
HAL Id: hal-02512783
https://hal.science/hal-02512783v1

Submitted on 19 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A systemic viewpoint on the approximation of a power
transmission line model

Mohamed Belhocine, Bogdan Marinescu

To cite this version:
Mohamed Belhocine, Bogdan Marinescu. A systemic viewpoint on the approximation of a power
transmission line model. IFAC world, Jul 2017, Toulouse, France. �10.1016/j.ifacol.2017.08.2578�.
�hal-02512783�

https://hal.science/hal-02512783v1
https://hal.archives-ouvertes.fr


A systemic viewpoint on the approximation
of a power transmission line model

M. Belhocine, B. Marinescu

Ecole Centrale Nantes-LS2N, 1 rue de la Noë, 44300, Nantes, France
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Abstract: This paper explains, from a systemic viewpoint, the importance to take into account
the dynamic structure of the whole system in order to simplify the distributed parameters model
of the transmission lines. Usually, the latter is approximated without considering its connection
with the rest of the system, by comparing only its input-output behaviour with the one of the
simplified model. Here, it is shown that this way to do can lead to biased results. More precisely,
it is shown that the short-lines hypothesis leads to a reduction link with the π-model but does
not indicate clearly which dynamics have to be kept in the simplified model as well as their
number. This is illustrated by considering the voltage collapse phenomenon. From this analysis,
a more systemic approximation way is proposed to reduce subsystems of a general complex
system. In power systems field, all these investigations can help to improve the models used
for simulation and control synthesis. Especially, to better connect the models to the specific
phenomena which have to be reproduced in simulation.

Keywords: Transmission lines, distributed parameter systems, spectral analysis, electric power
systems, model reduction.

1. INTRODUCTION

The voltage and the current of power electric lines are
both sum of two waves which travel with same finite
velocity and in opposite directions along the line. Their
dynamic is modelled by a Distributed Parameters (DP)
model which consists of two Partial Differential Equations
(PDE) giving these quantities in function of time and
space. It is thus an infinite-dimension system. When it
is connected to the rest of the power system, it leads to
a full description of all the physical phenomena resulting
from the different interconnections. However, for realistic
applications, such a full and detailed model of the lines is
difficult to be used and need to be simplified. For instance,
in the case of short and medium length lines (up to 250
Km), the propagation phenomena is generally not taken
into account and a simplified model, called π-model, is
used. It is thus described by ordinary differential equations
giving the voltages and the currents only at the ends.

In power systems, the models above are used to simulate
different phenomena. The π-model is used, e.g., in (Meyer
and Stubbe, 1992) to perform load-flow computations,
to analyse transient stability and to design voltage con-
trollers. To capture the wave propagation, ElectroMag-
netic Transients Program (EMTP) simulators, like (Dom-
mel, 1969), use a delay model obtained from the trajec-
tories of the DP one (when the frequency dependence of
the parameters can be neglected). Both models are based
on physical considerations. However, their adequacy to
reproduce a specific phenomenon, with the overall power
system, was always checked a posteriori by experimental
tests. The main reason of this is that only the input-output
behaviours of the full and the proposed simplified models

are compared in order to validate the simplification. All
the interactions with the other components of the system
are not considered.

In this context, our goal is to establish a systemic link
between the phenomena to be reproduced in simulation
and the appropriate model of the transmission line. This
firstly motivated us to investigate the dynamic properties
(especially the modes and the transfer function) of both
π and DP models in the setting of systems theory. This
provides more informations on the relationship between
their dynamic structures and their behaviours than a
simple comparison of their trajectories. Indeed, the π-
model was a priori adopted and it was afterwards checked
that, in some particular situations, it provides trajectories
comparable with the ones of the DP model. It is explained
here the connection between the dynamic structures of
the two models. More precisely, the π-model is shown
to be close to a first order modal truncation of the
DP model. Also, it is explained that the systematic use
of the π-model as an approximation of the DP one,
can lead to less satisfactory results in some situations
when the line is connected to the rest of the system.
Finally, a more systemic and appropriate way is proposed
to well approximate the DP model of the transmission
lines. All these investigations can be extended to other
components of a power system and give a basis to further
study the adequacy of the models to each typical power
system dynamics (like, e.g., voltage response inter-area
oscillations, sub-synchronous resonance,...).

