.

II. VSC-HVDC POWER STRUCTURE AND ITS DYNAMICS
NONLINEAR MODEL

VSC-HVDC transmission power structure is depicted in
Figure 1. For system modelling, a monopolar HVDC system
with mettalic return is considered. It has two conversion
stations that employ bidirection three-phased (voltage-source)
AC-DC power converters. They are interlinked by means of
a DC cable and their connection with AC grid is realised by
using a step-up trans- former. The AC grid is represented by
infinite buses and equivalent AC lines. As in real application,
converters are operating in switched mode. Therefore, filtering
elements are found on each station: capacitors on DC side and
line reactors (inductors) on AC side. A supplementary low-
pass filter is inserted between line reactor and transformer in
order to alleviate the high frequency switching components.
Both VSC of HVDC link are operated in pulse-width mod-
ulation (PWM) in order to interchange averaged sinusoidal
variables with AC grid. VSC control is focused precisely to
shaping this averaged behaviour. The state space can be given
as the following,



Fig. 1. HVDC power structure simplified.

ẋ(t) = Ax(t) +Bu(t) (1)
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The outputs of the HVDC are defined as the following;
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where the states variables and the control input is defined as
the following,

x1 = ig1d x2 = ig1q x3 = i∞1d x4 = i∞1q
x5 = vDC1 x6 = iDC x7 = vDC2 x8 = ig2d
x9 = ig2q x10 = i∞2d x11 = i∞2q
u1 = β1d u2 = β1q u3 = β2d u4 = β2q

where iDC is the DC line current, vDC1 is the DC voltage
for VSC on left side, ig1d and ig1q are the grid current on
d and q axis for AC filter on the left side, respectively, ig2d,
ig2q are the grid current on d and q axis for AC filter on
the right side, β1d, β1q , vDC1 are variables for VSC on left
side, β2d, β2q , vDC2 are variables for VSC on right side (βij ,
i ∈ {1, 2}, j ∈ {1, 2} are the duty rations of the converter,
i.e., the controls of the VSC system), i∞2d, i∞2q , are AC grid
currents on the right side, i∞1d, i∞1q , are AC grid currents on
the left side, Lg1, Lg2, rg1, rg2, Lr1, Lr2, rr1, rr2, Rs, C1,
C2, rDC , LDC , E and w are constants, P2, Q1,Q2 are active
power and reactive power, repectively. The system parameters
are given values of these constants are provided as:

Variable Names Constants Values
AC grid inductance Lg1 = Lg2 0.11Ω
AC grid resistance rg1 = rg2 0.01Ω
Filter inductance Lr1 = Lr2 0.025Ω
Filter resistance rr1 = rr2 0.08Ω

AC filter resistance Rs 2Ω
DC capacitor filter C1 = C2 220 ∗ 10−6F
DC line resistance rDC 1.39Ω
DC line inductance LDC 1.59 ∗ 10−2H

Grid voltage E 187 ∗ 103V
Grid frequency w 314rad/sec

III. PROBLEM FORMULATION

The objective is to design robust controller based on LMI
for HVDC transmission systems taking into consideration pa-
rameter uncertainties, constraints on states and control inputs.
With this constraints the aim of this controller is to regulate
output variable according to the following:

1) Consider the following linear system with parameter
uncertainties, constrained states and controls, therefore
(1) rewritten as the following,

ẋ(t) = (A+ ∆A)x(t) + (B + ∆B)sat(u(t))
y(t) = Cx(t)

(3)

where x(t) ∈ <n×1 and u(t) ∈ <m×1 are the state
vectors and the HVDC control input, respectively, C ∈
<g×n is the system output matrix, ∆A ∈ <n×nand
∆B ∈ <n×m are the uncertainties of the constant sys-
tem matrices A ∈ <n×n and B ∈ <n×m, respectively,



in our application n = 11, m = 4, g = 4 and function
sat represents the nominal saturation as defined after in
(11).

