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Abstract—The work presented in this paper deals with obser-
vability analysis of a synchronous machine connected to an infi-
nite bus. The dynamical behaviour of the latter is represented by
a one axis fifth order model including regulators with unknown
reference signals. Different possible outputs scenarios are checked
to achieve observability conditions. Then, an observer based
on Extended Kalman Filter (EKF) algorithm is proposed by
considering the reference signals as a part of its state. The
observer performance is tested with and without regulators
saturations.

I. INTRODUCTION

The determination of a physical system state from measure-
ment is crucial to ensure its monitoring and proper functioning.
The state reconstruction problem for grid elements based
on the available measurements is referred to as observer
synthesis problem, and its feasibility as observability analysis.
In the power system industry, the dynamic security analysis
is needed. For this, all the states of the power system have to
be estimated, in particular the variables of the generators and
their regulators. The time updating should be much faster for
this task then for the static state estimator (for this notion see
[5], [6]).

Our aim in this paper is to set up an algorithm which
considers a complete model representing the overall grid
behaviour. The regulators of the generators are considered
along with their nonlinearities due to saturation of actuating
variables. Moreover, the reference signals of regulators are
supposed unknowns.

As a first step, in this paper, we address the observability
analysis of a nonlinear Ordinary Differential Equations (ODE)
model of power systems using different measurement sets.
This give us answers on which model outputs selection we
get a best observability and about observers feasibility. In a
second step, we propose an alternative algorithm based on the
EKF proposed in [1]. Instead of approaches that uses canonical
form transformations such as high gain observers (see [9]). In
general, these last approaches are based on diffeomorphism
inversion that is difficult to calculate numerically in the case
of large systems.

In simulation, we apply our algorithm for dynamical state
estimation of a Synchronous Machine connected to an Infinite
Bus (SMIB) as well as the estimation of the state of its voltage
and frequency local regulators. Furthermore, we consider the
saturation phenomenon of internal regulators’ variables, which

has not been considered previously due to the complexity of
the analysis.

The reminder of the paper is organized as follows: In section
II, we give the model details of SMIB. Next, a problem sta-
tement is presented in section III. The forth section addresses
the observability analysis and observer synthesis followed by
simulation validation. Finally, a general conclusion is given in
the last section.

II. MODEL OF THE SYNCHRONOUS MACHINE CONNECTED
TO AN INFINITE BUS

The SMIB system is described in Fig. 1. Here, we consider
the dynamical model with three state variables (see, [2]):

differential equations:

ė′q = − 1

T ′d0

(
e′q − (xd − x′d)id + Efd

)
(1)

ω̇ =
1

2Hω

(
Pm − iq

(
e′q + id(xq − x′d)

))
(2)

δ̇ = ω − ωs (3)

algebraic equations:

iq = −
(X + x′d)Vssin(δ)− (R+ r)(Vscos(δ)− e′q)

(R+ r)2 + (X + x′d)(X + xq)
(4)

id =
X + xq
X + r

iq −
1

R+ r
Vssin(δ) (5)

voltage and frequency regulators equations:

Ėfd = −Efd

Ta

+
Ka

Ta

(
Vref −

√
(xqiq − rid)2 + (eq′ − riq − x′did)2

)
(6)

Ṗm =
1

Tg
(−Pm + Pref +Kg(ωref − ω)) (7)

Equations (1)-(7) belong to the class of systems described by
Differential Algebraic Equations (DAE):

ẋ = f(x, z, u)
0 = g(x, z)
y = h(x, z) ,

(8)

where
- The intermediate vector state z represents currents (id,
iq) in the qd0 base (see [2] for this notation).



Fig. 1: Application example: synchronous machine (G) con-
nected to an infinite bus (N∞).

- The state x is a vector of five elements representing
respectively the generating e.m.f. (e′q), the generator an-
gular speed ω, the rotation angle δ, the rotor voltage Efd

and the mechanical power Pm supplied to the generator.
- The system’s inputs u are : Vref and Pref .
- The other variables are constant parameters which are

given in Tab. I

Parameter Value Parameter Value Parameter Value
T ′d0 9.67 xd 2.38 x′d 0.336

xq 1.21 H 3 r 0.002
ωref , ωs, Vs 1 R, Ta 0.01 X 1.185

Tg 0.4 Kg 0.5 Ka 70

TABLE I: Parameters values of model (1)-(7) in per-unit (pu).

