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ON A HAMILTONIAN REGULARIZATION OF SCALAR
CONSERVATION LAWS

BILLEL GUELMAME

Abstract. In this paper, we propose a Hamiltonian regularization of scalar conservation
laws, which is parametrized by ℓ > 0 and conserves an H1 energy. We prove the existence
of global weak solutions for this regularization. Furthermore, we demonstrate that as ℓ
approaches zero, the unique entropy solution of the original scalar conservation law is
recovered, providing justification for the regularization.

This regularization belongs to a family of non-diffusive, non-dispersive regularizations
that were initially developed for the shallow-water system and extended later to the Euler
system. This paper represents a validation of this family of regularizations in the scalar
case.

AMS Classification : 35L65; 35B65; 35L67; 35Q35.
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1. Introduction

Hyperbolic conservation laws, such as the inviscid Burgers equation and the barotropic
Euler system, are known to develop discontinuous shocks even when the initial data is a
smooth C∞ function. This poses a challenge both in numerical simulations and in theo-
retical studies. In order to avoid these discontinuous shocks, diffusion and/or dispersion
terms can be added into the equations. In [6], Clamond and Dutykh derived a non-diffusive,
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2 GUELMAME

non-dispersive regularized Saint-Venant (rSV) system, which is Galilean invariant and con-
serves an H1-like energy for smooth solutions. The weakly singular shock profiles of the
rSV system have been studied in [27], while the local well-posedness and the blow-up sce-
narios for the rSV system have been studied in [26]. A regularized barotropic Euler (rE)
system was proposed and studied in [18] as a generalization of the rSV system. Both the
rSV and rE systems are locally well-posed in Hs with s ⩾ 2, however, their solutions may
develop singularities in finite time [26, 16]. The study of these systems remains challenging,
with both the existence of global weak solutions and the understanding of the limiting case
being outstanding problems. However, due to the similarities between the rSV, rE, and the
Serre–Green–Naghdi (SGN) systems, it may be possible to obtain global weak solutions
for small-data of the rSV and rE systems following a recent proof for the SGN with surface
tension [17].

Inspired by the rSV system, the regularized Burgers (rB) equation

ut + uux = ℓ2 [utxx + 2ux uxx + uuxxx] (1.1)

have been proposed in [19], where ℓ is a positive parameter. Being a scalar equation, the
rB equation is more tractable than the rSV system. In [19], a study of weakly singular
shocks and cusped traveling-wave weak solutions of (1.1) is established. Also, inspired by
[2, 3], a proof the existence of two types of global weak solutions of (1.1), conserving or
dissipating the energy is presented. The dissipative solution of (1.1) satisfies the one-sided
Oleinik inequality

ux(t, x) ⩽ 2/t, ∀ (t, x) ∈ (0,∞)×R. (1.2)

The limiting cases of ℓ → 0 and ℓ → ∞ have also been studied in [19]. However, the
equations satisfied by the limits were not well established. The rB equation (1.1) must be
compared to the well-known dispersionless Camassa–Holm (CH) equation [5]

ut + 3uux = ℓ2 [utxx + 2ux uxx + uuxxx] . (1.3)

Both (1.1) and (1.3) conserve an H1 energy (not uniformly on ℓ) for smooth solutions. A
key difference between the two equations is that (1.1) is Galilean invariant while (1.3) is
not. This Galilean invariance is significant not only from a physical point of view, but
also mathematically. Due to the Galilean invariance of the rB equation, the constant on
the right-hand side of the Oleinik inequality (1.2) is independent of ℓ. On the other hand,
the dissipative solutions of the CH equation satisfy a similar inequality as (1.2), but with
a constant that depends on ℓ. As a result, the compactness arguments presented in [19]
cannot be used for the CH equation. However, the limiting case of the viscous CH equation
have been studied in [7, 9, 23] under the condition “ℓ is small enough compared to the
viscosity parameter”. The authors proved that as the viscosity parameter goes to zero, the
unique entropy solution of the scalar conservation law ut + (3u/2)x = 0 is recovered.

This paper is a continuation of the previous one [19]. Our goal is to generalize the rB
equation (1.1) to regularize scalar conservation laws, to prove the existence of global weak
solution of the regularized equation, and to study the limiting cases ℓ → 0 and ℓ → ∞.
We consider the equation

ut + f(u)x = ℓ2
[
uxxt + f ′(u)uxxx + 2 f ′′(u)ux uxx + 1

2
f ′′′(u)u3x

]
, (1.4)
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where f is a uniformly convex (f ′′(u) ⩾ c > 0) flux, the rB equation (1.1) is recovered
taking f(u) = u2/2. The equation (1.4) has several interesting properties, such as con-
servation of an H1 energy for smooth solutions, and both Hamiltonian and Lagrangian
structures. Holden and Raynaud [20] conducted a study on a generalized version of both
the Camassa–Holm equation and the hyperelastic-rod wave equation. This study includes
the equation (1.4), which we derived here from a distinct motivation to regularize scalar
conservation laws. The existence of global weak solutions of the Camassa–Holm equation
and its generalizations in the space H1 has been widely studied before. There are two types
of solutions, conserving and dissipating the energy. The proof of the existence of conser-
vative solutions uses equivalent systems of ODEs written in the Lagrangian coordinates
[2, 20]. Conservative solutions fail to satisfy the one-sided Oleinik inequality [19], which
is a crucial property of entropy solutions of scalar conservation laws. Hence, to regularize
scalar conservation laws, we need to consider dissipative solutions of (1.4). Dissipative
solutions can be obtained through various methods, such as equivalent systems in the La-
grangian coordinates [3], vanishing viscosity [8, 29], and the convergence of finite difference
schemes [10, 11]. In this paper, we demonstrate the existence of global weak solutions of
(1.4) with a different method. Our approach involves an approximated equation through a
cut-off in the Riccati equation, similar to the methods employed in [30]. Our approximated
equation is globally well-posed, we obtain then some uniform estimates that allow us to
use classical compactness arguments with Young measures [15]. Taking the limit in the
approximated equation leads to the global dissipative solution of (1.4).

The formal limit ℓ→ 0 and ℓ→ ∞ in (1.4) lead to the equations

ut + f(u)x = 0 as ℓ → 0, (1.5a)

[ut + f(u)x]x = 1
2
u2x f

′′(u) as ℓ → ∞. (1.5b)

Equation (1.5a) is known as the scalar conservation law, while (1.5b) is a generalized
Hunter–Saxton equation [21]. The classical Hunter–Saxton (HS) equation is recovered
taking f(u) = u2/2. The HS equation and its generalization (1.5b) admit conservative
and dissipative global weak solutions [1, 4, 22]. In a previous study [19], the limiting cases
ℓ→ 0 and ℓ→ ∞ of (1.1) were investigated. However, the two limits satisfy equations that
involve Radon measures which were not identified. This present work proves that, when
ℓ→ 0, the dissipative solution of (1.4) converges to the unique entropy solution of (1.5a).
Furthermore, as ℓ→ ∞, the dissipative solution of (1.4) converges to a dissipative solution
of the generalized Hunter–Saxton equation (1.5b). In the case where ℓ → 0, we present
improved estimates compared to those found in [19]. These improved estimates enable us
to identify the Radon measure that was left unidentified in [19]. In order to identify the
Radon measure in the case of ℓ → ∞, we employ some Young measures techniques. This
enables us to take the limit of a quadratic term while only having a weak limit.

This paper is organized as follows. In Section 2, we present the variational formulations
and other properties of the equation (1.4). We state the main results of the paper in
Section 3. Section 4 presents the approximated equation of (1.4) and provides some uniform
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estimates. Section 5 establishes the existence of a global dissipative solution. The limiting
case ℓ→ 0 is studied in Section 6. Finally, Section 7 focuses on the case ℓ→ ∞.

2. Variational formulations

This section is devoted to present some properties of the regularized equation (1.4),
including its Hamiltonian and Lagrangian structures.

Applying the operator ( 1− ℓ2∂ 2
x )

−1
to (1.4), we obtain

ut + f(u)x + 1
2
ℓ2
(
1 − ℓ2 ∂ 2

x

)−1 [
f ′′(u) u 2

x

]
x

= 0. (2.1)

The equation (1.4) can be obtained as the Euler–Lagrange equation of the Lagrangian
density

Lℓ
def
= 1

2
ϕx ϕt + F (ϕx) +

1
2
ℓ2

[
f ′(ϕx) ϕ

2
xx − ϕxxxϕt

]
, ϕx = u,

where F ′(u) = f(u). A Hamiltonian structure also exists for the equation (2.1), that can
be obtained with the Hamiltonian operator and functional

D
def
=

(
1 − ℓ2 ∂2x

)−1
∂x, H

def
=

∫ [
F (u) + 1

2
ℓ2 f ′(u) u2x

]
dx, (2.2)

so the equation of motion is given by

ut = −D δu H,

where the operator D is a Hamiltonian operator. Defining

P
def
= 1

2

(
1− ℓ2∂ 2

x

)−1 {
f ′′(u)u2x

}
= 1

2
G ∗

{
f ′′(u)u2x

}
, (2.3)

where

G
def
= (2ℓ)−1 exp(−| · |/ℓ).

Smooth solutions of (2.1) satisfy the energy conservation[
1
2
u2 + 1

2
ℓ2 u 2

x

]
t
+

[
K(u) + 1

2
ℓ2 f ′(u)u2x + ℓ2 uP

]
x

= 0, (2.4)

whereK ′(u) = uf ′(u). Another conservation equation that corresponds to the Hamiltonian
(2.2) can be obtained[
F (u) + 1

2
ℓ2 f ′(u) u2x

]
t
+
[
1
2
f(u)2 + ℓ2 f(u)P + 1

2
ℓ2 f ′(u)2 u2x + 1

2
ℓ4 P 2 − 1

2
ℓ6 P 2

x

]
x
= 0.

In next section, we present the main results of this paper.

3. Main results

We consider the Cauchy problem

uℓt +
[
f(uℓ) + 1

2
ℓ2G ∗

{
f ′′(uℓ)

(
uℓx
)2}]

x
= 0, (3.1)

with uℓ(0, x) = u0(x). Using that P − ℓ2Pxx = f ′′(uℓ)
(
uℓx
)2
/2 and differentiating (3.1)

w.r.t x one obtains

uℓxt +
[
f ′(uℓ)uℓx

]
x

= − P + 1
2
f ′′(uℓ)

(
uℓx
)2
. (3.2)
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We start this section by defining dissipative weak solutions of (3.1).