2) In this study, the parameter uncertainties are assumed
given by,

∆A = EF1(t)H1 ∆B = EF2(t)H2 (4)

where E, H1 and H2 are known real constant ma-
trices which characterize the parameter uncertainties
for the nominal matrices A and B, F1(t) and F2(t)
are unknown real matrices with Lebesgue measurable
elements, satisfying

Fi(t)
TFi(t) ≤ I i = 1, 2 (5)

where I is identity matrix.
3) Let the state be constrained as follows

γ = {x ∈ <n×1/ − q ≤ x ≤ q; q ∈ <n×1} (6)

From (6) , we can seen that −q ≤ x ≤ q is equivalent
to x ≤ q and −x ≤ q which in augmented form can
be expressed as [I;−I]x ≤ [q; q], where I stands for
the identity matrix. If we define M = [I;−I] and N =
[q; q], then (6) can be written as the following

γ(M,N) = {x ∈ <n×1/Mx ≤ N} (7)

Therefore M ∈ <h×n and N ∈ <h×1 are known. In this
paper, we consider the current and voltage variables (x3,
x4, x3, x4, x10, x11) are constrained as the following;

−2000Amp ≤ x3 ≤ 2000Amp
−2000Amp ≤ x4 ≤ 2000Amp

10KV ≤ x5 ≤ 380KV
10KV ≤ x7 ≤ 380KV

−2000Amp ≤ x10 ≤ 2000Amp
−2000Amp ≤ x11 ≤ 2000Amp

(8)

4) also, let the control input be constrained as follows

Λ = {u ∈ <m×1/ − z ≤ u ≤ z; z ∈ <m×1} (9)

In our application, the constraints on control inputs u1,
u2, u3 and u4 are considered between −z = −1 &
z = 1 as the followiong

−1 ≤ u1 ≤ 1 − 1 ≤ u2 ≤ 1
−1 ≤ u3 ≤ 1 − 1 ≤ u4 ≤ 1

(10)

and the actuator saturation, which is defined by

sat(u) =


umin if u(t) ≤ umin

u(t) if umax ≤ u(t) ≤ umin

umax if u(t) ≥ umax

(11)
where umin = −1 and umax = 1 are minimum and
maximum control inputs, respectively.

5) Controlling the DC voltage for VSC on left side
(y1=VDC1), active (y2=P2) and reactive powers (y3=Q1,
y4=Q2) to their set points (so that the controlled output
yi (i = 1, 2, 3, 4) tracks its reference value yi,ref

(i = 1, 2, 3, 4). Accordingly, the tracking error εi
(i = 1, 2, 3, 4) approaches zero when the time tends to
infinity. In order to force to zero the steady-state tracking
error, we add new state which corresponds to the integral
of the tracking error εi (i = 1, 2, 3, 4). Therefore we
define ξi =

∫
εidt (i = 1, 2, 3, 4) with εi = yi − yi,ref

therefore,
x12 = ξ1 =

∫
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The augmented by integrators state space model is
deducted from the six equations below:

ẋ(t) = Ax(t) +Bu(t)
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We consider the set point is given by
y1,ref=VDC1,ref=320KV , y2,ref=P2,ref=100MW ,
y3,ref=Q1,ref=250MVA, y4,ref=Q2,ref=250MVA.

IV. THE PROPOSED ROBUST CONTROLLER WITH STATE
AND CONTROL CONSTRAINTS STRATEGY

This section presents a systematic robust control scheme for
HVDC to compensate the effect parameter uncertainties and
regulate output variable taking in consideration the constraints
on states and control inputs. For the robust control scheme
implementation based on the MRAW (Model Recovery Anti-
windup). Sufficient conditions are derived for robust stabi-
lization in the sense of Lyapunov stability. The sufficient
conditions are formulated in the format of LMIs. First, a robust
controller is designed to show a desirable nominal performance
by considering the state and the control constraints in a LMI
formalism and take in consideration the parameter uncertain-
ties. Then, an additional MRAW compensator is designed
to mitigate the adverse effects due to state and the control
constraints as shown in the following subsections.