Remark 1: In this example, intermediate signals z (id, iq)
can be written in terms of the state x (e′q, ω, δ, Efd et Pm).
Thus, the model is transformed into an ODE system which
belong to the following class:

ẋ = f(x, u)
y = h(x)

(9)

Remark 2: For simplification reasons, from now on, the new
simplified ODE system is given in the following form:

ė′q = f1(e′q, δ, Efd)
ω̇ = f2(e′q, ω, δ, Pm)

δ̇ = f3(ω)

Ėfd = f4(e′q, δ, Efd, Vref )

Ṗm = f5(ω, Pm, Pref )

(10)

III. PROBLEM STATEMENT

In this paper our aim is to estimate asymptomatically the
state x = (e′q, ω, δ, Efd, Pm) of system (10) using a state
observer approach with a priori knowledge of measurements
y assuming that the inputs (Pref , Vref ) are unknowns and that
the regulators dynamics can be saturated. More precisely, we
have:

Ėfd =

 0 if (Efd ≥ Emax and f4(∗) > 0)
or (Efd ≤ Emin and f4(∗) < 0)

f4(∗) otherwise
(11)

Ṗm =

 0 if (Pm ≥ Pmax and f5(∗) > 0)
or (Pm ≤ Pmin and f5(∗) < 0)

f5(∗) otherwise
(12)

For measurements variables y, the following scenarios are
considered:

A - Measurement of terminal voltage,

VG =
√

(xqiq − rid)2 + (eq′ − riq − x′did)2.

B - Measurement of the active power,

Pa = iq(eq′ − riq − x′did) + id(xqiq − rid).

C - Measurement of the reactive power,

Q = id(eq′ − riq − x′did)− iq(xqiq − rid).

D - Measurement of generator angular speed ω.
E - A + B.
F - A + B + C.
G - A + B + C + D.
H - Measurement of the full state e′q , ω, δ, Efd and Pm.

Mathematically, we are searching for a mapping F : Rn ×
Rp × R+ → Rn such that the following auxiliary system:

˙̂x(t) = F(x̂(t), y(t), t), (13)

satisfies:

• x̂(0) = x(0)⇒ x̂(t) = x(t), ∀t ≥ 0;

• ‖x̂(t)− x(t)‖ → 0 when t→∞.

The synthesis of state observers for systems (9) with
unknown inputs is a complex problem. However, since the
inputs Vref and Pref are considered as a reference signals
respectively of the voltage and frequency regulators, they
usually have piecewise constant values. In this case, in order
to simplify the study, we assume them as a constant unknown
parameters and we add them to the state vector. The resulting
augmented (autonomous) system is given by equations (14).

Σ



ė′q = f1(e′q, δ, Efd)
ω̇ = f2(e′q, ω, δ, Pm)

δ̇ = f3(ω)

Ėfd =

 0 if (Efd ≥ Emax and f4(∗) > 0)
or (Efd ≤ Emin and f4(∗) < 0)

f4(∗) otherwise

Ṗm =

 0 if (Pm ≥ Pmax and f5(∗) > 0)
or (Pm ≤ Pmin and f5(∗) < 0)

f5(∗) otherwise
V̇ref = 0

Ṗref = 0
(14)

Once the observer’s synthesis is done for system (14), its
robustness will be checked in the presence of variations in
Vref and Pref signals.

The necessary conditions for the existence of state observers
is referred to as observability. In the case of linear time
invariant systems, the observability is equivalent to satisfying
Kalman criterion [3]. In the nonlinear case, the most important
property in practice is the rank condition which is an extension
of Kalman criterion. The rank condition is equivalent to the



notion of locally weak observability which is a geometric
property (see [1] for more details).

Proposition 1: we consider the following particular case
of autonomous systems :

ẋ = f(x)
y = h(x).