Definition 3.1. We say that uℓ ∈ L∞(R+, H1)∩Lip(R+, L2) is a weak dissipative solution
of (3.1) if it satisfies the initial condition uℓ(0, ·) = u0 with (3.1) in the L2 sense and
dissipates the energy[

1
2

(
uℓ
)2

+ 1
2
ℓ2
(
uℓx
) 2

]
t
+

[
K

(
uℓ
)

+ 1
2
ℓ2 f ′(uℓ) (

uℓx
)2

+ ℓ2 uℓ P
]
x
⩽ 0. (3.3)

Moreover, uℓ is right continuous in H1. More precisely, for all t0 ⩾ 0 we have

lim
t→t0
t>t0

∥∥uℓ(t, ·) − uℓ(t0, ·)
∥∥
H1 = 0. (3.4)

Theorem 3.2. Let f ∈ C4 be a uniformly convex flux (f ′′(u) ⩾ c > 0), u0 ∈ H1(R) and ℓ >
0, then there exists a global weak dissipative solution uℓ ∈ L∞([0,∞), H1(R))∩C([0,∞)×R)
of (3.1) in the sense of Definition 3.1 satisfying the following

• For any T > 0, any bounded set [a, b] ⊂ R and α ∈ [0, 1) there exists C =
C(α, T, a, b, ℓ) > 0 such that∫ T

0

∫ b

a

[∣∣uℓt∣∣2+α
+

∣∣uℓx∣∣2+α
]
dx dt ⩽ C. (3.5)

• The solution satisfies the one-sided Oleinik inequality

uℓx(t, x) ⩽
1

c t/2 + 1/M
a.e. (t, x) ∈ (0,∞)×R, (3.6)

where M = supx u
′
0(x) ∈ (0,∞].

Moreover, if f ′′(u) ⩽ C, u′0 ∈ L1(R) and u′0(x) ⩽M <∞ then∥∥uℓ∥∥
L∞ ⩽

∥∥uℓx∥∥L1 ⩽ ∥u′0∥L1 (cM t/2 + 1)2C/c , ∀ℓ ∈ (0,∞). (3.7)

Remark 3.3. The constant C > 0 in (3.5) depends also on ℓ. In Lemma 7.1 below, we
prove that if ℓ is far from 0, one can chose a constant C independent on ℓ ⩾ 1.

The aim of this paper is to prove that the equation (3.1) is indeed a regularisation of
scalar conservation laws. i.e., as ℓ→ 0 the dissipative solution of (3.1) giving by Theorem
3.2 converges to the unique entropy solution of the scalar conservation law (1.5a).

Theorem 3.4. Let f ∈ C4 be a uniformly convex flux such that C ⩾ f ′′(u) ⩾ c > 0. Let
u0 ∈ H1(R) such that u′0 ∈ L1(R) and u′0(x) ⩽ M < ∞, and let also uℓ be the dissipative
solution of (3.1) given by Theorem 3.2, then there exists a limit u0 ∈ L∞

loc([0,∞), L1
loc(R))

such that

• uℓ ℓ→0−−→ u0 in L∞
loc([0,∞), Lp

loc(R)) for all p ∈ [1,∞).
• u0 is the unique entropy solution of the scalar conservation law (1.5a).

As mentioned above, taking ℓ→ ∞ formally in (3.1) we obtain the generalized Hunter–
Saxton equation (1.5b). We prove here that, up to a subsequence, the dissipative solution
of (3.1) converges to a dissipative solution of (1.5b) as ℓ→ ∞.
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Definition 3.5. We say that u ∈ L∞(R+, Ḣ1(R)) is a weak dissipative solution of (1.5b)
if it satisfies the initial condition uℓ(0, ·) = u0 with (1.5b) in the sense of distributions and
dissipates the energy [

(u∞x ) 2
]
t
+

[
f ′(u∞) (u∞x )2

]
x
⩽ 0. (3.8)

Moreover, u is right continuous in Ḣ1. More precisely, for all t0 ⩾ 0 we have

lim
t→t0
t>t0

∥u(t, ·) − u(t0, ·)∥Ḣ1 = 0. (3.9)

Theorem 3.6. Let f ∈ C4 be a uniformly convex flux (f ′′(u) ⩾ c > 0), u0 ∈ H1(R) and let
uℓ be the dissipative solution of (3.1) given by Theorem 3.2, then there exists a subsequence
of

(
uℓ
)
ℓ
that we denote also

(
uℓ
)
ℓ
and a limit u∞ ∈ L∞

loc([0,∞)×R) ∩ L∞([0,∞), Ḣ1(R))
such that

• uℓ ℓ→∞−−−→ u∞ in L∞
loc([0,∞)×R) ∩ Ḣ1

loc([0,∞)×R).
• u∞ is a dissipative solution of the generalized Hunter–Saxton equation (1.5b).
• u∞x (t, x) ⩽ 1

c t/2+1/M
a.e. (t, x) ∈ (0,∞)×R, where M = supx u

′
0(x) ∈ (0,∞].

• u∞t , u∞x ∈ L2+α
loc ([0,∞)×R), ∀α ∈ [0, 1).

Moreover, if f ′′(u) ⩽ C, u′0 ∈ L1(R) and u′0(x) ⩽M <∞ then

∥u∞x ∥L1 ⩽ ∥u′0∥L1 (cM t/2 + 1)2C/c . (3.10)

Remark 3.7.

• If f(u) = u2/2, the equation (1.5b) is the classical Hunter–Saxton equation, and
u∞ is the unique [12] dissipative solution of (1.5b).

• The proof presented in this paper of the limiting case ℓ→ 0 (Theorem 3.4) cannot
be used for the Camassa–Holm equation (1.3).

• The proof of Theorem 3.6 (except (3.10)) works for the Camassa–Holm equation. In
other words, the dissipative solutions of the Camassa–Holm equation (1.3) converge
to the dissipative solutions of the Hunter–Saxton equation (Eq. 1.5b with f(u) =
u2/2) as ℓ→ ∞.

4. The approximated equation

The local (in time) well-posedness of the equation (3.1) can be obtained easily using
Kato’s theorem for quasi-linear equations [24]. However, for uniformly convex fluxes non-
trivial solutions blow-up in a finite time. The blow-up occurs due the quadratic terms in
(3.2), this can be proved simply by following the characteristics in the equation (3.2) and
using that P ⩾ 0. In order to prove the existence of global dissipative solutions of (3.1),
we use a cut-off function instead of the quadratic terms of (3.2) that behaves like a linear
function when uℓx is very large and negative (near to −∞). This cut-off is the key point to
obtain global solutions. As in [30], we define for any ε > 0

χε(q)
def
=

(
q +

1

ε

)2

1(−∞,− 1
ε
](q) =

{(
q + 1

ε

)2
, q ⩽ −1/ε,

0, q > −1/ε.
(4.1)
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In order to obtain smooth solutions of the truncated equation, we choose χε to be C1 and
piecewise C2 instead of a rough cut-off.

Let u0 ∈ H1 and jε be a Friedrichs mollifier, we define uε0
def
= u0 ∗ jε and we consider the

approximated Cauchy problem

uℓ,εt +
[
f(uℓ,ε) + 1

2
ℓ2G ∗

{
f ′′(uℓ,ε)

{
(uℓ,εx ) 2 + χε(u

ℓ,ε
x )

}}]
x
= 0, uℓ,ε(0, ·) = uε0. (4.2)

Defining

qℓ,ε
def
= uℓ,εx , P ε def

= 1
2
G ∗

{
f ′′(uℓ,ε)

{
(uℓ,εx ) 2 + χε(u

ℓ,ε
x )

}}
. (4.3)

Differentiating (4.2) with respect to x we obtain

qℓ,εt + f ′(uℓ,ε) qℓ,εx + 1
2
f ′′(uℓ,ε) (qℓ,ε)2 + P ε − 1

2
f ′′(uℓ,ε)χε(q

ℓ,ε) = 0. (4.4)

Multiplying (4.2) by uℓ,ε and (4.4) by ℓ2qℓ,ε we obtain the energy equation[
1
2

(
uℓ,ε

)2
+ 1

2
ℓ2
(
qℓ,ε

) 2
]
t
+

[
K

(
uℓ,ε

)
+ 1

2
ℓ2 f ′(uℓ,ε) (

qℓ,ε
)2

+ ℓ2 uℓ,ε P ε
]
x

= 1
2
ℓ2 f ′′(uℓ,ε) qℓ,ε χε(q

ℓ,ε) ⩽ 0. (4.5)

Our goal is to prove that the approximated equation (4.2) admits global smooth solutions,
and, taking ε→ 0 we obtain global weak solutions of (3.1). We present now the existence
of global solutions of (4.2).

Theorem 4.1. Let f ∈ C4, ℓ, ε > 0 and u0 ∈ H1, there exists a global smooth solution
uℓ,ε ∈ C(R+, H3(R)) ∩ C1(R+, H2(R)) of (4.2) satisfying (4.5).

The proof of Theorem 4.1 is classical and is omitted here. The local well-posedness
of (4.2) can be obtained using Kato’s theorem for quasi-linear hyperbolic equations [24].
When qℓ,ε ⩽ −1/ε, the quadratic term in the Riccati equation (4.4) becomes linear, this pre-
vents the singularities from appearing in finite time and leads to the global well-posedness
of (4.2). □
Integrating (4.5), we obtain∫

R

[
(uℓ,ε)2 + ℓ2 (uℓ,εx )2

]
dx − ℓ2

∫ t

0

∫
R

f ′′(uℓ,ε)uℓ,εx χε(u
ℓ,ε
x ) dx dt

=

∫
R

[
(uε0)

2 + ℓ2 (∂xu
ε
0)

2] dx ⩽
∫
R

[
(u0)

2 + ℓ2 (u′0)
2
]
dx. (4.6)

The energy equation (4.6) implies that

∥uℓ,ε∥L2 ⩽
(
ℓ2 + 1

) 1
2 ∥u0∥H1 , (4.7a)

∥uℓ,εx ∥L2 ⩽
(
ℓ−2 + 1

) 1
2 ∥u0∥H1 . (4.7b)

Then, the embedding H1 ↪→ L∞ implies that

∥uℓ,ε∥L∞ ⩽ Cℓ ∥u0∥H1 . (4.8)
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Using that χε(q) ⩽ q2 and Young inequality we obtain for all p ∈ [1,∞] that

∥P ε∥Lp ⩽ C ∥G∥Lp

∥∥uℓ,εx ∥∥2

L2 ⩽ C̃ ℓ
1−p
p

(
ℓ−2 + 1

)
, (4.9a)

∥P ε
x∥Lp ⩽ C ∥Gx∥Lp

∥∥uℓ,εx ∥∥2

L2 ⩽ C̃ ℓ
1−2p

p
(
ℓ−2 + 1

)
. (4.9b)

We prove now a one-sided Oleinik inequality that is uniform on ℓ > 0 and ε > 0. This
inequality is very important. It is used in Lemma 4.3 below to obtain a uniform estimate
of the total variation of the solution uℓ,ε. Moreover, it is used in Sections 5 and 7 below to
study the limiting cases ε → 0 and ℓ → ∞. It is also used in Section 6 to show that the
limit as ℓ→ 0 is the unique entropy solution of the scalar conservation law (1.5a).