A. The Proposed Robust Controller with State and Control
Constraints Strategy

The closed-loop system with robust controllers is depicted
in Figure 2. To design the proposed controller, we consider two



Fig. 2. Overall HVDC system schematic diagram with compensation structure
for states and control inputs constrained based on MRAW strategy.

classes of robust controllers that meet the saturation constraints
(8) and (10) and compensate the effect parameter uncertainties
which is defined in (4), one is given by

u(t) = KX(t) = KsX(t) (14)

and the other is given by

u(t) =
[
Ks I

] [X(t)
φ(t)

]
= Ka

[
X(t)
φ(t)

]
(15)

where X(t) is given in (13) and φ(t) is based on the
dynamics of the MRAW, which is given by,

ẋd(t) = Axd(t) +Bϕ
φ(t) = KdCxd(t) +KdDϕ

(16)

where xd(t) is the state vector of the MRAW. The advantage
of adding MRAW architecture is to compensate the undesired
effects of control saturation. The closed-loop system with these
controllers is given in Figure 2, where the dashed part is absent
and K = Ks for (14) while the dashed part is present and
K = Ka for (15).

B. Proposed Stability and Robustness for HVDC Systems with
Parameter Uncertainties and Constraints Strategy

In this section, we derive the closed loop system stabil-
ity conditions and calculate the robust controller gains and
MRAW compensation gains.

1) Dynamics of Closed-Loop System in Absence of MRAW
Compensator:
In this section, robust stabilization sufficient condition and
corresponding synthesis approach for uncertain HVDC
systems with sector saturating actuator and states saturating
are design in the absence of MRAW compensator. The stability
and robustness analysis with reference to an uncertain control
system described by (8) under the constrains on the states and
the control inputs is summarized in the following theorem 1.

The proof is shown in the appendix A.

Theorem 1: The uncertain HVDC system (3) and (4)
subject the constrained states and the control inputs is robustly
stabilizable if the controller gains are set to K = OZ−1, there
exist positive definite symmetric matrix P = Z−1 and scalars
ι, δ and βi, such that the following LMI is satisfied,

[
ÂZ + ZÂT + (B̂O) + (B̂O)T + δEET ZH1

T +OH2
T

H1Z +H2O −δI

]
≤ 0

(17)

[
ιβiNi −MiZM

T
i βi

βi 1

]
≥ 0 for 1 ≤ i ≤ h

(18)[
1 Oj

OT
j Z

]
≥ 0 for 1 ≤ j ≤ m (19)

where h and m are defined in (6) and (7), let Oj , Ni and Mi

are the jth and ith row of O, N and M , respectively and ι
is constant.

Proof. The proof can be given as the following. In order to
carry out the analysis for robust control strategy, the closed-
loop system should be obtained first. Therefore, robust control
system of the state with integrators without control saturation
can be obtained. Substituting (14) into (13) and (3), we obtain
the dynamics of the closed loop system:

Ẋ(t) = (Â+ ∆Â)X + (B̂ + ∆B̂)(KX(t))

Y (t) = ĈX(t)
(20)

Based on the useful lemma [20], we can proof the part of
the parameter uncertainties (17). Based on [21], can easily be
shown that (max|KX| =

√
KP−1KT )XTPX≤1. Squaring

this expression, inserting the definition of Z and O, and
performing a Schur complement shows that the KX ≤ 1 ∀ :
XTPX ≤ 1 is equivalent to (19).

2) Dynamics of Closed-Loop System in Presence of MRAW
Compensator:
To design the compensation gains (Kd) in (16), the closed-loop
system related the augmented system state should be defined.
In this case, we consider the HVDC system (3) without the
parameter uncertainties (∆A = 0 and ∆B = 0 ). After a
suitable change of coordinates the interconnection between
ϕ = sat(u) − u(t) and (16), which is named the compact
antiwindup closed-loop system as given in Figure 2. The
compensation gains (Kd) is obtained based on the following
theorem 2

Theorem 2: If there exists an MRAW controller (16), a
symmetric positive definite matrix G and a positive scalar
α such that the following LMI hold. Then, the antiwindup
closed-loop system is asymptotically stable,




GĀT + ĀG B̄W +GC̄T 0 GC̄T

∗ D̄W +WD̄T − 2W 0 WD̄T

∗ ∗ −αI 0
∗ ∗ ∗ −αI


≤ 0

(21)

G = GT ≥ 0 (22)

Proof. The closed loop system (20) without the parameter
uncertainties (∆Â = 0 and ∆B̂ = 0) with MRAW (15) and
(16) can be rewetting as the following

Ẋ(t) = ÂX(t) + B̂sat(u)

Y (t) = ĈX(t) + D̂sat(u)
(23)