The paper is organised as follows: in Section 2, the math-
ematical background used in our developments is recalled.
In Section 3, the dynamic structures of both DP and π



models of the line are analytically developed and their
poles and trajectories are compared. A reduction link
between them is established in the case of open lines. In
Section 4, is explained how the use of the π-model, based
on the hypothesis of short-lines can lead to less satisfac-
tory results. Section 5 presents the proposed technique to
well approximate the DP model of the transmission lines.
Conclusions and ways in which our results can be exploited
to improve general models used for simulations, analysis
and control of power systems are presented in Section 6.

2. MATHEMATICAL BACKGROUND

Let Z be a Hilbert space, and A : D (A) ⊂ Z → Z a linear
operator with the domain D (A). If A is compact, the set
of complex values λ ∈ C for which the operator (A− λI)
is not invertible is said the spectrum of A and it is denoted
by ρ (A). Then the set of eigenvalues of A is a subset of
ρ (A) for which the following equation is satisfied

Aφn = βnφn, (1)

where {βn, n ≥ 1} are the eigenvalues ofA and {φn, n ≥ 1}
the corresponding eigenvectors (eigenfunctions). Notice
that n is not necessarily finite. In the case where A is
a self-adjoint operator, {φn, n ≥ 1} forms an orthonormal
basis and then each element z ∈ Z can be uniquely written
as z =

∑∞
n=0 〈z, φn〉Z φn where 〈., .〉Z is the inner product

in Z. Otherwise, if A is non-self-adjoint but a Riez spectral
operator, then each z ∈ Z can be written in a unique way
as z =

∑∞
n=0 〈z, ψn〉Z φn where ψn are the eigenvectors of

the adjoint of A noted A∗.
Also, the following representation{

dz (t)

dt
= Az (t) , z (t) |t=0 = z0,

Bz (t) = u (t) .
(2)

is a general form of an abstract boundary control problem
where A : D (A) ⊂ Z → Z is an operator, u (t) ∈ U the
input and B : D (B) ⊂ Z → U is called boundary operator
with D (A) ⊂ D (B). More explanations and details can
be found, e.g., in Curtain and Zwart (1995) or Tucsnak
and Weiss (2009).

3. ANALYTIC DEVELOPMENTS

To start, consider the distributed parameters model of the
line. If the transverse conductance is neglected, it can be
written as

∂v (x, t)

∂x
= −L∂i (x, t)

∂t
−Ri (x, t) ,

∂i (x, t)

∂x
= −C ∂v (x, t)

∂t
,

(3)

where R, L, and C are positive constant parameters given
per unit length (see, e.g., (Miano and Maffucci, 2001)).
To connect (3) with the other components of the system,
boundary conditions are needed. They define the inputs
and the outputs of the line model and then describe the
behaviour at the extremities of a line of length `. Here,
the line is considered open at the extremity x = ` and
submitted to an ideal voltage source v0 (t) at extremity
x = 0. Thus, when the equations of (3) are combined to

eliminate the current i (x, t) and the boundary conditions
are added, one gets the system

∂2v (x, t)

∂2x
− LC ∂

2v (x, t)

∂2t
−RC ∂v (x, t)

∂t
= 0,

v (x, t) |t=0 = 0,
∂v (x, t)

∂t
|t=0 = 0,

v (x, t) |x=0 = ve (t) ,
∂v (x, t)

∂x
|x=` = 0,

(4)

defined for x ∈ Ω = [0 `] and t ∈ [0 +∞). Its first equa-
tion is called damped wave equation or telegrapher’s equa-
tion. From a systemic viewpoint, (4) can be formulated as
an abstract boundary control problem of form (2). Indeed,

by considering z1 (t) = v (x, t) and z2 (t) =
∂v (x, t)