Lemma 4.2. Let u0 ∈ H1, f ′′(u) ⩾ c > 0 and uℓ,ε be the solution of (4.2) given by
Theorem 4.1, then

uℓ,εx (t, x) ⩽
1

c t/2 + 1/M
a.e. (t, x) ∈ (0,∞)×R, (4.10)

where M = supx u
′
0 ∈ [0,∞].

Proof. For a fixed x ∈ R, let X(·, x) be the solution of the ODE Xt(t, x) = uℓ,ε(t,X(t, x))

with X(0, x) = x. Let h(t)
def
= uℓ,εx (t,X(t, x)), the equation (4.4) implies that

h′(t) ⩽ −1
2
c h(t)2 + 1

2
f ′′(uℓ,ε(t,X(t, x)))χε(h(t)). (4.11)

Initially, h(0) = ∂xu
ε
0(x) ⩽ supx u

′
0(x) = M . Let us assume that there exits t1 ⩾ 0 such

that h(t1) = 1/(ct1/2+1/M) and t2 > t1 such that h(t) > 1/(ct/2+1/M) for all t ∈ [t1, t2].
Then, for all t ∈ [t1, t2], we have χε(h(t)) = 0 and

h′(t) ⩽ −1
2
c

1

(c t/2 + 1/M)2
, =⇒ h(t) ⩽

1

c t/2 + 1/M
.

The invertibility of the map x 7→ X(t, x) ends the proof of (4.10). □
The inequality (4.7b) is not uniform on ℓ (when ℓ is small). In order to obtain a strong

limit as ℓ→ 0 one need to obtain a uniform estimate of the solution. The following lemma
gives a uniform estimate of the total variation of uℓ,ε which plays a very important role in
the study of the limiting case ℓ→ 0 in Section 6 below.

Lemma 4.3. Let f be a smooth flux such that 0 < c ⩽ f ′′(u) ⩽ C. Let also u0 ∈ H1 with

u′0 ∈ L1 and M
def
= supx∈R u

′
0(x) <∞. Then∥∥uℓ,ε∥∥

L∞ ⩽
∥∥uℓ,εx ∥∥

L1 ⩽ ∥u′0∥L1 (cM t/2 + 1)2C/c , ∀ℓ, ε ∈ (0,∞). (4.12)
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Proof. Multiplying (4.4) by sign(qℓ,ε), we obtain∣∣qℓ,ε∣∣
t
+

[
f ′(uℓ,ε)

∣∣qℓ,ε∣∣]
x

= −ℓ2 sign(qℓ,ε)P ε
xx

= −ℓ2 1qℓ,ε>0P
ε
xx + ℓ2 1qℓ,ε⩽0P

ε
xx

= −2 ℓ2 1qℓ,ε>0P
ε
xx + ℓ2 P ε

xx

= 21qℓ,ε>0

[
1
2
f ′′(uℓ,ε)

(
qℓ,ε

)2
+ 1

2
f ′′(uℓ,ε)χε(q

ℓ,ε) − P ε
]
+ ℓ2 P ε

xx

⩽ 1qℓ,ε>0 f
′′(uℓ,ε)

(
qℓ,ε

)2
+ ℓ2 P ε

xx

⩽
C

c t/2 + 1/M

∣∣qℓ,ε∣∣+ ℓ2 P ε
xx.

Integrating with respect to x we obtain

d

dt

∫
R

∣∣qℓ,ε∣∣ dx ⩽
C

c t/2 + 1/M

∫
R

∣∣qℓ,ε∣∣ dx.
The last inequality with Gronwall lemma imply (4.12). □
In the study the limiting cases ε → 0 and ℓ → ∞ in Sections 5 and 7 below, we use

Young measures to identify the limits of some nonlinear terms depending on the derivative
of the solution. The L2 estimate (4.7b) is uniform on ε and ℓ (when ℓ is far from 0). This
is not enough to take the limit of the quadratic terms, in that case one need an estimate
in a Lp space for some p > 2. In the following lemma we present an estimate of the Lp

norm of uℓ,εx for any p < 3.

Lemma 4.4. Let ℓ > 0, α ∈ (0, 1), T > 0 and [a, b] ⊂ R, then there exists a constant
C = C(α, T, a, b, ℓ) > 0, such that for all ε > 0 we have∫ T

0

∫ b

a

[
|uℓ,εt |2+α + |uℓ,εx |2+α

]
dx dt ⩽ C. (4.13)

Remark 4.5. The constant C > 0 in (4.13) depends on ℓ. In Lemma 7.1 below, we prove
that if ℓ is far from 0, one can chose a constant C independent on ℓ ⩾ 1.

Proof. Without losing generality, we consider that α = 2k/(2k + 1) where k ∈ N∗. Multi-
plying (4.4) by

(
qℓ,ε

)α
, we obtain[

(qℓ,ε)
α+1

α+1

]
t

+

[
f ′(uℓ,ε)(qℓ,ε)

α+1

α+1

]
x

+ α−1
2 (α+1)

f ′′(uℓ,ε) (qℓ,ε)α+2 + (qℓ,ε)α P ε

= 1
2
f ′′(uℓ,ε) (qℓ,ε)α χε(q

ℓ,ε) ⩾ 0. (4.14)

Let Ω = [0, T ]× [a, b], Ω̃ = [0, T + 1)× (a− 1, b+ 1) and let φ ∈ C∞
c (Ω̃) be a non negative

function such that φ(t, x) = 1 on Ω. Multiplying (4.14) by φ(t, x) and using integration
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by parts with the energy conservation (4.6) we obtain∫
Ω

(qℓ,ε)α+2 dx dt ⩽
∫
Ω̃

φ(t, x) (qℓ,ε)α+2 dx dt

⩽ 2 (α+1)
c (1−α)

∫
Ω̃

φ(t, x) 1−α
2 (α+1)

f ′′(uℓ,ε) (qℓ,ε)α+2 dx dt

⩽ 2 (α+1)
c (1−α)

∫
Ω̃

φ(t, x) (qℓ,ε)α P ε dx dt − α+1
c (1−α)

∫ b+1

a−1

(∂xuε
0)

α+1

α+1
φ(0, x) dx

− 2 (α+1)
c (1−α)

∫
Ω̃

(qℓ,ε)
α+1

α+1

{
φt(t, x) + φx(t, x) f

′(uℓ,ε)
}
dx dt

⩽ C

[
∥qℓ,ε∥αL∞

t L2
x
∥P ε∥

L∞
t L

2
2−α
x

+ 1 + ∥qℓ,ε∥α+1
L∞
t L2

x

(
∥f ′(uℓ,ε) ∥L∞(Ω̃) + 1

)]
.

Using (4.9), (4.8) and the energy conservation (4.6), we obtain∫
Ω

(qℓ,ε)α+2 dx dt ⩽ C.

Then (4.13) follows directly from (4.2) and (4.9). □

5. Precompactness of the approximated equation

The aim of this section is to prove Theorem 3.2. For that purpose, we fix ℓ > 0 and we
study the limiting case ε→ 0.

Lemma 5.1. There exist uℓ ∈ L∞([0,∞), H1(R)) and a subsequence of (uℓ,ε)ε noted also
(uℓ,ε)ε such that, as ε→ 0, we have

uℓ,ε → uℓ in L∞
loc([0,∞)×R),

uℓ,ε ⇀ uℓ in H1([0, T ]×R), ∀T > 0.

Proof. Using the energy equation (4.6), we obtain that uℓ,ε is uniformly (on ε) bounded in
L∞([0,∞), H1(R)). Then (4.2), (4.8) with (4.9) imply∥∥∥uℓ,εt ∥∥∥

L2([0,T ]×R)
⩽ CT,ℓ. (5.1)

Then, the weak convergence in H1([0, T ]×R) follows directly. Using the inequality∥∥uℓ,ε(t, ·) − uℓ,ε(s, ·)
∥∥2

L2(R)
=

∫
R

(∫ t

s

uℓ,εt (τ, x) dτ

)2

dx ⩽ |t− s|
∥∥∥uℓ,εt ∥∥∥2

L2([0,T ]×R)
,

with (5.1) we obtain that for any ℓ > 0 we have

lim
t→s

∥∥uℓ,ε(t, ·) − uℓ,ε(s, ·)
∥∥
L2(R)

= 0

uniformly on ε. Then, using Theorem 5 in [28] we can prove that up to a subsequence, uℓ,ε

converges uniformly to uℓ on any compact set of [0,∞)×R as ε→ 0. □
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In order to obtain the precompactness of (P ε)ε, from (4.3), we write P ε = P ε
1 +P ε

2 such
that

P ε
1

def
= 1

2
G ∗

{
f ′′(uℓ,ε) (uℓ,εx ) 2

}
, P ε

2
def
= 1

2
G ∗

{
f ′′(uℓ,ε)χε(u

ℓ,ε
x )

}
.

Lemma 5.2. There exist P̃ ∈ L∞([0,∞), H1(R)) and a subsequence of (P ε
1 )ε noted also

(P ε
1 )ε such that, as ε→ 0, we have

P ε
1 → P̃ in Lp

loc([0,∞)×R), ∀p ∈ (1,∞). (5.2)

Moreover, there exists a constant Cℓ > 0, such that for all ε > 0 we have∥∥f ′′(uℓ,ε)χε(q
ℓ,ε)

∥∥
L1([0,∞)×R)

+ ∥P ε
2 ∥L1([0,∞),W 2,1(R)) ⩽ εCℓ. (5.3)

Proof. We recall that χε(ξ) = 0 for any ξ ∈ [−1/ε,∞) and that f ′′(u) ⩾ 0, χε(ξ) ⩾ 0 for
any u, ξ ∈ R. Then, using the energy equation (4.6) we obtain∫

R+

∫
R

f ′′(uℓ,ε)χε(q
ℓ,ε) dx dt =

∫
{qℓ,ε⩽−1/ε}

f ′′(uℓ,ε)χε(q
ℓ,ε) dx dt

⩽
∫
{qℓ,ε⩽−1/ε}

[
−ε qℓ,ε

]
f ′′(uℓ,ε)χε(q

ℓ,ε) dx dt

⩽ −ε
∫
R+

∫
R

f ′′(uℓ,ε) qℓ,ε χε(q
ℓ,ε) dx dt ⩽ εCℓ.