From (23) and (16), we obtain,

Ẋ(t) = [Â+ B̂Ks]X(t) + B̂KdĈxd(t) + [B̂KdD̂ + B̂]ϕ

Y (t) = [Ĉ + D̂Ks]X(t) + D̂KdĈxd(t) + [D̂KdD̂ + D̂]ϕ
(24)

Then from (16) and (24) , the augmented closed loop model
is written as:

Ẋa(t) = ĀXa(t) + B̄ϕ
Ya(t) = C̄Xa(t) + D̄ϕ

(25)

Where Xa(t) =

[
X(t)
xd(t)

]
, Ā =

[
Â+ B̂Ks B̂KdĈ

0 Â

]
,

B̄ =

[
B̂KdD̂ + B̂

B̂

]
, C̄ =

[
Ĉ + D̂Ks D̂KdĈ

]
,

D̄ =
[
D̂KdD̂ D̂

]
.

By applying the Lyapunov function V (Xa(t)) =
Xa(t)TPaXa(t) on (25) and using the Schur complement
method we can obtain (21) and (22).

V. SIMULATIONS AND RESULTS

In this section, we apply our results to HVDC (1). The
control objective of this paper is to design a robust control
law for the HVDC system (1) to ensure that all signals in the
closed-loop system are bounded and regulate output variable
in the presence of the parameter uncertainties, the constraints
on states and control inputs.

Figure 3 and Figure 4 show the time response of constrained
states ( AC grid currents on the left side (i∞1q), and on the
right (i∞2d)) and control actions, respectively, in the presence
of parametric uncertainties, states and control input constrains.
The parametric uncertainties within 20% is considered, this
means that E, H1 and H2 matrices are selected about 20%
from the nominal value from system matrix A and input matrix
B. In addition the additive disturbance to the ouptut matrix is
Dis = [0.01 0.01 0.01 0.01]T (from the nominal value
of the ouput), therefore Y = CX + DisCXsin(3t), where
DisCXsin(3t) is additive disturbance term. If this percentage
is increased, the system lost its perfermorane. Figure 5 and
Figure 6 show the system ouputs (DC voltage, active and

reactive power) and tracking error, respectively, from initial
condition xo = [1046.7 − 5331.6 1977 749.3 319891 −
61 320063 878 −5278 498 −2000]T , together with control
evolution. It can be seen that robust feedback is achieved with
give a good tracking. Figure 7 shows the time response of
control actions with and without limitation on the DC voltage.
It can be seen that from Figure 7 without the constraints on
VDC1 and without MRAW, that there are more oscillation
on the control action compared to the limitation case and
with MRAW. In summary results, we can be seen that the
system trajectory follows the trajectory of the reference input.
Thus, the proposed controller is robust against norm-bounded
parametric uncertainties with respected constraints.
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Fig. 6. DC voltage, active and reactive power tracking error.
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Fig. 7. Time response of the control action with and without VDC limitation.

VI. CONCLUSION

In this paper the mathematical models of the main com-
ponents of the VSC-based HVDC transmission system were
presented. There are two main difficulties in the controller de-
sign for real systems: parametric uncertainties and saturations.
Parameter uncertainties often degrade system performance and
may even lead to instability and saturation reduce the system
performance. In this paper stabilization of HVDC system with
parametric uncertainties and having restricted states and/or
controls is studied. In the sense of Lyapunov method, for
the HVDC system, sufficient conditions are formulated in the
format of LMIs (Linear Matrix Inequalities). The MRAW is
used to compensate the effect of the control saturation. The ad-
vantage of the MRAW architecture lies in the fact that the anti-
windup filter keeps track (via MRAW states) of the amount of
HVDC states response that is missing in the saturated closed-
loop due to the undesired effects of saturation. The design
scheme was applied to the stabilizing control of the HVDC.
The simulation results proved the effectiveness, robustness
and better tracking performance of the proposed controller
in controlling HVDC systems with parametric uncertainties
and the inputs and states constraints. It is planned in the near
future, first to validate this control methodology on a HVDC
inserted in a more detailed AC grid and next to implement
the overall proposed control strategy on the actual hardware
platform. In addition, modify this methodology to deals with
nonlinear model. In future work, the stability with respect
to the constraints on the system and eliminate the effect of

disturbance on system performance will study by synthesizing
a Lyapunov quadratic function and by using LMI.
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