(15)

Then system (15) is locally weakly observable if the Jacobian
Jx(Φ(x)) of Φ(x) defined by:

Φ(x) =


h(x)
Lfh(x)

...
Ln−1
f h(x)

 , (16)

is a full rank column matrix along the trajectories x(t)
solutions of (15), where Lfh(x) is the Lie derivative of h(x)
and Li

fh(x) is the Lie derivative of Li−1
f h(x) in the direction

of vector field f(x).

IV. OBSERVER SYNTHESIS

A. Observability test

To check if the Jacobian matrix of Φ(x) is of full rank
column, one can calculate its Smallest Singular Value (SSV).
Since the singular values of a matrix with elements in R are
positive then we say that a dynamical system (15) is locally
weakly observable if the SSV is non-zero for all values of
x ∈ X , where X in our test, is the set of values taken on the
solution trajectories of equations (1)-(7) at given times t.

In order to take into account the saturations effect of voltage
and frequency regulators as well as the case of the unknown
input signals (Vref , Pref ), two different tests are presented:

Test 1 (Model with unknown Vref , Pref without satu-
rations of Efd, Pm): In this test, the expression of Φ(x) is
obtained using the model given by (14) but without saturations
of Efd and Pm.

Inputs signals: we recall that signals (Vref , Pref ) are
assumed as a part of state and must be constants. We choose
them such that Efd and Pm remain out of saturations. The
values Vref = 0.98 pu and Pref = 0.56 pu satisfy this
condition.

The simulation results presented in Tab. II show that for the
measurement scenario A, observability is the weakest compa-
red to scenarios B, C and D. However, for scenarios E, F, G
and H, observability is even better which is consistent because
we get more informations when we have more measures.

Test 2 (Model with unknown Vref , Pref with saturation
of Efd, Pm): In this case, equations (14) are replaced by the
following equations:

ė′q = f1(e′q, δ, Efd)
ω̇ = f2(e′q, ω, δ, Pm)

δ̇ = f3(ω)

Ėfd = 0

Ṗm = 0

V̇ref = 0

Ṗref = 0

(17)

This change generates a change in the expression of Φ(x)
and obviously a change in the observability. Indeed, based on
the fundamental geometric notion of indistinguishability, we
can prove analytically (without going through the numerical
calculation of J(Φ(x))) that system (17) is a non observable
one.

Definition 1 (indistinguishability [1]): Let the following
nonlinear autonomous system :

ẋ = f(x),
y = h(x)

(18)

Then, a pair (x0, x
′
0) ∈ Rn × Rn is indistinguishable if

∀t ≥ 0, h(χ(t, x0)) = h(χ(t, x′0)),

where χ is the solution of system.

Now, if we choose for the model (17) two different initial
values

x0 = (e′q0 , ω0, δ0, Efd0 , Pm0 , Pref0 , Vref0)

and
x′0 = (e′q0 , ω0, δ0, Efd0

, Pm0
, P ∗ref0 , V

∗
ref0)

with
Pref0 6= P ∗ref0 et Vref0 6= V ∗ref0 .

Note that in all the measurement scenarios cited above, the
output y does not depend explicitly on Vref and Pref . In other
words:

y(t) = h(e′q(t), ω(t), δ(t), Efd(t), Pm(t))

Therefore, it results:

y(x0, t) = y(x′0, t).

Since the dynamics of Vref and Pref are decoupled from
the rest of equations (14), we conclude that the system (17)
is indistinguishable. We can even conclude that the system
is not locally weakly observable because for all x0 ∈ Rn,
there is always a neighbourhood V and a point x′0 ∈ V
such that (x0, x

′
0) are indistinguishable (see definition in [1]).