This with the definition of P ε
2 imply (5.3). From (4.2) and (4.4) we obtain[

f ′′(uℓ,ε)
(
qℓ,ε

)2]
t
+

[
f ′′(uℓ,ε) f ′(uℓ,ε)

(
qℓ,ε

)2]
x

= − ℓ2 f ′′′(uℓ,ε)P ε
x

(
qℓ,ε

)2 − 2 f ′′(uℓ,ε)P ε qℓ,ε + χε(q
ℓ,ε) f ′′(uℓ,ε)2 qℓ,ε. (5.4)

Then from the definition of P ε, the energy equation (4.6), (4.8) and (4.9) we obtain that the

quantity
[
f ′′(uℓ,ε)

(
qℓ,ε

)2]
t
is bounded in L1([0,∞),W−1,1

loc (R)) for any fixed ℓ > 0. Then,

∂tP
ε
1 is bounded in L1([0,∞),W 1,1

loc (R)). As in (4.9), one can prove that P ε
1 is bounded in

L∞([0,∞),W 1,∞(R)). Using the compact embedding W 1,∞
loc (R) ⋐ Lp

loc(R), the continuous
embedding Lp

loc(R) ↪→ L1
loc(R) and Aubin lemma, one obtains the convergence (5.2). □

We proved in Lemma 5.1 the strong precompactness of (uℓ,ε)ε. However, the best estima-
tion obtained for qℓ,ε = uℓ,εx is (4.13) which ensures only the weak convergence in Lp with
p < 3. This is not enough to identify the limit of the quadratic term (qℓ,ε)2. In order to
overcome this problematic, we use the Young measures and we show later that the Young
measure obtained at the limit is nothing but a Dirac mass. This insures that the limit of
the quadratic term (qℓ,ε)2 is the square of the weak limit of qℓ,ε.

Lemma 5.3. There exist a subsequence of
{
qℓ,ε

}
ε
denoted also

{
qℓ,ε

}
ε
and a family of

probability Young measures µℓ
t,x on R, such that for all functions g ∈ C(R) with g(ξ) =

O(|ξ|2) at infinity, and for all φ ∈ C∞
c ((0,∞)×R) we have

lim
ε→0

∫
R+×R

φ(t, x) g(qℓ,ε) dx dt =

∫
R+×R

φ(t, x)

∫
R

g(ξ) dµℓ
t,x(ξ) dx dt. (5.5)



12 GUELMAME

Moreover, the map

(t, x) 7→
∫
R

ξ2 dµℓ
t,x(ξ) (5.6)

belongs to L∞(R+, L1(R)).

Proof. If g(ξ) = O(|ξ|2), then the result is a direct consequences of the energy equation
(4.6) and Lemma A.1. If g(ξ) = O(|ξ|2), let ψ be a smooth cut-off function with ψ(ξ) = 1
for |ξ| ⩽ 1 and ψ(ξ) = 0 for |ξ| ⩾ 2, then

lim
ε→0

∫
R+×R

φ(t, x) gk(q
ℓ,ε) dx dt =

∫
R+×R

φ(t, x)

∫
R

gκ(ξ) dµ
ℓ
t,x(ξ) dx dt, (5.7)

where gκ(ξ)
def
= g(ξ)ψ

(
ξ
κ

)
with κ > 0. Using Holder inequality, Lemma 4.4 with Ω =

supp(φ) we obtain∣∣∣∣∫
R+×R

φ(t, x)
(
g(qℓ,ε) − gκ(q

ℓ,ε)
)
dx dt

∣∣∣∣ ⩽
∫
supp(φ)∩{|qℓ,ε|⩾κ}

|φ(t, x)|
∣∣g(qℓ,ε)∣∣ dx dt

⩽ C

(∫
supp(φ)

∣∣g(qℓ,ε)∣∣p/2 dx dt

)2/p(∫
supp(φ)∩{|qℓ,ε|⩾κ}

dx dt

) p−2
p

⩽ C
[∣∣{(t, x) ∈ supp(φ), |qℓ,ε| ⩾ κ

}∣∣] p−2
p

⩽ C κ2−p.

where 2 < p < 3. The last inequality with (5.7) imply that we can interchange the limits
κ → ∞ and ε → 0. Using that |gκ| ⩽ |g| and the dominated convergence theorem we
obtain (5.5). □
Now we define

g(q)
def
=

∫
R

g(ξ) dµℓ
t,x(ξ) (5.8)

which is from (5.5) the weak limit of g(qℓ,ε). Our aim is to show that q2 = q2 which means
that µℓ

t,x = δq(t,x). For that purpose, we need the following technical lemmas.

Lemma 5.4. As t→ 0 we have∥∥uℓ − u0
∥∥
H1(R)

→ 0 and

∫
R

(
q2 − q2

)
dx → 0. (5.9)

Proof. From Lemma 5.1 and Lemma 5.3 we have for all t > 0(
uℓ,ε(t, ·), ℓ uℓ,εx (t, ·)

)
⇀

(
uℓ(t, ·), ℓ uℓx(t, ·)

)
as ε → 0 in L2(R),

uℓ,εx (t, ·)2 ⇀ q2(t, ·) when ε → 0 in D′(R).

This, with Jensen’s inequality and the energy equation (4.6) imply that∥∥(uℓ(t), ℓ uℓx(t))∥∥2

L2(R)
⩽

∥∥∥∥(uℓ(t), ℓ√q2(t)

)∥∥∥∥2

L2(R)

⩽ lim inf
ε→0

∥∥(uℓ,ε(t), ℓ uℓ,εx (t)
)∥∥2

L2(R)

⩽ lim
ε→0

∥(uε0, ℓ ∂xuε0)∥
2
L2(R) = ∥(u0, ℓ u′0)∥

2
L2(R) . (5.10)
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The energy inequality (4.6) implies that the sequences (uℓ,ε)ε and (qℓ,ε)ε are bounded in
the space L∞([0,∞), L2(R)). Using (4.2), we can prove that for all T > 0 and for all
φ ∈ H1(R), the map

t 7→
∫
R

φ(x)
(
uℓ,ε, ℓ qℓ,ε

)
dx (5.11)

is uniformly (on t ∈ [0, T ] and ε > 0) continuous. Then, Lemma A.4 implies that(
uℓ(t, ·), ℓ qℓ(t, ·)

)
⇀ (u0, ℓ u

′
0) when t → 0 in L2(R), (5.12)

which implies that

∥(u0, ℓ u′0)∥
2
L2 ⩽ lim inf

t→0

∥∥(uℓ(t), ℓ uℓx(t))∥∥2

L2 .

On another hand, (5.10) implies

lim sup
t→0

∥∥(uℓ(t), ℓ uℓx(t))∥∥2

L2(R)
⩽ ∥(u0, ℓ u′0)∥

2
L2(R) ,

then

lim
t→0

∥∥(uℓ(t), ℓ uℓx(t))∥∥2

L2(R)
= ∥(u0, ℓ u′0)∥

2
L2(R) , (5.13)

which implies with (5.12) that(
uℓ(t, ·), ℓ qℓ(t, ·)

)
→ (u0, ℓ u

′
0) when t → 0 in L2(R). (5.14)

The inequality (5.10) with (5.13) imply

lim
t→0

∥∥∥∥(uℓ(t), ℓ√q2(t)

)∥∥∥∥2

L2(R)

= lim
t→0

∥∥(uℓ(t), ℓ uℓx(t))∥∥2

L2(R)
= ∥(u0, ℓ u′0)∥

2
L2(R) . (5.15)

Then (5.9) follows directly from (5.14) and (5.15).
□

For any κ > 0, we define

Sκ(ξ)
def
= 1

2
ξ2 − 1

2
(ξ + κ)2 1ξ⩽−κ − 1

2
(ξ − κ)2 1ξ⩾κ =


−κ (ξ + 1

2
κ), ξ ⩽ −κ,

1
2
ξ2, |ξ| ⩽ κ,

κ (ξ − 1
2
κ), ξ ⩾ κ.

(5.16)

Tκ(ξ)
def
= S ′

κ(ξ) = ξ − (ξ + κ)1ξ⩽−κ − (ξ − κ)1ξ⩾κ =


−κ, ξ ⩽ −κ,
ξ, |ξ| ⩽ κ,

κ, ξ ⩾ κ.

(5.17)

Lemma 5.5. For all T > 0, we have

lim
κ→∞

∥∥∥Tκ(q) − Tκ (q)
∥∥∥
L1([0,T ]×R)

= lim
κ→∞

∥∥∥Tκ(q) − q
∥∥∥
L1([0,T ]×R)

= 0. (5.18)

Moreover, for all κ > 0 we have

1
2

(
Tκ(q) − Tκ (q)

)2

⩽ Sκ(q) − Sκ (q) . (5.19)
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Proof. From (5.17) we have

|Tκ (ξ) − ξ| ⩽ |ξ + κ| 1ξ⩽−κ + |ξ − κ| 1ξ⩾κ ⩽ 2 |ξ| 1κ⩽|ξ| ⩽ 2
κ
ξ2.

Then, we have∣∣∣Tκ (q) − Tκ (q)
∣∣∣ ⩽

∣∣∣Tκ (q) − q
∣∣∣ + |Tκ (q) − q| ⩽ 2

κ

(
q2 + q2

)
. (5.20)

Jenson’s inequality imply that q2 ⩽ q2. Lemma 5.3 implies that q2 ∈ L∞(R+, L1(R)).
Then (5.18) follows directly.

Cauchy–Schwarz inequality implies that Tκ(q)
2
⩽ Tκ(q)2, then, using the definition (5.17)

we obtain(
Tκ(q) − Tκ (q)

)2

⩽ Tκ(q)2 + Tκ (q)
2 − 2Tκ (q) Tκ(q)

= Tκ(q)2 + Tκ (q)
2 − 2Tκ (q) q + 2Tκ (q) (q + κ) 1q⩽−κ

+ 2Tκ(q) (q − κ) 1q⩾κ

= Tκ(q)2 + 2Tκ (q)
[
(q + κ) 1q⩽−κ − (q + κ) 1q⩽−κ

]
− Tκ (q)

2 + 2Tκ (q)
[
(q − κ) 1q⩾κ − (q − κ) 1q⩾κ

]
⩽ Tκ(q)2 − 2κ

[
(q + κ) 1q⩽−κ − (q + κ) 1q⩽−κ

]
− Tκ (q)

2 + 2κ
[
(q − κ) 1q⩾κ − (q − κ) 1q⩾κ

]
, (5.21)

where the last inequality follows from Jensen’s inequality with the concavity of ξ 7→
(ξ + κ)1ξ⩽−κ, the convexity of ξ 7→ (ξ − κ)1ξ⩾κ and −κ ⩽ Tκ(ξ) ⩽ κ. Since

Sκ(ξ) = 1
2
Tκ(ξ)

2 + κ (ξ − κ) 1ξ⩾κ − κ (ξ + κ) 1ξ⩽−κ

we have

Sκ(q) = 1
2
Tκ(q)2 + κ (q − κ) 1q⩾κ − κ (q + κ) 1q⩽−κ,

Sκ (q) = 1
2
Tκ(q)

2 + κ (q − κ) 1q⩾κ − κ (q + κ) 1q⩽−κ.