∂t
one

has 

d

dt

(
z1 (t)
z2 (t)

)
︸ ︷︷ ︸

z(t)

=

(
0 1

α
∂2

∂2x
β

)
︸ ︷︷ ︸

A

(
z1 (t)
z2 (t)

)
,

B

(
z1 (t)
z2 (t)

)
= ve (t) , z (0) = 0,

(5)

where α =
1

LC
and β = −R

L
. In the sequel, the Laplacian

operator
∂2

∂2x
will be noted A0 = − d2

d2x
. Now, to get the

trajectories of (5), some definitions are needed. First, let

us define Z = D
(
A

1
2
0

)
⊕ L2 (Ω), as the Hilbert space to

which belong the solutions of (5). It is equipped with the
following inner product〈(

f1

f2

)
,

(
g1

g2

)〉
Z

=
〈√

αA
1
2
0 f1,

√
αA

1
2
0 g1

〉
L2(Ω)

+

〈f2, g2〉L2(Ω)

(6)

where L2 (Ω) is the complex space of square-integrable

functions and D
(
A

1
2
0

)
the definition domain of the op-

erator A
1
2
0 , i.e.,

D
(
A

1
2
0

)
=
{
f ∈ L2 (Ω) |f absolutely continuous,

df

dx
∈ L2 (Ω) and f (0) = 0

}
.

Next, two conditions have to be satisfied. The first one,
is that the operator A = Az defined by A = A|Ker(B)

(i.e., A restricted to the kernel of B), for f ∈ D (A), is
the infinitesimal generator of a C0-semigroup S (t) on Z.
The second one, is that there exist an operator B in the
set L (U,Z) of linear applications from U to Z, so that for
u ∈ U and Bu ∈ D (A), the operator AB belong toL (U,Z)
and ABu = u. For (5), both conditions are satisfied with

U = C and B = (1 0)
T

. From this point, a change of
variable h (t) = z (t) − Bu (t) leads (5) to the following
homogeneous (i.e., Bh (t) = 0) problem

dh (t)

dt
= Ah (t)− Bdu (t)

dt
+ ABu (t) . (7)

Equation (7) is well posed in Z and has a unique classi-
cal solution (see Theorem 3.3.3 of (Curtain and Zwart,



1995)) if h (0) = (z (0)− Bu (0)) ∈ D (A) and u (t) ∈
C2 ([0 τ ] ;C) for every τ > 0. Thus, the trajectories of
(5) can be written in our case as

z (t) = S (t) z0 −A
t∫

0

S (t− τ)Bu (τ) dτ, (8)

since AB = 0. An explicit expression of (8) is given below.

3.1 Trajectories

The eigenvalues and the eigenvectors of A are provided by
the equation of form (1):(

0 1
−αA0 β

)
︸ ︷︷ ︸

A

(
φ1n (x)
φ2n (x)

)
︸ ︷︷ ︸

Φn

= λn

(
φ1n (x)
φ2n (x)

)
︸ ︷︷ ︸

Φn

.

This leads to

φ2n (x) = λnφ1n (x) ,
d2φ1n (x)

d2x
+

(
βλn − λ2

n

α

)
φ1n (x) = 0,

with φ1n (0) =
dφ1n (x)

dx
|x=` = 0. The second equation is

called Sturm-Liouville equation (see, e.g., (Myint-U and
Debnath, 2007)). It leads to a pair (λn1

, λn2
) of complex

conjugate eigenvalues to which correspond two families
{φn1

}n≥1, {φn2
}n≥1, i.e., Φn = {φn1

, φn2
}, of eigenvectors.

They are given by

φn1
=

(
φ1n1

λn1φ1n1

)
and φn2

=

(
φ1n1

λn2φ1n1

)
,

with

λn1,2
(n) =

β

2
± j

2

√
4α

(
(2n− 1)π

2`

)2

− β2,

and

φ1n1
=

`
√

2α

α (2n− 1)π

√
2

`
sin

(
(2n− 1)π

2`

)
.