The question arises intuitively, is it possible to construct an
asymptotic observer (as defined above) for estimating the state
x = (e′q, ω, δ, Efd, Pm) even if the observability condition of
the augmented system (17) is not verified. In other words, are
the unobservable states only Vref and Pref? To answer this
question, we apply the observability test on the non-augmented
system (with Vref and Pref in saturation):

ė′q = f1(e′q, δ, Efd)
ω̇ = f2(e′q, ω, δ, Pm)

δ̇ = f3(ω)

Ėfd = 0

Ṗm = 0

(19)

By choosing Vref = 1.5 pu et Pref = 0.84 pu, the state
of system (19) go into saturation and remains there during
the simulation time. Now, if we use the same measurement



SSV t = 10 t = 20 t = 30 t = 40 t = 50 t = 60 t = 70 t = 80 t = 90 t = 100

A 3.2 ∗ 10−5 1.8 ∗ 10−5 2.5 ∗ 10−6 9.5 ∗ 10−6 5.1 ∗ 10−7 2.3 ∗ 10−6 9.5 ∗ 10−8 3.0 ∗ 10−5 9.8 ∗ 10−6 3.6 ∗ 10−7

B 4.0 ∗ 10−4 7.1 ∗ 10−4 1.9 ∗ 10−4 3.2 ∗ 10−4 1.7 ∗ 10−4 8.4 ∗ 10−5 5.9 ∗ 10−5 1.1 ∗ 10−4 5.0 ∗ 10−5 7.0 ∗ 10−6

C 6.4 ∗ 10−4 8.4 ∗ 10−4 5.9 ∗ 10−5 2.8 ∗ 10−4 1.5 ∗ 10−4 4.7 ∗ 10−5 5.0 ∗ 10−5 1.3 ∗ 10−4 5.6 ∗ 10−5 5.1 ∗ 10−6

D 4.0 ∗ 10−5 3.6 ∗ 10−5 4.2 ∗ 10−5 1.5 ∗ 10−5 1.2 ∗ 10−5 6.9 ∗ 10−7 2.9 ∗ 10−6 2.5 ∗ 10−6 2.3 ∗ 10−6 8.2 ∗ 10−7

E 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.06 0.05 0.06
F 0.07 0.08 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.08
G 0.15 0.14 0.14 0.15 0.14 0.14 0.14 0.14 0.14 0.14
H 1 1 1 1 1 1 1 1 1 1

TABLE II: Test 1: SSV of Jacobian matrix J(Φ(x)) for values of x taken on trajectories of the dynamic model solution at
time instants t in sec.

scenarios as above, we obtain the results presented in Fig. 2-
3. Then, the same remarks as in the case of test 1 are observed.
We can conclude then, that only Vref and Pref are the non
observable variables.
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Fig. 2: Test 2 – SSV values of Jacobian matrix J(Φ(x)) for
scenarios: H (blue line), G (green line), F (orange line) and E
(red line).

B. Extended Kalman Filter (EKF) for autonomous nonlinear
Systems

The Kalman Filter (KF) is a dynamic gain observer which
is basically designed for the state estimation of Linear Time
Variant (LTV) systems (see [1]):

ẋ = A(t)x+B(t)u (20)
y = C(t)x+D(t)u. (21)

The concept of uniform observability is the necessary con-
dition for asymptotic convergence of KF which is proved in
many works (see [3], [4]). However, for nonlinear systems
(14), the non-stationary gain of KF is adapted by replacing
matrices A(t) and C(t) by respectively the instantaneous
values of Jacobian of f(x) and h(x), then the algorithm is
called EKF. However, one of EKF drawbacks is its conver-
gence guarantee which is in general proved only locally (see
[7], [8]). On the other hand, the advantage of EKF is its
simple structure and ease of implementation compared to the
other approaches that are applied on nonlinear systems with
canonical forms such as high gain observers. But the most
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Fig. 3: Test 2 – SSV values of Jacobian matrix J(Φ(x)) for
scenarios: A (blue line), B (green line), C (black line) and D
(red line).

important advantage that prompted us to choose the FKE is
its ability to fit measurement noise making it the most used
algorithm in the industry and real applications.