The last two identities with (5.21) imply (5.19). □
Now we are ready to prove the main lemma of this section that is the key to pass to the

limit ε→ 0 in the quadratic terms of (4.2).

Lemma 5.6. The measure µℓ
t,x given in Lemma 5.3 is a Dirac measure, and

µℓ
t,x(ξ) = δuℓ

x(t,x)
(ξ). (5.22)

Proof. The Idea of the proof is to consider the defect measure ∆ = q2 − q2 ⩾ 0, we obtain
then a transport inequation for

√
∆ (see (5.35) below). Then, since ∆(t = 0) = 0 we

deduce that ∆ = 0 for all time.
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However, when multiplying (4.4) by qℓ,ε a cubic term on qℓ,ε appears, in that case Lemma
5.3 cannot be used. That is the reason of using the cut-off functions defined in (5.16) and
(5.17) and then we take the limit κ→ ∞. The proof is given in several steps.

Step 1. Multiplying (4.4) by Tκ(q
ℓ,ε) we obtain[

Sκ

(
qℓ,ε

)]
t
+

[
f ′(uℓ,ε)Sκ

(
qℓ,ε

)]
x
= − P ε Tκ

(
qℓ,ε

)
− 1

2

[
(qℓ,ε)2 − χε(q

ℓ,ε)
]
f ′′(uℓ,ε)Tκ

(
qℓ,ε

)
+ qℓ,ε f ′′(uℓ,ε)Sκ

(
qℓ,ε

)
. (5.23)

Using Lemma 5.2 and taking ε→ 0 we obtain[
Sκ (q)

]
t
+

[
f ′(uℓ)Sκ (q)

]
x
= − Tκ (q) P̃ + 1

2
f ′′(uℓ)

[
2 q Sκ (q) − q2 Tκ (q)

]
. (5.24)

Step 2. Taking ε→ 0 in (4.4) we obtain

qt +
[
f ′(uℓ) q

]
x

= − P̃ + 1
2
f ′′(uℓ) q2. (5.25)

Let jε be a Friedrichs mollifier and qε
def
= q ∗ jε then using Lemma A.3 we obtain

qεt +
[
f ′(uℓ) qε

]
x

= − P̃ ∗ jε + 1
2
f ′′(uℓ) q2 + θε,

where θε → 0 in L1
loc([0,∞)×R) as ε→ 0. Multiplying by Tκ (q

ε) we obtain

[Sκ (q
ε)]t +

[
f ′(uℓ)Sκ (q

ε)
]
x

= −
{
P̃ ∗ jε

}
Tκ (q

ε) + θε Tκ (q
ε)

+ f ′′(uℓ) q Sκ (q
ε) + 1

2
f ′′(uℓ) q2 Tκ (q

ε) − f ′′(uℓ) q qε Tκ (q
ε) .

Taking ε→ 0 we obtain

[Sκ (q)]t +
[
f ′(uℓ)Sκ (q)

]
x

= − P̃ Tκ (q)

+ f ′′(uℓ) q Sκ (q) − 1
2
f ′′(uℓ) q2 Tκ (q) + 1

2
f ′′(uℓ)

(
q2 − q2

)
Tκ (q) . (5.26)

Step 3. From (5.24) and (5.26) we obtain[
Sκ (q) − Sκ (q)

]
t
+

[
f ′(uℓ)

(
Sκ (q) − Sκ (q)

)]
x
= − P̃

(
Tκ (q) − Tκ (q)

)
+ 1

2
f ′′(uℓ)

[
2 q Sκ (q) − q2 Tκ (q) − 2 q Sκ (q) + q2 Tκ (q) +

(
q2 − q2

)
Tκ (q)

]
. (5.27)

From (5.16) and (5.17) we have

ξ2 Tκ(ξ) − 2 ξ Sκ(ξ) = ξ2 Tκ(ξ) − 2 ξ Sκ(ξ) + ξ3 − ξ3

= ξ2 [Tκ(ξ) − ξ] + ξ (ξ + κ)2 1ξ⩽−κ + ξ (ξ − κ)2 1ξ⩾κ

= κ2 [Tκ(ξ) − ξ] −
(
ξ2 − κ2

)
[(ξ + κ)1ξ⩽−κ + (ξ − κ)1ξ⩾κ]

+ ξ (ξ + κ)2 1ξ⩽−κ + ξ (ξ − κ)2 1ξ⩾κ

= κ2 [Tκ(ξ) − ξ] + κ (ξ + κ)2 1ξ⩽−κ − κ (ξ − κ)2 1ξ⩾κ. (5.28)
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Then from (5.16) we have

2 q Sκ (q) − q2 Tκ (q) − 2 q Sκ (q) + q2 Tκ (q) +
(
q2 − q2

)
Tκ (q)

= (Tκ (q) + κ) (q + κ)2 1q⩽−κ + (Tκ (q) − κ) (q − κ)2 1q⩾κ

− (Tκ (q) + κ) (q + κ)2 1q⩽−κ − (Tκ (q) − κ) (q − κ)2 1q⩾κ

− κ2
(
Tκ(q) − Tκ (q)

)
− 2Tκ (q)

(
Sκ(q) − Sκ (q)

)
. (5.29)

From the definition (5.17) we have

(Tκ (q) + κ) (q + κ)2 1q⩽−κ = (Tκ (q) − κ) (q − κ)2 1q⩾κ = 0. (5.30)

Since Tκ (q) ⩾ −κ, then

− (Tκ (q) + κ) (q + κ)2 1q⩽−κ ⩽ 0. (5.31)

Let t0 > 0 and κ ⩾ 2/(ct0), then from Lemma 4.2, we have for all t ⩾ t0 that qℓ,ε ⩽ κ and
q ⩽ κ. Then, using the convexity of Tκ on (−∞, κ) and the Jensen’s inequality we obtain

−κ2
(
Tκ(q) − Tκ (q)

)
⩽ 0, ∀t ⩾ t0, κ ⩾ 2/(c t0). (5.32)

We take again t0 > 0 and κ ⩾ 2/(ct0), then for all φ ∈ C∞
c ((t0,∞)×R) we have∫

(q − κ)2 1q⩾κ φ dx dt = lim
ε→0

∫
(qℓ,ε − κ)2 1qℓ,ε⩾κ φ dx dt = 0. (5.33)

Defining ∆κ
def
= Sκ (q) − Sκ (q) and summing up (5.27), (5.29), (5.30), (5.31), (5.32) and

(5.33) we obtain that ∀t0 > 0, ∀t ⩾ t0 and ∀κ ⩾ 2/(ct0), we have

[∆κ]t +
[
f ′(uℓ)∆κ

]
x

⩽ − P̃
(
Tκ (q) − Tκ (q)

)
− f ′′(uℓ)Tκ (q)∆κ.

Step 4. Defining ∆ε
κ

def
= ∆κ ∗ jε and using Lemma A.3 we obtain

[∆ε
κ]t +

[
f ′(uℓ)∆ε

κ

]
x

⩽ − P̃
(
Tκ (q) − Tκ (q)

)
− f ′′(uℓ)Tκ (q)∆

ε
κ + θ̃ε,

where θ̃ε → 0 as ε→ 0 in L1
loc((0,∞)×R). Let β > 0, multiplying by (∆ε

κ + β)−1/2 /2 we
obtain[√

∆ε
κ + β

]
t
+

[
f ′(uℓ)

√
∆ε

κ + β
]
x

⩽ 1
2
f ′′(uℓ)

q − Tκ (q)√
∆ε

κ + β
∆ε

κ +
2 β q f ′′(uℓ) + θ̃ε

2
√
∆ε

κ + β

− 1
2
P̃
Tκ (q) − Tκ (q)√

∆ε
κ + β

.
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Taking ε→ 0 we obtain[√
∆κ + β

]
t
+

[
f ′(uℓ)

√
∆κ + β

]
x

⩽ 1
2
f ′′(uℓ)

q − Tκ (q)√
∆κ + β

∆κ +
β q f ′′(uℓ)√
∆κ + β

− 1
2
P̃
Tκ (q) − Tκ (q)√

∆κ + β
. (5.34)

Using that |Tκ(ξ)| ⩽ |ξ| and |Sκ(ξ)| ⩽ ξ2/2 we obtain∣∣∣∣12 f ′′(uℓ)
q − Tκ (q)√

∆κ + β
∆κ

∣∣∣∣ ⩽ f ′′(uℓ) |q|
√

∆κ ⩽ 1
2
f ′′(uℓ)

(
q2 + ∆κ

)
⩽ 1

2
∥f ′′(uℓ)∥L∞

(
q2 + 1

2
q2
)
.

Using (5.19) we obtain ∣∣∣∣∣12 P̃ Tκ (q) − Tκ (q)√
∆κ + β

∣∣∣∣∣ ⩽
√
2
2
P̃ .