In our case, φn1 and φn2 do not form an orthonormal
basis since the operator A is non-self-adjoint. However,
they form a Riez basis Ψn = {ψn1 , ψn2} and lead to

S (t)

(
z1

z2

)
︸ ︷︷ ︸

z

=

∞∑
n=1

(
eλn1

t 〈z, φn1
〉Z ψn2

+ eλn2
t 〈z, φn2

〉Z ψn1

)
.

In this way, the trajectories (8) of (5) become

z (t) = S (t) z0 +

∞∑
n=1

t∫
0

eAn(t−τ)Bnve (t) , (9)

for which

An =

 0 1

−
(

(2n− 1)π

2`
√
LC

)2

−R
L

 ,

and

Bn (x) =

 0
(2n− 1)π

2

(
2

`2LC

)
sin

(
(2n− 1)π

2`
x

) .

Fig. 1. Physical structure of the π-model

From (9), on can notice that the trajectories of (5) are
a superposition of an infinite number of elementary tra-
jectories. Each of them corresponds to a second order
system described by the matrices An and Bn. Thus, it
is then possible to write the transfer function between the
input voltage v0 (t) and a chosen output for all x ∈ Ω.
In particular, when x = `, the transfer function G∞ (s)
between v0 (t) and the voltage v (`, t) is given below.

3.2 Transfer function

One way to deduce the transfer function is to use directly
(9). As the later is an infinite sum of trajectories, the trans-
fer function G∞ (s) is the sum of the transfer functions
corresponding to each elementary system. More precisely,

G∞ (s) =

∞∑
n=1

Gn (s) ,

where Gn (s) is the transfer function of the nth second
order system Σn (An, Bn (`) , Cn) with Cn = (1 0) (since
the output is v (`, t). This gives,

G∞ (s) =
v̂ (`, s)

v̂e (s)
=

∞∑
n=1

(2n−1)π
`2LC (−1)

n+1

(s− λn1
) (s− λn2

)
. (10)

Moreover, (10) can be also written as (see (Belhocine and
Marinescu, 2013) for details)

v̂ (`, s)

v̂e (s)
=

1∏∞
n=1

(
4`2LC

(2n−1)2π2 s2 +
(R

L )4`2LC

(2n−1)2π2 s+ 1

) . (11)

Both forms (10) and (11) are used in the next section to
explain the connection with the π-model.

4. CONNECTION WITH THE π-MODEL: A
SYSTEMIC VIEWPOINT

The structure of the π-model is given in Fig. 1. Its
behaviour is described by the following set of differential
algebraic equations (DAE),

C

2
`
dVe (t)

dt
= i1 (t) ,

C

2
`
dVs (t)

dt
= i3 (t)

Ve (t) = R` (Ie (t)− i1 (t)) + L`
d

dt
(Ie (t)− i1 (t))

Ie (t)− i1 (t) = Is (t) + i3 (t) = i2 (t)

(12)

where R, L and C are as in (3) and Ve (t), Vs (t) the
voltages at both ends of the line of length `. Thus, in
the case where the line is open at the extremity x = 0,
one has Is = 0 and (12) leads to the following state space
representation

d

dt

[
x1

x2

]
︸ ︷︷ ︸

x

=

[
0 1

− 2

`2LC
−R
L

]
︸ ︷︷ ︸

A

[
x1

x2

]
+

[
0

2

`2LC

]
︸ ︷︷ ︸

B

Ve (t) ,(13)



with x1 (t) = Vs (t) and x2 =
dx1 (t)

dt
.