1) Algorithm: The observer proposed for state estimation
of system Σ (see equations (14)) is given by system Σo defined
as following:

Σo



˙̂e′q = f1(ê′q, δ̂, Êfd) + k1(t)(y − ŷ)
˙̂ω = f2(ê′q, ω̂, δ̂, P̂m) + k2(t)(y − ŷ)
˙̂
δ = f3(ω̂) + k3(t)(y − ŷ)

˙̂
Efd =

{
k4(t)(y − ŷ) if cond1

f4(∗̂) + k4(t)(y − ŷ) otherwise

˙̂
Pm =

{
k5(t)(y − ŷ) if cond2

f5(∗̂) + k5(t)(y − ŷ) otherwise
˙̂
Vref = k6(t)(y − ŷ)
˙̂
Pref = k7(t)(y − ŷ)

(22)
with
cond1 = (Êfd ≥ Emax&f4(∗̂) > 0)||(Êfd ≤ Emin&f4(∗̂) < 0),

cond2 = (P̂m ≥ Pmax&f5(∗̂) > 0)||(P̂m ≤ Pmin&f5(∗̂) < 0).

and when

P̂m(t) = Pmax & P̂m(t+)− Pmax < −ε1, 0 < ε1 ≪ 1



Êfd(t) = Emax & Êfd(t+)−Emax < −ε2, 0 < ε2 ≪ 1

we have respectively

P̂ref (t+) = P̂m −Kg(ωref − ω̂) (23)

V̂ref (t+) = Êfd/Ka +

√
(xq îq − rîd)2 + (êq′ − rîq − x′dîd)2

(24)

ki(t) for i = 1, · · · 7 are the rows of observer matrix gain K(t)
which is given by the following auxiliary system:

Ṡ = −A>(t)S − SA(t) + C>(t)W−1C(t)− θS − SV S
(25)

K(t) = S−1(t)C>(t)W−1, (26)

where W , θ and V are robustness and speed of convergence
setting parameters. Matrices A(t) and C(t) are given for all
t > 0 as follows:

A(t) =
∂f(x)

∂x

∣∣∣∣
x=x̂

, C(t) =
∂h(x)

∂x

∣∣∣∣
x=x̂

, (27)

with

f(x) =



f1(e′q, δ, Efd)
f2(e′q, ω, δ, Pm)

f3(ω)[
0 if cond1

f4(e′q, δ, Efd, Vref ) otherwise

]
[

0 if cond2
f5(ω, Pm, Pref ) otherwise

]
0
0


, h(x) =

VtPa

Q



Assumption 1: Since the convergence of the EKF is gua-
ranteed only locally, we assume that the simulations start from
an equilibrium point, which makes it possible to calculate the
observer initial values very close to the real system initial
values. Thus, we solve the following system of equations:

0 = f(x̂0)
y0 = h(x̂0)

(28)

where y0 ∈ Rp are the measurements initial values at time t0
and x̂0 are the initial values of the EKF state. From a practical
point of view, the hypothesis that the real system starts from
an equilibrium point is feasible since the measurements are
available over a very large window of time. On the other hand,
it is difficult to ensure that the initial point x̂0 will be identical
to the real value x0 of the internal state due to the model
uncertainties.

Remark 3: Since x̂0 ∈ Rn+2 and f : Rn+2 → Rn, the
outputs dimension p must be p ≥ 2 to obtain a unique solution
of equations (28). We assumed measuring three variables:
(Vt, Pa, Q) to satisfy both the latter condition and the practical
constraints (availability and reliability of the measures).

Remark 4: From the observability study we know that when
the regulators dynamic reach saturation levels, the reference
signals Pref and Vref will no longer be observable and their
values will not be properly estimated during the saturation

time. Nevertheless, when P̂m and/or Êfd leaves saturation, at
this time precisely, we can quickly update the values of Pref

and Vref using respectively (23) and (24) instead of waiting
for the observer correction which is slower. Of course, this
technique is only effective when the estimates P̂m and Êfd

are good.
2) Simulation: To be more realistic, the simulations were

made considering the effect of an additive white noise (of
magnitude = 2.10−2 p.u.) to the output signals. Starting from
initial values of Tab. III and using input signals of Tab. IV,
we get simulation results given in Fig. 4–6. Signals Vref ,
Pref change so that the dynamics of the regulators go into
saturation at the instants t = 100 and t = 200. When Vref ,
Pref change, we can see that the observer states Êfd and P̂m

does not exactly follow the true system state. It makes sense
because we assumed in the observer model that the reference
signals are constants and when they change to another constant
values it takes some time to compensate the model errors
and/or moving away from a non observability region (like,
for example, when Efd and/or Pm are saturated). However, in
general, the accuracy of results is acceptable.