Since the L1 convergence implies the pointwise convergence (up to a subsequence), then,

using the dominated convergence theorem with (4.8), (5.6) and the fact that P̃ ∈ L1
loc, we

obtain

lim
κ→∞

∥∥∥∥1
2
f ′′(uℓ)

q − Tκ (q)√
∆κ + β

∆κ

∥∥∥∥
L1(Ω)

+ lim
κ→∞

∥∥∥∥∥1
2
P̃
Tκ (q) − Tκ (q)√

∆κ + β

∥∥∥∥∥
L1(Ω)

= 0.

for any compact set Ω ⊂ (0,∞)×R. Taking κ→ ∞ in (5.34) we obtain[√
∆+ β

]
t
+

[
f ′(uℓ)

√
∆+ β

]
x

⩽
β q f ′′(uℓ)√

∆+ β
⩽

√
β |q| f ′′(uℓ),

where ∆
def
= q2 − q2. Taking now β → 0 we obtain[√

∆
]
t
+

[
f ′(uℓ)

√
∆
]
x

⩽ 0 in (t0,∞)×R. (5.35)

Step 5. As in [30], let φ ∈ C∞
c (R) satisfying φ(x) = 1 for |x| ⩽ 1 and φ(x) = 0

for |x| ⩾ 2. Since
√
∆ ∈ L∞((0,∞), L2(R)), then, for all n ⩾ 1, we have

√
∆φ(x/n) ∈

L∞((0,∞), L1(R)). Then almost all t > 0 are Lebesgue points of t 7→
∫
R

√
∆(t, x)φ(x/n)dx,

∀n ⩾ 1. Let t̄ > 0 be a Lebesgue point of t 7→
∫
R

√
∆(t, x)φ(x/n)dx and δ ∈ (0, t̄/2). Let

also ψ ∈ C∞
c ((0,∞)) satisfying

ψ(t) = 0 on (0, δ/2) ∪ (t̄+ δ,∞), ψ(t) = 1 on (δ, t̄− δ),

0 ⩽ ψ′(t) ⩽ C/δ, on (δ/2, δ), −ψ′(t) ⩾ C/δ, on (t̄− δ, t̄+ δ).
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Multiplying (5.35) by φ(x/n)ψ(t), integrating on (0,∞)×R and using integration by parts
one obtains

C
δ

∫ t̄+δ

t̄−δ

∫
R

√
∆(t, x)φ(x/n) dx dt ⩽ −

∫ t̄+δ

t̄−δ

∫
R

√
∆(t, x)φ(x/n)ψ′(t) dx dt

⩽ C
δ

∫ δ

δ/2

∫
R

√
∆(t, x)φ(x/n) dx dt + 1

n
||f ′(uℓ)||L∞

∫ t̄+δ

δ/2

∫
R

√
∆(t, x) |φ′(x/n)| dx dt.

From (5.9), we have

lim
t→0

∫
R

√
∆(t, x)φ(x/n) dx = 0 =⇒ lim

δ→0

1
δ

∫ δ

δ/2

∫
R

√
∆(t, x)φ(x/n) dx dt = 0.

Since t̄ > 0 is a Lebesgue point of t 7→
∫
R

√
∆(t, x)φ(x/n)dx, then taking first δ → 0 and

then n→ ∞ we obtain
√
∆(t̄, x) = 0 a.e. (t̄, x) ∈ (0,∞)×R.

Hence q2 = q2 almost everywhere, which implies that µℓ
t,x(ξ) = δq(t,x)(ξ) = δuℓ

x(t,x)
(ξ). □

Proof of Theorem 3.2. All the limits in this proof are up to a subsequence. Let uℓ,ε be
the solution given in Theorem 4.1. Then, from Lemma 5.3, Lemma 5.6 and Lemma 4.4 we
have that, as ε→ 0

uℓ,εx ⇀ uℓx in Lp
loc((0,∞)×R), (5.36)∥∥∥(uℓ,εx )2∥∥∥

L1(Ω)
→

∥∥∥(uℓx)2∥∥∥
L1(Ω)

,

for any p ∈ [2, 3) and compact set Ω ⊂ (0,∞)×R. This implies that

uℓ,εx → uℓx in L2
loc((0,∞)×R). (5.37)

Using Lemma 4.4 and Lemma 5.1 we obtain that for all p ∈ [2, 3), we have

uℓ,εt ⇀ uℓt in Lp
loc((0,∞)×R). (5.38)

From Lemma 5.6 and Lemma 5.2 we obtain

P̃ = 1
2
G ∗

{
f ′′(uℓ)

(
uℓx
)2}

. (5.39)

Now, using Lemma 5.2 and taking the weak limit ε→ 0 in (4.2) and (4.5) we obtain (3.1)
and (3.3). Doing the proof of (5.9) for any t0, we obtain that (3.4). The Oleinik inequality
(3.6) follows from Lemma 4.2. The inequality (3.5) follows from Lemma 4.4, (5.36) and
(5.38). Finally, (3.7) follows from Lemma 4.3 and (5.37). □

Remark 5.7. From (5.26), Lemma 5.6 and (5.39) we have[
Sκ

(
uℓx
)]

t
+

[
f ′(uℓ)Sκ

(
uℓx
)]

x
= −P Tκ

(
uℓx
)

+ f ′′(uℓ)uℓx Sκ

(
uℓx
)
− 1

2
f ′′(uℓ)

(
uℓx
)2
Tκ

(
uℓx
)
. (5.40)

This will be used in Section 7 below.
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6. The limiting case ℓ→ 0

Let uℓ be the dissipative solutions of (3.1) given by Theorem 3.2. The aim of this section
is to study the limit of uℓ when ℓ→ 0.

6.1. Uniform estimates for small ℓ. Considering ℓ ⩽ 1, then, from the energy equation
(3.3) we have ∫

R

(
(uℓ)2 + ℓ2 (uℓx)

2
)
dx ⩽ ∥u0∥2H1 , (6.1a)∫

R

ℓ2 P dx =

∫
R

1
2
ℓ2 f ′′(uℓ) (uℓx)

2 dx ⩽ 1
2
C ∥u0∥2H1 . (6.1b)

In order to prove that uℓ converges to the unique entropy solution of the scalar conservation
law (1.5a) we need : (i) a strong convergence of uℓ to some u0; (ii) the weak convergence
of ℓ2P ⇀ 0. The result then follows directy by taking ℓ → 0 in (3.1) and using (3.6).
However, the estimate (6.1b) in not enough to identify the weak limit of ℓ2P as ℓ → 0.
The following lemma gives a better estimation of ℓ2P .

Lemma 6.1. For all compact set Ω ⊂ (0,∞)×R and α ∈ (0, 1) there exists CΩ,α > 0 such
that for all ℓ ⩽ 1 we have ∫

Ω

ℓ2 P dx dt ⩽ ℓ
2α
2+α CΩ,α. (6.2)

Proof. Without losing of generality, we take Ω = [t1, t2]× [a, b] such that t1 > 0. We take
also α = 2k/(2k + 1) such that k ∈ N. Let ψ ∈ C∞

c (]0,∞[×R) such that ψ ⩾ 0, ψ = 1 on
Ω and supp(ψ) ⊂ [t1/2, t2 + 1]× [a− 1, b+ 1].
Step 1. Multiplying (4.4) by ℓ2|qℓ,ε| we obtain[

1
2
ℓ2 qℓ,ε |qℓ,ε|

]
t
+

[
1
2
ℓ2 f ′(uℓ,ε) qℓ,ε |qℓ,ε|

]
x
+ ℓ2 |qℓ,ε|P ε − 1

2
ℓ2 f ′′(uℓ,ε) |qℓ,ε|χε(q

ℓ,ε) = 0.

Multiplying by ψ and integrating we obtain∫
Ω

ℓ2 |qℓ,ε|P ε dx dt ⩽
∫
(0,∞)×R

ℓ2 |qℓ,ε|P ε ψ dx dt

= 1
2
ℓ2

∫
(0,∞)×R

[
ψt q

ℓ,ε |qℓ,ε| + ψx f
′(uℓ,ε) qℓ,ε |qℓ,ε|

]
dx dt

+ 1
2
ℓ2

∫
(0,∞)×R

ψ f ′′(uℓ,ε) |qℓ,ε|χε(q
ℓ,ε) dx dt.

Then, from (4.6) and (4.12) we have∫
Ω

ℓ2 |qℓ,ε|P ε dx dt ⩽ CΩ,α, ∀ε > 0, ∀ℓ ∈ (0, 1). (6.3)
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Step 2. Using (6.3) and (6.1) we have∫
Ω

ℓ2 |qℓ,ε|α P ε dx dt =

∫
Ω∩{|qℓ,ε|>1}

ℓ2 |qℓ,ε|α P ε dx dt +

∫
Ω∩{|qℓ,ε|⩽1}

ℓ2 |qℓ,ε|α P ε dx dt

⩽
∫
Ω∩{|qℓ,ε|>1}

ℓ2 |qℓ,ε|P ε dx dt +

∫
Ω∩{|qℓ,ε|⩽1}

ℓ2 P ε dx dt

⩽ CΩ,α, ∀ε > 0, ∀ℓ ∈ (0, 1). (6.4)

Step 3. Multiplying (4.4) by ℓ2(qℓ,ε)α we obtain

1− α

2 (α + 1)
ℓ2 f ′′(uℓ,ε)(qℓ,ε)2+α = ℓ2

(
(qℓ,ε)1+α

1 + α

)
t

+ ℓ2
(
f ′(uℓ,ε) (qℓ,ε)1+α

1 + α

)
x

+ ℓ2 (qℓ,ε)α P ε

− 1
2
ℓ2 f ′′(uℓ,ε) (qℓ,ε)α χε(q

ℓ,ε)

⩽ ℓ2
(
(qℓ,ε)1+α

1 + α

)
t

+ ℓ2
(
f ′(uℓ,ε) (qℓ,ε)1+α

1 + α

)
x

+ ℓ2 (qℓ,ε)α P ε.

Multiplying by ψ, doing as in step 1 and using (6.4) we obtain∫
Ω

ℓ2 (qℓ,ε)2+α dx dt ⩽ CΩ,α, ∀ε > 0,∀ℓ ∈ (0, 1).

Using now Holder’s inequality, we obtain∫
Ω

ℓ2 (qℓ,ε)2 dx dt ⩽ ℓ
2α
2+α CΩ,α, ∀ε > 0,∀ℓ ∈ (0, 1). (6.5)

Step 4. The equation (4.4) can be rewritten as

qℓ,εt +
[
f ′(uℓ,ε) qℓ,ε

]
x
+ P ε − 1

2
f ′′(uℓ,ε) (qℓ,ε)2 − 1

2
f ′′(uℓ,ε)χε(q

ℓ,ε) = 0. (6.6)

Multiplying (6.6) by ℓ2ψ and doing as in step 1 and using (4.12) we obtain∫
Ω

ℓ2 P ε dx dt ⩽ CΩ,α

[
ℓ2 +

∫
Ω

ℓ2 (qℓ,ε)2 dx dt

]
⩽ ℓ

2α
2+α CΩ,α, ∀ε > 0,∀ℓ ∈ (0, 1].