System (13) is linear time-invariant (LTI) of dimension 2.
It has the poles

λ1,2 = −1

2

R
L
± j

√
8

(
1

`2LC

)
−
(
R

L

)2
 (14)

and the trajectoriesx (t) = eAtx0 +

t∫
0

eA(t−τ)BVe (τ) dτ.(15)

From all these developments, the connection between (5)
and the π-model (13) is investigated in two cases. In a
more general case where the line is not necessarily of short-
length and in the case of short and medium length lines.

4.1 Case of general lines

When there is no particular condition on the length of
the line, a way to explain the connection between (13)
and (4) is the modal truncation (see, e.g., (Curtain and
Morris, 2009)). Indeed, as (9) is a convergent sequence of
trajectories related to the modes

{
λn1,2

, n ≥ 1
}

, for which

Real
(
λn1,2

)
< 0, the truncation error to a finite order

is bounded. For this, let us consider the first order (i.e.,
n = 1) truncation of (5), i.e., (9) with the first term only.
This leads to a second order model Σ1 (A1, B1 (`) , C1) for
which

A1 =

(
0 1

−π
2

8

2

`2LC
−R
L

)
, B1 (`) =

 0
π

2

(
2

`2LC

) ,

andC1 = (1 0) .

At this stage, it is important to notice that the poles of
Σ1, i.e., the eigenvalues of A1, which are given by

λn1,2 (1) = −1

2

R
L
± j

√
π2

8

(
8

`2LC

)
−
(
R

L

)2
 , (16)

do not depend on the parameter x. Moreover, they are
similar to λ1,2 of (14) and the only difference is the factor
π2

8 between their imaginary parts which is thus not far
from the unity.

Now, to compare the behaviours, i.e., the trajectories, one
has also to compare B1 (`) with the matrix B of (13).
Since B1 (`) = π

2B, one can then deduce that the difference
with the trajectory (15) comes not only from the before

mentioned factor π2

8 among the poles, but also from the
factor π

2 among the B and B1 (`) matrices. This shows that
the π-model is not exactly the first order modal truncation
of (10) but close to it, i.e. to Σ1.

4.2 Case of short-lines

The comparison done in (Kundur et al., 1994) has shown
the similarity of the trajectories provided by (13) and (4)

when the parameter `
√
LC is small enough (i.e., a short

line). This can also be retrieved as a particular case of

Fig. 2. Step response of the π and truncated models of the
line

our results. More precisely, when `
√
LC ≈ 0, the transfer

function (11) of (5) can be approximated by that of the

π-model (13). Indeed, the condition `
√
LC small enough

in (11) leads to

v̂ (`, s)

v̂e (s)
≈ 1

8
π2

`2LC
2 s2 + 8

π2

(R
L )`2LC

2 s+ 1
, (17)

since when `
√
LC ≈ 0,

(
`
√
LC

2n−1

)2

≈ 0 for n > 1. Thus, as

the transfer function of the π-model (13) is

V̂s (`, s)

V̂e (s)
=

1

`2LC
2 s2 +

(R
L )`2LC

2 s+ 1
, (18)

the difference between (17) and (18) is the factor π2

8
among the denominators. As this factor is close to unity,
the transfer (11) can thus be approximated by (18) when

`
√
LC is small enough. In the time domain, this is shown

in Fig. 2 for a transmission line of 200 km.

From a systemic viewpoint, this means that, in the case
of short and medium length lines, only the first mode
λn1,2

(1) of (11) plays an important role in the input-
output behaviour of the transmission line. In other words,
the dynamic structure of (5) is, in this case, similar
to its first order approximation, i.e., when n = 1. To
compare this result with the one obtained in Section 4.1,
let Σ

(
A,B,C

)
with

A1 =

(
0 1

−π
2

8

2

`2LC
−R
L

)
, B1 (`) =

 0
π

2

(
2

`2LC

) ,

andC1 = (1 0) .

be the state space model of the transfer function (17). It
has thus the poles given by (16), and the difference with

λ1,2 of (14) comes again from the factor π2

8 as in Section
4.1. Moreover, the difference between the matrices B and

B comes now from the factor π2

8 , i.e., B = π2

8 B. This
similarity with the π-model is not fully preserved with
the reduced model Σ1 of Section 4.1 where the factor
among B and B1 (`) is π

4 (i.e.,B = π
4B1 (`)). Finally, as

the differences between Σ1, Σ, and (13) are not major, the
trajectories provided by these models are close. This shows



Fig. 3. Benchmark of voltage collapse

that the input-output behaviour of the full model (5) can
be described by its first-order reduced model only in the
case of short and medium length lines.