State e′q ω δ Efd Pm Pref Vref
System initial values 1.3 1.0 1.6 2.5 0.7 0.7 1.0

Observer initial values 0.5 0.5 1.0 1.6 0.3 0.1 0.7

TABLE III: Simulation – system and observer initial values

Inputs (p.u.) t : 0→ 100 t : 100→ 200 t : 200→ 500
Vref 1.0 1 + 5% 1 + 5%
Pref 0.7 0.7 0.7(1 + 2.75%)

TABLE IV: Simulation – reference signals (Inputs) evolution.

0 50 100 150 200 250 300 350 400 450

2.4

2.5

2.6

Time [s]

Efd

Êfd

estimation error

Fig. 4: Simulation results – comparison between Efd (black
line) and estimated Êfd (blue dashed line).

In order to show the effectiveness of the method presented
in Remark 4 we have carried out a simulation scenario so
that one of the regulators dynamics (Pm in this case) will
be saturated and during this time, Pref changes. In the ideal
case (without noise effect) shown in Fig. 7, we note that the
estimate P̂ref at the end of saturation joins instantaneously
the true value of Pref . The results obtained in the presence of
noise are given in Fig. 8.
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×10−1

Fig. 5: Simulation results – comparison between Pm (black
line) and estimated P̂m (blue dashed line).
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Fig. 6: Simulation results – comparison between (e′q , ω, δ) and
estimations (ê′q , ω̂, δ).
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Fig. 7: Without noise – (red) detection of Pref value when
Pm leaves saturation/ (blue) estimation precision of Pm.
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Fig. 8: With noise – (red) detection of Pref value when P̂m

leaves saturation/ (blue) estimation precision of Pm.

V. CONCLUSION

In this paper, based on the notion of rank condition, the
observability of a dynamical model (14) for a synchronous
machine connected to an infinite bus is studied. We concluded
that during the saturated modes of regulators, the reference
signals are no longer observable. However, an observer is
synthesized using the EKF to estimate asymptotically the state
of the non-augmented model (1)-(7). The results obtained
show that the estimates provided by the observer converge and
remain centered around the model values in the presence of
measurement noises. However, some estimation errors occur
when the reference signals change to another constant values,
but the values of the EKF dynamical gain remain bounded. The
most critical situation is when this happens during a saturation
mode. In this case, the lack of observation can be overcome
by instantaneously and algebraic computation of the values
of the reference signals when the dynamics of the regulators
come out from saturation modes, which greatly improves the
observer’s precision. Future work will focus on extending
the methodology to the case of non constant references and
implementation on large-scale grid.
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[1] G. Besançon, Nonlinear observers and applications, Vol. 363. pp. 1-33,
Berlin: Springer, 2007.

[2] P. Kundur, Power system stability and control, Vol. 7. 1176 pages, New
York: McGraw-hill, 1994.

[3] R. E. Kalman, A new approach to linear filtering and prediction problems,
82(1) . pp. 35-45, Journal of basic Engineering, 1960.

[4] R. E. Kalman and R. S. Bucy, New Results in Linear Filtering and
Prediction Theory, 83(1). pp. 95-108, Journal of basic Engineering, Mar
01, 1961.

[5] A. Abur and A. G. Exposito, Power system state estimation: theory and
implementation, CRC press, 2004.

[6] F. C. Schweppe and R. D. Masiello, A tracking static state estimator, pp.
3(1025–1033), In IEEE Transactions on Power Apparatus and Systems,
1971.

[7] M. Boutayeb, H. Rafaralhy and M. Derouach, Convergence analysis of
the extended Kalman filter used as an observer for nonlinear deterministic
discrete-time systems, 42(4). pp. 581-586, IEEE transactions on automatic
control, 1997.

[8] Y. Song and J.W. Grizzle, The extended Kalman filter as a local
asymptotic observer for nonlinear discrete-time systems, pp. (3365-3369),
In IEEE American Control Conference, 1992.

[9] G. Bornard and H. Hammouri, A high gain observer for a class of
uniformly observable systems, pp. 1494–1496, In 30th IEEE Conference
on Decision and Control, 1991.