Then (6.2) follows by taking ε→ 0 with Lemma 5.2 and (5.39). □

6.2. Precompactness. In order to obtain a strong compactness of (uℓ)ℓ, we use the
Aubin–Lions–Simon theorem. For that purpose, we let I ⊂ R to be a compact inter-
val and we define

W (I)
def
=

{
g ∈ D′(I), ∃G ∈ L1(I) such that G′ = g

}
, (6.7)

where the norm of the space W (I) is given by

∥g∥W (I)
def
= inf

c∈R
∥G+ c ∥L1(I) = min

c∈R
∥G+ c ∥L1(I). (6.8)

Lemma 6.2. The space W (I) is a Banach space and the embedding

L1(I) ↪→ W (I), (6.9)

is continuous.
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Proof. Let (gn)n∈N be a Cauchy sequence in W (I) and let Gn be a primitive of gn. From
the definition of the norm (6.8), there exists a constant cn such that (G̃n − cn)n∈N (where
G̃n = Gn + cn) is a Cauchy sequence in L1(I). Let G̃ be the limit of G̃n in L1(I). Then

∥gn − G̃′∥W (I) ⩽ ∥G̃n − G̃∥L1(I), (6.10)

implying that W (I) is a Banach space.
If g ∈ L1(I), then G(x)−G(a) =

∫ x

a
g(y) dy for almost all x, a ∈ I. Therefore,

∥g∥W (I) ⩽
∫
I

|G(x) − G(a)| dx ⩽ |I|
∫
I

|g(y)| dy, (6.11)

which ends the proof of the continuous embedding. □

The previous lemma and Helly’s selection theorem imply that

W 1,1(I) ⋐ L1(I) ↪→ W (I), (6.12)

where the first embedding is compact and the second one is continuous.
The estimates (6.1) imply that uℓ is uniformly bounded on L∞(R+, L2(R)). Subse-

quently, it is also uniformly bounded on L∞(R+, L1(I)). Then (3.7) implies that uℓ is
bounded on L∞([0, T ],W 1,1(I)).

Since 0 < c ⩽ f ′′(u) ⩽ C, then cu2/2 ⩽ f(u) − f ′(0)u − f(0) ⩽ Cu2/2. Integrating
(3.1), we obtain that

∫
uℓ dx =

∫
u0 dx. This implies with (6.1) that f(uℓ)− f(0) + ℓ2P is

uniformly bounded on L∞([0, T ], L1(I)). Since uℓt = −
(
f(uℓ)− f(0) + ℓ2P

)
x
, (6.8) implies

that uℓt is bounded on L∞([0, T ],W (I)). Then, using (6.12) with Aubin–Lions–Simon
lemma [28], we obtain that, up to a subsequence, uℓ converges to some u0 in C([0, T ], L1(I))
as ℓ→ 0. Using an interpolation with (3.7), we obtain the convergence in L∞([0, T ], Lp(I))
for any p ∈ [1,∞).
The proof of Theorem 3.4 follows directly by taking ℓ → 0 in the weak formulation of

(3.1) and using Lemma 6.1 with the Oleinik inequality (3.6). Due to the uniqueness of
the entropy solution of the scalar conservation laws, we deduce that all the sequence uℓ

converges to u0.

7. The limiting case ℓ→ ∞

We consider uℓ the dissipative solutions of (3.1) given by Theorem 3.2. The aim of this
section is to study the limit of uℓ when ℓ→ ∞. In Section 5 above, a proof of the limiting
case ε → 0 is presented. In the present section we will use very similar techniques to
establish the limiting case ℓ→ ∞. Recognizing the similarity between the two sections, we
will streamline the explanations in this section, as they are closely parallel to the arguments
outlined in Section 5. For a complete understanding of the proof techniques in this section,
we encourage the reader to refer back to Section 5 when needed.

We start by obtaining some uniform estimates of uℓ when ℓ is far from 0. Considering
ℓ ⩾ 1, then the energy equation (3.3) implies∫

R

(uℓx)
2 dx ⩽ ∥u0∥2H1 . (7.1)
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This implies that
∥uℓ∥L∞

loc([0,∞)×R) + ∥uℓ∥L∞
loc([0,∞),H1

loc(R) ⩽ C. (7.2)

Using (2.3) and Young inequality we obtain for all p ∈ [1,∞] that

∥P∥Lp ⩽ C
2
∥G∥Lp

∥∥uℓx∥∥2

L2 , ∥Px∥Lp ⩽ C
2
∥Gx∥Lp

∥∥uℓx∥∥2

L2 . (7.3)

Using that ℓ ⩾ 1 and (7.1) we obtain

ℓ ∥P∥L∞ + ∥P∥Lp + ∥Px∥Lp ⩽ C. (7.4)

Lemma 7.1. Let α ∈ (0, 1), T > 0 and [a, b] ⊂ R, then there exists a constant C =
C(α, T, a, b) > 0, such that for all ℓ ⩾ 1 we have∫ T

0

∫ b

a

[
|uℓt|2+α + |uℓx|2+α

]
dx dt ⩽ C. (7.5)

Proof. When ℓ ⩾ 1, one can use (7.1), (7.2) with (7.3) and do the same proof of (4.13) to
obtain a constant C > 0 that does not depend on ℓ. We conclude by taking ε→ 0. □

Lemma 7.2. Let [a, b] ⊂ R be a compact interval. Then, there exist u∞ ∈ L∞([0,∞), H1([a, b]))
and a subsequence of (uℓ)ℓ such that, as ℓ→ ∞, we have

uℓ → u∞ in L∞([0, T ]× [a, b]), ∀T > 0,

uℓ ⇀ u∞ in H1([0, T ]× [a, b]), ∀T > 0.

Proof. Using (7.2), (3.1) and (7.4) we obtain that∥∥uℓt∥∥L2([0,T ]×[a,b])
⩽ CT . (7.6)

The weak convergence in H1([0, T ]× [a, b]) follows directly. Using the inequality∥∥uℓ(t, ·) − uℓ(s, ·)
∥∥2

L2([a,b])
=

∫ b

a

(∫ t

s

uℓt(τ, x) dτ

)2

dx ⩽ |t− s|
∥∥uℓt∥∥2

L2([0,T ]×[a,b])
,

with (7.6) we obtain that

lim
t→s

∥∥uℓ(t, ·) − uℓ(s, ·)
∥∥
L2([a,b])

= 0

uniformly on ℓ. Then, using Theorem 5 in [28] we can prove that that up to a subsequence,
uℓ converges uniformly to u∞ on any compact set of the form [0, T ]× [a, b] as ℓ→ ∞. □

Lemma 7.3. There exist a subsequence of
{
qℓ
}
ℓ
denoted also

{
qℓ
}
ℓ
and a family of prob-

ability Young measures νt,x on R, such that for all functions g ∈ C(R) with g(ξ) = O(|ξ|2)
at infinity, and for all φ ∈ C∞

c ((0,∞)×R) we have

lim
ℓ→∞

∫
R+×R

φ(t, x) g(qℓ) dx dt =

∫
R+×R

φ(t, x)

∫
R

g(ξ) dνt,x(ξ) dx dt. (7.7)

Moreover, the map

(t, x) 7→
∫
R

ξ2 dνt,x(ξ) (7.8)

belongs to L∞(R+, L1(R)).
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Proof. If g(ξ) = O(|ξ|2), then the result is a direct consequence of (7.1) and Lemma A.1. If
g(ξ) = O(|ξ|2), let ψ be a smooth cut-off function with ψ(ξ) = 1 for |ξ| ⩽ 1 and ψ(ξ) = 0
for |ξ| ⩾ 2, then

lim
ℓ→∞

∫
R+×R

φ(t, x) gk(q
ℓ) dx dt =

∫
R+×R

φ(t, x)

∫
R

gκ(ξ) dνt,x(ξ, ζ) dx dt, (7.9)

where gκ(ξ)
def
= g(ξ)ψ

(
ξ
κ

)
with κ > 0. Using Holder inequality, Lemma 7.1 and Ω = supp(φ)

we obtain∣∣∣∣∫
R+×R

φ(t, x)
(
g(qℓ) − gκ(q

ℓ)
)
dx dt

∣∣∣∣ ⩽
∫
supp(φ)∩{|qℓ|⩾κ}

|φ(t, x)|
∣∣g(qℓ)∣∣ dx dt

⩽ C

(∫
supp(φ)

∣∣g(qℓ)∣∣p/2 dx dt

)2/p(∫
supp(φ)∩{|qℓ|⩾κ}

dx dt

) p−2
p

⩽ C
[∣∣{(t, x) ∈ supp(φ), |qℓ| ⩾ κ

}∣∣] p−2
p

⩽ C κ2−p.

where 2 < p < 3. The last inequality with (7.9) imply that we can interchange the limits
κ → ∞ and ℓ → ∞. Using that |gκ| ⩽ |g| and the dominated convergence theorem we
obtain (7.7). □
For the sake of simplicity, if no confusion with (5.8) is caused, we define in this section

g(q)
def
=

∫
R

g(ξ) dνt,x(ξ) (7.10)

which is from (7.7) the weak limit of g(qℓ) as ℓ→ ∞.

Lemma 7.4. As t→ 0 we have

∥u∞ − u0∥Ḣ1(R) → 0 and

∫
R

(
q2 − q2

)
dx → 0. (7.11)

Proof. From Lemma 7.2 and Lemma 7.3 we have for all t > 0

qℓ(t, ·) ⇀ q(t, ·) = u∞x (t, ·) as ℓ → ∞ in L2(R),

qℓ(t, ·)2 ⇀ q2(t, ·) when ℓ → ∞ in D′(R).

This, with Jensen’s inequality and the energy equation (3.3) imply that

∥u∞x (t)∥2L2(R) ⩽

∥∥∥∥√q2(t)

∥∥∥∥2

L2(R)

⩽ lim inf
ℓ→∞

∥∥uℓx(t)∥∥2

L2(R)

⩽ lim
ℓ→∞

∥∥(ℓ−1 u0, u
′
0

)∥∥2

L2(R)
= ∥u′0∥

2
L2(R) . (7.12)

The inequality (7.1) implies that the sequence (qℓ)ℓ is bounded in the space L∞([0,∞), L2(R)).
Using (3.2), we can prove that for all T > 0 and for all φ ∈ H1(R), the map

t 7→
∫
R

φ(x) qℓ dx (7.13)
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is uniformly (on t ∈ [0, T ] and ℓ ⩾ 1) continuous. Then, Lemma A.4 implies that

u∞x (t, ·) ⇀ u′0 when t → 0 in L2(R), (7.14)

which implies that

∥u′0∥
2
L2 ⩽ lim inf

t→0
∥u∞x (t)∥2L2 .