This result gives us a first view on the role of the systemic
link to well understand the relationship between the dy-
namic structure of the system and its behaviour. Moreover,
it leads us to another question which is the choice of
the important dynamics and their number (i.e., the order
of the reduced model). To see more clear, assume that

`
√
LC ≈ 0 with a precision which vary between 10−4 and

10−3. In this case, both precisions are not far from zero but
the impact of this variation when the line is connected to
the rest of the power system is not clear and well defined.
More precisely, based only on the role of `

√
LC in (11), it

is not easy to deduce a priori the number of modes which
have to be kept in the reduced model of the transmission
line in order to correctly reproduce the phenomena of the
whole interconnected system. This is illustrated below by
considering the voltage collapse phenomenon.

4.3 Illustration example

The power system of Fig. 3 represents a structure mainly
usually used to analyse the maximum amount of active
power which can be transported through the AC line
with stable dynamics. More specifically, when the load
increases, the voltage diminishes slowly and the LTC
(Load Tap Changer) plays the role of a voltage controller
to fix it at a desired value. The power transfer from the
generator to the load is limited (cannot increase) above
a critical value called power limit in the sense that the
operation of the system at a higher power transfer leads to
a phenomenon called voltage collapse. It is characterised by
a slow decrease of the load voltage from a desired value to
zero in case of disturbance. This can lead, in a more general
case (several generators, lines and loads interconnected),
to a dynamic instability of the whole interconnected power
system. Now, consider the transmission line embedded in
the system of Fig. 3. It has a length of 300 km and `

√
LC =

0.0067. As the latter is small, its impact in (11) when n > 1

is not very important (since
(
`
√
LC
)2

' 4, 4.10−5) and

one can consider that only the first mode of (11) should
be kept. However, when the π-model is used (i.e., the first
mode based on the equivalence with (11) as mentioned
above), Fig. 4 shows clearly that such a model cannot
reproduce correctly the phenomenon of voltage collapse.

Indeed, one can see that at time 150 seconds, a step on
the voltage reference value of the LTC, leads the load
voltage obtained with both models (π and DP 1 model) to

1 For numerical computations, the DP model given by (3) is approx-
imated by a large-scale state space model of order 1000. Its inputs

Fig. 4. Voltage collapse phenomenon

decrease slowly to zero. However, the important time shift
(approx 24 seconds) between the two voltage trajectories,
shows that the use of the π-model is not suited in this
situation. In addition, it is not obvious, in this case, to
improve this result by taking into account several modes
by using, e.g., the model developed in Triezenberg (1979).
More specifically, the number of modes to be retained to
reproduce the phenomenon mentioned above is a priori
unknown. It can be determined only a posteriori by trial
and error tests.

5. TOWARDS A NEW APPROXIMATION
TECHNIQUE OF A SUBSYSTEM OF A COMPLEX

SYSTEM

The goal is to approximate only the model of a given
subsystem (of a complex interconnected system) but in
such way that, when the resulting simplified model is
connected to the rest of the system, all phenomena of
interest can be reproduced. For this, the structure of
the overall system has to be taken into account. Indeed,
the dynamics of the subsystem might not have the same
contribution in the behaviour of the overall system. This
is why, it is important to rate them fist in order to keep
only the most important ones in the simplified model of
the subsystem. In this way, all the phenomena of interest
can be reproduced.

To do this, we propose here a systemic approach based
on the Hankel singular values (HSV) and the so-called
participation factors (see, e.g., (Verghese et al., 1982)).
More precisely, the HSV are, generally, helpful to rank the
state variables following their impact on the input-output
energy of the system. They are used in Moore (1981) to
truncate the balanced system by keeping only its state
variables corresponding to the largest values. Likewise,
the participation factors were successfully used in power
systems to make the link between the modes and the state
variables related to the models of the electric components
(see, e.g., (Verghese et al., 1982)). Thus, our strategy is
to mix them in order to find the important modes of
the subsystem. Such an idea was exploited successfully
in (Belhocine and Marinescu, 2014) to approximate a
complex model as a one input-output bloc. Here, the
proposed procedure is as follows:

and outputs are, respectively, the currents and the voltages at the
ends of the line.



1) Linearise the model of the overall system around
an equilibrium point and choose an input-output
transfer.

2) Compute the balanced realization as well as the HSV
of the previous linearised model.

3) Find all the modes which have large participations
(measured by the modulus of the participation fac-
tors) in the state variables (of the balanced realiza-
tion) associated to the largest HSV and group them
into a set Λ.

4) Among the modes of Λ, find all the ones of large
participations in the state variables of the subsystem
and group them into a set Γ.

5) From all the modes of the stand alone subsystem (i.e.,
disconnected from the overall system), find the ones
which have close frequencies to each mode of Γ.

6) Construct the simplified model of the subsystem by
keeping all the modes found in the previous step by
using the modal truncation.

When the procedure above is applied to the power system
of Fig. 3 (by choosing the reference voltage of the LTC as
input and the load voltage as output), it follows that the
largest HSV is related only to the LTC component. All the
other values are very small compared to the largest one.
In this situation, the set Γ is empty and there is no mode
of the DP model which is involved in the voltage collapse.
As a consequence, one can conclude that the appropriate
simplified model for the line is, in this case, algebraic. More
specifically, it corresponds to the static gain matrix G of
the full DP model and not of its truncation at the first
order. For the line embedded in the benchmark of Fig. 3,
it is given by

G =

 0, 2233 0, 1129 −60, 8612 64, 5243
60, 8612 −64, 5243 0, 2233 0, 1129
−0, 1129 −0, 2233 −64, 5243 60, 8612
64, 5243 −60, 8612 −0, 1129 −0, 2233

 .

The resulting simplified power system provides practically
the same trajectories with the ones of the DP model shown
in Fig. 4.

6. CONCLUDING REMARKS

In this paper, the dynamic structures of both π and
distributed parameters (DP) models of a transmission
lines are firstly analysed and compared in the setting of
systems theory. It comes out from the comparisons that
the π-model is not exactly a first order modal truncation
of the DP model but close to it. More precisely, in the
case of open lines, no much difference is found between
the poles and the trajectories of the π-model and the
ones corresponding to the modal truncation at the first
order of the DP model. This fills the gap between the
comparison of trajectories and the dynamic structure of
models. Next, the validity condition of the π-model as
an approximation of the DP one, in the case of short
and medium length lines, is analysed. By considering the
voltage collapse phenomenon, it is shown that when the
line is connected to the rest of the system, the previous
condition can leads to biased results. Indeed, it is not
obvious to find an appropriate simplified model of the
line without taking into account its interactions with the
other components of the system. This is why, a new

approach to well approximate the model of a subsystem
of a complex system is proposed. It is based on the Hankel
singular values and the participation factors. Thus, it is
more systemic and gives good results when it is applied to
the case of voltage collapse. This method will be further
developed for general systems. For power systems, all these
results and investigations are a first step to improve the
numerical simulations and the behaviour analysis.Indeed,
we envisage to improve the actual simulators, used in
power systems, by adjusting the simplified model of the
transmissions lines as well as similar complex models (like
the ones of magnetic circuits or power electronics) to
each specific phenomenon which has to be reproduced
in simulation. This will help the Transmission System
Operators (TSO’s) to adapt their simulation and analysis
techniques to the modern power systems, i.e., with new
components and new sources of energy.
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