On another hand, (7.12) implies

lim sup
t→0

∥u∞x (t)∥2L2 ⩽ ∥u′0∥
2
L2 ,

then

lim
t→0

∥u∞x (t)∥2L2 = ∥u′0∥
2
L2 , (7.15)

which implies with (7.14) that

u∞x (t, ·) → u′0 when t → 0 in L2(R), (7.16)

The inequality (7.12) with (7.15) imply

lim
t→0

∥∥∥∥√q2(t)

∥∥∥∥2

L2(R)

= lim
t→0

∥u∞x (t)∥2L2(R) = ∥u′0∥
2
L2(R) . (7.17)

Then (7.11) follows directly from (7.16) and (7.17). □

Lemma 7.5. The measure νt,x given in Lemma 7.3 is a Dirac measure, and

νt,x(ξ) = δu∞
x (t,x)(ξ). (7.18)

Proof. Step 0. Let Sκ and Tκ defined as in (5.16) and (5.17) respectively. As in Lemma
5.5, one can prove that for all T > 0, we have

lim
κ→∞

∥∥∥Tκ(q) − Tκ (q)
∥∥∥
L1([0,T ]×R)

= lim
κ→∞

∥∥∥Tκ(q) − q
∥∥∥
L1([0,T ]×R)

= 0. (7.19)

Step 1. Taking ℓ→ ∞ in (5.40) and using (7.4), we obtain[
Sκ (q)

]
t
+

[
f ′(u∞)Sκ (q)

]
x
= 1

2
f ′′(u∞)

[
2 q Sκ (q) − q2 Tκ (q)

]
. (7.20)

Taking ℓ→ ∞ in (3.2), we obtain

qt + [f ′(u∞) q]x = 1
2
f ′′(u∞) q2. (7.21)

Let jε be a Friedrichs mollifier and qε
def
= q ∗ jε then using Lemma A.3 we obtain

qεt + [f ′(u∞) qε]x = 1
2
f ′′(u∞) q2 + θε.

where θε → 0 in L1
loc([0,∞)×R) as ε→ 0. Multiplying by Tκ(q

ε), we obtain

[Sκ(q
ε)]t + [f ′(u∞)Sκ(q

ε)]x = − f ′′(u∞) q qε Tκ(q
ε) + f ′′(u∞) q Sκ(q

ε)

+
[
1
2
f ′′(u∞) q2 + θε

]
Tκ(q

ε).
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Taking ε→ 0, we obtain

[Sκ(q)]t + [f ′(u∞)Sκ(q)]x = − f ′′(u∞) q2 Tκ(q) + f ′′(u∞) q Sκ(q) + 1
2
f ′′(u∞) q2 Tκ(q)

= 1
2
f ′′(u∞)

[
Tκ(q)

(
q2 − q2

)
+ 2 q Sκ(q) − q2 Tκ(q)

]
. (7.22)

Step 2. From (7.20), (7.22), (5.28) and (5.16) we obtain[
Sκ (q) − Sκ(q)

]
t
+

[
f ′(u∞)

(
Sκ (q) − Sκ(q)

)]
x
=

1
2
f ′′(u∞)

[
(Tκ (q) + κ) (q + κ)2 1q⩽−κ + (Tκ (q) − κ) (q − κ)2 1q⩾κ

− (Tκ (q) + κ) (q + κ)2 1q⩽−κ − (Tκ (q) − κ) (q − κ)2 1q⩾κ

− κ2
(
Tκ(q) − Tκ (q)

)
− 2Tκ (q)

(
Sκ(q) − Sκ (q)

) ]
. (7.23)

From the definition (5.17) we have

(Tκ (q) + κ) (q + κ)2 1q⩽−κ = (Tκ (q) − κ) (q − κ)2 1q⩾κ = 0. (7.24)

Since Tκ (q) ⩾ −κ, then

− (Tκ (q) + κ) (q + κ)2 1q⩽−κ ⩽ 0. (7.25)

Let t0 > 0 and κ ⩾ 2/(ct0), then from (3.6), we have for all t ⩾ t0 that qℓ ⩽ κ and q ⩽ κ.
Then, using the convexity of Tκ on (−∞, κ) and the Jensen’s inequality we obtain

−κ2
(
Tκ(q) − Tκ (q)

)
⩽ 0, ∀t ⩾ t0, κ ⩾ 2/(c t0). (7.26)

We take again t0 > 0 and κ ⩾ 2/(ct0), then for all φ ∈ C∞
c ((t0,∞)×R) we have∫

(q − κ)2 1q⩾κ φ dx dt = lim
ε→0

∫
(qℓ − κ)2 1qℓ⩾κ φ dx dt = 0. (7.27)

Defining ∆̃κ
def
= Sκ (q) − Sκ (q) and summing up (7.23), (7.24), (7.25), (7.26) and (7.27) we

obtain [
∆̃κ

]
t
+

[
f ′(u∞) ∆̃κ

]
x

⩽ − f ′′(u∞)Tκ (q) ∆̃κ.

Step 3. Defining ∆̃ε
κ

def
= ∆̃κ ∗ jε we obtain[

∆̃ε
κ

]
t
+

[
f ′(u∞) ∆̃ε

κ

]
x

⩽ − f ′′(u∞)Tκ (q) ∆̃
ε
κ + θ̃ε,

where θ̃ε → 0 as ε→ 0 in L1
loc((0,∞)×R). Let β > 0, multiplying by

(
∆̃ε

κ + β
)−1/2

/2 we

obtain[√
∆̃ε

κ + β

]
t

+

[
f ′(u∞)

√
∆̃ε

κ + β

]
x

⩽ 1
2
f ′′(u∞)

q − Tκ (q)√
∆̃ε

κ + β
∆̃ε

κ +
2 β q f ′′(u∞) + θ̃ε

2
√
∆̃ε

κ + β
.
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Taking ε→ 0 we obtain[√
∆̃κ + β

]
t

+

[
f ′(u∞)

√
∆̃κ + β

]
x

⩽ 1
2
f ′′(u∞)

q − Tκ (q)√
∆̃κ + β

∆̃κ +
β q f ′′(u∞)√

∆̃κ + β
. (7.28)

Using that |Tκ(ξ)| ⩽ |ξ| and |Sκ(ξ)| ⩽ ξ2/2 we obtain∣∣∣∣∣∣12 f ′′(u∞)
q − Tκ (q)√

∆̃κ + β
∆̃κ

∣∣∣∣∣∣ ⩽ f ′′(u∞) |q|
√

∆̃κ ⩽ 1
2
f ′′(u∞)

(
q2 + ∆̃κ

)
⩽ 1

2
∥f ′′(u∞)∥L∞

(
q2 + 1

2
q2
)

Since the L1 convergence implies the pointwise convergence (up to a subsequence), then,
using the dominated convergence theorem with Jensen inequality, (7.2) and (7.8), we obtain

lim
κ→∞

∥∥∥∥∥∥1
2
f ′′(u∞)

q − Tκ (q)√
∆̃κ + β

∆̃κ

∥∥∥∥∥∥
L1(Ω)

= 0.

for any compact set Ω ⊂ (0,∞)×R. Taking κ→ ∞ in (7.28) we obtain[√
∆̃ + β

]
t

+

[
f ′(u∞)

√
∆̃ + β

]
x

⩽
β q f ′′(u∞)√

∆̃ + β
⩽

√
β |q| f ′′(u∞),

where ∆̃
def
= q2 − q2. Taking now β → 0 we obtain[√

∆̃
]
t
+

[
f ′(u∞)

√
∆̃
]
x

⩽ 0 in (t0,∞)×R. (7.29)

Step 4. Finaly, following Step 5 in the proof of Lemma 5.6 and using (7.11), we obtain
that ∆̃ = 0 a.e. □

Proof of Theorem 3.6. All the limits in this proof are up to a subsequence. Let uℓ be the
solution given in Theorem 3.2. Then, from Lemma 7.3, Lemma 7.5, Lemma 7.1 we have
that, as ℓ→ ∞

uℓx ⇀ u∞x in Lp
loc([0,∞)×R), (7.30)∥∥∥(uℓx)2∥∥∥

L1(Ω)
→

∥∥(u∞x )2
∥∥
L1(Ω)

,

for any p ∈ [2, 3) and compact set Ω ⊂ [0,∞)×R. This implies that

uℓx → u∞x in L2
loc([0,∞)×R). (7.31)

Using Lemma 7.1 and Lemma 7.2 we obtain that for all p ∈ [2, 3), we have

uℓt ⇀ u∞t in Lp
loc([0,∞)×R). (7.32)

Now, taking the weak limit ℓ→ ∞ in (3.2) we deduce that u∞ satisfies (1.5b). We multiply
(3.3) by ℓ−2 and we take the limit ℓ → ∞ using (7.2) with (7.4) we obtain (3.8). Doing
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the proof of (7.11) for any t0, we obtain that (3.9). The Oleinik inequality (3.6) implies
u∞x (t, x) ⩽ 1

c t/2+1/M
a.e. (t, x) ∈ (0,∞)×R. Using (7.5), (7.30) and (7.32) we obtain that

u∞t , u
∞
x ∈ L2+α

loc ([0,∞)×R), ∀α ∈ [0, 1). Finally, (3.10) follows from (3.7) and (7.31). □

Appendix A. Some classical lemmas

Here, we recall simple versions of some classical lemmas that are needed in this paper.
We start this section by the following lemma on the Young measures.

Lemma A.1. ([15]) Let O be a subset of Rn with a zero-measure boundary. For any
bounded family {vε}ε ⊂ Lp(O,RN) with p > 1 there exists a subsequence denoted also {vε}ε
and a family of probability measures on RN , {µy, y ∈ O} such that for all f ∈ C0(RN) with
f(ξ) = O(|ξ|p) at infinity and for all ϕ ∈ C∞

c (O) we have

lim
ε→0

∫
O

ϕ(y) f(vε(y)) dy =

∫
O

ϕ(y)

∫
R

f(ξ) dµy(ξ) dy (A.1)

with ∫
O

∫
R

|ξ|p dµy(ξ) dy ⩽ lim inf
ε→0

∥uε∥pLp(O). (A.2)

Also, some other results on strong and weak precompactness are needed, then we recall.

Lemma A.2. ([14]) Let Ω be an open set of Rn, assuming that fn → f in Lp(Ω) with
p ∈ (1,∞), gn is bounded in Lq with q ∈ (1,∞) and gn ⇀ g in Lq(Ω), then for any
φ ∈ Lr(Ω) such that 1/p+ 1/q + 1/r = 1, we have

lim
n→∞

∫
Ω

fn gn φ dx =

∫
Ω

f g φ dx. (A.3)

Lemma A.3. (Lemma II.1 in [13]) Let c ∈ L1
loc(R

+, H1
loc(R) and f ∈ L∞

loc(R
+, L2

loc(R)).
Let also jε be a Friedrichs mollifier, then

(c ∂xf) ∗ jε − c (∂xf ∗ jε)
ε→0−−→ 0, in L1

loc(R
+ ×R). (A.4)

Lemma A.4. (Lemma C.1 in [25]) Let (fn)n be a bounded sequence in L∞([0, T ], L2(R)).
If fn belongs to C([0, T ], H−1(R)) and for any φ ∈ H1(R), the map

t 7→
∫
R

φ(x) fn(t, x) dx

is uniformly continuous for t ∈ [0, T ] and n ⩾ 1, then (fn)n is relatively compact in the
space C([0, T ], L2

w(R)), where L
2
w is the L2 space equipped with its weak topology.
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